Dynamic demand fulfillment in spare parts networks with multiple customer classes

Citation for published version (APA):

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Dynamic demand fulfillment in spare parts networks with multiple customer classes

Beta Working Paper series 377
Dynamic demand fulfillment in spare parts networks with multiple customer classes

H.G.H. Tiemessena,*, M. Fleischmannb, G.J. van Houtumc, J.A.E.E. van Nunend, E. Pratsinia

aDepartment of Mathematical and Computational Sciences, IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland
bBusiness School, University of Mannheim, P.O. Box 10 34 62, 68131 Mannheim, Germany
cSchool of Industrial Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
dRotterdam School of Management, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, the Netherlands

Abstract

We study real-time demand fulfillment for networks consisting of multiple local warehouses, where spare parts of expensive technical systems are kept on stock for customers with different service contracts. Each service contract specifies a maximum response time in case of a failure and hourly penalty costs for contract violations. Part requests can be fulfilled from multiple local warehouses via a regular delivery, or from an external source with ample capacity via an expensive emergency delivery. The objective is to minimize delivery cost and penalty cost by smartly allocating items from the available network stock to arriving part requests. We propose a dynamic allocation rule that belongs to the class of one-step lookahead policies. To approximate the optimal relative cost, we develop an iterative calculation scheme that estimates the expected total cost over an infinite time horizon, assuming that future demands are fulfilled according to a simple static allocation rule. In a series of numerical experiments, we compare our dynamic allocation rule with the optimal allocation rule, and a simple but widely used static allocation rule. We show that the dynamic allocation rule has a small optimality gap and that it achieves an average cost reduction of 7.9% compared to the static allocation rule on a large test bed containing problem instances of real-life size.

Keywords: Inventory, Spare parts, Dynamic demand fulfillment, Multiple customer classes

1. Introduction

We consider demand fulfillment for networks consisting of multiple local warehouses, where spare parts of expensive technical systems are kept on stock. Downtime costs (like opportunity cost in case of lost production, liability cost, or loss of goodwill) are usually high, and can easily run into thousands of euros per hour. Therefore, it is important that the availability of the systems is high and that down-situations are

*Corresponding author. Tel.: +41 41 534 29 59; fax: +41 44 724 89 64
Email addresses: hti@zurich.ibm.com (H.G.H. Tiemessen), M.Fleischmann@bwl.uni-mannheim.de (M. Fleischmann), g.j.v.houtum@tue.nl (G.J. van Houtum), pra@zurich.ibm.com (E. Pratsini)

recovered quickly. Original Equipment Manufacturers (OEMs) of high-tech equipment usually sell their equipment with a variety of service contracts at different prices. Typically, these service contracts commit to maintenance service within 2 hours, 4 hours, 8 hours, or the next, or second next business day. Due to strong fluctuations in spare parts demand and strict service deadlines, spare parts logistics execution must be responsive. This is achieved by means of fast call-handling, accurate (remote-) problem diagnosis, 24 hours operations, fast transportation modes, and stocking locations at close distance to the customer site.

OEMs often serve customers with different service deadlines from the same network. Because of the pooling effect, this requires (much) lower investments in inventory than operating separate networks per contract type. To serve customers with premium contracts in time, OEMs must establish dense same day networks of stocking locations. Consequently, many customers can be served within the service deadline from multiple stocking locations.

A major challenge for the OEM is to minimize inventory holding cost, replenishment cost and fulfillment cost while providing the promised service to its customers. OEMs can simultaneously influence cost and customer service in two possible ways: (i) through calculating appropriate base stock levels for all warehouses, and (ii) through determining an appropriate allocation rule for selecting the warehouse that is used to fulfill a real-time spare parts demand. Whereas the calculation of base stock levels is a tactical planning problem where decisions are usually taken every 3-6 months, the calculation of a stock allocation rule is an operational planning problem where usually many decisions must be taken each day. In this study we focus on the second problem and assume that the base stock levels are given.

In practice, we see that many OEMs have implemented a simple static allocation rule that fulfills a real-time spare parts demand from the closest warehouse with stock at hand. See Reijnen et al. (2009), and Kranenburg & Van Houtum (2009) for case studies at OEMs of high tech equipment. This allocation rule is popular because it only requires static time/distance information and the set of warehouses with stock at hand. One drawback of this rule is that it does not use some potentially valuable information for making smart allocation decisions: real-time stock level information, and demand forecast information. Another drawback of this rule is that it does not consider customer base heterogeneity. As a result, each customer, despite generating different revenues to the OEM, receives a similar treatment in terms of customer service. This is unattractive for the OEM for two reasons: First, customers who bought expensive high-end contracts might consider this unfair, and this might disturb the customer relationship. Second, high base stock levels are needed to provide the promised service to customers with tight service deadlines. It is thus attractive to differentiate between the customers based on their service contract. Customer differentiation can be realized using critical levels. For single location models this is often the only choice. In networks however, customer differentiation can also be realized through dynamic allocation. In this paper we explore this direction.
Our goal in this paper is to investigate the benefits of using real-time stock level information and demand forecast information for real-time demand management in spare parts inventory networks. We summarize our problem setting as follows: We consider a single item, single echelon, multi location inventory network where spare parts are kept on stock for customers with different service contracts. Each service contract specifies a maximum response time in case of a failure, and contract violations are penalized. The objective is to minimize the sum of delivery cost and penalty cost by smartly allocating items from the available network stock to arriving part requests. What makes this task challenging is that the choice to fulfill a part request from a particular source location does not only cause a certain direct cost, but also impacts the opportunities to fulfill demands in the near future (at least until the allocated item is replenished again). We present an average cost Markov Decision Process (MDP) formulation of this problem, which enables us to compute the optimal allocation rule for small problem instances. To handle problem instances of real-life size, we develop a one-step lookahead policy where we approximate the optimal relative cost with an estimate of the relative cost under a simple static allocation rule.

In a series of numerical experiments, we compare the performance of the proposed allocation rule with the optimal allocation rule and two benchmark allocation rules.

To summarize, the paper makes the following contributions:

- We develop a dynamic allocation rule that is applicable to problem instances of real-life size. This allocation rule is a one-step lookahead policy that takes into account base stock levels, actual stock levels, and demand forecast information. We show that the optimality gap of the proposed allocation rule is usually small (i.e. average gap is less than 2%).

- We characterize our dynamic allocation rule by comparing its allocation decisions to the allocation decisions of a simple static allocation rule. We show that the dynamic allocation rule achieves considerable cost savings by deviating from the simple static allocation rule in a relatively small number of situations. In particular, we show that the dynamic allocation rule is more reluctant to take away the last item at a local warehouse and less reluctant to use emergency deliveries from the central warehouse.

- We show that dynamic allocation leads to significant cost savings compared to a simple but widely used static allocation rule by numerical experiments on a test bed that is inspired by IBM’s spare parts network in Europe. We illustrate the impact of key problem characteristics on the potential benefits.

The paper is structured as follows. We start with a literature review and position our research in Section 2. In Section 3, we describe our model and discuss important assumptions. In Section 4, we introduce our new dynamic allocation rule. Section 5 presents a numerical study that compares the proposed dynamic
allocation rule with the optimal allocation rule, and two benchmark allocation rules. Finally, in Section 6, we summarize our results and draw conclusions.

2. Literature review

Our work contributes to a rich literature on spare parts inventory models. The literature that is most related to the work in this paper, comes from three streams.

In the first stream of literature, inventory models with fixed lateral transshipment rules are studied. In this stream, demand occurring at a local warehouse with no stock at hand can be fulfilled via a stock transfer from another local warehouse. In literature, models are developed for evaluating system performance, either exactly or approximately. An important contribution in this stream is made by Axsäter (1990) who studied a two echelon model with one central warehouse and a number of local warehouses. In his model demand is fulfilled from the local warehouse whenever possible. If no items are available, an item is sent from a randomly chosen local warehouse with stock at hand. Demand rates observed by each warehouse are approximated by assuming that all demand streams are Poisson. Based on the resulting set of equations, he provides an iterative algorithm to obtain steady state probabilities. In the spirit of Axsäter (1990), Kukreja et al. (2001), Wong et al. (2005), Kutanoglu (2008), Kranenburg & Van Houtum (2009), and Reijnen et al. (2009) develop different models for evaluating and optimizing system performance under given allocation rules. All of these models assume static allocation rules whereas we focus on dynamic allocation rules.

The second stream of literature also studies inventory models with lateral transshipments, but the lateral transshipment rule is now subject to optimization. An important paper in this stream is Axsäter (2003). The author considers a backordering model where a particular local warehouse with no stock at hand receives a customer demand. The task is to select a warehouse to fulfill the demand. The impact of all possible sourcing decisions on the total cost is approximated by considering the direct cost and the additional future cost associated with a temporary reduction of the stock level at the source location. Future cost is calculated under the assumption that no lateral transshipments will take place. Minner et al. (2003) consider a similar model in a retail environment with lost sales. Another interesting contribution in this stream is made by van Van Wijk et al. (2011) who provide an exact analysis for a two location setting with given base stock policies and exponential lead times. What differentiates our work from this stream, is that we consider inventory networks where part requests can be fulfilled directly (i.e. without lateral transshipment) from multiple local warehouses in the network, and that we support multiple customer classes. For a recent and comprehensive literature review on lateral transshipments we refer to Paterson et al. (2011).

The third stream of research that is relevant for our work studies inventory rationing and revenue management. Inventory rationing techniques support the allocation of inventory units among a heterogeneous
customer base, by setting critical inventory levels and/or setting inventory control mechanisms. The concept of critical levels was introduced by Veinott Jr (1965) and Topkis (1968) and since then, solutions have been provided for various control policies and demand classes. For a comprehensive literature review on inventory rationing we refer to Teunter & Klein Haneveld (2008). Although the concept of critical levels supports customer heterogeneity, it cannot easily be applied to our problem because of two reasons. First, critical level literature usually assumes a single source location. Sourcing flexibility - a key characteristic of our problem - is not accounted for. Second, the concept of critical levels offers only limited opportunities for customer differentiation in spare parts settings like ours where stock levels are low and the number of customer classes is usually more than two.

To overcome these difficulties, Jalil (2011) follows the concepts of revenue management to formulate a problem similar to ours as a multi-period MDP. The relative value function is approximated using linear programming. In the linear program, remaining stock at the end of the horizon has no value, future replenishments are ignored, and demand is assumed to be deterministic. In numerical experiments, he shows that in situations where customer heterogeneities are high and actual stock levels are low the revenue management heuristic achieves significant lower total cost over the next 25 time periods than the static allocation rule. What differentiates our work from Jalil (2011) is that we approximate the relative value function using an infinite time horizon taking into account future replenishments and honoring the stochastic nature of demand.

3. Problem description and model formulation

In this section we define the inventory control problem, discuss assumptions, introduce our notation, and formulate our model.

3.1. Problem description and notation

We consider a single item, single echelon, spare parts inventory network consisting of multiple local warehouses where spare parts are kept on stock for customers with different service contracts. Whenever a part at a customer site fails, it has to be replaced by a spare part. Part requests can be fulfilled from every warehouse in the network with stock at hand. The central warehouse keeps spare parts to replenish the local warehouses, and has also access to an emergency delivery mode to fulfill customer demand. The delivery time and the delivery cost from a warehouse to a customer are fixed and depend on the geographical coordinates and the delivery mode (emergency or regular). Typically, emergency deliveries are significantly more expensive than regular deliveries. Customers have service contracts with committed response and repair targets backed by penalties in case of contract violations. Penalty cost grows linearly in the delivery

5
time beyond the service deadline, and depend on the contract type. Typically, the hourly penalty cost rate for 2 hours service contracts is (much) higher than for 8 hours contracts. Our objective is to minimize the sum of the average annual delivery cost and the average annual penalty cost.

3.2. Discussion of main assumptions

(i) The central warehouse has ample stock. The reason for this assumption is that replenishment decisions at the central warehouses are often decoupled from replenishment and allocation decisions at lower network echelons. In real life, we often see that the central warehouse can obtain new items from multiple channels such as regular suppliers, emergency suppliers, repair, and assembly/production facilities.

(ii) Part requests from each customer follow an independent Poisson process. The Poisson assumption is common in spare parts logistics.

(iii) Replenishment lead times are exponentially and identically distributed and have the same mean for all local warehouses. The assumption of equal replenishment lead times is justified because in real-life replenishment lead times are simply fixed at the same values for all local warehouses in the same geographical region. The assumption of an exponential shape of the replenishment lead time distribution is made to facilitate an exact MDP analysis for problem instances of sufficiently small size. Alfredsson & Verrijdt (1999) showed that the performance of a model with a static allocation rule in a complete pooling situations is rather insensitive to the choice of exponential or constant replenishment lead times. It is reasonable to assume that this also holds for our model. However, it is also clear that in situations with constant replenishment lead times, information on remaining replenishment lead times can be useful to calculate smart allocation decisions. We leave this for further research.

(iv) Inventories at local warehouses are controlled through continuous-time base stock policies with given base stock levels. In real life, stock levels are often reviewed only once a day. Since the replenishment lead time for a local warehouse is typically 3-6 days, we can however accurately approximate the periodic replenishment with a continuous replenishment with an adjusted average replenishment lead time. The assumption of base stock control at the local warehouses is justified because we consider inventory networks of expensive technical parts where holding cost is usually high and demand is usually low. Finally, we assume that the base stock levels are given because we want to focus on operational planning. In real life, base stock levels are often calculated every 3-6 months from multi-item models. These multi-item models may, among other things, incorporate demand forecast information, target time-based fill rates for part groups, and available stocking space.
(v) Service deadlines, penalty cost, and delivery times are such that it is never beneficial to backorder demand. Demand is thus always fulfilled immediately, either from a local warehouse or from the central warehouse (by means of an emergency delivery).

(vi) Customers in the same geographical area are aggregated into one customer region. Delivery times and delivery costs for all customers in the same customer region are the same. Demand rates for spare parts are available for each pair of customer region and contract type. This assumption makes sense because the expected life time of a spare part is large, and accurate information on the number and the condition of installed parts is usually not available. Hence, demand rate estimates are much more reliable on customer region level than on individual customer level.

The notation of our model is given in Table 1.

<table>
<thead>
<tr>
<th>Indices:</th>
<th>Parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 0, \ldots, I$ Stocking locations; $i = 0$ refers to the central warehouse</td>
<td>S_i Base stock level of stocking location $i = 1, \ldots, I$</td>
</tr>
<tr>
<td>$j = 1, \ldots, J$ Customer regions</td>
<td>$\frac{1}{\mu}$ Average replenishment lead time of a local warehouse</td>
</tr>
<tr>
<td>$k = 1, \ldots, K$ Customer classes (defined over contract types)</td>
<td>λ_{jk} Demand rate of customer region j and customer class k</td>
</tr>
<tr>
<td>W^max_k Maximum response time for customer class k</td>
<td>t_{ij} Delivery time from stocking location i to customer region j</td>
</tr>
<tr>
<td>C^d_{ij} Delivery cost to ship one item from stocking location i to customer region j</td>
<td>C^p_k Hourly penalty cost for contract violations of customer class k</td>
</tr>
<tr>
<td>C^r_i Unit replenishment cost for stocking location $i > 0$</td>
<td>C^d_{ijk} Total cost to fulfill a demand from customer region j and customer class k from stocking location i</td>
</tr>
</tbody>
</table>

Table 1: Notation

Because we assume one-for-one replenishment at all local warehouses, each spare part demand leads to one spare part leaving the central warehouse (either directly as an emergency delivery to the customer or as a replenishment shipment to the local warehouse that fulfills the customer demand). Consequently, replenishment cost at the central warehouse can be ignored because it does not depend on the allocation decision. Together with assumption (v) this implies that we can pre-calculate the total cost for fulfilling a part request from customer region j and customer class k from stocking location i according to:

$$C^f_{ijk} = \begin{cases}
C^d_{ij} + C^p_k \cdot (t_{ij} - W^\text{max}_k)^+ & \text{if } i = 0 \\
C^d_{ij} + C^p_k \cdot (t_{ij} - W^\text{max}_k)^+ + C^r_i & \text{if } i > 0
\end{cases}$$

(central warehouse) (all local warehouses)
3.3. MDP formulation

In this section we formulate the real-time allocation problem as a continuous-time average cost MDP (see e.g. Bertsekas (2007), p.310-316). State transitions and action selections take place at time instances when one of the following two event types occurs: (i) a replenishment order arrives at a local warehouse, or (ii) a customer issues a new part request. Times between successive transitions have an exponential probability distribution.

We describe the state of the system by \(x = (z, j, k) \), with \(z = (z_1, \ldots, z_I) \) the \(I \)-dimensional vector of actual stock levels at the local warehouses, and \((j, k)\) references to the customer region and the customer class associated with the arriving part request. If the state refers to a replenishment order arrival, we set \(j \) and \(k \) equal to 0. We define the state space \(S \) as \(S = \{ ((z_1, \ldots, z_I), j, k) \mid z_i \in [0, \ldots, S_i], i = 1, \ldots, I, \ j = 1, \ldots, J, \ k = 1, \ldots, K \} \).

We now define the action space \(A \), and the set of admissible actions \(A(x) \) for each state \(x \in S \). The action space for our model is \(A = \{-1, 0, \ldots, I\} \). Here, action \(i \geq 0 \) stands for the decision to send a spare part from warehouse \(i \) to the customer who has just issued a part request, and action \(-1\) stands for the decision to do nothing. Obviously, we have that \(A(z, 0, 0) = \{-1\} \) for all \(z \). The set of admissible actions for a state that represents a demand arrival, consists of all local warehouses with stock at hand plus the central warehouse: \(A(z, j, k) = \{ | i | z_i > 0, \ i = 1, \ldots, I \} \cup \{0\} \) for all \((z, j, k) \in S \) with \(j, k > 0 \).

Next, we describe the transition rates and the transition probabilities for our MDP formulation. We define \(e_i \) for \(i > 0 \) as the \(I \)-dimensional unit vector with a 1 at position \(i \) and \(e_0 \) as the zero vector, i.e. \(e_0 = 0 \).

Transition type 1: Initial state: \(x = (z, 0, 0) \), action: \(-1\), next event: part request from customer region \(n \) and customer class \(p \), next state: \(y = (z, n, p) \). The transition rate is \(\lambda_{np} \) and the transition probability \(p_{xy}(-1) \) is equal to \(\lambda_{np} / [\sum_{i=1}^{J} \sum_{u=1}^{K} \lambda_{iu} + \mu \sum_{r=1}^{I}(S_r - z_r)] \).

Transition type 2: Initial state: \(x = (z, 0, 0) \), action: \(-1\), next event: order arrival at local warehouse \(m \), next state: \(y = (z + e_m, 0, 0) \). The transition rate is \(\mu (S_m - z_m) \) and the transition probability \(p_{xy}(-1) \) is equal to \(\mu (S_m - z_m) / [\sum_{i=1}^{J} \sum_{u=1}^{K} \lambda_{iu} + \mu \sum_{r=1}^{I}(S_r - z_r)] \).

Transition type 3-a: Initial state: \(x = (z, j, k) \) with \((j, k) \in \{1, \ldots, J\} \times \{1, \ldots, K\} \), action: \(0 \), next event: part request from customer region \(n \) and customer class \(p \), next state: \(y = (z, n, p) \). The transition rate is \(\lambda_{np} \) and the transition probability \(p_{xy}(0) \) is equal to \(\lambda_{np} / [\sum_{i=1}^{J} \sum_{u=1}^{K} \lambda_{iu} + \mu \sum_{r=1}^{I}(S_r - z_r)] \).

Transition type 3-b: Initial state: \(x = (z, j, k) \) with \((j, k) \in \{1, \ldots, J\} \times \{1, \ldots, K\} \), action: \(i \) with \(i \in \{1, \ldots, I\} \) and \(z_i > 0 \), next event: part request from customer region \(n \) and customer class \(p \), next state: \(y = (z-e_i, n, p) \). The transition rate is \(\lambda_{np} \) and the transition probability \(p_{xy}(i) \) is equal to \(\lambda_{np} / [\sum_{i=1}^{J} \sum_{u=1}^{K} \lambda_{iu} + \mu + \mu \sum_{r=1}^{I}(S_r - r_m)] \).
Transition type 4-a: initial state: $x = (z, j, k)$ with $(j, k) \in \{1, \ldots, J\} \times \{1, \ldots, K\}$, action: 0, next event: order arrival at local warehouse m, next state: $y = (z + e_m, 0, 0)$. The transition rate is $\mu(S_m - z_m)$ and the transition probability $p_{xy}(0)$ is $\mu(S_m - z_m) / [\sum_{i=1}^{J} \sum_{u=1}^{K} \lambda_{iu} + \mu \sum_{r=1}^{I}(S_r - z_r)]$.

Transition type 4-b: initial state: $x = (z, j, k)$ with $(j, k) \in \{1, \ldots, J\} \times \{1, \ldots, K\}$, action: i with $i \in \{1, \ldots, I\}$ and $z_i > 0$, next event: order arrival at local warehouse m, next state: $y = (z - e_i + e_m, 0, 0)$. If $m \neq i$, the transition rate is $\mu(S_m - z_m)$ and the transition probability $p_{xy}(i)$ is $\mu(S_m - z_m) / [\sum_{r=1}^{I} \sum_{u=1}^{K} \lambda_{iu} + \mu + \mu \sum_{r=1}^{I}(S_r - z_r)]$. If $m = i$, the transition rate is $\mu(S_i + 1 - z_i)$ and the transition probability is $\mu(S_i + 1 - z_i) / [\sum_{r=1}^{I} \sum_{u=1}^{K} \lambda_{iu} + \mu + \mu \sum_{r=1}^{I}(S_r - z_r)]$.

The mean transition period lengths $\tau(x, a)$ for all state/action pairs directly follow from the transition rates. For state $(z, 0, 0)$ and action -1 the transition period length $\tau((z, 0, 0), -1)$ is $1 / [\sum_{r=1}^{I} \sum_{u=1}^{K} \lambda_{iu} + \mu \sum_{r=1}^{I}(S_r - z_r)]$. For state (z, j, k) with $(j, k) \in \{1, \ldots, J\} \times \{1, \ldots, K\}$ and action 0 the transition period length $\tau((z, j, k), 0)$ is equal to $\tau((z, 0, 0), -1)$. Finally, for state (z, j, k) with $(j, k) \in \{1, \ldots, J\} \times \{1, \ldots, K\}$ and action i with $i \in \{1, \ldots, I\}$ the transition period length $\tau((z, j, k), i)$ is $1 / [\sum_{r=1}^{I} \sum_{u=1}^{K} \lambda_{iu} + \mu + \mu \sum_{r=1}^{I}(S_r - z_r)]$. We conclude our MDP formulation with the specification of the expected direct cost $G((z, j, k), a)$ when choosing action a in state (z, j, k):

$$G((z, j, k), a) = \begin{cases} C_{a}^{(z, j, k)} \text{ if } a \geq 0 \\ 0 \text{ otherwise} \end{cases} \quad (1)$$

To obtain the optimal allocation rule we transform the continuous-time MDP into a discrete-time MDP by applying a technique called uniformization (see e.g., Bertsekas (2007), p288 - 295). The uniformization procedure consists of two steps: In the first step, we determine a new transition period length τ such that $\tau \leq \tau(x, a)$ for all $x \in S$, $a \in \mathcal{A}$. It is easy to see that $\tau = 1 / [\sum_{r=1}^{I} \sum_{u=1}^{K} \lambda_{iu} + \mu \sum_{r=1}^{I}(S_r)]$ is an appropriate choice. In the second step, we add two types of transitions: (i) from state $(z, 0, 0)$ and action -1 to $(z, 0, 0)$, and (ii) from state (z, j, k) and action $i \in \mathcal{A}(z, j, k)$ to $(z - e_i, 0, 0)$. The transition rates for these fictitious transitions are chosen such that $\tau(x, a) = \tau$ for all $x \in S$, and $a \in \mathcal{A}(x)$. We obtain the desired discrete-time MDP by replacing the exponentially distributed transition period lengths with constant transition period lengths with the same mean. The Bellman optimality equations for the (discrete-time) average cost MDP now read as:

$$h^*(x) = \min_{a \in \mathcal{A}(x)} \left[G(x, a) - \lambda^* \tau + \sum_{y \in S} p_{xy}(a)h^*(y) \right] \forall x \in S \quad (2)$$

In this system of equations, h^* is the optimal relative cost vector, $G(x, a)$ is the expected direct cost function as defined in (1) and λ^* represents the optimal expected cost per time unit. We solve the Bellman optimality equations using relative value iteration (see e.g., Bertsekas (2007), p204 - 229). The optimal action $a^*(x)$ is the action that attains the minimum in (2).
It is easy to see that if \((h^*, \lambda^*)\) is a solution to (2), then \((h^* + b \cdot 1, \lambda^*)\) with \(b \in \mathbb{R}\) is also a solution. This means that one may add an equation of the form \(c^T h^* = b\) to (2) to make the solution unique. An interesting option is to add the equation with \(c^T\) equal to the state probabilities and \(b\) equal to 0. With this additional equation, the value of \(h^*(x)\) can be interpreted as the total additional cost over an infinite time horizon when starting in state \(x\) compared to paying \(\lambda^*\) every time unit. This interpretation of \(h^*(x)\) plays an important role in the development of our dynamic allocation rule in the next section.

4. Heuristic allocation rules

In this section, we present three heuristic allocation rules for the spare parts inventory network discussed in the previous section. The first heuristic allocation rule is a simple static allocation rule (denoted as SA-rule) which is described in Subsection 4.1. Because this rule is widely used in real life, it constitutes an important benchmark for any newly developed allocation rule. Next, we move to dynamic allocation rules. In this paper, we restrict ourselves to one-step lookahead (1SL) policies. One-step lookahead policies choose at each state \(x\) the action \(a^{1SL}(x)\) that minimizes the sum of the direct cost and an approximation of the optimal future cost:

\[
a^{1SL}(x) = \arg \min_{a \in \mathcal{A}(x)} \left[G(x, a) + \sum_{y \in \mathcal{S}} p_{x,y}(a) \hat{h}(y) \right] \quad \forall x \in \mathcal{S} \quad (3)
\]

If \(\hat{h}\) is the relative cost vector of some heuristic allocation rule (called the base policy), then the one-step lookahead policy is called a rollout policy. For rollout policies, we can simplify (3) considerably. Using the Bellman equations for states \((z - e_a, 0, 0)\) and action \(-1\), the transition probabilities for states \((z - e_a, 0, 0)\) and action \(-1\), and the transition probabilities for states \((z, j, k)\) and action \(a\), we obtain following intuitive expression:

\[
a^{1SL}(z, j, k) = \arg \min_{a \in \mathcal{A}(z,j,k)} \left[C^f_{a,jk} + \hat{h}(z - e_a, 0, 0) \right] \quad \forall (z, j, k) \in \mathcal{S} \text{ and } j > 0 \quad (4)
\]

The second heuristic allocation rule we present in this section is a rollout allocation policy with the SA-rule as base policy. This policy is denoted as the RA-rule and is described in Subsection 4.2. To derive the RA-rule, we must solve a system of \((J + 1) \prod_{i=1}^{I} (S_i + 1)\) Bellman equations in order to obtain \(h^{SA}\), the relative cost vector under the SA-rule. For problem instances of real-life size this is infeasible. To overcome this problem, we develop a one-step lookahead allocation rule where we approximate the optimal relative cost with an estimate of the relative cost under the SA-rule. This third allocation rule is a dynamic allocation rule. It is denoted as the DA-rule and described in Subsection 4.3.
4.1. SA-rule

The SA-rule is a static allocation rule that uses predefined priorities to determine, among all warehouses with stock at hand, the warehouse that is selected to fulfill a part request. It takes as input $J \times K$ sorted lists of warehouses, one for each pair of customer region and customer class. Let $L_{jk}(q)$ denote the q^{th} warehouse in the static priority list of customer region j and customer class k. In case of a part failure at a customer of class k in customer region j, a new spare part is sent from the first warehouse in L_{jk} with stock at hand. The warehouses in L_{jk} are sorted in ascending order on the basis of the fulfillment cost C_{ijk}^f.

4.2. RA-rule

The RA-rule is a rollout policy that uses the SA-rule as base policy. An interesting property of rollout policies is that they have the cost improvement property which states that they achieve no worse results than their base policies. A major disadvantage is that the RA-rule requires calculating h_{SA}, and this involves solving a (possibly huge) set of Bellman equations. The practical value of the RA-rule is therefore limited. Yet, we have added the RA-rule to our analysis because it is the inspiration for our DA-rule.

4.3. DA-rule

In this subsection we present the DA-rule. The DA-rule is a one-step lookahead policy. In contrast to the optimal allocation rule and the RA-rule, it is applicable to problems of arbitrary size. First, we explain the general idea behind the DA-rule. Then, we discuss the three components that together make up the algorithm for approximating the optimal relative cost. We conclude with a formal description of the DA-rule.

4.3.1. Idea behind the DA-rule

The DA-rule is a one-step lookahead policy where we approximate the optimal relative cost with an estimate of the relative cost under the SA-rule. The estimate is obtained through a computationally inexpensive iterative procedure. Consequently, the DA-rule can be considered as an approximation of the RA-rule (but one that can handle problems of arbitrary size).

Consider the system when a demand arrives. Without loss of generality we assume that time is 0 and the actual stock level vector is equal to z. We want to approximate h_{SA} for all states $(z - e_a, 0, 0)$ with $z_a > 0$. Let us define $J(z - e_a, t_1, t_2)$ as the expected total cost during time interval $[t_1, t_2]$ if the system is in state $(z - e_a, 0, 0)$ at time 0 and the SA-rule is used to fulfill future demands. Then, by definition:

$$h_{SA}(z - e_a, 0, 0) = \lim_{t \to \infty} [J(z - e_a, 0, t) - \lambda_{SA} t]$$

(5)

Our approximation of h_{SA} is based on a similar idea as that in Axsäter (1990). We make a decomposition of the network into individual local warehouses. In this way, we only deal with one Markov process per
local warehouse instead of one Markov process for the entire network. Under the SA-rule, all demand from customer region j and customer class k is first offered to warehouse $L_{jk}(1)$. If demand arrives when $L_{jk}(1)$ has no stock at hand, it is offered to $L_{jk}(2)$. If $L_{jk}(2)$ is also out of stock, it is offered to $L_{jk}(3)$, et cetera. We assume that the overflow demand stream from customer region j and customer class k to warehouse $i \neq L_{jk}(1)$ is a Poisson process. Consequently, each warehouse can be evaluated individually as an Erlang loss model ($M|MS_i|S_i$ queue). In earlier contributions, Axsäter (1990), Alfredsson & Verrijdt (1999), Kukreja et al. (2001), Kutanoglu (2008), Kranenburg & Van Houtum (2009), and Reijnen et al. (2009) have derived approximations for the average network flow rates in steady state. However, since we want to calculate the relative (sometimes called differential) cost, we are interested in transient system behavior. To the best of our knowledge this has not been looked at before.

We approximate the transient system behavior in the following way: We assume for each warehouse i a (constant) stockout probability p_i during $[0, T]$ and the steady state stockout probability \overline{p}_i when $t > T$. The parameter $T \geq 0$ is a design parameter for the DA-rule. As default we use $T = \frac{1}{\lambda_i}$. Later in this subsection we derive an expression for p_i. At this point, we just mention that it depends on the initial stock level vector $(\mathbf{z} - \mathbf{e}_a)$. Next, we assume stationary demand streams during $[0, T]$ that follow from the stockout probabilities p_i, and stationary demand streams when $t > T$ that follow from the stockout probabilities \overline{p}_i. From the estimated stationary demand rates and the estimated stationary stockout probabilities we can immediately estimate the stationary flow rates in the network for $[0, T]$ and $t > T$. We can use these estimated stationary flow rates to derive approximations for $J(\mathbf{z} - \mathbf{e}_a, 0, T)$ and $J(\mathbf{z} - \mathbf{e}_a, T, t)$ for arbitrary $t > T$. For the purpose of our analysis, we now rewrite (5) as:

$$h^{SA}(\mathbf{z} - \mathbf{e}_a, 0, 0) = J(\mathbf{z} - \mathbf{e}_a, 0, T) + \lim_{t \to \infty} [J(\mathbf{z} - \mathbf{e}_a, T, t) - \hat{h}^{SA} t]$$

(6)

Let $\hat{J}(\cdot)$ denote our approximation of $J(\cdot)$, and let $\hat{h}^{SA}(\mathbf{z} - \mathbf{e}_a)$ denote our approximation of $h^{SA}(\mathbf{z} - \mathbf{e}_a)$. Then, using the assumption that the system is in steady state for $t > T$ and removing all parts that do not depend on $(\mathbf{z} - \mathbf{e}_a, 0, 0)$, we get $\hat{h}^{SA}(\mathbf{z} - \mathbf{e}_a, 0, 0) = \hat{J}(\mathbf{z} - \mathbf{e}_a, 0, T)$. Plugging this into (4), we obtain the following expression for the DA-rule:

$$a^{DA}(\mathbf{z}, j, k) = \arg \min_{a \in \mathcal{A}(\mathbf{z}, j, k)} \left[C_{a,jk} + \hat{J}(\mathbf{z} - \mathbf{e}_a, 0, T) \right] \quad \forall (\mathbf{z}, j, k) \in \mathcal{S} \text{ and } j > 0$$

(7)

The algorithm for calculating $\hat{J}(\mathbf{z} - \mathbf{e}_a, 0, T)$ consists of three main steps. The first two steps are executed alternately and provide an accurate estimate of the average network flow during $[0, T]$ when starting at the actual stock level vector $(\mathbf{z} - \mathbf{e}_a)$ at time 0. Before we describe these two steps in detail, we introduce some notation: Let D_{ijk} denote (an approximation of) the average demand rate of customer class k in customer region j to warehouse i during $[0, T]$ and let p_i denote (an approximation of) the average stockout probability at warehouse i during $[0, T]$.

12
Step 1: Calculate the stockout probabilities p_i given the demand rates D_{ijk}, and the initial stock level vector $\mathbf{z} - \mathbf{e}_a$.

Step 2: Update the demand rates D_{ijk} given the average stockout probabilities p_i.

The two steps are executed until the changes in D_{ijk} in two consecutive iterations are smaller than some pre-specified, small value ϵ. The iterative process is initialized with $D_{ijk} = \lambda_{jk}$ if $i = L_{jk}(1)$ and $D_{ijk} = 0$ otherwise. In the third step, we calculate our approximation of the relative cost under the SA-rule for state $(\mathbf{z} - \mathbf{e}_a, 0, 0)$.

Step 3: Calculate $\hat{J}(\mathbf{z} - \mathbf{e}_a, 0, T)$, given the converged values of D_{ijk} and p_i.

We now explain these three steps in more detail.

4.3.2. Step 1: Calculating p_i for given demand rates D_{ijk}

Because we have assumed that the overflow demand streams are Poisson, we can model each warehouse i as an Erlang loss model with S_i servers, demand arrival rate $D_i = \sum_j \sum_k D_{ijk}$ and service rate μ. Suppose that the initial number of free servers (in our setting this is equivalent to the actual stock level) is equal to z_i.

We are interested in approximating the average stockout probability during time interval $[0, T]$. The steady state stockout probability in an Erlang loss model can be calculated from the well-known Erlang B formula:

$$B(S_i, D_i \mu) = \frac{1}{\sum_{x=0}^{S_i} \frac{1}{\pi x} \left(\frac{D_i \mu}{\pi} \right)^x}$$ \hspace{1cm} (8)

Let $N(S_i, D_i, \mu, z_i, t)$ denote the expected number of rejected requests in the $M|M|S_i|S_i$ queue during time interval $[0, t]$ starting with z_i items in stock at time 0. Furthermore, let $\Delta(S_i, D_i, \mu, z_i)$ represent the additional number of rejected requests over an infinite time horizon starting with z_i items in stock at time 0, compared to steady state. The formal definition is given below:

$$\Delta(S_i, D_i, \mu, z_i) = \lim_{t \to \infty} [N(S_i, D_i, \mu, z_i, t) - D_i t B(S_i, \frac{D_i}{\mu})]$$ \hspace{1cm} (9)

Our idea is to approximate the transient stockout probability with a step-function. For $t \leq T$ we use a constant stockout probability p_i, and for $t > T$ we use the steady state stockout probability $\bar{p}_i = B(S_i, \frac{D_i}{\mu})$.

To calculate p_i we assume that the additional number of rejected requests compared to steady state all occur in the time interval $[0, T]$. Under this assumption the expected number of rejected requests during $[0, T]$ is equal to $D_i T B(S_i, \frac{D_i}{\mu}) + \Delta(S_i, D_i, \mu, z_i)$. Consequently, we can approximate the average stockouts probability during $[0, T]$ as follows:

$$p_i = F(S_i, D_i, \mu, z_i, T) = \max[0, \min\{1, B(S_i, \frac{D_i}{\mu}) + \frac{\Delta(S_i, D_i, \mu, z_i)}{D_i T}\}]$$ \hspace{1cm} (10)
The min and max in expression (10) have been added to make sure that the calculated stockout probabilities are never smaller than zero or bigger than one. Before we can apply (10), we must calculate \(\Delta(S_i, D_i, \mu, z_i) \).

To obtain \(\Delta(S_i, D_i, \mu, z_i) \), the following steps are carried out: (i) we formulate the \(M|M|S_i|S_i \) queue that represents warehouse \(i \) as an average cost MDP with a cost of 1 in case of a rejected customer demand, (ii) we construct a set of equations for the relative cost vector \(h = (h_0, h_1, \ldots, h_{S_i}) \) consisting of \((S_i+1) \) Bellman equations and one scaling equation, and (iii) we solve this system of equations. The scaling constraint is chosen such that \(\Delta(S_i, D_i, \mu, z_i) = h_{z_i} \). We now explain these steps in more detail.

To formulate the \(M|M|S_i|S_i \) queue as an average cost MDP we choose as state the number of items on stock. We have two events: (i) arrival of a customer demand, and (ii) arrival of a replenishment order, and we also have two actions: (i) fulfill demand, and (ii) reject demand. For every state we have exactly one admissible action (defined by the nature of the \(M|M|S_i|S_i \) queue): Demand is fulfilled if there is stock at hand, and rejected if there is no stock at hand. We incur unit cost for each rejected demand. The Bellman equations for this system read as:

\[
\begin{align*}
h_0 &= \frac{D_i}{D_i + S_i \mu} - \frac{D_i B(S_i + \frac{D_i}{\mu})}{D_i + S_i \mu} + \frac{D_i}{D_i + S_i \mu} h_0 + \frac{S_i \mu}{D_i + S_i \mu} h_1 \\
h_n &= -\frac{D_i B(S_i, \frac{D_i}{\mu})}{D_i + (S_i - n) \mu} + \frac{D_i}{D_i + (S_i - n) \mu} h_{n-1} + \frac{(S_i - n) \mu}{(S_i - n) \mu} h_{n+1} \\
1 \leq n &\leq S_i - 1 \\
h_{S_i} &= -\frac{D_i B(S_i, \frac{D_i}{\mu})}{D_i} + h_{S_i - 1}
\end{align*}
\]

Next, we add a scaling equation to (11) such that the resulting system of equations has a unique solution with \(\Delta(S_i, D_i, \mu, z_i) = h_{z_i} \). This constraint states that weighted sum of all vector elements of \(h \) must be equal to zero where the weights are equal to the state probabilities. It reads as:

\[
\sum_{n=0}^{S_i} \left[\frac{1}{n!} \left(\frac{D_i}{\mu} \right)^n \right] h_n = 0
\]

We obtain \(h_{z_i} \) (and thus \(\Delta(S_i, D_i, \mu, z_i) \)) by solving the system of equations consisting of (11) and (12). The simple structure of the system of equations allows for a fast sequential solution procedure. We have illustrated our step-function approximation of the real transient stockout probability for an arbitrary local warehouse in Example 1.

Example 1. Consider a local warehouse \(i \) with base stock level \(S_i = 3 \) and suppose that the average replenishment lead time \(\frac{1}{\mu} \) is equal to \(\frac{1}{5} \). Furthermore, suppose that at a certain point in the iterative procedure for calculating \(\hat{J}(z - e_a, 0, T) \), the demand arrival rate \(D_i = \sum_j \sum_k D_{ijk} \) for warehouse \(i \) is equal
to 12. Warehouse i can now be modeled as an $M|M|3|3$ queue with an average service time of $\frac{1}{\mu}$, and a demand arrival rate of 12. To investigate how the stockout probability at warehouse i evolves over time, we have written a Matlab simulation script. Figure 1(a) shows the real stockout probability as a function of time for 0 items in stock at time 0 and Figure 1(b) show our approximation of the real stockout probability with $T = \frac{1}{\mu}$. Note that the shaded areas in Figures 1(a) and 1(b) are equal.

![Figure 1: Real and approximated transient stockout probability for M|M|3|3 queue](image)

4.3.3. Step 2: Updating D_{ijk} for given average stockout probabilities p_i.

By definition of the SA-rule, all demand from customer region j and customer class k is offered to $L_{jk}(1)$. Suppose that warehouse $i = L_{jk}(1)$ is out of stock a fraction p_i of the time. Then, a fraction $(1 - p_i)$ of the demand from customer region j and customer class k is fulfilled from warehouse i, and an overflow demand stream $p_i \lambda_{jk}$ is offered to warehouse $L_{jk}(2)$. In general, the overflow demand rates D_{ijk} can be recursively determined from $D_{L_{jk}(q), j, k} = p_{L_{jk}(q-1)} D_{L_{jk}(q-1), j, k}$. Hence,

$$D_{L_{jk}(q), j, k} = \begin{cases} \lambda_{jk} & \text{if } q = 1 \\ \lambda_{jk} \prod_{n=1}^{q-1} p_{L_{jk}(q)} & \text{if } q > 1 \end{cases} \quad (13)$$

Note that in this recursive formula we use the simplifying assumption that actual stock levels at the local warehouses are independent.

4.3.4. Step 3: Calculating $\hat{J}(z - e_n, 0, T)$ for given D_{ijk} and p_i.

We can estimate the average flow rate of spare parts for customer class k during $[0, T]$ between warehouse i and customer region j by multiplying the (estimated) average demand rate during $[0, T]$ with the (estimated) average fill rate of warehouse i during $[0, T]$. We obtain an estimate of the average total cost during $[0, T]$ by taking the sum over all network edges of the product of the estimated flow rate (i.e. $(1 - p_i) D_{ijk}$), the fulfillment cost (i.e. C_{ijk}^f), and the length of the time horizon (i.e. T).
4.3.5. Formal specification

We conclude this subsection with a formal description of the DA-rule. It consists of the control rule (7) and the Algorithm 1 for calculating $\hat{J}(z - e_i, 0, T)$. To evaluate the performance on problem instances of real-life size, we have implemented the DA-rule in a JAVA simulation program. Each time the simulator generates a new part request, we execute Algorithm 1 for all warehouses with stock at hand. No allocation decisions or relative cost vectors are stored. Consequently, storage space requirements are minimal. The average computation time per part request is less than 10 milliseconds on an Intel T2600 2 GHz computer for all problem instances in our numerical experiments (including the ones of real-life size).

<table>
<thead>
<tr>
<th>Algorithm 1 Calculate $\hat{J}(y, 0, T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
</tr>
<tr>
<td>\forall (i, j, k) \in {0, \ldots, I} \times {1, \ldots, J} \times {1, \ldots, K} \quad D_{ijk} = 0</td>
</tr>
<tr>
<td>\forall (j, k) \in {1, \ldots, J} \times {1, \ldots, K} \quad D_{Ljk}(1) = \lambda_{jk}</td>
</tr>
<tr>
<td>\forall i \in {1, \ldots, I} \quad p_i = F(S_i, D_i, \mu, z_i, T) \quad \text{cf. (10), (11), (12)}</td>
</tr>
<tr>
<td>Repeat</td>
</tr>
<tr>
<td>\forall (q, j, k) \in {2, \ldots, I} \times {1, \ldots, J} \times {1, \ldots, K} \quad D_{Ljq(q-1), j, k} = p_{Ljq(q-1)} D_{Ljq(q-1), j, k}</td>
</tr>
<tr>
<td>\forall i \in {1, \ldots, I} \quad D_i = \sum_{j=1}^{J} \sum_{k=1}^{K} D_{ijk}</td>
</tr>
<tr>
<td>\forall i \in {1, \ldots, I} \quad p_i = F(S_i, D_i, \mu, z_i, T) \quad \text{cf. (10), (11), (12)}</td>
</tr>
<tr>
<td>Finalization</td>
</tr>
<tr>
<td>\hat{J}(y, 0, T) = T \sum_{i=0}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} C_{ijk} (1 - p_i) D_{ijk}</td>
</tr>
</tbody>
</table>

5. Numerical Experiments

In this section, we investigate the performance and the structure of the proposed DA-rule via numerical experiments. We have the following objectives in conducting numerical experiments. First, we investigate the optimality gap of the DA-rule. Second, we investigate the impact of the two main approximation steps in the DA-rule: (i) using one-step lookahead with the SA-rule as base policy, and (ii) approximating the true relative cost under the SA-rule with $\hat{J}(z - e_i, 0, T)$. Our third objective is to characterize the DA-rule by investigating how it differs from the SA-rule. Finally, we investigate the potential cost savings of the DA-rule over the SA-rule on problem instances of real-life size, and we explore how the relative performance depends on various problem characteristics.

To meet the first three objectives we define a numerical experiment with a test bed containing a wide range of problem instances of small size (Experiment I). For all problem instances in this test bed, we can
calculate the computationally expensive optimal allocation rule and the computationally expensive RA-rule. In this experiment we use relative value iteration to evaluate the performance of the allocation rules. To meet the fourth objective we define a numerical experiment with a test bed with problem instances of real-life size (Experiment II) and use discrete event simulation to evaluate the performance of the SA-rule and the DA-rule. In Subsection 5.1 we define the test beds, in Subsection 5.2 we describe the experiment with problem instances of small size, in Subsection 5.3 we characterize the DA-rule, and in Subsection 5.4 we describe the experiment with problem instances of real-life size.

5.1. Test Bed

For Experiment I and Experiment II we use similar test beds based on full factorial designs on six parameters. Six more parameters are fixed within each test bed. The main difference between both experiments is that for Experiment I we create test instances of small size (6 local warehouses), whereas for Experiment II we create test instances of real-life size (24 local warehouses). In both experiments, we consider 3 customer classes: customers with 2 hours contracts, customers with 4 hours contracts, and customers with 8 hours contracts. We start by summarizing our choices for all 12 parameter in Table 2. Costs are expressed in euros, times are expressed in hours, and distances are expressed in kilometers.

The total number of all possible combinations for these parameters is $2 \times 3 \times 3 \times 3 \times 3 \times 3 = 486$ for Experiment I, and $2 \times 3 \times 3 \times 3 \times 3 \times 4 = 648$ instances for Experiment II. We have randomly created 5 different sets of values for the coordinates of the customer regions, as there are uniform distributions involved in the generation of these values. This gives us in total $486 \times 5 = 2430$ instances for Experiment I and $648 \times 5 = 3240$ instances for Experiment II.

We now explain some of the parameters in more detail and describe how to construct test instances from the parameters values. The first parameter in the factorial design is the region indicator (R). It can take two values r_1 or r_2. The value r_1 represents a situation where the service area is at relatively close distance to the central warehouse; we use a small average replenishment lead time (72 hours) and a small emergency delivery time (4 hours). The value r_2 represents a situation where the service area is at relatively large distance from the central warehouse; we use a larger average replenishment lead time (120 hours) and a larger emergency delivery time (8 hours).

The second parameter in the factorial design is the length of a service area unit (l), which determines the network layout. For all test instances, we create a rectangular service area consisting of 3×2 (Experiment I) or 6×4 (Experiment II) squares of $l \times l$ kilometers each. We position a local warehouse in the center of each square. For both experiments, the largest value of l is chosen such that an arbitrary part request at an arbitrary point inside the service area can in principle be fulfilled within the service deadline. Since we assumed $t_{ij} = 0.5 + 0.01d_{ij}$, we can travel 150 kilometers within 2 hours (= minimum service deadline).
<table>
<thead>
<tr>
<th>Name of parameter</th>
<th>Values Experiment I</th>
<th>Values Experiment II</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of local warehouses (I)</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>No. of customer regions (J)</td>
<td>24</td>
<td>96</td>
</tr>
<tr>
<td>Delivery time profile (i > 0)</td>
<td>$t_{ij} = 0.5 + 0.01d_{ij}$ as Experiment I</td>
<td></td>
</tr>
<tr>
<td>Delivery cost profile (i > 0)</td>
<td>$C_{ij}^d = 1d_{ij}$ as Experiment I</td>
<td></td>
</tr>
<tr>
<td>Emergency delivery cost (C_{ij}^e)</td>
<td>(2000) as Experiment I</td>
<td></td>
</tr>
<tr>
<td>Replenishment cost (C_r^i)</td>
<td>0 as Experiment I</td>
<td></td>
</tr>
<tr>
<td>Region indicator (R)</td>
<td>${r_1, r_2}$ as Experiment I</td>
<td></td>
</tr>
<tr>
<td>$r_1: \frac{1}{\mu} = 72, t_{0j} = 4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r_2: \frac{1}{\mu} = 120, t_{0j} = 8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length service area unit (l)</td>
<td>${\sqrt{2} \cdot 150, 150, \frac{1}{\sqrt{6}} \cdot 150}$ as Experiment I</td>
<td></td>
</tr>
<tr>
<td>Customer class fractions (w)</td>
<td>${(\frac{1}{6}, \frac{2}{6}, \frac{3}{6}), (\frac{2}{6}, \frac{2}{6}, \frac{2}{6}), (\frac{3}{6}, \frac{2}{6}, \frac{1}{6})}$ as Experiment I</td>
<td></td>
</tr>
<tr>
<td>Relative network demand (ϕ)</td>
<td>${0.2, 0.5, 1.0}$ as Experiment I</td>
<td></td>
</tr>
<tr>
<td>Penalty cost vector (C_P)</td>
<td>${1, 2, 4} \times {1200, 600, 300}$ as Experiment I</td>
<td></td>
</tr>
<tr>
<td>Target time-based fill rate (Γ)</td>
<td>${0.5, 0.8, 0.95} \times 1$</td>
<td>${0.5, 0.8, 0.95, 0.98} \times 1$</td>
</tr>
</tbody>
</table>

Table 2: Parameter choices for the test beds

Consequently, the largest value for l in the factorial design is equal to $150 \sqrt{2}$. For all test instances we create $J = 4 \cdot I$ customer regions. Each customer region has coordinates that determine the delivery times and the delivery costs. Each customer region generates 2 hours, 4 hours, and 8 hours spare part demands. The location of each customer region is drawn according to a uniform distribution.

The third parameter in the factorial design is the weight vector $w = (w_1, w_2, w_3)$ of the customer classes. It specifies for each customer region the fraction of demand associated with a service deadline of 2 hours, 4 hours, and 8 hours, respectively. In our experiments, we do not only assume that all customer regions have identical customer class weights, but also that their total demand rates are identical. A graphical illustration
of a possible network layout for a problem instance in Experiment I with \(l = 150 \sqrt{2} \) is given in Figure 2.

The fourth parameter in the factorial design is the average network demand during the replenishment lead time divided by the number of local warehouses. We refer to this parameter as the relative network demand (\(\phi \)). From the factorial design parameters \(\phi \) and \(w \) we obtain the problem inputs \(\lambda_{jk} \) according to:

\[
\lambda_{jk} = \frac{w_k}{J} \phi I \mu
\]

The fifth parameter in the factorial design is the hourly penalty cost vector \(C_p \). For each customer class it specifies the penalty cost incurred per hour that a part request is fulfilled beyond the service deadline. Typically, the hourly penalty costs get bigger when the contractual maximum response times get smaller (so \(C^p_1 > C^p_2 > C^p_3 \)).

The sixth and last parameter in the factorial design is the \(K \)-dimensional vector \(\Gamma \) which contains a target time-based fill rate for each customer class. We use \(\Gamma \) to calculate the base stock level vector \(S \). To do so, we develop a heuristic that is similar to the one presented in Reijnen et al. (2009). Here, we summarize our heuristic for calculating the base stock levels from the target time-based fill rates. In the first step, we set all base stock levels equal to zero. In the second step, we execute an iterative procedure where we increase the base stock level that minimizes the sum of delivery cost and penalty cost until the time-based fill rates that follow from the network flow approximation of Reijnen et al. (2009) are bigger than the target time-based fill rates. A formal description of the method is given in Appendix A.

5.2. Experiment I

In this experiment we investigate the optimality gaps of the SA-rule, the RA-rule, and the DA-rule on the test bed defined in the previous subsection. For each of the 2430 test instances we have calculated the total cost, the regular delivery cost, the emergency delivery cost, and the penalty cost for all allocation rules by solving the balance equations for the Markov chain induced by the allocation rule. Consequently, all cost figures presented in this experiment are exact.

We start by providing insight into the spread of the optimality gaps over the 2430 test instances for the three heuristic allocation rules. For this purpose, we calculate for each allocation rule the 5\%, 20\%, 50\%, 80\%, and 95\% percentile optimality gap, as well as the minimum and the maximum optimality gap. The results are shown in Table 3. The table shows that the median optimality gap of the SA-rule is 4.4\%. For 20\% of all test instances the optimality gap is more than 15\%, and the maximum optimality gap is even more than 85\%. So, in a considerable part of all test instances there is big room for improvement. The numbers for the RA-rule look totally different. We see that for most test instances the optimality gap of the RA-rule is less than one percent although the maximum optimality gap of the RA-rule is considerable (18.2\%). For the DA-rule, the 5\%, 20\%, 50\%, 80\%, and 95 \% optimality gap percentiles are a little bit higher than those of
RA-rule, but still pretty small. A remarkable observation is that the maximum optimality gap of the DA-rule is smaller than the maximum optimality gap of the RA-rule. So apparently, the DA-rule can outperform the RA-rule for individual test instances.

<table>
<thead>
<tr>
<th>Percentile</th>
<th>SA-rule</th>
<th>RA-rule</th>
<th>DA-rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5%</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20%</td>
<td>1.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>50%</td>
<td>4.4</td>
<td>0.0</td>
<td>0.9</td>
</tr>
<tr>
<td>80%</td>
<td>15.6</td>
<td>0.5</td>
<td>2.8</td>
</tr>
<tr>
<td>95%</td>
<td>37.0</td>
<td>4.3</td>
<td>5.9</td>
</tr>
<tr>
<td>max</td>
<td>85.7</td>
<td>18.2</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Table 3: Experiment I: Spread of optimality gap

Next, we calculate the average optimality gap for all three heuristic allocation rules over (i) all 2430 test instances, and (ii) all subsets where one of the factorial design parameters takes one of its admissible values. Besides the average optimality gap (shown in bold face), we also show the contribution of the regular delivery cost, the emergency delivery cost, and the penalty cost to the optimality gap (these values are shown in parenthesis). The results are shown in Table 4.

The first row in Table 4 shows that the average optimality gap over all test instances for the SA-rule, RA-rule, and DA-rule is 9.6%, 0.7%, and 1.6% respectively. The average optimality gap of the RA-rule is thus more than a factor 10 smaller than the average optimality gap of the SA-rule. This does not only hold for the average optimality gap over all test instances, but also for the average optimality gap in 16 out of 17 subsets. From all this, we conclude that the RA-rule consistently performs very well on this test bed. Unfortunately, the RA-rule cannot be applied to problem instances of real-life size due to computational complexity. That is why we have developed the DA-rule. The table also shows that the average optimality gap of the DA-rule is about a factor 2 bigger than the average optimality gap of the RA-rule. So apparently, approximating the true optimal relative cost $h^*(z-e_i, 0, 0)$ with $h^{SA}(z-e_i, 0, 0)$, and approximating $h^{SA}(z-e_i, 0, 0)$ with $\hat{J}(z-e_i, 0, \mu)$, both account for about half of the observed optimality gap of the DA-rule. When switching from the SA-rule to the DA-rule, we achieve an average cost reduction of $100\% \times (109.6 - 101.6)/109.6 = 7.3\%$. From the decomposition of the optimality gap into the three different cost components, we see that this cost reduction is mainly obtained by replacing regular shipments by emergency shipments (resulting in higher emergency delivery cost but lower penalty cost). In the next subsection, we investigate the differences between the SA-rule and the RA-rule in more detail. Finally, Table 4 also provides valuable information.
<table>
<thead>
<tr>
<th>Test bed subset</th>
<th>N</th>
<th>Average optimality gap (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SA-rule</td>
</tr>
<tr>
<td>All instances</td>
<td>2430</td>
<td>9.6</td>
</tr>
<tr>
<td>$R = r_1$</td>
<td>1215</td>
<td>5.8</td>
</tr>
<tr>
<td>$R = r_2$</td>
<td>1215</td>
<td>13.3</td>
</tr>
<tr>
<td>$l = \sqrt{2} \cdot 150$</td>
<td>810</td>
<td>8.0</td>
</tr>
<tr>
<td>$l = 150$</td>
<td>810</td>
<td>9.5</td>
</tr>
<tr>
<td>$l = \frac{1}{2} \sqrt{5} \cdot 150$</td>
<td>810</td>
<td>11.2</td>
</tr>
<tr>
<td>$w = (\frac{1}{4}, \frac{2}{5}, \frac{1}{6})$</td>
<td>810</td>
<td>7.4</td>
</tr>
<tr>
<td>$w = (\frac{2}{9}, \frac{8}{9}, \frac{2}{3})$</td>
<td>810</td>
<td>10.8</td>
</tr>
<tr>
<td>$w = (\frac{3}{10}, \frac{2}{5}, \frac{1}{6})$</td>
<td>810</td>
<td>10.6</td>
</tr>
<tr>
<td>$\phi = 0.2$</td>
<td>810</td>
<td>3.4</td>
</tr>
<tr>
<td>$\phi = 0.5$</td>
<td>810</td>
<td>9.1</td>
</tr>
<tr>
<td>$\phi = 1.0$</td>
<td>810</td>
<td>16.1</td>
</tr>
<tr>
<td>$C_p = (1200, 600, 300)$</td>
<td>810</td>
<td>2.8</td>
</tr>
<tr>
<td>$C_p = (2400, 1200, 600)$</td>
<td>810</td>
<td>7.7</td>
</tr>
<tr>
<td>$C_p = (4800, 2400, 1200)$</td>
<td>810</td>
<td>18.2</td>
</tr>
<tr>
<td>$\Gamma = (0.50, 0.50, 0.50)$</td>
<td>810</td>
<td>14.5</td>
</tr>
<tr>
<td>$\Gamma = (0.80, 0.80, 0.80)$</td>
<td>810</td>
<td>9.7</td>
</tr>
<tr>
<td>$\Gamma = (0.95, 0.95, 0.95)$</td>
<td>810</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table 4: Experiment I: optimality gap

on the dependencies between the factorial design parameters and the optimality gaps for three heuristic allocation rules. The strongest dependencies are found for the relative network demand (ϕ), the penalty cost vector (C_p), and the target time-based fill rate vector (Γ). For all three heuristic allocation rules, the dependencies point in the same direction, meaning that they all have relatively large optimality gaps for the same kind of test instances. In particular, optimality gaps seem relatively large for problem instances where contract violations occur frequently (low Γ) and are penalized strongly (big C_p), and the probability of multiple demands within one replenishment lead time is relatively high (big ϕ).

To investigate the impact of the time horizon T on the performance of the DA-rule, we have compared the DA-rule with $T = \frac{1}{\mu}$ (our default), with the DA-rules with $T = \frac{1}{2} \frac{1}{\mu}$, $T = 2 \cdot \frac{1}{\mu}$, and $T = 4 \cdot \frac{1}{\mu}$ on all 2430 instances of Experiment I. The results are summarized in Table 5 and indicate that our default value $T = \frac{1}{\mu}$ is a good choice. Therefore, we use $T = \frac{1}{\mu}$ in the remainder of this paper.
Table 5: Experiment I: impact of T on performance DA-rule

<table>
<thead>
<tr>
<th>$T = \frac{1}{p}$</th>
<th>$T = 1$</th>
<th>$T = 2 \frac{1}{p}$</th>
<th>$T = 4 \frac{1}{p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average optimality gap DA-rule (%)</td>
<td>2.4</td>
<td>1.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>

5.3. Characterization of DA-rule

In this subsection we aim to characterize the DA-rule. We do this by identifying the states where the DA-rule takes a different decision than the (simple) SA-rule. For our analysis we use the test bed of Experiment I. We start by decomposing the state space of each individual test instance in disjoint sub spaces. The decomposition is obtained using four simple filters. A filter is like a decision node in classification trees. It takes as input a state space S and splits it in n disjoint sub state spaces S_1, \ldots, S_n such that $S_1 \cup \ldots \cup S_n = S$, based on the evaluation of the filter expression for all states $s \in S$. The first filter evaluates for each state (z, j, k) the customer class k. The second filter evaluates for each state whether or not the DA-rule and the SA-rule propose the same decision. For states where the two rules propose the same decision, we do not decompose further. For all other states, we apply a third and a fourth filter. The third filter considers for each state the associated DA decision and distinguishes between three options: (i) the DA-rule chooses the central warehouse, (ii) the DA-rule chooses a local warehouse with exactly one item on stock, and (iii) the DA-rule chooses a local warehouse with more than one item on stock. The fourth filter is similar to the third, but considers the SA decision instead of the DA decision. These four filters decompose the state space of each test instance into $(3 \times 1 \times 1) + (3 \times 1 \times (9 - 1)) = 27$ disjoint sub spaces.

By solving the balance equations for the Markov chain induced by the DA-rule, we obtain the fraction of all decision events that belong to each of these 27 sub spaces. This provides valuable information on when and how often the DA-rule and the SA-rule propose different decisions. When the two rules propose different decisions, we investigate how the DA-rule rates the decision proposed by the SA-rule. For this purpose, we introduce the variable $q(x, y, z, j, k) = [C^f_{yjk} + h^{DA}(z - e_y, 0, 0)] - [C^f_{xjk} + h^{DA}(z - e_x, 0, 0)]$. We can interpret $q(x, y, z, j, k)$ as the cost difference (according to the DA-rule) when fulfilling a demand from customer region j and customer class k from warehouse x instead of warehouse y if the actual stock level vector is z. We define the cost difference $q(S)$ over a set of states S as the weighted sum of all $q(a^{DA}(z, j, k), a^{SA}(z, j, k), z, j, k)$ with $(z, j, k) \in S$. Let $\pi(z, j, k)$ denote the steady state probability of state (z, j, k) under the DA-rule. Then, we get:

$$q(S) = \frac{\sum_{(z, j, k) \in S} \pi(z, j, k) q(a^{DA}(z, j, k), a^{SA}(z, j, k), z, j, k)}{\sum_{(z, j, k) \in S} \pi(z, j, k)} \quad (14)$$

In Table 6 we have shown the average over all 2430 test instances of the decision event probabilities and $q(S)$ for all 27 sub spaces. In line with previous notation, a^{DA} (a^{SA}) represents the warehouse selected by
<table>
<thead>
<tr>
<th>Subset No.</th>
<th>State space decomposition</th>
<th>Event probability $q(S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Filter 1</td>
<td>Filter 2</td>
</tr>
<tr>
<td>1</td>
<td>$k = 1$</td>
<td>$a^{DA} = a^{SA}$</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>$a^{DA} \neq a^{SA}$</td>
</tr>
<tr>
<td>3</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>$k = 2$</td>
<td>$a^{DA} = a^{SA}$</td>
</tr>
<tr>
<td>11</td>
<td>.</td>
<td>$a^{DA} \neq a^{SA}$</td>
</tr>
<tr>
<td>12</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>13</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>14</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>15</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>16</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>17</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>18</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>19</td>
<td>$k = 3$</td>
<td>$a^{DA} = a^{SA}$</td>
</tr>
<tr>
<td>20</td>
<td>.</td>
<td>$a^{DA} \neq a^{SA}$</td>
</tr>
<tr>
<td>21</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>22</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>23</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>24</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>25</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>26</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>27</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Table 6: DA-rule characterization
the current part is being replenished and finds all nearby local warehouses out of stock. This is the most expensive event that can occur. Consequently, it might be beneficial in some circumstances to minimize the chance of occurrence of such an event by fulfilling a part request from the ample stock central warehouse and not from a local warehouse.

The figures for subsets 8, 17, and 26 show that it also happens that the DA-rule decides to deliver from a local warehouse with more than one item on stock whereas the SA-rule decides to take away that last stock item of a local warehouse. Summarizing we can say that the main difference between the DA-rule and the SA-rule is that the DA-rule is more reluctant to take away the last item at a local warehouse and less reluctant to use emergency deliveries from the central warehouse. The \(q(S) \) values show that the DA-rule sees the biggest benefits in fulfilling some part requests with a maximum response time of 8 hours from the central warehouse instead of a local warehouse.

5.4. Experiment II

In this experiment we compare the DA-rule and the SA-rule on a test bed containing problem instances of real-life size. The test bed has been defined in Subsection 5.1. For each of the 3240 test instances, we have calculated the total cost, the regular delivery cost, the emergency delivery cost, and the penalty cost for the DA-rule, and the SA-rule. In contrast to Experiment I, we cannot evaluate the performance of the DA-rule and the SA-rule analytically and thus we move to discrete event simulation. See Subsection 5.4.1 for the details of how the simulation has been set up.

The average cost reduction over all 3240 test instances when switching from the SA-rule to the DA-rule is 7.9%. When leaving out all test instances with \(\Gamma = (0.98, 0.98, 0.98) \) (this parameter value is not present in Experiment I), the average cost reduction is even 9.7%. This is more than 30% bigger than the average cost reduction in Experiment I (7.3%) and a clear indication that the DA-rule scales well. To investigate how the cost savings depend on the various problem characteristics, we have created a box diagram for each parameter in the factorial design. The box diagrams are shown in Figures 3(a)-3(f) and show the median, the 25% and 75% percentiles, and the minimum and maximum cost reductions.

The Figures 3(a)-3(f) give a similar picture as the results in Experiment I (cf. Table 4). We see that the cost reduction for test instances with region indicator \(R = r_2 \) (emergency delivery time of 8 hours) is bigger than the cost reduction for test instances with region indicator \(R = r_1 \) (emergency delivery time of 4 hours). We also see that the cost reduction gets bigger if the service area gets smaller. Figure 3(c) shows no clear correlation between the cost reduction and the weight vector \(w \) of the customer classes. Figures 3(d) to 3(f) however, show a strong correlation between the cost savings and the relative network demand \(\phi \), the penalty cost vector \(C_p \), and the target time-based fill rate vector \(\Gamma \), just as in Experiment I.

All together, switching from the SA-rule to the DA-rule seems in particular beneficial in situations
Figure 3: Experiment II: Box diagrams for parameters in factorial design

where: (i) contract violations are expensive and occur frequently, (ii) emergency shipments involve high delivery and/or penalty cost, and (iii) the probability of multiple demands within one replenishment lead time is relatively high. In all these situations, the SA-rule suffers from the weakness that it does not anticipate future stockouts and the contract violations and penalty costs this may cause.
5.4.1. Discrete event simulation

Here, we describe how we have set up our discrete event simulations. Each simulation run is divided in 21 sub-runs of 5,000 part failure events each. The first sub-run is used as a warming-up period. For all other 20 sub-runs we calculate the average annual total cost. From these 20 samples we calculate the sample mean and the coefficient of variation. If the coefficient of variation is smaller than 0.01/2 the simulation is terminated. Otherwise, we double the number of part failure events we want to simulate and merge the current 20 sub-runs into 10 new ones by merging sub-runs 1 with 2, 3 with 4, ..., and 19 with 20. Under some mild conditions this methods guarantees that the simulated annual total cost does not differ more than 1% from its expected value with a probability of more than 95%. This method is called the method of non-overlapping batch means (NOBM). For a comprehensive description of NOBM we refer the reader to Steiger & Wilson (2001).

6. Conclusions

We conclude by summarizing our main results. We developed a dynamic rule for allocating available network stock to real-time part requests in a single echelon multi location spare parts network with multiple customer classes where part requests can often be fulfilled from more than one warehouse within the service deadline. Our dynamic allocation rule is a one-step lookahead policy that approximates the optimal relative cost with an estimate of the relative cost under a static allocation rule.

First, we showed on a test bed with small problem instances that the optimality gap of our dynamic allocation rule is small (1.6% on average). This is much smaller than the optimality gap of a simple but widely used static allocation rule (9.6% on average). We also showed that on problem instances of real-life size, the dynamic allocation rule achieves average cost savings of 7.9% in comparison to the static allocation rule. This indicates that the dynamic allocation rule scales very well. Second, we showed that the dynamic allocation rule in particular outperforms the static allocation rule when contract violations are expensive and occur frequently, emergency shipments involve high delivery and/or penalty cost, and the probability of multiple demands within one replenishment lead time is relatively high. Third, we characterized our dynamic allocation rule and showed that it mainly differs from the static allocation rule in situations where the static allocation rule selects a warehouse with only one item on stock, and the actual part request has a relatively high maximum response time. In particular, we showed that switching from the greedy static allocation rule to the dynamic allocation rule with (limited) lookahead changes the role of emergency deliveries from a tool of last resort to a tool that is actively used to avoid stock level reductions at local warehouses in situations where this is considered undesirable.

For future research, it is relevant to investigate the impact of demand forecast errors on the performance
of the DA-rule. Another interesting direction for future research is the optimization of base stock levels under a dynamic allocation rule like the one presented in this paper.

References

Appendix A. Calculation of base stock levels

In this appendix, we formally state the method for calculating a base stock level vector S from a target time-based fill rates vector Γ. It consists of two parts. Algorithm 2 approximates the average cost per time unit and the time-based fill rates for given base stock level vectors. In Algorithm 3 we use this evaluation procedure to find a base stock level vector such that the (approximated) time-based fill rates exceed the target time-based fill rates, and (approximated) total cost are low.

Algorithm 2 Calculate $\hat{C}(S)$ and $\hat{\Gamma}(S)$

Initialization
\[
\forall (i, j, k) \in \{0, \ldots, I\} \times \{1, \ldots, J\} \times \{1, \ldots, K\} \quad D_{jk} = 0
\]
\[
\forall (j, k) \in \{1, \ldots, J\} \times \{1, \ldots, K\} \quad D_{L(j-1), j, k} = A_{jk}
\]
\[
\forall i \in \{1, \ldots, I\} \quad D_i = \sum_{j=1}^{J} \sum_{k=1}^{K} D_{jk}
\]
\[
p_0 = 0
\]
\[
\forall i \in \{1, \ldots, I\} \quad p_i = B(S_i, \frac{D_i}{p}) \quad \text{cf. (8)}
\]

Repeat
\[
\forall (q, j, k) \in \{2, \ldots, I\} \times \{1, \ldots, J\} \times \{2, \ldots, K\} \quad D_{L(q), j, k} = p_{L(q-1), j, k} D_{L(q-1), j, k}
\]
\[
\forall i \in \{1, \ldots, I\} \quad D_i = \sum_{j=1}^{J} \sum_{k=1}^{K} D_{jk}
\]
\[
p_i = B(S_i, \frac{D_i}{p}) \quad \text{cf. (8)}
\]

Finalization
\[
\hat{C}(S) = \sum_{i=0}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} C_{ijk} (1 - p_i) D_{jk}
\]
\[
\hat{\Gamma}(S) = \left[\sum_{i=0}^{I} \sum_{j=1}^{J} (1 - p_i) D_{ijk} \delta_{ij} \right] / \left[\sum_{j=1}^{J} A_{jk} \right] \quad \text{with } \delta_{ij} = 1 \text{ if } t_{ij} < W_{max} \text{ and 0 otherwise}
\]

Algorithm 3 Calculate $S(\Gamma)$

Initialization
\[
\forall i \in \{1, \ldots, I\} \quad S_i = 0
\]
\[
\text{calculate } \hat{C}(S) \text{ and } \hat{\Gamma}(S) \text{ using Algorithm 2}
\]
\[
\forall i \in \{1, \ldots, I\} \quad \text{calculate } \Delta C(S, i) = C(S) - C(S + e_i)
\]

While $\exists k \mid \hat{\Gamma}_k < \Gamma_k$

\[
i^* = \arg \max_{i \in \{1, \ldots, I\}} [\Delta C(S, i)]
\]
\[
S_{i^*} := S_{i^*} + 1
\]
\[
\text{calculate } \hat{C}(S) \text{ and } \hat{\Gamma}(S) \text{ using Algorithm 2}
\]
\[
\forall i \in \{1, \ldots, I\} \quad \text{calculate } \Delta C(S, i) = C(S) - C(S + e_i)
\]

End While
<table>
<thead>
<tr>
<th>nr.</th>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>376</td>
<td>2012</td>
<td>Improving the performance of sorter systems by scheduling inbound containers</td>
<td>K. Fikse, S.W.A. Haneyah, J.M.J. Schutten</td>
</tr>
<tr>
<td>375</td>
<td>2012</td>
<td>Strategies for dynamic appointment making by container terminals</td>
<td>Albert Douma, Martijn Mes</td>
</tr>
<tr>
<td>374</td>
<td>2012</td>
<td>MyPHRMachines: Lifelong Personal Health Records in the Cloud</td>
<td>Pieter van Gorp, Marco Comuzzi</td>
</tr>
<tr>
<td>373</td>
<td>2012</td>
<td>Service differentiation in spare parts supply through dedicated stocks</td>
<td>E.M. Alvarez, M.C. van der Heijden, W.H.M. Zijm</td>
</tr>
<tr>
<td>372</td>
<td>2012</td>
<td>Spare parts inventory pooling: how to share the benefits</td>
<td>Frank Karsten, Rob Basten</td>
</tr>
<tr>
<td>371</td>
<td>2012</td>
<td>Condition based spare parts supply</td>
<td>X.Lin, R.J.I. Basten, A.A. Kranenburg, G.J. van Houtum</td>
</tr>
<tr>
<td>370</td>
<td>2012</td>
<td>Using Simulation to Assess the Opportunities of Dynamic Waste Collection</td>
<td>Martijn Mes</td>
</tr>
<tr>
<td>369</td>
<td>2012</td>
<td>Aggregate overhaul and supply chain planning for rotables</td>
<td>J. Arts, S.D. Flapper, K. Vernooij</td>
</tr>
<tr>
<td>368</td>
<td>2012</td>
<td>Operating Room Rescheduling</td>
<td>J.T. van Essen, J.L. Hurink, W. Hartholt, B.J. van den Akker</td>
</tr>
<tr>
<td>367</td>
<td>2011</td>
<td>Switching Transport Modes to Meet Voluntary Carbon Emission Targets</td>
<td>Kristel M.R. Hoen, Tarkan Tan, Jan C. Fransoo, Geert-Jan van Houtum</td>
</tr>
<tr>
<td>366</td>
<td>2011</td>
<td>On two-echelon inventory systems with Poisson demand and lost sales</td>
<td>Elisa Alvarez, Matthieu van der Heijden</td>
</tr>
<tr>
<td>364</td>
<td>2011</td>
<td>Vehicle Routing Problem with Stochastic Travel Times Including Soft Time Windows and Service Costs</td>
<td>Duygu Tas, Nico Dellaert, Tom van Woensel, Ton de Kok</td>
</tr>
</tbody>
</table>
A New Approximate Evaluation Method for Two-Echelon Inventory Systems with Emergency Shipments
Erhun Özkan, Geert-Jan van Houtum, Yasemin Serin

Approximating Multi-Objective Time-Dependent Optimization Problems
Said Dabia, El-Ghazali Talbi, Tom Van Woensel, Ton de Kok

Branch and Cut and Price for the Time Dependent Vehicle Routing Problem with Time Window
Said Dabia, Stefan Röpke, Tom Van Woensel, Ton de Kok

Analysis of an Assemble-to-Order System with Different Review Periods
A.G. Karaarslan, G.P. Kiesmüller, A.G. de Kok

Interval Availability Analysis of a Two-Echelon, Multi-Item System
Ahmad Al Hanbali, Matthieu van der Heijden

Carbon-Optimal and Carbon-Neutral Supply Chains
Felipe Caro, Charles J. Corbett, Tarkan Tan, Rob Zuidwijk

Generic Planning and Control of Automated Material Handling Systems: Practical Requirements Versus Existing Theory
Sameh Haneyah, Henk Zijm, Marco Schutten, Peter Schuur

Last time buy decisions for products sold under warranty
M. van der Heijden, B. Iskandar

Spatial concentration and location dynamics in logistics: the case of a Dutch provence
Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo

Identification of Employment Concentration Areas
Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo

BOMN 2.0 Execution Semantics Formalized as Graph Rewrite Rules: extended version
Pieter van Gorp, Remco Dijkman

Resource pooling and cost allocation among independent service providers
Frank Karsten, Marco Slikker, Geert-Jan van Houtum

A Framework for Business Innovation Directions
E. Lüftenegger, S. Angelov, P. Grefen

The Road to a Business Process Architecture: An Overview of Approaches and their Use
Remco Dijkman, Irene Vanderfeesten, Hajo A. Reijers
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Effect of carbon emission regulations on transport mode selection under stochastic demand</td>
<td>K.M.R. Hoen, T. Tan, J.C. Fransoo G.J. van Houtum</td>
</tr>
<tr>
<td>2011</td>
<td>An improved MIP-based combinatorial approach for a multi-skill workforce scheduling problem</td>
<td>Murat Firat, Cor Hurkens</td>
</tr>
<tr>
<td>2011</td>
<td>An approximate approach for the joint problem of level of repair analysis and spare parts stocking</td>
<td>R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten</td>
</tr>
<tr>
<td>2011</td>
<td>Joint optimization of level of repair analysis and spare parts stocks</td>
<td>R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten</td>
</tr>
<tr>
<td>2011</td>
<td>Inventory control with manufacturing lead time flexibility</td>
<td>Ton G. de Kok</td>
</tr>
<tr>
<td>2011</td>
<td>Analysis of resource pooling games via a new extension of the Erlang loss function</td>
<td>Frank Karsten, Marco Slikker, Geert-Jan van Houtum</td>
</tr>
<tr>
<td>2011</td>
<td>Vehicle refueling with limited resources</td>
<td>Murat Firat, C.A.J. Hurkens, Gerhard J. Woeginger</td>
</tr>
<tr>
<td>2011</td>
<td>Optimal Inventory Policies with Non-stationary Supply Disruptions and Advance Supply Information</td>
<td>Bilge Atasoy, Refik Güllü, Tarkan Tan</td>
</tr>
<tr>
<td>2011</td>
<td>Redundancy Optimization for Critical Components in High-Availability Capital Goods</td>
<td>Kurtulus Baris Öner, Alan Scheller-Wolf Geert-Jan van Houtum</td>
</tr>
<tr>
<td>2011</td>
<td>Analysis of a two-echelon inventory system with two supply modes</td>
<td>Joachim Arts, Gudrun Kiesmüller</td>
</tr>
<tr>
<td>2010</td>
<td>Analysis of the dial-a-ride problem of Hunsaker and Savelsbergh</td>
<td>Murat Firat, Gerhard J. Woeginger</td>
</tr>
<tr>
<td>2010</td>
<td>Attaining stability in multi-skill workforce scheduling</td>
<td>Murat Firat, Cor Hurkens</td>
</tr>
<tr>
<td>2010</td>
<td>An exact approach for relating recovering surgical patient workload to the master surgical schedule</td>
<td>P.T. Vanberkel, R.J. Boucherie, E.W. Hans, J.L. Hurink, W.A.M. van Lent, W.H. van Harten</td>
</tr>
<tr>
<td>2010</td>
<td>Efficiency evaluation for pooling resources in health care</td>
<td>Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Nelly</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2010</td>
<td>The Effect of Workload Constraints in Mathematical Programming Models for Production Planning</td>
<td>M.M. Jansen, A.G. de Kok, I.J.B.F. Adan</td>
</tr>
<tr>
<td>2010</td>
<td>Using pipeline information in a multi-echelon spare parts inventory system</td>
<td>Christian Howard, Ingrid Reijnen, Johan Marklund, Tarkan Tan</td>
</tr>
<tr>
<td>2010</td>
<td>Reducing costs of repairable spare parts supply systems via dynamic scheduling</td>
<td>H.G.H. Tiemessen, G.J. van Houtum</td>
</tr>
<tr>
<td>2010</td>
<td>A combinatorial approach to multi-skill workforce scheduling</td>
<td>Murat Firat, Cor Hurkens</td>
</tr>
<tr>
<td>2010</td>
<td>Stability in multi-skill workforce scheduling</td>
<td>Murat Firat, Cor Hurkens, Alexandre Laugier</td>
</tr>
<tr>
<td>2010</td>
<td>Near-optimal heuristics to set base stock levels in a two-echelon distribution network</td>
<td>R.J.I. Basten, G.J. van Houtum</td>
</tr>
<tr>
<td>2010</td>
<td>Inventory reduction in spare part networks by selective throughput time reduction</td>
<td>M.C. van der Heijden, E.M. Alvarez, J.M.J. Schutten</td>
</tr>
<tr>
<td>2010</td>
<td>The selective use of emergency shipments for service-contract differentiation</td>
<td>E.M. Alvarez, M.C. van der Heijden, W.H. Zijm</td>
</tr>
<tr>
<td>2010</td>
<td>Preventing or escaping the suppression mechanism: intervention conditions</td>
<td>Nico Dellaert, Jully Jeunet</td>
</tr>
<tr>
<td>2010</td>
<td>Hospital admission planning to optimize major resources utilization under uncertainty</td>
<td>R. Seguel, R. Eshuis, P. Grefen.</td>
</tr>
<tr>
<td>2010</td>
<td>Minimal Protocol Adaptors for Interacting</td>
<td>Litvak</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>2010</td>
<td>Teaching Retail Operations in Business and Engineering Schools</td>
<td>Lydie P.M. Smets, Geert-Jan van Houtum, Fred Langerak.</td>
</tr>
<tr>
<td>2010</td>
<td>Design for Availability: Creating Value for Manufacturers and Customers</td>
<td>Pieter van Gorp, Rik Eshuis.</td>
</tr>
<tr>
<td>2010</td>
<td>Getting trapped in the suppression of exploration: A simulation model</td>
<td>S. Dabia, T. van Woensel, A.G. de Kok</td>
</tr>
<tr>
<td>2010</td>
<td>Tales of a So(u)rcerer: Optimal Sourcing Decisions Under Alternative Capacitated Suppliers and General Cost Structures</td>
<td>Osman Alp, Tarkan Tan</td>
</tr>
<tr>
<td>2010</td>
<td>In-store replenishment procedures for perishable inventory in a retail environment with handling costs and storage constraints</td>
<td>R.A.C.M. Broekmeulen, C.H.M. Bakx</td>
</tr>
<tr>
<td>2010</td>
<td>The state of the art of innovation-driven business models in the financial services industry</td>
<td>E. Lüftenegger, S. Angelov, E. van der Linden, P. Grefen</td>
</tr>
<tr>
<td>2010</td>
<td>Effect of carbon emission regulations on transport mode selection in supply chains</td>
<td>K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J. van Houtum</td>
</tr>
<tr>
<td>2010</td>
<td>Interaction between intelligent agent strategies for real-time transportation planning</td>
<td>Martijn Mes, Matthieu van der Heijden, Peter Schuur</td>
</tr>
<tr>
<td>2010</td>
<td>Internal Slackening Scoring Methods</td>
<td>Marco Slikker, Peter Borm, René van den Brink</td>
</tr>
<tr>
<td>2010</td>
<td>Practical extensions to the level of repair analysis</td>
<td>R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten</td>
</tr>
<tr>
<td>2010</td>
<td>Ocean Container Transport: An Underestimated and Critical Link in Global Supply Chain Performance</td>
<td>Jan C. Fransoo, Chung-Yee Lee</td>
</tr>
<tr>
<td>2010</td>
<td>Capacity reservation and utilization for a manufacturer with uncertain capacity and demand</td>
<td>Y. Boulaksil; J.C. Fransoo; T. Tan</td>
</tr>
<tr>
<td>2009</td>
<td>Spare parts inventory pooling games</td>
<td>F.J.P. Karsten; M. Slikker; G.J. van Houtum</td>
</tr>
<tr>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>2009</td>
<td>Capacity flexibility allocation in an outsourced supply chain with reservation</td>
<td>Y. Boulaksil, M. Grunow, J.C. Fransoo</td>
</tr>
<tr>
<td>2009</td>
<td>An iterative method for the simultaneous optimization of repair decisions and spare parts stocks</td>
<td>R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten</td>
</tr>
<tr>
<td>2009</td>
<td>An exact approach for relating recovering surgical patient workload to the master surgical schedule</td>
<td>Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Wineke A.M. van Lent, Wim H. van Harten</td>
</tr>
<tr>
<td>2009</td>
<td>An optimal approach for the joint problem of level of repair analysis and spare parts stocking</td>
<td>R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten</td>
</tr>
<tr>
<td>2009</td>
<td>Responding to the Lehman Wave: Sales Forecasting and Supply Management during the Credit Crisis</td>
<td>Robert Peels, Maximiliano Udenio, Jan C. Fransoo, Marcel Wolfs, Tom Hendrikx</td>
</tr>
<tr>
<td>2009</td>
<td>Fujaba hits the Wall(-e)</td>
<td>Pieter van Gorp, Ruben Jubeh, Bernhard Grusie, Anne Keller</td>
</tr>
<tr>
<td>2009</td>
<td>Business Process Model Repositories - Framework and Survey</td>
<td>Zhiqiang Yan, Remco Dijkman, Paul Grefen</td>
</tr>
<tr>
<td>2009</td>
<td>Efficient Optimization of the Dual-Index Policy Using Markov Chains</td>
<td>Joachim Arts, Marcel van Vuuren, Gudrun Kiesmuller</td>
</tr>
<tr>
<td>2009</td>
<td>Hierarchical Knowledge-Gradient for Sequential Sampling</td>
<td>Martijn R.K. Mes; Warren B. Powell; Peter I. Frazier</td>
</tr>
<tr>
<td>2009</td>
<td>Analyzing combined vehicle routing and break scheduling from a distributed decision making perspective</td>
<td>C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J. Schutten</td>
</tr>
<tr>
<td>2009</td>
<td>Anticipation of lead time performance in Supply Chain Operations Planning</td>
<td>Michiel Jansen; Ton G. de Kok; Jan C. Fransoo</td>
</tr>
<tr>
<td>2009</td>
<td>Inventory Models with Lateral Transshipments: A Review</td>
<td>Colin Paterson; Gudrun Kiesmuller; Ruud Teunter; Kevin Glazebro</td>
</tr>
<tr>
<td>2009</td>
<td>Efficiency evaluation for pooling resources in health care</td>
<td>P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak</td>
</tr>
<tr>
<td>2009</td>
<td>A Survey of Health Care Models that Encompass Multiple Departments</td>
<td>P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak</td>
</tr>
<tr>
<td>2009</td>
<td>Supporting Process Control in Business Collaborations</td>
<td>S. Angelov; K. Vidyasankar; J. Vonk; P. Grefen</td>
</tr>
<tr>
<td>2009</td>
<td>Inventory Control with Partial Batch Ordering</td>
<td>O. Alp; W.T. Huh; T. Tan</td>
</tr>
<tr>
<td>2009</td>
<td>Translating Safe Petri Nets to Statecharts in a Structure-Preserving Way</td>
<td>R. Eshuis</td>
</tr>
<tr>
<td>2009</td>
<td>The link between product data model and process model</td>
<td>J.J.C.L. Vogelaar; H.A. Reijers</td>
</tr>
<tr>
<td>2009</td>
<td>Inventory planning for spare parts networks with delivery time requirements</td>
<td>I.C. Reijnen; T. Tan; G.J. van Houtum</td>
</tr>
<tr>
<td>2009</td>
<td>Co-Evolution of Demand and Supply under</td>
<td>B. Vermeulen; A.G. de Kok</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Toward Meso-level Product-Market Network Indices for Strategic Product Selection and (Re)Design Guidelines over the Product Life-Cycle</td>
<td>B. Vermeulen, A.G. de Kok</td>
<td></td>
</tr>
<tr>
<td>An Efficient Method to Construct Minimal Protocol Adaptors</td>
<td>R. Seguel, R. Eshuis, P. Grefen</td>
<td></td>
</tr>
<tr>
<td>Coordinating Supply Chains: a Bilevel Programming Approach</td>
<td>Ton G. de Kok, Gabriella Muratore</td>
<td></td>
</tr>
<tr>
<td>Inventory redistribution for fashion products under demand parameter update</td>
<td>G.P. Kiesmuller, S. Minner</td>
<td></td>
</tr>
<tr>
<td>Comparing Markov chains: Combining aggregation and precedence relations applied to sets of states</td>
<td>A. Busic, I.M.H. Vliegen, A. Scheller-Wolf</td>
<td></td>
</tr>
<tr>
<td>Separate tools or tool kits: an exploratory study of engineers' preferences</td>
<td>I.M.H. Vliegen, P.A.M. Kleingeld, G.J. van Houtum</td>
<td></td>
</tr>
<tr>
<td>An Exact Solution Procedure for Multi-Item Two-Echelon Spare Parts Inventory Control Problem with Batch Ordering</td>
<td>Engin Topan, Z. Pelin Bayindir, Tarkan Tan</td>
<td></td>
</tr>
<tr>
<td>Similarity of Business Process Models: Metics and Evaluation</td>
<td>Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Kaarik, Jan Mendling</td>
<td></td>
</tr>
<tr>
<td>Vehicle routing under time-dependent travel times: the impact of congestion avoidance</td>
<td>A.L. Kok, E.W. Hans, J.M.J. Schutten</td>
<td></td>
</tr>
<tr>
<td>Restricted dynamic programming: a flexible framework for solving realistic VRPs</td>
<td>J. Gromicho; J.J. van Hoorn; A.L. Kok; J.M.J. Schutten</td>
<td></td>
</tr>
</tbody>
</table>

Working Papers published before 2009 see: http://beta.ieis.tue.nl