
 

Empirical case-studies of state fusion via ellipsoidal
intersection
Citation for published version (APA):
Sijs, J., & Lazar, M. (2011). Empirical case-studies of state fusion via ellipsoidal intersection. In Proceedings of
the 14th International Conference on Information Fusion (Fusion ’11), 5-7 July 2011, Chicago, USA (blz. 1-8)

Document status and date:
Gepubliceerd: 01/01/2011

Document Version:
Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. May. 2021

https://research.tue.nl/nl/publications/empirical-casestudies-of-state-fusion-via-ellipsoidal-intersection(7ae343a0-4189-4987-b66b-22b4e32677aa).html


Empirical case-studies of state fusion
via ellipsoidal intersection

Joris Sijs
TNO Technical Sciences
Delft, The Netherlands
Email: joris.sijs@tno.nl

Mircea Lazar
Eindhoven University of Technology

Eindhoven, The Netherlands
Email: m.lazar@tue.nl

Abstract— This article presents a practical assessment of the
recently developed state fusion method ellipsoidal intersection and
focusses on distributed state estimation in sensor networks. It
was already proven that this fusion method combines strong
fundamental properties with attractive features in accuracy
and computational requirements. However, these features were
derived for linear processes with observability of the state vector
in at least one of the local measurements. Therefore, several
empirical case-studies are performed to assess ellipsoidal inter-
section with respect to three real-life limitations. A scenario of
cooperative adaptive cruise control is used to analyze the absence
of observability in any local measurement. Furthermore, the
Van-der-Pol oscillator and a benchmark application of tracking
shockwaves on highways assess the fusion method for nonlinear
process models. The latter example is also used in a set-up where
the employed state estimation methodology differs per node, so
to meet different computational requirements per node.

I. INTRODUCTION

Some well known state-estimators for a process with Gaus-
sian noise distributions are the Kalman filter (KF), extended
Kalman filter (EKF) and unscented Kalman filter (UKF), as
presented in [1]–[3]. Their centralized algorithms estimate the
global state of a process based on all the measurements. Nowa-
days, measurements are often acquired by a network of sensor-
nodes, also known as a sensor network, e.g., [4]. Employing a
centralized state-estimator requires global communication and
central data-processing, which is likely to become infeasible
for large-scale sensor networks. An upcoming solution is
distributed state estimation (DSE), e.g., [5]–[8]. Therein, a
distributed strategy is proposed to decrease communication
and computational requirements per node.

In DSE each node typically performs an estimation algo-
rithm, such as the KF, to process the local measurement.
Thereby obtaining a local estimate of the global state. Commu-
nication between nodes is used to attain the main objective of
DSE: achieve stability of local estimates and improve local
estimation accuracies. Stability in the sense of estimation
refers to a bounded covariance of the modeled estimation error.
A solution is for each node to fuse the local estimate of its
estimation algorithm with the ones received from neighboring
nodes. Among the existing fusion approaches, e.g., [9]–[13],
the method ellipsoidal intersection of [13] guarantees an
improvement in accuracy while obtaining low computational
complexity. Also, the theoretical study on DSE of [14], by
combining the KF and ellipsoidal intersection, proved stability

of local estimates in every node given that the state is
observable in at least one local measurement.

The main contribution of this article is to extend the
theoretical analysis of ellipsoidal intersection with three em-
pirical DSE case-studies. Each case is characterized by a
recurring practical limitation: (i) absence of observability in
all local measurements, (ii) nonlinear process-models and (iii)
different computational limitations per node. A cooperative
adaptive cruise control scenario is employed to assess the first
limitation, i.e., the global state is not observable in any of
the local measurements. The second and third case assume
observability but are concerned with the nonlinear process
models of a Van-der-Pol oscillator and the one for tracking
shockwaves on a highway. Hence, nodes employ the EKF or
UKF next to state fusion. Moreover, the third scenario analyses
the feasibility of different computational requirements per
node in a network of heterogenous estimators, i.e., some nodes
perform the EKF while others employ the UKF. All three
case-studies demonstrated the stability objective as well as a
high estimation accuracy, due to which ellipsoidal intersection
proves to be an attractive fusion method for real-life DSE.

II. PRELIMINARIES

R, R+, Z and Z+ define the set of real numbers, non-
negative real numbers, integer numbers and non-negative in-
teger numbers, respectively. For any C ⊂ R, let ZC := Z∩C.
Let 0 denote a zero number, or a vector or matrix with all
elements equal to zero. Its dimension will be clear from
the context. Similarly, In denotes an n × n identity matrix
of appropriate dimensions. The transpose, inverse (if exists)
and determinant of a matrix A ∈ Rn×n are denoted as A⊤,
A−1 and |A| respectively. Further, [A]qr denotes the element
on the q-th row and r-th column of A and similarly, [x]q
denotes the q-th element of a vector x ∈ Rn. Given that
A,B∈Rn×n are positive definite, denoted with A≻ 0 and B≻ 0
(or A,B ≻ 0 in short), then A ≻ B denotes A−B ≻ 0. A ≽ 0
denotes that A is positive semi-definite. For any A ≻ 0, A

1
2

denotes its Cholesky decomposition and A− 1
2 denotes (A

1
2 )−1.

Suppose that A ∈ Rn×n is a matrix with real eigenvectors,
i.e., νq(A) ∈ Rn, and eigenvalues, i.e., λq(A) ∈ R, for all
q ∈ Z[1,n]. Then the eigenvalue decomposition of A, i.e., A =

SDS−1, is obtained as S := (ν1(A) ν2(A) . . . νn(A)) and D :=
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diag(λ1(A), . . . ,λn(A)), i.e., [S]qr = [νr(A)]q, [D]qr = λq(A) if
q = r and [D]qr = 0 if q ̸= r, for all q,r ∈ Z[1,n].

For a continuous differentiable function f (x,y) : Rn×Rm →
Rl , the Jacobian matrix of f (x,y) towards x and towards
y is denoted as ∇x f ∈ Rl×n and ∇y f ∈ Rl×m, respectively.
Moreover, ∇x f (a,b) ∈ Rl×n denotes the value of ∇x f in case
x = a and y = b. The Gaussian function (Gaussian in short)
is denoted as G(x, x̂,P), for some x, x̂ ∈ Rn and P ∈ Rn×n. If
G(x, x̂,P) is the probability density function (PDF) of a random
vector x, then by definition the mean and covariance of x are
x̂ and P, respectively. Moreover, P−1 is a measure for the
accuracy of x̂ as an estimated value of x. Any G(x, x̂,P) can
be represented by its unitary sub-level-set Ex̂,P ⊂Rn, which is
an ellipsoidal set defined as Ex̂,P := {x|(x− x̂)⊤P−1(x− x̂)≤ 1}.
Some abbreviations of employed state estimation set-ups are:

cEKF, a centralized state estimation set-up of the EKF;
cUKF, a centralized state estimation set-up of the UKF;
dEKF, a DSE set-up as depicted in Figure 1, where each

node performs the EKF as LSE;
dUKF, a DSE set-up as depicted in Figure 1, where each

node performs the UKF as LSE;
HDSE,a heterogenous DSE set-up as depicted in Figure 1,

where some nodes perform the EKF as LSE, while
other nodes employ the UKF.

III. PROBLEM FORMULATION

Let us assume an autonomous process that is observed by
a sensor network, for which N ⊂ Z denotes the set of node
indexes. The state-vector of the process is denoted as x ∈Rn,
whereas the local measurements of a node i ∈N are collected
in the measurement-vector yi ∈Rli , for some li ∈ Z≥1. In case
the sample instants are denoted with k ∈Z+, then the discrete-
time process-model for any node i, given f : Rn ×Rm → Rn

and hi : Rn → Rli , is described as follows

x(k+1) = f (x(k),w(k)), (1a)
yi(k) = hi(x(k))+ vi(k). (1b)

The process-noise w ∈Rm and the measurement-noise vi ∈Rli

are characterized by a zero-mean Gaussian PDF, i.e.,

p(w(k)) := G(w(k),0,Q), p(vi(k)) := G(vi(k),0,Vi) ∀k ∈ Z+.

The sensor network employs a DSE strategy according
to the schematic set-up of Figure 1. Therein, each node i
calculates a local estimate of the state at each sample instant
k by processing yi in a “local state-estimator” (LSE). The
resulting PDF is denoted as pi(x(k))=G(x(k), x̂i(k),Pi(k)), for
some x̂i ∈ Rn and Pi ∈ Rn×n. By exchanging local estimates,
node i receives p j(x(k)) from the nodes j ∈ Ni ⊂ N . These
received PDFs are then merged with pi(x(k)) in a “local state
fusion” (LSF) algorithm, resulting in the PDF pi f (x(k)) =
G(x(k), x̂i f (k),Pi f (k)), for some x̂i f ∈ Rn and Pi f ∈ Rn×n.

The main objective of DSE is achieving stability of local
estimates, i.e., a bounded covariance Pi for all i ∈ N , and
improving their accuracy. To that extent, a local measurement
yi should have the ability to improve the local estimate of any

Fig. 1. Schematic set-up of the local algorithm at node i.

other node j ∈ N . A DSE approach that enjoys this property
is referred to as global covariance DSE. Whether this property
is obtained depends on the fusion method, i.e., both Pi f ≼ Pi
and Pi f ≼ Pj should hold.

A common assumption for sensor networks is that correla-
tions of PDFs will not be available, as keeping track of the
shared estimates between nodes is intractable. Some examples
of existing fusion methods that can cope with unknown cor-
relations are found in [9]–[13]. A popular approach is known
as covariance intersection, e.g., [9], which defines the fusion
result as a convex combination of the original PDFs, i.e.,
Pi f = ωPi +(1−ω)Pj and x̂i f = Pi f (ωP−1

i x̂i +(1−ω)P−1
j x̂ j)

for some ω ∈ [0,1]. As a result, Pi f of covariance intersection
is a conservative overapproximation of the actual covariance
after fusion. The ellipsoidal intersection method of [13] is
less conservative and satisfies the global covariance condition,
i.e., Pi f ≼ Pi and Pi f ≼ Pj. Moreover, since the method is
computationally tractable as well, ellipsoidal intersection is
employed as fusion method of the proposed DSE set-up.

The main issue treated in this article is how to illustrate
the impact of state fusion in practical set-ups of DSE. To that
extent, a detailed description of the proposed DSE algorithm
will be presented next. This algorithm is then employed
in three different case-studies by addressing three practical
concerns, i.e., absence of state-observability in any yi for all
i ∈ N , nonlinear process-models and different computational
requirements per node (a network with heterogenous LSEs).
The impact of ellipsoidal intersection is assessed is each case
via the estimation accuracy and global covariance property.

IV. A DISTRIBUTED STATE-ESTIMATOR

This section presents the overall algorithm of a node i
according to the DSE set-up of Figure 1. A description of
three different LSE-algorithms is given first, after which state
fusion according to ellipsoidal intersection is presented. A note
on estimation is that p(x(k)) is commonly calculated from the
the previous instant k−1, which differs from the model of (1).
Hence, an estimator is initialized for some x̂(−1) and P(−1).

A. Local state estimation

The LSE of a node i performs an measurement update on
pi f (x(k−1)) given yi(k), for all k ∈Z+, in a KF, EKF or UKF.

1) (Extended) Kalman filter: Employing the KF or EKF as
LSE requires a linear approximation of (1) in the state-space
description. For the KF, such a process-model correspond to

x(k) = Fx(k−1)+Ew(k−1),
yi(k) = Hix(k)+ vi(k),

(2)



for some F ∈ Rn×n, E ∈ Rn×m and Hi ∈ Rli×n. Let x̂i(k−) ∈
Rn and Pi(k−) ∈ Rn×n denote the predicted mean and error-
covariance at node i at sample instant k, respectively. Then the
KF calculates the updated x̂i(k) and Pi(k) as follows,

x̂i(k−) = Fx̂i f (k−1),

Pi(k−) = FPi f (k−1)F⊤+EQE⊤,

Ki(k) = Pi(k−)H⊤
i

(
HiPi(k−)H⊤

i +Vi

)−1
,

x̂i(k) = x̂i(k−)+Ki(k)
(
yi(k)−Hix̂i(k−)

)
,

Pi(k) = (I −Ki(k)Hi)Pi(k−).

(3)

Performing the above algorithm as LSE results in low
computational requirements. Moreover, the KF is known to
compute the optimal estimate, provided p(w(k)) and p(vi(k))
are Gaussian and the process-model of (1) is linear. In case
of nonlinear models the EKF is an alternative estimator for
improving accuracy. Therein, the model-parameters depend
on k and are defined via the Jacobian matrices of both
nonlinear model-functions at the current working point, i.e.,
Fi(k) := ∇x f (x̂i f (k − 1),0), Ei(k) := ∇w f (x̂i f (k − 1),0) and
Hi(k) := ∇xhi(x̂i f (k−1)). The algorithm of the EKF at node
i is similar to (3), by substituting F = Fi(k), E = Ei(k)
and H = Hi(k), while employing x̂i(k−) = f (x̂i f (k − 1),0).
However, accuracy of an EKF depends on the support to
linearize the process-model of (1) at each sample instant.
When estimation results are not satisfactory, the EKF can be
replaced with the UKF.

2) Unscented Kalman filter: In case an UKF is employed
as LSE, then the nonlinear model of (1) is applied to various
values of x(k− 1) and w(k− 1), also referred to as “sigma-
values”. These values are selected from an augmented vector
µ ∈Rn+m that combines the state and process noise, i.e., µ :=
( x

w). Since x(k−1) and w(k−1) at a node i are described by
Gaussian PDFs, pi(µ(k−1)) := G(µ(k−1), µ̂i(k−1),Ui(k−
1)) is also Gaussian, for some mean µ̂i ∈Rn+m and covariance
Ui ∈R(n+m)×(n+m). Values of this mean and covariance follow
from pi f (x(k−1)) and p(w(k−1)), i.e.,

µ̂i(k−1) :=
(

x̂i f (k−1)
0

)
, Ui(k−1) :=

(
Pi f (k−1) 0

0 Q

)
.

The PDF pi(µ(k−1)) is then used to select M := 2(n+m)+1
different values of µ(k−1), which are denoted as µ̂i,q(k−1)∈
Rn+m for all q ∈ Z[1,M]. Let µ̃i,d ∈ Rn+m be defined as the

d-th column of U
1
2

i (k − 1), i.e., [µ̃i,d ]r := [U
1
2

i (k − 1)]rd for
all r,d ∈ Z[1,n+m]. Then the “sigma-values” µ̂i,q(k−1), for all
q ∈ Z[1,M] and for some c ∈ R+, are defined as follows

µ̂i,q(k−1) :=


µ̂i(k−1)+ cµ̃i,q if q ∈ Z[1,n+m],

µ̂i(k−1)− cµ̃i,(q−n−m) if q ∈ Z[n+m+1,M−1],

µ̂i(k−1) if q = M.

The process-model of (1) is performed on each “sigma-value”
to obtain predictions of x(k) and yi(k), for all q ∈ Z[1,M], i.e.,

x̂i,q(k−) := f (µ̂i,q(k−1)) and ŷi,q(k−) := hi
(
x̂i,q(k−)

)
.

In case x̂i(k−) ∈ Rn and Pi(k−) ∈ Rn×n denote the predicted
mean and error-covariance of x(k), respectively, then the
updated x̂i(k) and Pi(k) according to the UKF, for some
ωq ∈ R+, Ri(k) ∈ Rli×li and Si(k) ∈ Rn×li , yields

x̂i(k−) =
M

∑
q=1

ωqx̂i,q(k−), ŷi(k−) =
M

∑
q=1

ωqŷi,q(k−),

x̂i(k) = x̂i(k−)+Si(k)(Ri(k)+Vi)
−1 (yi(k)− ŷi(k−)),

Pi(k) = Pi(k−)−Si(k)(Ri(k)+Vi)S⊤i (k).

(4)

Where,

Pi(k−) =
M

∑
q=1

ωq
(
x̂i,q(k−)− x̂i(k−)

)(
x̂i,q(k−)− x̂i(k−)

)⊤
,

Ri(k) =
M

∑
q=1

ωq
(
ŷi,q(k−)− ŷi(k−)

)(
ŷi,q(k−)− ŷi(k−)

)⊤
,

Si(k) =
M

∑
q=1

ωq
(
x̂i,q(k−)− x̂i(k−)

)(
ŷi,q(k−)− ŷi(k−)

)⊤
.

Common values for the constant c and the weights ωq, for
some α ∈ R+, are c =

√
n+m+α ,

ωM =
α

n+m+α
and ωq =

1
2(n+m+α)

, ∀q ∈ Z[1,M−1].

Estimating x of nonlinear processes via an UKF results in a
low estimation error at the cost of high computational require-
ments. Therefore, a trade-off must be made between accuracy
and computational complexity to decide which estimator is
employed as LSE. Before the overall algorithm of a node i is
given, let us first present ellipsoidal intersection.

B. State fusion according to ellipsoidal intersection

This section summarizes the recently developed state fusion
method for two PDFs ellipsoidal intersection, as presented
in [13]. The method fuses pi(x) := G(x, x̂i,Pi) and p j(x) :=
G(x, x̂ j,Pj) into a single PDF that is denoted as pi f (x), for
some x̂i, x̂ j, x̂i f ∈ Rn and Pi,Pj,Pi f ∈ Rn×n. The distinguishing
feature of this method is that correlations are parameterized via
exclusive and mutual information of pi(x) and p j(x) a priori
to deriving a fusion formula via estimation theory. Mutual
implies that, for example, the same measurements or process-
model parameters were used in both pi(x) and p j(x). Similarly,
exclusive information refers to, for example, measurements
that were used in either pi(x) or p j(x). To that extent, let us
introduce the following parametrization.

• Let pγ(x) := G(x,γ,Γ), for some γ ∈ Rn and Γ ∈ Rn×n,
denote the estimate of x based on the mutual information
of pi(x) and p j(x);

• Let p je(x) := G(x,θ j,Θ j), for some θ j ∈ Rn and Θ j ∈
Rn×n, denote the estimate of x based on the exclusive
information of p j(x) only.

Then p j(x) is as defined as the update of the mutual PDF
pγ(x) with the exclusive PDF p je(x). Since pγ(x) and p je(x)
are uncorrelated, the results of [5] give that

Pj = (Γ−1 +Θ−1
j )−1 and x̂ j = Pj(Γ−1γ +Θ−1

j θ j). (5)



Similar developments in estimation theory define pi f (x) by
updating pi(x) with the exclusive PDF p je(x). Hence, the
same results of [5] imply that pi f (x) is characterized by Pi f =

(P−1
i + Θ−1

j )−1 and x̂i f = Pi f (P
−1
i x̂i + Θ−1

j θ j). Substituting
the resulting θ j and Θ j, as obtained from (5), into these
expressions of Pi f and x̂i f gives an explicit fusion update, i.e.,

Pi f =
(

P−1
i +P−1

j −Γ−1
)−1

,

x̂i f = Pi f

(
P−1

i x̂i +P−1
j x̂ j −Γ−1γ

)
.

(6)

The second step is determining the values of γ and Γ when
correlation is unknown. To obtain a robust update of pi(x)
with p je(x), the following hypothesis is employed: the PDF
that parameterizes the correlation of pi(x) and p j(x), i.e.,
pγ(x), is as accurate as possible. Let us start by deriving a
value for the mutual covariance, before is continued with the
mutual mean.

1) Mutual covariance: A higher accuracy of pγ(x) is
equivalent to a reduction of the eigenvalues λq(Γ), for some
q ∈ Z[1,n]. Hence, maximizing the accuracy is equivalent
to minimizing ∑n

q=1 λq(Γ). However, the accuracy of pγ(x)
cannot exceed the accuracy of p j(x), as the latter one is an
update of pγ(x) with p je(x). A mathematical expression of this
statement, which follows from (5) and the fact that Θ j ≽ 0
of p je(x), is that Γ ≽ Pj holds. Similarly, Γ ≽ Pi must also
hold. Let E0,Pi , E0,Pj and E0,Γ denote the sub-level-sets that
correspond to these three covariances. Then Γ ≽ Pi and Γ ≽ Pj
can also be expressed as E0,Pi ∪E0,Pj ⊆ E0,Γ. All together, a
formal definition of the mutual covariance is stated as follows

Γ := arg min
ϒ∈Rn×n

n

∑
q=1

λq(ϒ)

subject to E0,Pi ∪E0,Pj ⊆ E0,ϒ.

(7)

Basically, the above expression of Γ defines the sub-level-set
of the mutual covariance, i.e., E0,Γ, as the smallest ellipsoid
to enclose the sub-level-sets of the original estimates, i.e.,
E0,Pi and E0,Pj . To solve the minimization problem of (7), let
the diagonal matrices Di,D j ∈ Rn×n and rotational matrices
Si,S j ∈Rn×n be introduced via the eigenvalue decompositions

Pi = SiDiS−1
i and D

− 1
2

i S−1
i PjSiD

− 1
2

i = S jD jS−1
j .

Then an explicit formula of the mutual covariance, yields

Γ = SiD
1
2
i S jDΓS−1

j D
1
2
i S−1

i , (8)

[DΓ]qr :=

{
max([D j]qr,1) if q = r,

0 if q ̸= r.
(9)

2) Mutual mean: The mutual mean represents an agreement
between x̂i and x̂ j. Typically, this means that γ is characterized
by minimization of the Euclidian distance of γ − x̂i and γ − x̂ j.
As such, a cost-function J : Rn → R+ is defined, for some

suitable Wi,Wj ≽ 0, whose minimum corresponds to γ , i.e.,

γ := arg min
υ∈Rn

J(υ), (10a)

J(υ) := (υ − x̂i)
⊤Wi(υ − x̂i)+(υ − x̂ j)

⊤Wj(υ − x̂ j). (10b)

The use of the weighting matrices Wi and Wj is to enable
a different accuracy for each element in γ − x̂i and γ − x̂ j.
Since any variation in the accuracy of γ , x̂i and x̂ j is caused
by exclusive information, the mutual mean γ is determined
according to the following reasoning: if pi(x) has a high
exclusive accuracy, then γ should be close to x̂ j and, vice
versa, γ should be close to x̂i in case p j(x) has a high exclusive
accuracy. A particular definition of the weighting matrices that
is in line with this reasoning is the following,

Wi = P−1
j −Γ−1 and Wj = P−1

i −Γ−1. (11)

The above weights employ Θ−1
j = P−1

j − Γ−1 and Θ−1
i :=

P−1
i −Γ−1, which are a measure for the accuracy of exclusive

information of p j(x) and pi(x), respectively. When solving
(10) one obtains that γ = (Wi +Wj)

−1(Wix̂i +Wjx̂ j). However,
this solution is valid for a cost-function J(υ) that is convex,
i.e., Wi +Wj ≻ 0 holds. Therefore, a small approximation is
applied to Wi and Wj of (11) in case Wi +Wj ≽ 0. To that
extent, let B := P−1

i +P−1
j −2Γ−1, let λmin(B)> 0 be defined

as the smallest positive eigenvalue of B and let β > 0 denote
a design parameter of the approximation. Then the explicit
formula of the mutual mean is given as follows

γ =
(

P−1
i +P−1

j −2Γ−1 +2ηIn

)−1
×((

P−1
j −Γ−1 +ηIn

)
x̂i +

(
P−1

i −Γ−1 +ηIn
)

x̂ j

)
,

(12)

η :=

{
0 if |B| ̸= 0,

β ≪ λmin(B) if |B|= 0.
(13)

The interested reader is referred to [13], [14] for more
details on ellipsoidal intersection and its performance with
respect to covariance intersection. This article continues by
pointing out an important property of ellipsoidal intersection,
after which the overall algorithm is presented.

Remark IV.1 The result of pi f (x) should be the same when
fusing p j(x) with pi(x), instead of pi(x) with p j(x), i.e., switch
Pi ↔ Pj and x̂i ↔ x̂ j. The fusion update of (6) guarantees
this property given that Γ and γ obtain the same values. This
condition is met by the mutual covariance, since E0,Pi ∪E0,Pj =
E0,Pj ∪E0,Pi in the definition of Γ of (7). Also, the mutual mean
satisfies the condition, as switching of i and j does not affect
the cost-function J(υ) of (10b) in combination with (11).

C. Overall algorithm of a node i

The schematic set-up of Figure 1 shows that at each
sample instant k a node i performs the LSE to calculate
pi(x(k)). Fusion of one estimate with multiple other estimates
is commonly conducted recursively. This means that the LSF
algorithm fuses pi(x(k)) with the first received p j(x(k)), for
any j ∈Ni, after which their resulting fused estimate is further



merged with the PDF that is received next, and so on. Let
the initial local estimate at sample-instant k be defined as
pi(0)(x) := pi(x(k)). Then this recursive behavior implies that
pi(l)(x), for all l ∈ Z[1,L] and L := ♯Ni, is defined as the fused
estimate of pi(l−1)(x) and the l-th received estimate p j(x(k)),
which will be denoted as p j(l)(x). The final estimate after
fusing pi(x(k)) with all received PDFs is thus pi f (x(k)) :=
pi(L)(x). In case “LocalStateEst” denotes the algorithm that
corresponds to one of the employed LSEs, i.e., a KF, EKF or
UKF, then the algorithm that is performed by a node i, yields

Algorithm IV.2 DSE at node i

[x̂i(k),Pi(k)] = LocalStateEst(x̂i f (k−1),Pi f (k−1),yi(k));

x̂i(0) = x̂i(k), Pi(0) = Pi(k);

for l = 1, . . . ,L, do:
x̂ j(l) = x̂ j(k), Pj(l) = Pj(k), j ∈Ni;

Γ(l) = MutualCovariance(Pi(l−1),Pj(l)), (8);

γ(l) = MutualMean(Pi(l−1),Pj(l),Γ(l), x̂i(l−1), x̂ j(l)), (12);

Pi(l) =
(

P−1
i(l−1) +P−1

j(l)−Γ−1
(l)

)−1
;

x̂i(l) = Pi(l)

(
P−1

i(l−1)x̂i(l−1) +P−1
j(l)x̂ j(l)−Γ−1

(l) γ(l)
)

;

end
x̂i f (k) = x̂i(L), Pi f (k) = Pi(L); 2

Now that the developed DSE is completed, let us analyze the
impact of ellipsoidal intersection from a practical point of
view for the three introduced case-studies.

V. CASE 1: ABSENCE OF LOCAL OBSERVABILITY

In this case-study the process-model of (1) is assumed to
be linear, i.e., it follows the description of (2) and the LSE
employs a KF. A practical limitation, which can occur in a
deployed sensor network, is that x is not observable in any of
the local measurements. The criteria for local observability
at a node i is that (A,Hi) is an observable-pair, in which
A ∈Rn×n is defined via the time-continuous process-model of
the state, i.e., ẋ = Ax+w. Not satisfying this criteria implies
that some eigenvalues of the (modeled) error-covariance Pi
become unbounded when node i estimates x based on yi only.
Therefore, pi(x) must exploit all the measurement-information
within the network via a global covariance DSE for attaining
stable local estimates at the different nodes, i.e., λq(Pi) is
bounded for all nodes i ∈N and all q ∈Z[1,n]. The considered
application is a benchmark example of DSE for cooperative
adaptive cruise controllers [15].

Case-study
Consider a platoon of four vehicles having cooperative adap-
tive cruise controllers. Each vehicle requires the kinematic
state values of the leading vehicle in the platoon. Hence, the
state-vector x is defined as the position and speed in the X-
direction, i.e., [x]1 and [x]2, respectively, and the position and
speed in the Y -direction, i.e., [x]3 and [x]4, respectively. The

real position of vehicle 1, which starts from (X ,Y ) = (10,1)
and then drives in slalom towards (105,15), is depicted in
Figure 2. Therefore, in case the unknown acceleration is
represented by process noise, then the discrete-time process
model of (1) with a sampling time of 0.1 seconds, yields

x(k+1) =
( 1 0.1 0 0

0 1 0 0
0 0 1 0.1
0 0 0 1

)
x(k)+

( 0.005 0
0.1 0
0 0.005
0 0.1

)
w(k),

p(w(k)) = G(w(k),0,10I2).
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Fig. 2. Position of the leading vehicle versus the estimated position according
to vehicle 2 (DSE 2) and vehicle 4 (DSE 4).

Vehicle 1 measure its X-position, whereas vehicle 3 mea-
sures the Y -position of vehicle 1. This means that only vehicles
1 and 3 have measurements that depend on the state x, due to
which the following local measurements are defined,

y1(k) = H1x(k)+ v1(k), p(v1(k)) = G
(
v1(k),0,0.5

)
,

y3(k) = H3x(k)+ v3(k), p(v3(k)) = G
(
v3(k),0,0.8

)
,

H1 = (1 0 0 0), H3 = (0 0 1 0).

Since for the considered example A=

(
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
, (A,Hi) is not

an observable-pair in both i ∈ {1,3}. Moreover, vehicles 2 and
4 have no measurements that depend on x, due to which their
KF only performs a prediction of the state. Hence, x is not
observable in any of the local measurements. However, the
collection of measurements in the platoon does result in an
observable state-vector, i.e.,

(
A,
(H1

H3

))
is an observable-pair.

Each vehicle i performs Algorithm IV.1 and shares pi(x(k))
with the front and rear vehicle, i.e., N1 = {2}, N2 = {1,3},
N3 = {2,4} and N4 = {3}. All estimators are initialized by
x̂i(−1) = (10 6 1 0)⊤ and Pi(−1) = 25I4, for all i∈Z[1,4].
The estimation results of vehicles two and four are compared
in Figure 2 and Figure 3. Figure 3 presents the sum of all
eigenvalues of Pi and the squared estimation error, i.e.,

σi(k) :=
4

∑
q=1

λq(Pi(k)), ∀i ∈N , (14)

∆i(k) := (x̂i(k)− x(k))⊤(x̂i(k)− x(k)), ∀i ∈N . (15)

Figure 3 shows that the estimation error of vehicles 2 and 4
are comparable, even though both vehicles are forced to rely
on neighboring vehicles for estimating x. Moreover, although
the results of vehicles 2 and 4 are presented, the eigenvalues of
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Fig. 3. Modeled estimation error, i.e., σi(k), and real estimation error, i.e.,
∆i(k), of the second and fourth vehicle.

Pi(k) for all vehicles converged during the simulation. Hence,
the local estimates are stable, which can only occur if any pi(x)
exploits the information of all measurements in the network.
This is an indication that the developed DSE enjoys the global
covariance property, also when the local observability criteria
is not met by any node i ∈N .

Apart from local observability, other issues for the devel-
oped DSE are a result of the assumption that the process-
model is linear. Therefore, an analysis of DSE in a set-up
with nonlinear models is presented in the next sections.

VI. CASE-STUDY 2: NONLINEAR PROCESS MODEL

Let us assume that the process-model of (1) is nonlinear.
Then employing the KF as LSE will result in (highly)
inaccurate estimates pi(x(k)) and pi f (x(k)). This can be
solved by replacing the KF with an EKF or UKF, since
these two methods are designed for nonlinear models and
result in a Gaussian PDF that can be used by ellipsoidal
intersection. The only issue is that the resulting Gaussian PDF
pi(x(k)) is suboptimal, since both the EKF and UKF apply
an approximation on the update of x to handle nonlinearities.
Hence, an empirical case-study of the developed DSE set-up
is performed to analyze whether unknown correlations of
the approximated PDFs are treated correctly by ellipsoidal
intersection. To that extent, the DSE is compared to a
centralized estimation set-up. Moreover, each node of the
sensor network measures a different, unique state-element.
Therefore, for such a sensor network consisting of only
two nodes any difference between the centralized and
distributed solution is then caused by an improper evaluation
of correlations in ellipsoidal intersection.

Case-study
Let us consider a network of two nodes that observe the two
states of a Van-der-Pol oscillator, i.e., [x(k)]1 and [x(k)]2. The
discrete-time process-model of (1), with δ ∈ R+ defined as
the sampling time, yields

x(k+1) =
(

1 δ
0 1+0.5δ

)
x(k)+

(
0

f2(x(k))

)
+w(k),

where

f2
(
x(k)

)
:= δ · [x(k)]1 (0.5 [x(k)]1 [x(k)]2 −1) .

Figure 4 depicts the state values of the Van-der-Pol oscillator
in case x(0) = (0.5

0 ) and p(w(k)) = G(w(k),0,10−3I2). Fur-
thermore, the local measurements are defined as follows

y1(k) =
(
1 0

)
x(k)+ v1(k), p(v1(k)) = G(v1(k),0,0.8),

y2(k) =
(
0 1

)
x(k)+ v2(k), p(v2(k)) = G(v2(k),0,0.5).
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Fig. 4. State values of the Van-der-Pol oscillator.

In the centralized set-up both y1 and y2 are sent to a central
state-estimator, which can be either an EKF, denoted as cEKF,
or an UKF, denoted as cUKF. The resulting PDF of the central-
ized estimators is denoted as p(x(k)) =G(x(k), x̂(k),P(k)), for
some x̂ ∈Rn and P ∈Rn×n. Their performance is compared to
the corresponding distributed set-ups, i.e., the developed DSE
of Algorithm IV.1. In case both nodes employ the EKF as LSE,
then the distributed set-up is denoted as dEKF, whereas dUKF
denotes the developed DSE such that the UKF algorithm is
performed as LSE. All estimators start with an initial mean of
( 2
−0.3) and a error-covariance that is equal to 5I2. Furthermore,

the cUKF and dUKF define Q = 10−3I2. However, since the
EKF derives a Jacobian-form of the nonlinear model, the
method employs an approximation of process dynamics with a
higher inaccuracy. This inaccuracy is modeled via an increased
process noise for the cEKF and dEKF, i.e., Q = 10−1I2. The
resulting squared estimation error, i.e., ∆i(k) of (15) for the
dEKF and dUKF, which for the cEKF and cUKF is defined as
∆(k) = (x̂(k)− x(k))⊤(x̂(k)− x(k)), are depicted in Figure 5.
Therein, only the error of the first node is presented for each
DSE set-up, since ellipsoidal intersection guarantees that node
1 and node 2 have equivalent estimates after each fusion step
(see Remark IV.1).
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Fig. 5. The squared estimation error ∆(k) of the cEKF and cUKF (solid
lines) and ∆1(k) of the dEKF and dUKF (dashed lines).

Figure 5 shows that the centralized and the distributed
estimation set-ups have an equivalent performance in accuracy.



This means that the approximation into suboptimal Gaussian
PDFs has a negligible effect on ellipsoidal intersection as
a state fusion method. In both cases the correlation of the
original estimates is treated correctly.

A different performance measure than accuracy is the corre-
lation coefficient matrix ρ(x̂,y) ∈ Rn×l between an estimated
state x̂ ∈ Rn and a measurement y ∈ Rl . The elements of this
matrix are defined as follows

[ρ(x̂,y)]rq :=
cov([x̂]r, [y]q)√

cov([x̂]r)cov([y]q)
, ∀q ∈ Z[1,n], r ∈ Z[1,l].

Each element [ρ(x̂,y)]rq ∈R[−1,1], for some suitable r and q, is
a measure of the correlation between the elements [x̂]r and [y]q.
A value of 1 indicates that the two elements are equivalent,
whereas a value of 0 corresponds to no similarity at all. Let us
define y(k) := (y1(k) y2(k))⊤, then the correlation coefficient
matrices for the different estimators give the following results,

cEKF: ρ(x̂,y) =
(

0.85 0.07
0.12 0.94

)
, dEKF: ρ(x̂1,y) =

(
0.85 0.07
0.12 0.95

)
,

cUKF:ρ(x̂,y) =
(

0.90 0.09
0.11 0.96

)
, dUKF: ρ(x̂1,y) =

(
0.90 0.09
0.11 0.96

)
.

These correlation coefficient matrices show that the two DSE
set-ups use both measurements y1 and y2 in the same effective
manner to estimate x as their corresponding centralized set-
ups. Hence, for this small sensor network with a nonlinear
process-model the global covariance property is established.
An extended analysis of the developed DSE for a nonlinear
process-model, where different nodes can employ different
types of LSEs and thus enable different computational require-
ments per node, is presented next.

VII. CASE 3: A NETWORK OF HETEROGENOUS LSES

Commonly, LSEs of the different nodes in a sensor
network are derived from the same type of (centralized)
state-estimator, e.g. [5], [6], [16], [17]. The goal of this
section is to present a first analysis of a DSE where different
nodes perform different types of LSEs, i.e., some nodes
will perform the EKF as LSE and other nodes will employ
an UKF. Such a heterogeneous DSE (HDSE) set-up allows
different computational limitations per node in the network
and thus enhances feasibility of DSE in sensor networks.
Also, nodes that are added to an existing network can employ
arbitrary LSE methodologies, while still exchanging estimates
with neighboring nodes for state fusion. The benchmark
application for testing this HDSE is tracking shockwaves on
a highway.

Case-study
The traffic shockwave is a spatio-temporal dynamical phe-
nomenon typically emerging from high density highway traf-
fic. It is characterized by an increase in vehicle density and
a decrease in vehicle speed. Shockwaves “travel” along the
highway upstream (i.e. opposite direction to the traffic). This
benchmark case-study consists of initiating a shockwave, after
which the goal is to track this (simulated) shockwave using
aggregated measurements of speed and density within certain
road segments. To that extent, consider a stretch of a one-lane

road that is divided into 20 segments of each L = 500 meter.
A total of 5 nodes are used to monitor shockwaves on that
particular road. Node 1 is located at road segment 1, node 2
at segment 5, node 3 at segment 10, node 4 at segment 15
and node 5 at road segment 20. Each node exchanges data
with direct neighboring nodes, i.e., N1 = {2}, N1 = {1,3},
N3 = {2,4}, N4 = {3,5} and N5 = {4}.

The discrete-time METANET-model of [18] is used to
simulate the shockwave and the corresponding measurements.
Therein, sn(k) ∈ R and ρn(k) ∈ R denote the average speed
and density of the n-th road segment at sample instant
k. The METANET-model defines a relation of the average
speed and density between neighboring segments, for some
τ,η ,κ ,ρcrit ,α ,v f ree ∈R and sampling-time δ ∈R+, as follows

ρn(k+1) = ρn(k)+
δ
L

(
ρn−1(k)sn−1(k)−ρn(k)sn(k)

)
,

sn(k+1) = sn(k)+
δ
τ

(
v f reee−

1
α

(
ρn(k)
ρcrit

)α

− sn(k)
)

+
δ
L

sn(k)
(
sn−1(k)− sn(k)

)
− ηδ

τL
ρn+1(k)−ρn(k)

ρn(k)+κ
.

The model parameters that are used in this simulation, yield
τ = 0.0039, η = 191, κ = 254, ρcrit = 33.0, α = 5.61, v f ree =
89.9 and δ = 10

3600 . The resulting shockwave is depicted in
Figure 6 and titled as “real”. Notice that the wave starts at
road segment 20 with an increased vehicle density and then
travels towards road segment 1 in approximately 35 minutes.
The sensor network set-up is such that each node measures
the average speed and density of its own segment, i.e.,

yi(k) =
(

ρqi(k)
sqi(k)

)
+ vi(k) and qi :=

{
1 if i = 1,
5(i−1) if i ∈ Z[2,5].

Three DSE configurations are employed to recover the
average speed and density at all segments based on the five
measurements. The first two configurations are the dEKF
and dUKF as they were introduced in Section VI. The third
configuration implements the HDSE, which is defined by the
following LSEs: nodes 1, 3 and 5 employ an UKF, while
nodes 2 and 4 perform an EKF-algorithm. All nodes start with
equivalent initial values, i.e., sn(−1) = 85 and ρn(−1) = 30,
for all n ∈ Z[1,20]. Notice, that the METANET-model requires
values for ρ0(k), ρ21(k) and s0(k). Since this information is
not available to the dEKF, dUKF and HDSE, their values
are modeled as process noise. Figure 6 shows the real and
estimated vehicle density, i.e., ρ , at node 3 according to the
dEKF, dUKF and HDSE. The estimated density at other nodes
is similar to node 3 and therefore omitted in this section.

Figure 6 shows that the dEKF suffers from deriving a
Jacobian-form of the process-model in a sense that the es-
timated wave tends to “die out” after it was measured. See,
for example, a wave that is briefly measured at road segment
15 around 10 minutes. Only when the wave passed segment
10 the dEKF is capable of tracking the wave. Results of the
HDSE show that this improper tracking of the dEKF can be
solved by replacing the EKF at nodes 1, 3 and 5 with an UKF.



Fig. 6. The real density of all 20 segments in time and their estimated values
at node 3 according to the dEKF, dUKF and HDSE.

Already after the first 5 minutes the HDSE has similar results
as the dUKF. However, in the long run the dUKF showed less
estimation error then the HDSE during simulation.

Notice that even the HDSE enjoys the global covariance
property, since node 3, which is located at road segment 10,
is able to track the shockwave already from the moment that
the wave is firstly measured at node 5. This proves that node 3
uses the information that is made available by the measurement
in node 5 and thus that measurements and local estimates
throughout the network are correlated. During the simulation
nodes that employed an EKF had an average computation-time
of 5 [ms] per sampling instant, which increased to 20 [ms]
for nodes that performed an UKF algorithm. Hence, from the
fact that different types of LSEs can be employed in different
nodes of the network, the HDSE allows to decrease the
computational requirements of some nodes compared to the
dUKF set-up. This, while remaining a comparable accuracy
as the dUKF in the observed shockwaves.

VIII. CONCLUSIONS

In this article the impact of the state fusion method el-
lipsoidal intersection was assessed for distributed state esti-
mation (DSE) in sensor networks. To that extent, each node
performs a local state estimation algorithm based on its local
measurement, e.g., KF, EKF or UKF. The resulting estimate
is then fused with the estimates obtained in neighboring nodes
by employing the above mentioned fusion method. Three
empirical case-studies were performed to analyze ellipsoidal
intersection on some practical limitations of sensor networks.
It was shown in a cooperative adaptive cruise control scenario
that the developed DSE can handle a set-up where the state-
vector is not observable in any of the local measurements.
Also, an illustrative example of the Van-der-Pol oscillator and
a benchmark application of tracking shockwaves on highways
showed that the developed DSE is suitable for nonlinear
process-models. Furthermore, an extension of the latter case-
study was used to assess a mixture of LSEs, i.e., some nodes
perform the EKF algorithm as LSE and other nodes employ

an UKF. This scenario showed that ellipsoidal intersection can
fuse estimates from various type of state-estimation method-
ologies in a suitable manner.
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