Multi-level FEM

Citation for published version (APA):

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Aug. 2019
Introduction

Almost all of the metals utilised in industry are microscopically heterogeneous (figure 1). Examples are
- **metal alloy** systems with the second phase in the form of precipitates and pores
- **polycrystals** with grains of different orientation
- **metal-matrix composites** containing fibers, whiskers or particles in the matrix

The mechanical and thermal behaviour at macrostructural level depends on the **size**, **shape**, **properties** and **spatial distribution** of the second phase.

Objective

It is the aim to include the properties of the microstructure into the modelling on the macro-level.

MLFEM as homogenisation technique

The Multi-Level Finite Element method (MLFEM) [1] is employed in the present work. The scheme of the MLFEM algorithm is presented in figure 2.

Basic MLFEM hypotheses

- spatial periodicity of the microstructure
- the microstructure is fully identified by a Representative Volume Element (RVE)
- local values at a macroscopic point \(P \) are determined by averaging the corresponding values over the RVE, attributed to that point
 - Cauchy stress: \(\sigma_{macro}(P) = \bar{\sigma}_{RVE}(P) \)
 - stiffness matrix: \(S_{macro}(P) = \bar{S}_{RVE}(P) \)

Results

As an example the method is applied to numerically simulate pure bending of microscopically heterogeneous aluminium AA 1050, which contains 10% volume fraction voids. The material behaviour is described by the visco-plastic Bodner-Partom model [2] with stress dependent viscosity. The results are presented in figure 3.

Advantages of MLFEM

- the method provides a **microscopically based** model of the macro-level behaviour
- the method enables the incorporation of **large deformations** and **rotations** (geometrical non-linearity) on both macro- and micro-levels
- **geometry** and **properties** of the microstructure are directly included into the calculations
- the **evolution** of the microstructure can be examined
- arbitrary material behaviour (including non-linear) at the micro-level may be used
- in general, **any modelling technique** may be used on the micro-level (finite elements, interaction simulations, cellular automata, etc.)

Possible applications

- macro behaviour of heterogeneous materials
- evolution of the microstructure, including phase transformations
- design of new materials

References: