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Abstract— Currently deployed grids gather together thousands
of computational and storage resources for the benefit of a
large community of scientists. However, the large scale, the
wide geographical spread, and at times the decision of the
rightful resource owners to commit the capacity elsewhere, raises
serious resource availability issues. Little is known about the
characteristics of the grid resource availability, and of the impact
of resource unavailability on the performance of grids. In this
work, we make first steps in addressing this twofold lack of
information. First, we analyze a long-term availability trace and
assess the resource availability characteristics of Grid’5000, an
experimental grid environment of over 2,500 processors. The
average utilization for the studied trace is increased by almost
5%, when availability is considered. Based on the results of
the analysis, we further propose a model for grid resource
availability. Our analysis and modeling results show that grid
computational resources become unavailable at a high rate,
negatively affecting the ability of grids to execute long jobs.
Second, through trace-based simulation, we show evidence that
resource availability can have a severe impact on the performance
of the grid systems. The results of this step show evidence that the
performance of a grid system can rise when availability is taken
into consideration, and that human administration of availability
change information results in 10-15 times more job failures than
for an automated monitoring solution, even for a lowly utilized
system.

I. INTRODUCTION

Large-scale computing environments, such as the current
grids CERN LCG [1], NorduGrid [2], TeraGrid [3] and
Grid’5000 [4] gather (tens of) thousands of resources for
the use of an ever-growing scientific community. At such
scale, a significant part of the system resources may be at
any time out of the users’ reach due to distributed resource
ownership, scheduled maintenance, or unpredicted failures.
Many of today’s grids comprise computing resources grouped
in clusters, whose owners may share them only for limited
periods of time. Often, many of a grid’s resources are re-
moved by their owner from the system, either individually
or as complete clusters, to serve other tasks and projects.
Furthermore, grids encompass the problems of any large-scale
computing environment, with the additional problem that their
middleware is relatively immature, which increases further
the resource unavailability rate. However, resource availability,
and, most importantly, its impact on the performance of large-
scale computing environments have yet to be analyzed. To
address this gap, in this work we answer two questions.

The first question we address is: What are the char-
acteristics of the resource (un)availability in large-scale
environments? In Section II, we present detailed availability
results at the resource, the cluster, and the system levels.
Several other studies characterize or model the availability
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Fig. 1. The structure of Grid’5000 (the number of processors per cluster are
shown).

TABLE I
SUMMARY OF THE GRID’5000 AVAILABILITY AND WORKLOAD TRACES.

Observed
No. Avail. No. User Work

Period Clusters Nodes Events Users Jobs [CPUy]
05/’05-11/’06 15 1296 600k 445 750K 585

A. Workload data analysis
We have analyzed availability traces recorded by all batch

schedulers handling Grid’5000 clusters (OAR [12]), from mid-
may 2005 to mid-November 2006. Altogether, this trace is
made of more than half million of individual events that occurs
on nodes. Each event in the trace represents a change in the
status of nodes: either a node becomes available or unavailable.
Note that most clusters of Grid’5000 were made available
during the first half of 2005. However, availability information
were only activated across the grid platform after mid-may
2005. In addition, note that we filter out from the trace the
impact of the reconfiguration system used in Grid’5000, which
allows to reboot a set of nodes. In Table I, we summarize the
content of the considered availability trace in this work, and
the corresponding workload trace for this period. We refer the
reader to the Grid Workloads Archive [13] for more details
about the workload trace of Grid’5000.

In the remainder of this section, we first perform an analysis
at grid and clusters level, that is by considering nodes from the
whole platform and restricted to a specific cluster, respectively.
Then, we perform an analysis at nodes level, that is considering
all nodes across platform. The difference being that an node
level analysis shows values of metrics for individual nodes,
whereas a grid level analysis show values for the platform
considered as a single entity.

Figure 2 shows the availability of resources in Grid’5000,
at a grid level1. In average, resource availability in Grid’5000
at this level is 69% (±11.42), with a maximum of 92% and a
minimum of 35%. The mean time between failures (MTBF)
of the environment is of 744±2631 seconds, that is around 12
minutes. Figure 3 shows the cumulative distribution function
(CDF) of the different values of this MTBF for Grid’5000.
At a cluster level, resource availability varies from 39% up to
98% across the 15 clusters. The average MTBF for all clusters
is 18404±13848 seconds, so around 5 hours. As expected, this
value is much higher than the MTBF at the grid level.

At a node level, our analysis shows that in average a node
fails 228 times (for a trace that spans over 548 days). However,
some nodes fail only once or even never according to our

1May 2005 is not shown as availability information of clusters are starting
to be recorded at different date during this month.

2± stands for standard deviation.
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Fig. 5. Daily and weekly patterns for the number of (un)availability events.

in terms of number of events. Our results show a similar results
as for the patterns of jobs: a daily peak during day hours
(from 8am to 8pm) and a weekly pattern, less events occurring
during weekends. In addition, we can clearly see the impact
of the increasing size of Grid’5000 between 2005 and 2006
and, more importantly, the increase in its utilization.

Finally, we have also investigated the notion of groups of
unavailabilities, which we called correlated failures. We define
T S(·) a function that returns the time stamp of an event. We
therefore define correlated failures, with time parameter ∆,
as a set of failures (ordered according to increasing event
time), in which for any two successive failures E and F ,
T S(F ) ≤ T S(E) + ∆. In short, we are interested to know
how a single failure (either a node or a set of nodes) can affect
other nodes? Note that we do not take into account the origin
of the cluster for an individual failure to build a correlated
failure. In our analysis, we vary ∆ from 1 to 3600 seconds.
However, we selected ∆ = 60s as: 1) results for previous
∆ (1, 10 and 30 seconds) show similar results and 2) this
value is twice a commonly used value for timeout/delays in
network operations (30 seconds). Figure 6 shows the CDF of
the size of correlated failures for ∆ = 60s. Our analysis shows
that in average the size of a correlated failure is 11.0±21.0,
with a maximum of 339. This latter value is little less than
the size of the largest cluster, which is made of 342 nodes.
To confirm this value, we have analyzed the number of sites
involved in a correlated failure. In average, this value is indeed
of 1.06±0 with a maximum of 3 (for ∆ = 60s), that is to say
that correlated failures generally do not expand beyond a site.
To conclude about correlated failures, note that the number of
correlated failures is 7473, for a total of around 85k failure
events. Therefore, correlated failures represents less than 30%
of the total number of failures events in the trace (around
300k).

B. Availability Model

In this section, we build a model for resource availability
in multi-cluster grids. Our model considers four aspects: 1)
the time when resource failures occur, 2) the duration of a
failure, 3) the number of nodes affected by a failure and 4)
the distribution of failures per cluster. Compared to traditional
resource availability models [5], [15], [7], ours adds the
necessary link between the failures and the clusters where they
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of the empirical distribution of the input data, and that of the
theoretical distribution. The null-hypothesis is rejected if the
D is greater than the critical value obtained from the KS-test
table. The KS-test is robust in outcome (i.e., the value of the D
statistic is not affected by scale changes, like using logarithmic
values). The KS-test has the advantage over other traditional
goodness-of-fit tests, like the t-test or the chi-square test, of
making no assumption about the distribution of data3. The
KS-test can disprove the null-hypothesis, but cannot prove
it. However, a lower value of D indicates better similarity
and a higher degree of similarity between the input data and
data sampled from the theoretical distributions. We use this
latter property to select the best fits. We find that the best
fits for the inter-arrival time between failures, the duration of
a failure, and the number of nodes affected by a failure, are
the Weibull, Log-Normal, and Weibull, respectively. Table III
shows the parameter values of the best fit of the best model
for the Grid’5000 availability data per cluster and for the
overall system, respectively. The results for inter-arrival time
between consecutive failures are alarming: the shape parameter
of the Weibull distribution is (high) above 1, which indicates
an increasing hazard rate function (the frequency with which
a system or component fails, provided that it has survived so
far [14]). This indicates that the longer a computing node stays

3Pearson’s chi-square test is applied to binned data (e.g., a data histogram).
However, the value of the test depends on the how the data is binned.
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TABLE II
SUMMARY OF THE BASIC STATISTICAL PROPERTIES OF THE LOGARITHMIC GRID’5000 AVAILABILITY DATA (LOG(ITEM) FOR EVERY ITEM IN DATA).

VALUES HIGHER THAN 10000 HAVE BEEN REPORTED AS ”>10K”. OMITTED MAX VALUE ROWS THAT CONTAIN ONLY ”>10K” VALUES.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
A. Inter-arrival time between consecutive failures [s]

Min. 45 19 3 48 36 23 21 150 54 9 36 84 109 9 4
1st Qu. 3513 1165 1150 604 1357 1500 1640 3002 1709 1005 1509 533.5 601 2356 901
Median 7258 3388 1794 1207 3903 4764 4584 5213 4311 4225 4012 1883.5 1202 4660 1517

Mean 6527 4608 2841 2817 4927 5399 5202 5734 5239 4640 4864 3492.3 3178 5369 3041
3rd Qu. >10k 8702 3475 3600 >10k 9824 9570 9783 9703 8156 8142 6432.8 4397 8582 3495
B. Failure duration [s]

Min. 9 0 0 0 0 4 2 2 1 7 0 2 0 0 0
1st Qu. 971 122 195 151 97 159 126 358.3 247 116 152 86 125 106 175
Median 4475 263.5 225 303 100 163 157 1432 259 121 163 110 181 124 201

Mean 5022 1907.3 1047 2025 1655 553.7 772 1301.2 1103 418.3 560.6 1272 421 560.9 995
3rd Qu. 9631 1832.8 1080 2445 679 169 479 1762.8 294 134 179 1157 339 162 1304
C. Failure size [number of processors]

Min. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1st 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Median 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1
Mean 9.408 7.41 7.919 3.16 4.9 5.946 6.066 5.032 5.762 5.802 5.389 6.164 3.377 2.625 6.371

3rd 4 7 10 1 2 2 2 2 1 2 2 6 1 2 4
Max. 97 200 165 228 319 267 185 336 200 98 100 43 295 339 67
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TABLE III
FITTED MODEL PARAMETERS FOR THE GRID’5000 AVAILABILITY DATA,

PER CLUSTER AND FOR THE WHOLE SYSTEM.

A. Inter-arrival time between consecutive failures [s]
Weibull

Cluster α β
C1 13.32417 12.76841
C2 8.82691 12.14668
C3 9.49738 11.50066
C4 7.19553 11.29538
C5 7.88283 12.18533
C6 9.64997 12.41524
C7 9.96752 12.37562
C8 12.94117 12.58577
C9 10.71829 12.41374

C10 7.79759 12.09732
C11 10.21044 12.29004
C12 6.60194 11.54027
C13 7.29009 11.47595
C14 11.88544 12.47498
C15 8.11074 11.49423

Grid’5000 9.66772 12.23796
B. Failure duration [s]

Log-Normal
Cluster µ σ

C1 2.40913 0.22558
C2 2.14771 0.27527
C3 2.15353 0.19601
C4 2.14365 0.34139
C5 2.03851 0.29664
C6 2.03350 0.13773
C7 2.07713 0.19244
C8 2.26752 0.17555
C9 2.13891 0.18302

C10 1.97464 0.14232
C11 2.03296 0.14878
C12 2.07510 0.28043
C13 2.03505 0.16220
C14 1.99036 0.17595
C15 2.13636 0.22205

Grid’5000 2.33916 0.26363
C. Failure size [number of processors]

Weibull
Cluster α β

C1 1.71898 3.60045
C2 2.01629 3.40298
C3 2.17394 3.40015
C4 1.45947 2.45525
C5 1.75449 2.92801
C6 1.69720 3.08240
C7 1.58754 3.07541
C8 1.63994 2.87220
C9 1.59014 3.31293

C10 1.78423 3.38625
C11 1.63853 3.22535
C12 2.42596 3.28213
C13 1.72418 3.17537
C14 1.63197 1.80350
C15 1.81717 3.19713

Grid’5000 1.58526 2.61400
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RFORMANCE DEFINITION AND ANALYSIS

ion, we define and analyze the performance of a
stem when the dynamic availability of resources
onsidered. Our results show that there is a big
the performance of the two cases, which prompts
ion in Section IV.

ce Metrics

tion of grid performances depends on many
gst which the system’s architecture, the work-
o the system’s and the user’s objectives. For
urce providers may have as objective to max-
mber of jobs completed for a specific user.

ibility is to maximize the utilization of the whole
arly, users may have as objective completing as
uring a fixed time interval, or seeing the jobs
with as little waiting time as possible. Several

been traditionally used as a de-facto performance
grid, as they have often contrary impact on the

of a system. However, in lack of availability-
ance metrics, the performance results of systems
ynamic availability, e.g., grids, cannot be com-

ose for other systems. This is especially true with
the cluster computing and of parallel production
communities. We propose in the remainder of

ve availability-aware performance metrics, each
a traditional metric.
consider utilization, which is defined as the
resources consumed by the system users, from
urces present in the system, over a period of
eal utilization value is 100%. However, due
fragmentation and other reasons, a utilization

considered high for systems that run parallel
r large-scale systems in which resources are not
ble, computing utilization raises major practical
the resource availability is usually not rigorously

y recorded.
nsider the traditional metrics of wait time and
. Note that in multi-cluster environments, jobs
me in several levels of queues, and computing
it time of a job becomes a non-trivial task.
consider the normalized throughput and the nor-

put metrics. The throughput traditionally charac-
mber of jobs finished during a time interval, e.g.,
er throughput values are considered better. The

acterizes the amount of resources consumed by
ds their completion (this excludes the amount of
aiting in queues or for data to arrive). In both
r to be able to compare grids of different sizes,
these metrics, that is, we divide them by the

ocessors in the system.
TABLE IV
NUMBER OF FAILURES AND THE fs VALUE PER SITE. DOUBLED SEPARATORS (”||”) GROUP CLUSTERS ADMINISTERED BY THE SAME SITE.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Failures 13003 25432 25892 4749 8222 5750 34546 2876 5349 2161 12901 1123 21131 123353 7417

fs 0.044 0.086 0.088 0.016 0.027 0.019 0.117 0.009 0.018 0.007 0.043 0.003 0.071 0.419 0.033



B. Models of Availability Information
The performance of a grid resource manager depends on the

availability of the resources it manages. However, it is not the
actual availability of computing nodes, but the information
regarding it that the resource managers have to use. We
therefore introduce below four models of grid availability
information, from complete lack of to perfect:

1. Systems with Steady Availability (SA).
This model assumes that all resources are online
at all time. Many resource management results are
readily available for these steady systems [19], [20].

2. Systems with Known Availability (KA).
This model assumes a system with dynamic re-
source availability. However, the information regard-
ing availability is perfect (complete and on-time). We
are interested to understand what is the impact of
perfect availability information on grid performance.

3. Systems Automated Monitoring of Availability (AMA).
This model assumes a system with dynamic resource
availability. It also assumes that the most recent
resource availability information is available from a
monitoring system, which samples periodically the
grid for individual computing nodes’ availability.
If the monitoring period is high, the monitoring
information can be stale; if it is low, the monitoring
overhead is unbearable for the grid. We are interested
to understand what is the impact of the information
staleness.

4. Systems with Human Monitoring of Availability (HMA).
This model is similar to the AMA model, but as-
sumes that the availability information is provided
by the (human) system administrator at fixed, but
relatively large intervals: 1 week or 1 month for
instance. We are interested to understand what is the
impact of human intervention.

IV. PERFORMANCE EVALUATION

In this section, we first present our experimental setup
for our simulation. Then, we present our results for the
previously introduced metrics (see section III-A) with our
different models of availability information (see section III-B).

A. Experimental Setup
We have developed a custom trace-driven discrete event

simulator which operates under the assumptions of identical
processors for all grid nodes, and of FCFS policy for each clus-
ter. We have simulated the Grid’5000 [4] platform, as shown
by Figure 1, based on its availability trace (see section II-A) as
well as the associated job trace during this period(June 2005
until October 2006). The workload trace is the GWA-T-2 from
the Grid Workload Archive [13].

In our simulations, jobs may fail due to two reasons. First,
a job fails when the scheduler has inaccurate information
about the number of available (i.e., alive) processors in the
system. Therefore, the scheduler wrongly considers that there
are enough number of idle processors for the job. We call this
situation a job submission failure. Second, a job fails when
at least one processor used by this job crashes. We call this
situation a job execution failure. We do not consider jobs that
can cope with this situation. The time that the failed job has
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processors is taken into consideration for our
analysis.

a), 9(b), and 9(c) present the comparison of
roughput and goodput-cpu time, respectively, in

steady availability (SA) and in a system with
ility (KA). As one may expect, the performance

, when taking into account availability informa-
better, compared to the case where it is not

for average values). The reason behind this is
t a more precise number of resources are taking
by schedulers, leading to less job submission

compare the performance results of two sys-
omated monitoring of availability (AMA), with
s of 60 seconds and 1 hour respectively. The
rate reflects a real grid monitoring setting (e.g.

for instance), whereas the second one represents
long sampling rate. Table V shows that different
tervals do not lead to any relative performance
n the considered metrics. This can be interpreted
m with considered resource availability charac-
nder low utilization, submission failures do not

impact of the performance of a grid. Moreover,
claim that resource failures do not cause that
ures when the utilization of the system is low
). As the comparison results are similar with KA
, we do not present the related graphs.
(a), 10(b), and 10(c) present the comparison of
oughput and goodput-cpu time in a system with

oring of availability (HMA). Intervals are set to
-month. Note, that we only plot the two months
the differences are the more visible. Figures
the considered metrics, 1-week and 1-month

similar results. However, note that considering
r resource availability degrades the performance,

results obtained using other models.
presents the number of job completions and
results imply that the HMA model leads to

mission failures compared to the AMA model
submission failure differences between these 2
ble VI). Of course, in a real system monitoring
ack of network overhead. However, our results
t with relatively long monitoring intervals, which
elatively low overhead on the network, same
values can be attained. In addition, Table VI
e number of job submission failures is 10 to 15
han the number of job execution failures. Thus,
required to overcome this limitation of current

V. RELATED WORK

s a large number of studies that have consid-
acteristics of system and workload (component)
[10], [11], [7], [8], [9], [22]). From these, many
stems of up to early 1990s ([15], [5]), are based
panning at most a few months ([8], [9]) or do
investigate the impact of these failures on the

f their originating systems ([15], [10], [9], [22]).



Similarly to this work, the studies in [23], [10], [11], [8], [9],
[22] consider uncorrelated failures. Other studies have shown
that for some systems there exist bursts of failures ([15], [5],
[7]). Our work combines these approaches by analyzing errors
at different levels of resource aggregation, e.g., from individual
resource to complete grid. Only a few analyze systems of
size ([22]) and purpose ([6], [7], [8], [22]) similar to the ones
presented in this study.

The study most closely related to ours is [7], which analyze
the node (un)availability through CPU failure, and its implica-
tion on the performance of large-scale clusters. Through simu-
lation, and using a parallel production environment workload,
they assess that the most important factor affecting perfor-
mance is the failures arrival rate, which increases dramatically

the job respo
Also close
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nse time, and the work overhead.
ly related, [6] and [8] analyze the availability of
. They also give evidence that the performance
d of system is around 70% of that of a clus-
from equivalent resources, when the workload

rallel and sequential jobs, respectively.

VI. CONCLUSION

eployed grids gather together thousands of com-
storage resources for the benefit of a large com-

entists. However, the large scale, the middleware
nd at times the decision of the rightful resource
mmit the capacity elsewhere, raise important

lability issues. In this work, we have make first
(a) (b) (c)

Fig. 9. Performance of systems with SA and KA, over 1 1
2 years: (a) Utilization; (b) Normalized throughput; (c) Goodput-cputime. Note: For readability,

the vertical axis ranges are truncated.
TABLE V

SUMMARY OF RESULTS FOR PERFORMANCE METRICS

Availability Experiment Avg. Avg. normalized Avg. normalized Avg. wait Avg. response
model utilization (%) throughput goodput-cpu [s] time [s] time [s]
SA Steady Availability 12.1 0.48 10535 12913 15489
KA Known Availability 16.6 0.86 14320 12494 14911
AMA Monitoring ’60s’ 16.6 0.86 14320 12494 14911
AMA Monitoring ’1h’ 16.6 0.86 14320 12494 14911
HMA Intervention ’1week’ 16.0 0.81 13833 10214 12832
HMA Intervention ’1month’ 15.9 0.81 13808 10173 12713
HMA Fixed Availability 14.4 0.79 12491 7229 9793

TABLE VI
RESULTS FOR NUMBER OF JOB COMPLETIONS AND FAILURES

Availability Experiment Number of jobs Number of jobs Number of job Number of job
model submitted completed submission failures execution failures
SA Steady Availability 739164 739164 0 0
KA Known Availability 739164 734588 0 4576
AMA Monitoring ’60s’ 739164 734588 0 4576
AMA Monitoring ’1h’ 739164 734588 0 4576
HMA Intervention ’1week’ 739164 687956 46917 4291
HMA Intervention ’1month’ 739164 683722 51208 4234
HMA Fixed Availability 739164 671925 63180 4059

(a) (b) (c)

Fig. 10. Performance of the system with HMA, over a sample period of 2 months: (a) Utilization; (b) Normalized throughput; (c) Goodput-cputime. Note:
For readability, the vertical axis ranges are truncated.



steps in analysis the scale and the characteristics of resource
availability in grids.

First, we have analyzed a long-term resource availability
trace from a multi-cluster grid, Grid’5000. Our analysis shows
that the resource availability in grids varies greatly. We find
that the MTBF is high: around 12 minutes at grid level, 5
hours at cluster level, and around 2 days per computing node.
The duration of the computing nodes failures is 14 hours. We
further find that when a failure occurs, it affects on average
10 or more computing nodes.

Second, we have created a grid resource availability model,
which considers the time when resource failures occur, the
duration of a failure, the number of nodes affected by a failure,
and the distribution of failures per grid cluster. The results for
the inter-arrival time between failures are alarming: the shape
parameter of the Weibull distribution, our best fit, indicates
an increasing hazard rate with strong effects on the ability of
grids to execute long jobs (even single-processor).

Third, we have analyzed the performance impact of dy-
namic resource availability in grids. We have considered four
resource managers with different levels of resource availability
information, and we have simulated their use in Grid’5000,
based on real traces for both the resource availability and the
workload. Our simulations show that: considering resource
availability is important when assessing the performance of
a grid, and that human monitoring and intervention of the
system leads to 10 times more job failures (both submission
and execution) than that of an automated alternative.

As future work, we would like first to validate our re-
source unavailability model using other traces, especially as
the Grid’5000 platform targets special use cases5. We also
plan to investigate the effect of varying resource availability
characteristics in the model, e.g., the interarrival time between
consecutive failure for instance, on the system performance.
Finally, to extend our contribution, we plan to study how our
results can be applied to other large-scale computing environ-
ments, and in particular for parallel production environments.
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5Obtaining availability traces is difficult: resource owners prefer to show
that your system works (workload traces), than that it does not (availability
traces). We urge potential contributors to consider also the benefits that they
will get from resource managers that react properly to resource unavailability.
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