Dynamic road lighting and perceived personal safety of pedestrians

Citation for published version (APA):

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Dynamic Road Lighting and Perceived Personal Safety of Pedestrians

Antal Haans, Thijs H. J. van Osch, & Yvonne A. W. de Kort

Eindhoven University of Technology, Eindhoven, the Netherlands

Introduction

Road lighting accounts for a large proportion of the energy consumption of Dutch municipalities. This includes the lighting of roads at times when no street users are present, thus leading to energy waste and unnecessary light pollution. Intelligent dynamic road lighting, which continuously adapts to the presence and behavior of users, can light the street only when and where it is needed. As such, it offers a solution to the energy waste and luminous pollution associated with conventional road lighting (e.g., de Kort et al., 2010). With this innovation, however, new questions emerge about the effect of lighting on perceived safety. We need to consider not only how much lighting pedestrians need to feel safe, but also where it should strike. When and where, for example, do pedestrians benefit most from street lighting: in their action or vista space?

In the present study, we investigated how different distributions of the same amount of illumination affect pedestrians’ sense of safety in a dynamic situation. Additionally, we investigated whether these effects can be accounted for by changes in people’s perception of street characteristics, such as perceived prospect and escape possibilities (Fisher & Nasar, 1992).

Method

Three different distributions of the light (spot-light, darkspot, and a combination of both) were tested in a within-subject experiment conducted at testbed the Zaale (see Fig. 1). Testbed the Zaale is a section of a road on the university campus with 12 lampposts equipped with LED luminaries that can be controlled through power line communication. Fifty participants walked through the street three times. After each walk they completed a questionnaire.

Results and Discussion

Participants experienced the lowest perceived personal safety in the dark spot condition as compared to the other two conditions (with \(p < 0.01 \)), indicating that people prefer situations in which their immediate action space is illuminated. Mediation analyses revealed that this could best be explained by reduced prospect. Strangely, prospect was poorest in the dark spot condition where there was more light in people’s vistas.

Acknowledgements

This project is supported financially by the Dutch Ministry of Economic Affairs under the ENSURE scheme.

References
