Mass spectrometry study of the temperature dependence of Pt film growth by atomic layer deposition

Citation for published version (APA):

DOI:
10.1149/2.006206jss

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication
Mass Spectrometry Study of the Temperature Dependence of Pt Film Growth by Atomic Layer Deposition

I. J. M. Erkens,a,b, A. J. M. Mackus,a H. C. M. Knoops,a P. Smits,a T. H. M. van de Ven,a F. Roozeboom,a, and W. M. M. Kesselsa,b

aEindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
bHolst Centre (IMEC-NL), 5605 KN Eindhoven, The Netherlands

Insights into the temperature dependence of atomic layer deposition (ALD) of Pt using (methylcyclopentadienyl)trimethylplatinum, (MeCp)PtMe2, precursor and O2 are presented, based on a study of reaction products by time-resolved quadrupole mass spectrometry (QMS) measurements. Above 250 °C, Pt ALD proceeds through unhindered O2 dissociation at the Pt surface, inducing complete and instantaneous combustion of the precursor ligands. Quantification of the QMS data revealed that at 300 °C, approximately 20% of the C-atoms react during the precursor pulse, forming mainly CH4 (≈18%) balanced by CO2 (≈2%). The remaining 80% of the C-atoms are combusted during the O2 pulse. Time-resolved data indicated that the combustion reactions compete with the hydrogenation reactions for the available surface carbon. Combustion reactions were found to be dominant, provided that a sufficient amount of chemisorbed oxygen is available. When the temperature drops below 250 °C, deposition becomes hindered by the presence of a carbonaceous surface layer of partially fragmented and dehydrogenated precursor ligands, formed during the precursor pulse. The carbonaceous layer limits dissociative chemisorption of O2 and hence combustion reactions (leading to CO2) whereas reduced surface reactivity also limits (de-)hydrogenation reactions (leading to CH4). Below 100 °C, the carbonaceous layer fully prevents O2 dissociation and ALD of Pt cannot proceed.

© 2012 The Electrochemical Society. [DOI: 10.1149/2.006206jss] All rights reserved.

Atomic layer deposition (ALD) of Pt-group metals and their oxides on high aspect ratio 3-D nanostructures, can have a wide variety of applications in nanoelectronics as well as in sensing and catalysis. One noble metal ALD process that has attracted a lot of recent attention is that of platinum, based on (methylcyclopentadienyl)trimethylplatinum precursor ((MeCp)PtMe3) and O2 gas, as developed by Aaltonen et al. As it is amongst the most widely applied and studied processes, it can be considered a model system for noble metal ALD processes that are based on the availability of chemisorbed surface oxygen at the start of each precursor pulse. Several studies have been performed on the reaction products that are produced during the process, to obtain information about surface reactions and to better understand the reaction mechanism.11–14 Extending the work of Aaltonen et al., Kessels et al. describe a possible reaction mechanism of the process at 300 °C:

\[
\begin{align*}
2\text{(MeCp)PtMe}_2(g) + 3 \text{O(ad}s) & \rightarrow 2\text{(MeCp)PtMe}_2(\text{ads}) + \text{CH}_4(g) \\
& + \text{CO}_2(g) + \text{H}_2\text{O(g).} & \quad [1]
\end{align*}
\]

\[
\begin{align*}
2\text{(MeCp)PtMe}_2(\text{ads}) + 24 \text{O}_2(g) & \rightarrow 2\text{Pt(s)} + 3 \text{O(ad}s) + 16 \text{CO}_2(g) \\
& + 13 \text{H}_2\text{O(g).} & \quad [2]
\end{align*}
\]

This mechanism was based on steady-state gas phase FTIR experiments in a cold-wall reactor at an O2 pressure of 1 mbar. By balancing the carbon containing volatile reaction products, on average approximately 1 C-atom per precursor molecule was found to be removed during the precursor pulse. This occurs through combustion of the ligands by chemisorbed oxygen producing CO2 and H2O, as well as through the production of CH4, with an observed CH4 / CO2 ratio of 1:1. During the subsequent O2 step, the remaining hydrocarbon ligands, that constitute ≈87% of the precursor carbon, are combusted by O2 gas. Overall, this reaction mechanism was also confirmed by Christensen et al. who analyzed the process at 300 °C in a viscous flow reactor using QMS and quartz crystal microbalance (QCM) techniques. Their study confirmed that the majority of the C-atoms is combusted during the O2 pulse, although the ratio of CH4 / CO2 production during the precursor pulse was found to be 5:1 instead of 1:1.

Despite these and other studies, several questions remain concerning the reaction mechanism of the Pt ALD process. One characteristic of the Pt ALD process that is still not fully understood is the temperature dependence of the growth per cycle (GPC). Knoops et al. showed that the growth of platinum is relatively constant between 300 and 250 °C, while the GPC decreases between 250 and 150 °C, and growth is inhibited for substrate temperatures of 150 °C and lower. This behavior was also confirmed by new experiments (see Figure 1). An explanation for the reduced growth at lower temperatures was not given, although it was inferred from surface science studies that the dissociative chemisorption of O2 should not be the limiting factor.

Another matter that could benefit from further study is the fact that reaction Equations 1 and 2 are overall reactions, and give no information on individual reaction paths or on the reaction kinetics. Whereas CO2 and H2O can be ascribed to combustion by chemisorbed oxygen, some debate remains on the exact nature of the reaction leading to the production of CH4 and the interdependency between the production of CH4 and CO2 / H2O. Elliot et al. suggest the involvement of in-situ created hydroxyl groups in the formation of CH4, although to date the presence of OH groups has not been confirmed to the best of our knowledge. Mackus et al. make a strong case for the possibility of hydrogenation of the hydrocarbon surface ligands leading to the production of CH4. To gain more insight into both the temperature dependence of the reaction mechanism, and to increase understanding of reaction kinetics, more data and especially time-resolved data is required. In the present work, the issue of both the temperature dependence of the GPC and the reaction kinetics is addressed on the basis of time-resolved QMS measurements carried out in an ALD temperature series. An explanation for the temperature dependence of the GPC and the inhibition of growth at lower temperatures by surface poisoning is given. Furthermore, the insights that were gained into the surface reactions and reaction rates during Pt ALD are described, showing that the reactions leading to the production of CH4 compete with combustion reactions producing CO2.

Experimental

Experimental setup. All measurements were performed in an open load home-buil ALD reactor. It consists of a deposition chamber containing a substrate heating stage, connected to an inductively coupled plasma source (100 W) and a turbomolecular pump through gate valves. The temperature of the reactor walls Tw, which can be raised to 150 °C, was kept at 80 °C (unless mentioned otherwise) to prevent reactions from taking place at the walls, as will be explained later. The temperature of the substrate stage was varied between 80 and 300 °C.

Electrochemical Society Active Member.

E-mail: i.j.m.erkens@tue.nl
The (MeCp)PtMe₃ precursor (98% purity, Sigma-Aldrich), kept at a temperature of 70 °C, was vapor drawn into the reactor without any carrier gas and the precursor dosing time was typically 5 s. The O₂ flow was controlled using a mass flow controller to obtain a 10 s pulse with a stable pressure of 0.08 mbar. During the ALD cycles, the reaction chamber was continuously pumped by the turbomolecular pump. The pressure inside the deposition chamber varied from the base pressure of the order of 10⁻⁶ mbar during the 30 s pump-down step, to 0.08 mbar during the O₂ pulse.

A Pfeiffer Vacuum QMS 200 mass spectrometer with a mass-to-charge (m/z) range of 200 atomic mass units (amu) was connected to the deposition chamber through a pipeline (kept at 80 °C) and a 150 μm pinhole. A channeltron detector was used, and the energy of the electrons in the ionizer was set to 70 eV. In-situ spectroscopic ellipsometry (SE) was performed using a J. A. Woollam, Inc. M2000U ellipsometer to determine the thickness of the deposited layers. For the modeling of the dielectric function of the deposited layers, a Drude-Lorentz parameterization was used, assuming that every film consists of a homogeneous layer of Pt. During standard SE monitoring,

QMS measurement procedure. — Performing QMS measurements during an ALD process poses several opportunities and challenges, and special care must be taken when recording and analyzing the data. The measurement procedure that was developed for this work will be described based on the measurements shown in Figure 2. This figure shows the measured QMS ion current as a function of time for substrate temperatures between 100 and 300 °C (Tsub = 80 °C). Precursor and O₂ pulse durations are indicated by arrows for clarity. As in previous studies, a scan of all relevant m/z ratios revealed that H₂O, CH₄, and CO₂ are the only gas phase reaction products that could be detected using QMS. In particular, measurements of m/z = 79 for the methylcyclopentadienyl ligand ((C₅H₄)CH₃) did not reveal this ligand as a reaction product, although it clearly appeared as a fragment in the precursor cracking pattern. Detection of H₂ as a reaction product proved challenging due to the abundance of m/z = 2 and 1 in the cracking pattern of the precursor and other species (e.g. CH₄ and H₂O). Therefore, although it was not detected, the production of H₂ could not be excluded based on the measurements performed here. Furthermore, because the detection of H₂O can be troubled by condensation of water on the colder reactor walls and QMS line, the focus of the QMS analysis was on CH₄ and CO₂. To track CO₂, m/z = 44 was recorded, and for CH₄, the fragment at m/z = 15 (CH₃⁺) was chosen rather than the signal due to the parent molecule at m/z = 16, to avoid interference from the signal caused by cracking of O₂. The sensitivity of the QMS for m/z = 15 and 44 is assumed to be constant. The QMS data shown in Figure 2 is based on measurements of ALD depositions on as-deposited Pt films under steady-state conditions, free from nucleation or start-up effects. The signals for m/z = 15 and 44 were recorded simultaneously to prevent any manual time alignment errors. A dwell-time of 0.05 s ensured that the systematic time alignment error caused by mass filter switching and settling did not exceed 0.1 s. The repetitive nature of ALD was optimally utilized to increase the signal-to-noise ratio (SNR) of the measurements: since every cycle can be assumed to be identical to the next, the QMS data of several cycles was aligned to overlap in time and then averaged, using a dedicated MATLAB algorithm. As a result, every line in Figure 2 represents the average of at least 10 ALD cycles.

The interpretation of the data is not straightforward because of two effects: m/z overlap and a pressure artifact. The former concerns the overlap between signals from reaction products and the precursor. As molecules are ionized through electron bombardment in the ionizer, several of them will break down into smaller fragments. These fragments, which in the case of the precursor form a broad spectrum of m/z ratios including 15 and 44, are also detected. The m/z ratios of 15 and 44 can therefore not be unambiguously assigned to CH₄ or CO₂, since the precursor and the reaction products are present in the deposition chamber at the same time. This can be seen during the precursor step in Figure 2. The measured ion currents at 100 °C (dark blue lines) for both m/z ratios can be seen to increase during the precursor pulse (t = 2–7 s). This increase can be fully ascribed to fragments from the precursor. This was confirmed by measuring precursor only cycles (not shown): by repeatedly dosing only precursor into the deposition chamber (without subsequent O₂ pulse) the entire surface was saturated preventing any surface reaction products from being formed. The QMS signals measured during a precursor pulse under these saturated conditions therefore only had a precursor component. This precursor signal was then used as a reference for the full cycles, confirming that virtually no reaction products were formed at 100 °C. Similarly, oxygen only cycles showed that the increase of both signals at 100 °C during the O₂ pulse (t = 14–24 s) is also not caused by reaction products. Under the applied conditions the QMS...
Figure 3. (Color online) Baseline corrected QMS signal as deduced from Figure 2. Data are given for (a) \(m/z = 15 \) (\(\text{CH}_3^+ \) from \(\text{CH}_4 \) and (MeCp)PtMe3) and (b) \(m/z = 44 \) (\(\text{CO}_2^+ \) from \(\text{CO}_2 \)). The insets show the signal for \(\text{CH}_4 \) and \(\text{CO}_2 \) during the precursor pulse in more detail. The areas under the measured signals represent the amount of reaction products produced at a given temperature.

Temperature dependence.—The time-resolved QMS signals in Figure 3 show that during the O2 pulse the rate of combustion of the hydrocarbon precursor ligands on the Pt surface increases with temperature. At 150 °C, \(\text{CO}_2 \) production reaches peak value approximately 2 s before the signals for \(\text{CH}_4 \). Figure 3 also shows that during the O2 pulse, only \(\text{CO}_2 \) is produced and no \(\text{CH}_4 \), as was also reported in previous studies.11–13 Since the QMS signals in Figure 3 have been baseline corrected and show the net production, the area under curve (AUC) is a direct measure for the amount of reaction products that is produced. This was used to quantify the carbon containing reaction products, by assuming that all 9 C-atoms of the precursor molecule are converted into volatile reaction products which are either \(\text{CH}_4 \) or \(\text{CO}_2 \). By balancing the AUC of the QMS signals for \(m/z = 15 \) and 44 for both the precursor and O2 step at 300 °C, the relative amounts of \(\text{CH}_4 \) and \(\text{CO}_2 \) could be determined.

Firstly however, the AUC values of both species were corrected for partial ionization cross-sections. The total ionization cross-section for \(\text{CO}_2 \) at 70 eV is \(3.56 \cdot 10^{-16} \text{ cm}^2 \), while \(\text{CO}_2^+ \) has a partial ionization cross-section of \(2.13 \cdot 10^{-16} \text{ cm}^2 \). For \(\text{CH}_4 \) the total cross-section at 70 eV is \(3.54 \cdot 10^{-16} \text{ cm}^2 \), with a partial cross-section of \(1.35 \cdot 10^{-16} \text{ cm}^2 \) for the production of \(\text{CH}_4^+ \). Based on measurements at 300 °C it was determined that approximately 20% of the carbon is released during the (MeCp)PtMe3 pulse: ~18% as \(\text{CH}_4 \), and ~2% as \(\text{CO}_2 \). The remaining 80% are combusted during the O2 pulse and are converted into \(\text{CO}_2 \), which agrees nicely with previous results reported by Christensen et al., and Kessels et al.12,13

These temperature regions will be discussed in more detail later on in this section, although it should be noted here that the transitions between these regions are not considered to be sharply defined. Remarkably, at ~300 °C two distinct peaks can be distinguished: one large peak at the onset of O2 dosing, and a shoulder that reaches its maximum approximately 2 seconds later. The combustion rate that is displayed by the shoulder is very similar to that of the reaction occurring at approximately 150 °C. This suggests that at ~300 °C set-point temperature, combustion occurs at 2 different reactor zones, each with their own temperature. We therefore attribute the shoulder to reactions on parasitically heated reactor parts near the substrate stage (e.g. the parts holding the stage), that reach elevated temperatures due to heat transfer from the stage. At a heating stage temperature of 300 °C these parts might reach temperatures were oxidation proceeds at a slower rate. This effect of parasitic heating also occurs at 250 and 275 °C albeit to a much lesser extent. Although this is considered a likely explanation, other explanations (e.g. two distinct and separate reaction pathways leading to \(\text{CO}_2 \) production) cannot be ruled out at present.

Temperature dependence.—The time-resolved QMS signals in Figure 3 show that during the O2 pulse the rate of combustion of the hydrocarbon precursor ligands on the Pt surface increases with temperature. At 150 °C, \(\text{CO}_2 \) production reaches peak value approximately 2 s before the signals for \(\text{CH}_4 \). Figure 3 also shows that during the O2 pulse, only \(\text{CO}_2 \) is produced and no \(\text{CH}_4 \), as was also reported in previous studies.11–13 Since the QMS signals in Figure 3 have been baseline corrected and show the net production, the area under curve (AUC) is a direct measure for the amount of reaction products that is produced. This was used to quantify the carbon containing reaction products, by assuming that all 9 C-atoms of the precursor molecule are converted into volatile reaction products which are either \(\text{CH}_4 \) or \(\text{CO}_2 \). By balancing the AUC of the QMS signals for \(m/z = 15 \) and 44 for both the precursor and O2 step at 300 °C, the relative amounts of \(\text{CH}_4 \) and \(\text{CO}_2 \) could be determined.

Firstly however, the AUC values of both species were corrected for partial ionization cross-sections. The total ionization cross-section for \(\text{CO}_2 \) at 70 eV is \(3.56 \cdot 10^{-16} \text{ cm}^2 \), while \(\text{CO}_2^+ \) has a partial ionization cross-section of \(2.13 \cdot 10^{-16} \text{ cm}^2 \). For \(\text{CH}_4 \) the total cross-section at 70 eV is \(3.54 \cdot 10^{-16} \text{ cm}^2 \), with a partial cross-section of \(1.35 \cdot 10^{-16} \text{ cm}^2 \) for the production of \(\text{CH}_4^+ \). Based on measurements at 300 °C it was determined that approximately 20% of the carbon is released during the (MeCp)PtMe3 pulse: ~18% as \(\text{CH}_4 \), and ~2% as \(\text{CO}_2 \). The remaining 80% are combusted during the O2 pulse and are converted into \(\text{CO}_2 \), which agrees nicely with previous results reported by Christensen et al., and Kessels et al.12,13

These temperature regions will be discussed in more detail later on in this section, although it should be noted here that the transitions between these regions are not considered to be sharply defined. Remarkably, at ~300 °C two distinct peaks can be distinguished: one large peak at the onset of O2 dosing, and a shoulder that reaches its maximum approximately 2 seconds later. The combustion rate that is displayed by the shoulder is very similar to that of the reaction occurring at approximately 150 °C. This suggests that at ~300 °C set-point temperature, combustion occurs at 2 different reactor zones, each with their own temperature. We therefore attribute the shoulder to reactions on parasitically heated reactor parts near the substrate stage (e.g. the parts holding the stage), that reach elevated temperatures due to heat transfer from the stage. At a heating stage temperature of 300 °C these parts might reach temperatures were oxidation proceeds at a slower rate. This effect of parasitic heating also occurs at 250 and 275 °C albeit to a much lesser extent. Although this is considered a likely explanation, other explanations (e.g. two distinct and separate reaction pathways leading to \(\text{CO}_2 \) production) cannot be ruled out at present.

The temperature dependence of the QMS data shows a strong correlation with that of the growth per cycle (GPC) data shown in Figure 1. This graph shows the GPC as a function of deposition temperature for the thermal ALD of Pt as measured with SE. As can be seen, no growth occurs for temperatures below ~100 °C, while the GPC appears to saturate as a function of temperature starting at ~250 °C, which agrees with the results from Knoops et al.15 Parallel to the combustion rate, 3 temperature regions can therefore also be distinguished for the GPC:

(i) \(T < 100 \) °C: lack of growth, which coincides with lack of combustion.
Reactions at 100 °C.— To learn more about possible surface reactions at lower temperatures, the process at 100 °C was studied in more detail. Although no reactions take place under steady state ALD conditions at 100 °C, it is known that plasma assisted ALD of Pt at this temperature is possible. The highly reactive atomic oxygen generated in the plasma ensures complete hydrocarbon removal at the end of every cycle. Therefore, an experiment was devised where standard thermal ALD cycles were preceded by an O₂ plasma treatment. By starting on a plasma-treated surface, surface reactions are expected to occur at least for the first precursor pulse at 100 °C. By monitoring the following subsequent cycles individually, valuable information about the process was obtained. Because a plasma was used, reactions could also take place at the reactor walls during this experiment. Therefore, the walls were also heated to 100 °C (instead of 80 °C), turning the entire deposition chamber into one large reactive surface with one single temperature. Furthermore, for these experiments the reactor walls were completely coated with Pt, to ensure a homogeneous reaction environment. The ALD signals of the cycles are shown in Figure 4, and the corresponding AUC values as a function of cycle number (indicating a measure for the amount of reaction products produced) are shown in Figure 5. The graphs in Figure 4 show the as-measured QMS ion currents, i.e. no corrections with respect to a reference have been applied. As a result both the precursor and the pressure artifact are visible. However, cycle 32 can be regarded as a reference because hardly any reaction products are formed anymore during that cycle. This can be inferred from the fact that after cycle 25 the AUC values remained relatively constant and no growth occurred. This can be seen more clearly in Figure 5, where AUC values flatten out beyond cycle 25. The baseline level (indicating a lack of reaction products) that is reached after cycle 25 is represented by the black dotted lines which serve as a guide to the eye.

The signals in Figure 4 will now be considered cycle-by-cycle, starting at cycle 1, which was the first standard ALD cycle following the plasma treatment. Clearly, reaction products are indeed formed during this cycle. The production of CH₄ and CO₂ is evident from the peaks in the signals that are observed at the beginning of the precursor pulse in Figures 4a and 4b. The peaks in Figures 4a and 4b are broader, i.e. the signals increase over a longer period of time compared to the signals during the peaks in Figure 2. This indicates that reactions proceed for a longer period of time. The longer reaction times are most likely due to the fact that the precursor requires more time to saturate the larger reactive surface. It is also possible however that the increased reaction time is caused by slower reaction kinetics due to the lower temperature. Because the reactions are stretched out over a longer period of time, it becomes even clearer that the production of CO₂ precedes the production of CH₄. Furthermore, during the precursor step of the next cycle (cycle 2), the production of CO₂ has disappeared almost completely, while the production of CH₄ still persists. Because the reaction pathway leading to CH₄ is now unhindered by competing combustion reactions, this pathway becomes more dominant, and CH₄ is produced at the very onset of precursor dosing. This clearly demonstrates that the production of CH₄ is a separate process that does not necessarily depend upon the production of CO₂, at least at a temperature of 100 °C. During the following cycles, the amount of CH₄ production gradually decreases until it reaches baseline values around cycle 25. Considering the O₂ pulse, see Figures 4c and 4d, no production of CH₄ was detected during any cycle as expected. Some CO₂ is produced during the first cycles (compared to reference cycle 32) although there is no clear peak as was seen in Figure 2. This indicates that although there is some carbon combustion during the first cycles after the plasma treatment, combustion is far less effective than at 300 °C. During the following cycles the amount of CO₂ that is produced continuously decreases up to approximately cycle 25. After cycle 25, the CO₂ signal remains relatively constant indicating combustion has ceased. The decrease in the amount of reaction products can also be seen in the AUC values in Figure 5. The amount of CH₄ during the precursor step slowly decreases over several cycles, while the production of CO₂ drops to baseline immediately after cycle 1. This shows nicely that the production of CH₄ persists even after the production of CO₂ has ceased. During the O₂ step, the amount of combustion products continuously decreases, while no production of CH₄ can be seen. During this experiment, SE data was also recorded which showed an increase of apparent thickness of 0.1 nm over cycle 1 (GPC for plasma assisted ALD of Pt at 100 °C is normally 0.045 nm), while during the following cycles virtually no growth was detected. The relatively large increase during the first cycle indicates that precursor molecules did adsorb during the precursor pulse, but that their ligands were not completely combusted during the O₂ pulse.

Figure 4. (Color online) The measured QMS signal for (a) m/z = 15 and (b) m/z = 44 during the precursor pulse, and (c) m/z = 15 and (d) m/z = 44 during the O₂ pulse; for 32 consecutive ALD cycles, all measured at 100 °C. The ALD recipe for all cycles was similar to that of the measurement in Figure 2 (8 s (MeCp)PtMMe₃, 10 s O₂). However, prior to the first cycle, the entire reactive Pt surface was treated with an O₂ plasma. Since virtually no reaction products are produced during cycle 32, this can be regarded as the baseline level.

Figure 5. (a-d) The area under curve (AUC) of the measurements shown in Figure 4, representing the amount of reaction products as a function of cycle number. Prior to the first cycle the Pt surface was treated with an O₂ plasma. Baseline values that are reached after cycle 25 are indicated by the black dotted lines which serve as a guide to the eye.
the production of CO2 at reduced reaction rates during the O2 pulse.

Figure 1. The temperature regime in which this occurs coincides with growth does occur albeit at lower growth rates, as was depicted in (see Figure 3). To examine the growth behavior more closely, additional SE measurements were performed at temperatures between 80 and 300 °C. The data is shown for 4 cycles in Figure 6. The thickness was measured after every half-cycle, i.e., after every precursor and after every O2 step. Once again, three distinct temperature regions become apparent. Above 250 °C, a sawtooth-shaped curve is obtained. Between 100 and 250 °C this sawtooth shape can no longer be seen, although there is still some growth. At temperatures of 100 °C and below, the apparent thickness remains virtually constant, indicating very little or no growth. The characteristic sawtooth-shaped curve that was observed for temperatures above 250 °C, can be explained by considering the apparent thickness of the surface. After the precursor pulse, the thickness of the layer will have increased with the newly deposited Pt as well as the adsorbed precursor ligands which have not yet been eliminated. The SE model that was used in these experiments assumes that the dielectric properties of the layer are constant. The thickness of the layer was the only parameter that was varied to fit the data. Therefore, the uncombusted ligands could cause a relatively large increase in the apparent thickness of the layer, greater than the GPC. During the subsequent O2 pulse the excess ligands are combusted, causing a (smaller) decrease in apparent thickness. The difference between the increase in apparent thickness during the precursor step, and the decrease in apparent thickness during the O2 step, yields the GPC.

By combining the insights gained from the experiments described above, a more comprehensive model of the temperature dependence of the reaction mechanism can be obtained as well as a better understanding of individual reaction paths, as will be discussed in the next section.

Discussion

The implications of the results shown in the previous section for our understanding of the reaction mechanism of Pt ALD will be discussed here.

Temperature dependence.— (i) \(T < 100 \degree C \) Starting at lower temperatures, it is clear from Figure 1 that no growth occurs at \(\sim 100 \degree C \). Figure 3 shows furthermore, that no reaction products are formed at this temperature. A possible explanation for the lack of growth and reaction products could be poor precursor adsorption at lower temperatures. However, adsorption of the precursor has been reported even at room temperature. Furthermore, it is known that plasma assisted ALD of Pt is possible at \(100 \degree C \), and in the plasma treatment experiment shown in Figure 4 reaction products were observed during the 1st cycle. This confirms that the precursor can adsorb at \(100 \degree C \). Another possible explanation for growth inhibition would be the lack of chemisorbed surface oxygen at the onset of the precursor pulse. However, according to Getman et al. the oxygen surface coverage of a Pt(111) surface in equilibrium with O2 gas, should not depend on temperature in the ALD range. This coverage was found to be 0.25 monolayers (ML) on Pt(111) for the temperatures and pressures used in the Pt ALD process. The presence of surface oxygen at \(100 \degree C \) is also indicated by the fact that CO2 was detected during the first cycle after the plasma treatment (see Figure 4b). The amount of chemisorbed oxygen that can cover a clean Pt surface at a temperature of \(100 \degree C \) should therefore not be the limiting factor inhibiting growth either. One remaining possible cause is the incomplete combustion of the precursor ligands during the O2 pulse. The data in Figure 1 and Figure 3 show a clear correlation between a reduced GPC and the reduced level of combustion during the O2 pulse at lower temperatures. Reduced combustion was also indicated by the relatively small amount of CO2 that was detected during the O2 pulse for the cycles following the plasma treatment (Figure 4d).

Furthermore, the experiments involving a plasma treatment also showed that beyond the first cycle, no CO2 was produced during the precursor pulse, even though the production of CH4 continued (Figure 4a, 4b). This suggests that under these conditions no chemisorbed oxygen is available at the beginning of the precursor pulse. In order to explain the lack of chemisorbed oxygen, the state of the platinum surface after the precursor pulse should be considered.

The (MeCp)PtMe3 precursor contains both methyl (Me) and methylcyclopentadienyl (MeCp) ligands. Due to the catalytic nature of Pt however, it is likely that some of the ligands on the surface will become fragmented upon precursor adsorption. For conceptual clarity however, the initial species on the surface after precursor adsorption are assumed here to be either Me or MeCp. The fact that the MeCp ligand was not detected as a volatile reaction product in this work or in the QMS study of Christensen et al. indicates that this ligand remains at the surface. In our previous work on the Pt ALD mechanism, a compelling case was made for the use of results from surface science literature. The behavior of hydrocarbon species on Pt surfaces was discussed extensively, and the relevant results will be discussed here. The surface chemistry of Me groups on a Pt(111) surface can be described as a competition between hydrogenation producing CH4, and dehydrogenation reactions forming hydrocarbon species that have a relatively high C/H ratio. The desorption of methane takes place for temperatures of \(-73 \degree C \) and higher. Concerning the behavior of MeCp on a Pt surface, results reported for other cyclic hydrocarbon species can be useful since different cyclic hydrocarbon species are reported to behave similarly on Pt. Marsh et al. describe temperature programmed desorption (TPD) measurements of a benzene covered Pt(111) surface. In their experiment, the substrate temperature was gradually raised while the substrate was exposed to O2. They found that below a temperature of \(107 \degree C \) the pre-adsorption of benzene on the Pt (111) inhibits the adsorption of oxygen as a result of which hydrocarbon oxidation is inhibited. Given the agreement between results from Marsh et al. and those reported here, it is plausible that a similar inhibition of ligand combustion occurs during the Pt ALD process at temperatures of \(\sim 100 \degree C \). At these temperatures, both the MeCp ligands and the carbon-rich products of MeCp dehydrogenation could form a carbonaceous layer that blocks surface sites required for O2 dissociation, thereby preventing combustion. This is corroborated by the fact that in Figure 4b no CO2 is produced during the precursor pulse beyond cycle 1. The relatively
small and decreasing amount of combustion products during the O₂ pulse (Figure 4d) also indicates a gradual “poisoning” of the Pt surface by carbonaceous surface species. Similarly, the surface species could inhibit further hydrogenation of Me ligands preventing CH₄ production. Evidence of this inhibition can be seen in Figure 4a, where the production of CH₄ gradually extinguishes in the subsequent cycles. The presence of the unreactive hydrocarbon species might thereby inhibit growth by hindering hydrogenation and by blocking oxygen chemisorption. This would also explain why plasma-assisted deposition is possible at low temperatures; the oxygen radicals that are generated in the plasma do not need to be dissociated at the Pt surface and can react directly with the hydrocarbon fragments on the surface.

(ii) 100 °C < T < 250 °C The Pt ALD process between 100 and 250 °C is characterized by an increase in the GPC as well as an increase in the amount of CH₄ and CO₂ produced in the precursor pulse. Furthermore, the reaction rate for combustion during the O₂ pulse increases as a function of temperature, although combustion is not yet instantaneous (see Figure 3). Apparently, due to the increase in substrate temperature, a larger amount of precursor molecules can absorb due to increased ligand combustion during the O₂ pulse. An explanation for this increase in combustion can be found by once again considering the Me/MeCp-covered platinum surface. In their TPD experiments of a benzene covered Pt surface exposed to O₂, Marsh et al. reported the increase in combustion can be found by once again considering the Me/MeCp-covered platinum surface. In their TPD experiments of a benzene covered Pt surface exposed to O₂, Marsh et al. reported the production of CO₂ and H₂O for temperatures between 107–347 °C.29 They ascribed the oxidation of benzene to a reaction between benzene-derived intermediates and atomic oxygen at the surface. The temperature range in which Marsh et al. observed the production of CO₂ and H₂O coincides remarkably with the onset of the formation of combustion products presented in this work. This indicates that the MeCp group starts to react with oxygen above ~100 °C. Furthermore, it is likely that MeCp can start to undergo dehydrogenation in the temperature region between ~100 and ~250 °C.30-32 This would explain why carbonaceous surface species. Similarly, the surface species could inhibit further hydrogenation and by blocking oxygen chemisorption. This would also explain why plasma-assisted deposition is possible at low temperatures; the oxygen radicals that are generated in the plasma do not need to be dissociated at the Pt surface and can react directly with the hydrocarbon fragments on the surface. The participation of CH₄ production during the precursor pulse.17 They describe the surface reactions as a competition between these dehydrogenation reactions and combustion reactions, where the latter take precedence provided a sufficient supply of oxygen is available. When most of the oxygen has been consumed, the production of CO₂ will diminish and be replaced by CH₄ formation. This explains why CH₄ is produced during the precursor pulse only. The proposed competition between combustion and hydrogenation reactions for the available surface carbon is supported by the time-resolved QMS data in Figures 3 and 4. In both figures the production of CO₂ is shown to precede CH₄ formation, although the distinction is much clearer for the first cycle in Figure 4. The peak in CH₄ formation occurs approximately 2 seconds after the peak in CO₂ production. During the following cycles, the absence of CO₂ production causes CH₄ to be produced earlier after the start of the precursor pulse and at an increased rate. This clearly points to a competition between these two reactions and supports the occurrence of dehydrogenation reactions. The fact that the data in Figure 4 was obtained at 100 °C should not be of major influence given that the reaction kinetics during the precursor pulse do not seem to depend greatly on temperature as can be seen in Figure 3. Further indications that dehydrogenation reactions play a role in the reaction mechanism of Pt ALD can be found by evaluating the reaction mechanism (Equation 1 and 2). In this reaction mechanism equation, which was based on an FTIR study, the ratio of CH₄ / CO₂ production during the precursor pulse was found to be 1:1.12 One CH₃ ligand is combusted by 2 O atoms, releasing 3 H atoms. These 3 H atoms are sufficient to produce 1 H₂O molecule and hydrogenate 1 Me ligand from another precursor molecule to produce CH₄. The combustion of 1 Me ligand therefore provides the hydrogen for the production of 1 CH₄ molecule. In this work however, as well as in the study by Christensen, the CH₄ / CO₂ ratio was found to be 6 to 9 times higher. Assuming the ratio is larger than 1, this excess CH₄ production during the precursor pulse requires an additional source of H atoms. Since hydroxyl (OH) groups or H₂O are not expected to be stable on the Pt surface, the only available source for this H is the precursor ligands themselves.35 Since the combustion of ligands is insufficient to supply the hydrogen (CH₄ / CO₂ > 1), the likely alternative would be the dehydrogenation of other Me or MeCp ligands. Therefore, the relatively high amount of CH₄ production during the precursor pulse implies that dehydrogenation reactions take place. Since the CH₄ / CO₂ ratio is relevant for this matter, the different values found in the mentioned studies will be discussed briefly. A possible explanation for the differences in the ratio of the reaction products could be found in the measurement techniques that were used, and differences in process parameters (see Table I). During both QMS studies, the reaction products were measured in real-time, while during the FTIR study a single measurement lasted up to 5 minutes. Furthermore, while performing the FTIR measurements, all reaction products were confined to the deposition chamber, and it cannot be excluded that this leads to additional or different reactions. Despite the differences in CH₄ / CO₂ ratio, the overall reaction mechanism is expected to be similar; since all 3 studies show that the majority of the carbon is combusted during the O₂ pulse.
Table I: Summary of the results of several studies with respect to the amount of reaction products that are produced during Pt ALD. Relevant process parameters are also listed.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Technique</th>
<th>Precursor step</th>
<th>CH₂</th>
<th>CO₂</th>
<th>CH₂</th>
<th>CO₂</th>
<th>Substrate Temperature</th>
<th>Wall Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>FTIR</td>
<td>CH₂ step</td>
<td>6.5%</td>
<td>6.5%</td>
<td>0</td>
<td>87%</td>
<td>1 mbar</td>
<td>300°C 80°C</td>
</tr>
<tr>
<td>13</td>
<td>QMS</td>
<td>CH₂ step</td>
<td>18%</td>
<td>3%</td>
<td>0</td>
<td>79%</td>
<td>1.3 mbar</td>
<td>300°C 300°C</td>
</tr>
<tr>
<td>This work</td>
<td>QMS</td>
<td>CH₂ step</td>
<td>18%</td>
<td>2%</td>
<td>0</td>
<td>80%</td>
<td>0.08 mbar</td>
<td>300°C 80°C</td>
</tr>
</tbody>
</table>

Conclusions

Time-resolved QMS and in-situ SE results in combination with insights from surface science studies were used to investigate the reaction mechanism of Pt ALD. An investigation of the temperature dependence showed that the process can roughly be divided into 3 temperature regions. At and below 100°C, growth is inhibited and virtually no reaction products are formed. Between 100°C and 250°C, the GPC, the amount of reaction products, and the rate of combustion increase as a function of temperature. Above 250°C, the GPC is relatively constant while combustion occurs instantaneously and is complete. Monitoring the process after a plasma treatment with QMS and in-situ SE showed that the lack of growth at low temperatures cannot be ascribed to poor precursor adsorption or reduced oxygen chemisorption, but it is due to lack of ligand combustion. An explanation for the temperature dependence of the reaction mechanism was found by considering the possible behavior of MeCp and Me on the surface. Below 100°C, the MeCp ligand remains uncombusted and can form a carbonaceous layer together with the carbon-rich products of MeCp/Mc dehydrogenation. This carbonaceous layer might block sites required for oxygen dissociation. Above 100°C, MeCp may start to dehydrogenate (allowing for CH₂ production) and the increased temperature may change the position and thickness of the carbonaceous layer. This would allow oxygen to dissociate leading to CO₂ production. Furthermore, ligand combustion may proceed at faster rates for elevated temperatures. Above 250°C, the surface groups have been fragmented by dehydrogenation or other reactions to such an extent that oxygen can dissociate and chemisorb on the surface unhindered, and combustion occurs instantaneously.

Quantification of the QMS data at 300°C indicated that approximately 20% of all precursor carbon atoms react during the precursor pulse: ~18% as CH₂, and ~2% as CO₂. The remaining 80% of the precursor carbon is combusted during the O₂ pulse. The fact that more CH₂ than CO₂ is produced during the precursor pulse suggests that the dehydrogenation of the Me and MeCp ligands supplies the required H for hydrogenation of Me to form CH₂. The time-resolved QMS data indicated that combustion and dehydrogenation reactions (producing CO₂ and CH₂, respectively) compete for the available surface carbon and that combustion is the dominant reaction provided a sufficient supply of oxygen is available.

The reaction mechanism of Pt ALD has been discussed on the basis of the behavior of both Me and MeCp on the Pt surface. As mentioned previously, it should be noted that the actual state and composition of the hydrocarbon species on the Pt surface may change due to catalytic activity of the surface. Since this catalytic behavior is also displayed by other Pt group metals, the conclusions that are drawn here could possibly be generalized to other precursors (with other hydrocarbon ligands) and even to other noble metal ALD processes. For the ALD of Ru, Os, Rh, Ir and Pt with O₂ as a reactant, a substrate temperature of at least 200°C is required to obtain deposition of high-quality films. Furthermore, the nature of the precursor ligands does not seem to have a large influence on the lower limit of the temperature window. For Ir ALD for example, high-quality films can be deposited for substrate temperatures above ~220°C, regardless of whether Ir(ETCp)(COD), Ir(acac)₃, or (MeCp)Ir(CHD) precursor is used. All Pt-group metals show a similar ability to break C–H bonds of adsorbed species, independent of specific precursor ligands. Therefore, a reaction mechanism and temperature dependence similar to that of Pt ALD may also apply to other noble metal ALD processes.

Acknowledgments

This research has been supported financially by IMEC-NL, the Netherlands. The research of one of the authors (W.M.M. Kessels) is supported by the Netherlands Organization for Scientific Research (NWO) and the Technology Foundation STW through the VICI program on “Nanomanufacturing”. Special thanks to Janneke Zeebregts, Ries van de Sande, and Joris Meulendijks for their technical support.

References