

Opaque analysis for resource sharing in compositional real-
time systems
Citation for published version (APA):
Heuvel, van den, M. M. H. P., Behnam, M., Bril, R. J., Lukkien, J. J., & Nolte, T. (2011). Opaque analysis for
resource sharing in compositional real-time systems. In R. I. Davis, & L. T. X. Phan (Eds.), Proceedings of the
4th Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS 2011,
Vienna, Austria, November 29, 2011), Technical Report YCS-2011-469 (pp. 3-10). Department of Computer
Science, University of York.

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Oct. 2021

https://research.tue.nl/en/publications/2ff24dd2-7726-4986-8e33-2e3e0415fb82

Opaque analysis for resource sharing in

compositional real-time systems

Martijn M. H. P. van den Heuvel†, Moris Behnam‡, Reinder J. Bril†, Johan J. Lukkien† and Thomas Nolte‡

†Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
‡Mälardalen Real-Time Research Centre (MRTC), P.O. Box 883, SE-721 23 Västerås, Sweden

Abstract—In this paper we propose opaque analysis methods
to integrate dependent real-time components into hierarchical
fixed-priority scheduled systems. To arbitrate mutually exclusive
resource access between components, we consider two existing
protocols: HSRP - comprising overrun with and without payback
- and SIRAP. An opaque analysis allows to postpone the choice
of a synchronization protocol until component integration time.

First, we identify the sources of pessimism in the existing
analysis techniques and we conclude that both protocols assume
different models in their local analysis. In particular, the compo-
sitional analysis for overrun with payback (OWP) is not opaque
and is pessimistic. The latter makes OWP expensive compared
to its counter part without a payback mechanism (ONP). This
paper presents an opaque and less pessimistic OWP analysis.

Secondly, SIRAP requires more timing information to perform
a task-level schedulability analysis. In many practical situations,
however, detailed timing characteristics of tasks are hard to
obtain. We introduce an opaque analysis for SIRAP using the
analysis of ONP to reduce the required timing information
during the local analysis. We show that the analysis for ONP
cannot deem systems schedulable which are infeasible with
SIRAP. The SIRAP analysis may therefore reduce the required
system resources of a component by sacrificing the choice for an
arbitrary synchronization protocol at system integration time1.

I. INTRODUCTION

The increasing complexity of real-time systems demands

a decoupling of (i) development and analysis of individual

components and (ii) integration of components on a shared

platform, including analysis at the system level. Hierarchical

scheduling frameworks (HSFs) have been extensively inves-

tigated as a paradigm for facilitating this decoupling [1]. A

component that is validated to meet its timing constraints

when executing in isolation will continue meeting its timing

constraints after integration (or admission) on a shared uni-

processor platform. The HSF therefore provides a promising

solution for current industrial standards, e.g. the AUTomotive

Open System ARchitecture (AUTOSAR) which specifies that

an underlying operating system should prevent timing faults

in any component to propagate to other components on the

same processor. The HSF provides temporal isolation between

components by allocating a budget to each component.

An HSF without further resource sharing is unrealistic, how-

ever, since components may for example use operating system

services, memory mapped devices and shared communication

devices requiring mutually exclusive access. An HSF with such

1The work in this paper is supported by the Dutch HTAS-VERIFIED project,
see http://www.htas.nl/index.php?pid=154.

support makes it possible to share logical resources between

arbitrary tasks, which are located in arbitrary components, in

a mutually exclusive manner. A resource that is used in more

than one component is denoted as a global shared resource. A

resource that is only shared by tasks within a single component

is a local shared resource. If a task that accesses a global shared

resource is suspended during its execution due to the exhaustion

of its budget, excessive blocking periods can occur which may

hamper the correct timeliness of other components [2].
To accommodate resource sharing between components, two

synchronization protocols [3], [4] have been proposed based

on the Stack Resource Policy (SRP) [5] for two-level fixed-

priority-scheduled HSFs. Each of these protocols describes a

run-time mechanism to handle the depletion of a component’s

budget during global resource access. In short, two general

mechanisms are proposed: (i) self-blocking when the remaining

budget is insufficient to complete a critical section - called

SIRAP [4] or (ii) overrun the budget until the critical section

ends - called HSRP [3]. HSRP comes in two flavors: overrun

with payback (OWP) and overrun without payback (ONP). The

term without payback means that the additional amount of

budget consumed during an overrun does not have to be paid

back during the next budget period.
In practical situations, many critical-section lengths are un-

known, e.g. tasks may execute many critical sections which are

hard to analyze individually (as with SIRAP). It can be easier

to determine the worst-case critical-section length per shared

resource, as used in the traditional response-time analysis. Upon

component integration, we apply a global schedulability test

based on a choice for a global synchronization protocol. We

therefore call the local analysis of a component opaque, if

1) it does not include any timing information about global

resource arbitration;

2) it allows to post-pone the classification of shared re-

sources into global and local until integration time.

These criteria are important in open multi-vendor environments,

since it hides which local analysis method is applied. Hence,

an opaque analysis enables an incremental analysis, since it

separates concerns of local and global scheduling.
Using the notion of opaque analysis methods, we can apply

the existing analysis for ONP to integrate such a component

into the HSF. The reason for this is that the local analysis

of ONP is compliant to the widely accepted synchronization

protocols PCP [6] and SRP [5]. Surprisingly and contrary

to ONP, the current OWP analysis does not support opaque

3

analysis, because it modifies the abstracted processor supply

to a component. For the same reason SIRAP has no opaque

analysis.

Contributions: The contributions of this paper are five fold.

First, we show that ONP can be used as a valid upper bound

for SIRAP to support components with an opaque analysis.

This means that ONP provides a valid analysis technique for

resources arbitrated by a run-time implementation of SIRAP.

Secondly, we reduce the pessimism of OWP and show that

OWP is in most cases better than ONP. Thirdly, we show that

our improved analysis for OWP supports the integration of

components with an opaque analysis into the HSF. Fourthly,

we compare the abstraction overheads of the different analysis

techniques for SIRAP, OWP and ONP. Finally, we derive

revised guidelines for selecting a synchronization protocol.

II. RELATED WORK

Deng and Liu [7] proposed a two-level HSF for open

systems, where components may be independently developed

and validated. The corresponding schedulability analysis have

been presented in [8] for fixed-priority preemptive scheduling

(FPPS) and in [9] for earliest-deadline-first (EDF) global

schedulers. For global resource sharing in HSFs, three protocols

have recently been presented to prevent budget depletion during

resource access, i.e. HSRP [3], SIRAP [4] and BROE [10].

Unlike HSRP and SIRAP’s analysis, however, the global

schedulability analysis of BROE is limited to EDF and cannot

be generalized to include other scheduling policies.

The overrun mechanism (with payback) was first introduced

in the context of aperiodic servers in [2]. This mechanism

was later re-used in HSRP in the context of two-level HSFs

by Davis and Burns [3] and complemented with a variant

without payback. Although the analysis presented in [3] does

not integrate in HSFs due to the lacking support for independent

analysis of components, this limitation is lifted in [11].

The idea of self-blocking has also been considered in differ-

ent contexts, e.g. for supporting soft real-time tasks [12] and for

a zone-based protocol in a pfair-scheduling environment [13].

SIRAP [4] uses self-blocking for hard real-time tasks in HSFs

on a single processor and its associated analysis supports

composability. In [14] the original SIRAP analysis [4] has

been significantly improved when arbitrating multiple shared

resources. We will show that the strength of SIRAP’s analysis

comes from its detailed system model, making it difficult to

analyze components with opaque timing characteristics.

The original SIRAP [4] and HSRP [11] analyses have

been analytically compared with respect to their impact on

the system load for various component parameters [15]. The

performance of each protocol heavily depends on the chosen

system parameters. Moreover, these results suggest that HSRP’s

overrun mechanism with payback (OWP) is hardly beneficial

compared to overrun without payback (ONP). This observation

is contradictory with the recommendations from Davis and

Burns [3]. Our new analysis methods make the results in [15]

obsolete and we will provide new guidelines to select a

synchronization protocol in two-level FPPS-based HSFs.

III. REAL-TIME SCHEDULING MODEL

We consider a two-level FPPS-based HSF, following the

periodic resource model [1] to guarantee processor allocations

to components. However, we believe that our results can be

straightforwardly extended to other scheduling policies. We

use SRP-based synchronization to arbitrate mutually exclusive

access to global shared resources.

A. Component model

A system contains a single processor, a set C of N

components C1, . . ., CN for which we assume a periodic

resource model [1], and a set R of M global logical resources

R1, . . ., RM . Each component Cs has a dedicated budget which

specifies its periodically guaranteed fraction of the processor.

The timing characteristics of a component Cs are specified

by means of a triple Γs(Ps, Qs,Xs), where Ps ∈ R
+ denotes

its period, Qs ∈ R
+ its budget, and Xs the set of maximum

access times to global resources. The maximum value in Xs

is denoted by Xs, where 0 < Xs ≤ Ps. The set Rs denotes

the subset of global resources accessed by component Cs. The

maximum time that a component Cs executes while accessing

resource Rl ∈ Rs is denoted by Xsl, where Xsl ∈ R
+ ∪ {0}

and Xsl > 0 ⇔ Rl ∈ Rs.
Processor supply: The processor supply refers to the amount

of processor allocation that a component Cs can provide to its

workload. The supply bound function sbfΓs
(t) of the periodic

resource model Γs(Ps, Qs), that computes the minimum supply

for any interval of length t, is given by [1]:

sbfΓs
(t) = max

0,
t− (k(t) + 1)(Ps −Qs),
(k(t)− 1)Qs

, (1)

where k(t) =
⌈

t−(Ps−Qs)
Ps

⌉

. The longest interval a component

may receive no processor supply is named the blackout duration,

BDs, i.e. BDs = 2(Ps −Qs).

B. Task model

Each component Cs contains a set Ts of ns sporadic tasks

τ1, . . ., τns
. The timing characteristics of a task τsi ∈ Ts are

specified by means of a triple (Tsi, Csi, Dsi), where Tsi ∈ R
+

denotes its minimum inter-arrival time, Csi ∈ R
+ its worst-

case computation time, Dsi ∈ R
+ its (relative) deadline, where

0 < Csi ≤ Dsi ≤ Tsi. We assume that period Ps of component

Cs is selected such that 2Ps ≤ Tsi(∀τsi ∈ Ts), because this

efficiently assigns a budget to component Cs [1]. For notational

convenience, tasks (and components) are given in priority order,

i.e. τs1 has the highest priority and τsns
has the lowest priority.

The worst-case computation time of task τsi within a critical

section accessing global resource Rl is denoted hsil, where

hsil ∈ R
+ ∪ {0}, Csi ≥ hsil and hsil > 0 ⇔ Rl ∈ Rs.

C. Synchronization protocol

This paper focuses on arbitrating global shared resources

using SRP. Traditional protocols such as PCP [6] and SRP [5]

can be used for local resource sharing in HSFs [16]. To be

able to use SRP in an HSF for synchronizing global resources,

its associated ceiling terms need to be extended.

4

1) Resource ceilings: With every global resource Rl two

types of resource ceilings are associated; a global resource

ceiling RC l for global scheduling and a local resource ceiling

rcsl for local scheduling. These ceilings are statically calculated

and are defined as the highest priority of any component or

task sharing resource Rl. According to SRP, these ceilings are:

RC l = min(N,min{s | Rl ∈ Rs}), (2)

rcsl = min(ns,min{i | hsil > 0}). (3)

The outermost min in (2) and (3) define RC l and rcsl in those

situations where no component or task uses Rl.

The local resource ceiling rcsl can be used to trade-off

preemptiveness against resource holding times [17], i.e. Xsil

of a task τsi to a resource Rl. From [11], [15] we know:

Lemma 1: Given 2Ps ≤ Tsi(∀τsi ∈ Ts), all tasks τsj that

are allowed to preempt a critical section accessing resource

Rl, i.e. j < rcsl, can preempt at most once during an access

to a global shared resource Rl by task τsi.

This makes it possible to compute the resource holding time,

Xsil of task τsi to resource Rl as follows [15]:

Xsil = hsil +
∑

1≤j<rcsl

Csj , (4)

and the maximum resource holding time within a component

Cs is computed as Xsl = max{Xsil | 1 ≤ i ≤ ns}.

2) System and component ceilings: These ceilings are

dynamic parameters that change during execution. The system

ceiling is equal to the highest global resource ceiling of

a currently locked resource in the system. Similarly, the

component ceiling is equal to the highest local resource ceiling

of a currently locked resource within a component. Under

SRP a task can only preempt the currently executing task if

its priority is higher than its component ceiling. A similar

condition for preemption holds for components.

IV. COMPOSITIONAL ANALYSIS FOR FIXED-PRIORITY

SCHEDULING

This section first recapitulates the existing analysis for ONP,

OWP, and SIRAP. Next, we will show that SIRAP strictly

dominates ONP. In Section VI we will make use of this property

to define an opaque analysis for all three protocols.

A. Global schedulability analysis

For global FPPS of components the following sufficient

schedulability condition holds:

∀1 ≤ s ≤ N : ∃t ∈ (0, Ps] : RBF(t, s) ≤ t, (5)

where RBF(t, s) denotes the worst-case cumulative processor

request of Cs for a time interval of length t. The function

RBF(t, s) depends on the chosen global synchronization proto-

col. We therefore assume that during component-integration

time the synchronization protocol is known. For SIRAP and

ONP, the RBF(t, s) is defined as follows:

RBF(t, s) = Bs +
∑

1≤r≤s

⌈

t
Pr

⌉

(Qr +Or). (6)

A component Cr using ONP demands more resources in its

worst-case scenario [11], i.e. the overrun budget Or is:

Or =

{

Xr for ONP and OWP

0 for SIRAP.
(7)

For OWP, the RBF(t, s) is slightly modified (using the same

definition for Or):

RBF(t, s) = Bs +
∑

1≤r≤s

(⌈

t
Pr

⌉

Qr

)

+Or. (8)

The blocking term, Bs, is defined according to [5]:

Bs = max(0,max{Xul | s < u ∧Rl ∈ Ru ∧ RC l ≤ s}). (9)

We use the outermost max in (9) to define Bs in those situations

where no shared resources are used.

B. Local schedulability analysis

By filling in task characteristics in the demand bound RBF

of (5) and replacing the right-hand side by (1), i.e. replace

t for sbfΓs
(t), the same schedulability analysis holds for

tasks executing within a component as for components at the

global level. For local FPPS of tasks the following sufficient

schedulability condition holds:

∀1 ≤ i ≤ ns : ∃t ∈ (0, Dsi] : rbfs(t, i) ≤ sbfΓs
(t), (10)

where rbfs(t, i) denotes the worst-case cumulative processor

request of τsi for a time interval of length t. For ONP and

OWP, the rbfs(t, i) is fully compliant to the schedulability

analysis for task sets on a dedicated unit-speed processor, i.e.

rbfs(t, i) = bsi +
∑

1≤j≤i

⌈

t

Tsj

⌉

Csj . (11)

The blocking term, bsi, is defined according to [5]:

bsi = max(0,max{hsjl | i < j ∧ hsjl > 0 ∧ rcsl ≤ i}). (12)

The outermost max in (12) defines bsi also in those situations

where no shared resources are used within a component.

According to the current analysis for OWP, however, it is

required to modify the sbf(t) compared to the definition given

in (1), see [11]. In Section V, we eliminate this pessimism.

A component using SIRAP demands more resources in its

worst-case scenario [14]. We therefore need to add a term,

Isi(t), to account for self-blocking to the rbfs(t, i). The self-

blocking term Isi of a task τsi is defined in terms of z(t) =
⌈

t
Ps

⌉

, representing an upper bound to the number of self-

blocking occurrences within a time interval of length t, and a

multi-set Gsort

si (t) which comprises all self-blocking lengths

Xsil that a task τsi may experience by itself and other tasks τsj
in the same component in a non-decreasing order. We recall

that Gsort

si (t) stores all values Xsil in a non-decreasing order

and includes a value for each individual resource access by

a job of task τsi to resource Rl. As a supplemental to our

evaluation and proofs, we will show how to construct such a

multi-set in the Appendix.

5

C. Sources of pessimism in the existing analysis

For the SIRAP analysis one needs to know how many critical

sections each job accesses. Although this information is not

required using HSRP, it makes SIRAP superior to ONP.

HSRP accounts for a worst-case overrun in each component

period, while an actual overrun does not necessarily happen

each period. However, exposing a multi-set of resource-holding

times to the global schedulability test (similar to SIRAP) is

impossible for HSRP, because this breaks the independent

analysis of components due to the dependency of Gsort

si (t) on

the time values t in the testing set of the tasks in Ts.

Initially, SIRAP accounts for one self-blocking too much,

because of the ceiling operator in the definition of z(t) as part

of the self-blocking term. Since each element in the set Gsort

si (t)
is at most of length Xs, the only reason for HSRP to become

less pessimistic is when a self-blocking of approximately Xs

is deducted in each component period. In this case the ONP

analysis is more efficient.

We can conclude that SIRAP is always superior to ONP. In

those cases where ONP yields better results, then the ONP

analysis can be safely used to implement a SIRAP system.

Theorem 1: If a task set Ts is deemed schedulable on a

periodic resource Γs(Ps, Qs,Xs) using the ONP analysis, then

it is also feasible on a periodic resource Γ′
s(Ps, Qs +Xs,Xs)

using a SIRAP implementation.

Proof: The sufficient schedulability condition for a task

set Ts on a periodic resource Γs(Ps, Qs,Xs) is given by [14]:

∀τi ∈ Ts : ∃t ∈ (0, Dsi] : rbfs(t, i) + Isi(t) ≤ sbfΓs
(t), (13)

where rbfs(t, i) is defined in (11), sbfΓs
(t) is defined in (1)

and the exact construction of Isi(t) is given in the Appendix.

By definition it holds that ∀e ∈ Gsort

si (t) : e ≤ Xs. Hence, the

schedulability condition in (13) is implied by:

∀τi ∈ Ts : ∃t : rbfs(t, i) +
⌈

t
Ps

⌉

Xs ≤ sbfΓs
(t). (14)

Since within one budget period a self-blocking occurrence can

only happen at the end of a supply due to insufficient budget

to complete a critical section, we can remove the dependency

on t provided that we add Xs extra budget in each component

period. In other words, a conservative budget Q′ is:

Xs + (minQs : (∀τi ∈ Ts : ∃t : rbfs(t, i) ≤ sbfΓs
(t))) . (15)

The right-hand term of (15) is the same as schedulability

condition for ONP, see (10), which concludes our proof.

Given Theorem 1, we make it possible to integrate a

component validated by a standard analysis for SRP+FPPS into

the HSF, while using SIRAP for global resource arbitration.

Next, we derive an opaque analysis for OWP.

According to [15], [11], overrun with payback (OWP) has

additional pessimism at the local schedulability compared to

overrun without payback (ONP). Firstly, due to payback a

component may supply less resource within a component

period. Secondly, the payback increases the blackout duration

of a component. Should overrun with payback therefore be

considered obsolete based on these observations, or not?

V. SRP WITH BUDGET OVERRUNS: TO PAYBACK OR NOT?

We reconsider the problem of resource sharing across

budgets. Ghazalie and Baker [2] recognized that when tasks

access resources across their budget with the SRP, their budget

may deplete during resource access so that other components

may experience an excessive blocking duration. As a solution,

they proposed to overrun the budget Qs until the critical section

completes and they subsequently deduct the amount of overrun

from the next budget replenishment of the corresponding

component. Their (global) analysis corresponds to the analysis

in [3], [11] in the sense that we need to account for additional

interference to all other components due to an worst-case over-

provisioning of Xs budget which facilitates the overrun. This

results in the sufficient schedulability condition under global

FPPS of components, where the RBF(t, s) is defined in (8).

Qs Xs

(a)

Qs −Xs
BDs = 2(Ps −Qs) +Xs Qs

Qs Xs

(b)

BDs = 2(Ps −Qs)
Qs Qs −Xs

Qs

Ps Ps Ps

Figure 1. Worst-case characterization of the periodic processor supply for
SRP with mechanisms for overrun and payback, as presented in [11].

We now need to characterize the worst-case resource supply

to the tasks serviced by component Cs. Behnam et al. [11]

distinguish two cases to represent the worst-case processor

supply, see Figure 1. The worst-case scenario happens after

the first budget supply of Qs has overrun with an amount

of Xs. This leads to a payback in one of the subsequent

component periods. A payback in the second period, as shown

in Figure 1(a), means that (i) the amount of overrun Xs is

deducted from the next replenishment of Qs; and (ii) the next

replenishment of Qs is serviced as late as possible before the

deadline Ps. The longest blackout of the processor supply is

BDs = 2(Ps −Qs) +Xs.

Alternatively, the component may overrun its budget again in

the second period, see Figure 1(b), so that a payback happens

in the third period. The budget in the third period is again

supplied as late as possible, taking into account that there must

be enough time until the deadline to accommodate for another

overrun. Although this case has a smaller worst-case processor

blackout of BDs = 2(Ps −Qs), this is still pessimistic.

Since component deadlines are assumed to be equal to their

period Ps, it is sufficient to consider the response time of

the first activation of each component, see (8). Furthermore,

the schedulability test in (5) guarantees that an amount of

Qs +Xs budget can be provisioned within a period Ps. As a

consequence, the latest start time of that budget provisioning

is Ps − (Qs +Xs). This is independent of whether or not an

overrun has taken place, as shown in Figure 2.

We can now derive the following lemma:

6

Xs

(c)

Qs −Xs

Xs

(b)

Qs −Xs Qs

XsQs −Xs

BDs = 2(Ps −Qs)

BDs = 2(Ps −Qs)

Qs Xs

Qs Xs

(a)

Qs −Xs Qs

Ps Ps

BDs = 2(Ps −Qs)Qs Xs

Ps

Figure 2. The latest starting time of the processor supply in each period is
independent of whether or not an overrun takes place in that period.

Lemma 2: A component Cs following the periodic resource

model Γs(Ps, Qs,Xs), arbitrating global shared resource using

the OWP mechanism, cannot experience more than the regular

blackout duration of BDs = 2(Ps −Qs).
Proof: Following the periodic resource model [1], shown

in Figure 2, the latest time that a budget of at least Qs−Xs will

be provisioned is at time Ps−(Qs+Xs), because there must be

sufficient time between the finishing time of the normal budget

Qs and the period boundary Ps to accommodate for an overrun

situation. Hence, the Ps −Xs is an implicit deadline2 for the

normal budget Qs, so that the blackout for two consecutive

budget supplies is at most BDs = 2(Ps −Qs).
The result of this lemma is the same as the analysis derived

by Davis and Burns [3], although they do not support a

compositional analysis. Behnam et al. [11] came up with

an improved overrun method - called enhanced overrun - to

improve the blackout duration assumed by their initial analysis,

see Figure 3. They improve their analysis by postponing the

next replenishment of a component, i.e. contrary to Lemma 2

they postpone the start time of the budget provisioning.

However, their alternative (i) requires modifications in the

implementation of the overrun mechanism, since it alters the

periodicity of budget releases and (ii) still assumes a pessimistic

budget supply of at most Qs−Xs in an interval of length 2Ps.

Ps Ps

BDs = 2(Ps −Qs)

Ps

QsQs −Xs Qs

Xs

Figure 3. In [11] the extra blackout due to payback is reduced by introducing
a flexible release off set for budget Qs −Xs, i.e. the initial delay of Xs.

The latter source of pessimism is inherited from the analysis

by Davis and Burns [3], which considers the effect of push-

through blocking due to an overrun with payback. This effect is

shown in Figure 2(c), where a task arrives just after depletion

2Contrary to ONP, we cannot make this implicit deadline explicit for OWP
by applying the EDP model [18], because this would further reduce the
blackout duration to BDs = 2(Ps −Qs)−Xs; this is obviously optimistic.

of budget Qs −Xs. Although the task is pushed through to

the next budget replenishment, the blackout duration of the

processor supply remains BD = 2(Ps−Qs). Using the periodic

resource model [1], however, we already assume an initial delay

of BDs followed by a periodic supply of a budget of size Qs.

We already observed that the overrun budget Xs is merely

for global reasons, because the task set does not need an extra

budget of Xs, i.e. it is already feasible with a budget of Qs

every period Ps. The remaining question is: given that a fixed-

priority-scheduled task set using a plain SRP-based resource

arbitration is schedulable on a periodic resource Γs(Ps, Qs,Xs),
is there any task that may experience insufficient budget after

a payback of at most Xs budget?

The analysis by Behnam et al. [11] is based on the point of

view that the minimum resource supply in an interval of length

Ps must be assumed to be equal to Qs − Xs, as suggested

by Figure 1. We will show that the model in [11] is indeed

overly complex and pessimistic. The main reasoning behind

this claim is that the task set as a whole actually receives Qs

budget in an interval of length Ps, but the individual resource

supply to a task activation has changed. An overrun advances

exactly the amount of budget of at most Xs to complete the

critical section. The task activations that have consumed this

overrun cannot claim again processor time in the next budget

supply, so that a potential subsequent overrun cannot be caused

by them. The overrun budget in Figure 2 is grid-marked to

indicate its partial availability.

Lemma 3: Given that a fixed-priority-scheduled task set

Ts under SRP-based resource arbitration is schedulable on a

periodic resource Γs(Ps, Qs,Xs), a task τsi ∈ Ts cannot miss

its deadline when adding an overrun with payback mechanism.

Proof: We only need to consider the case where an overrun

situation has taken place subsequently causing a payback at

the next budget replenishment. In other situations the resource

supply is unchanged compared to the sbfΓs
for independent

components, see (1).

We observe that an overrun situation can only be caused by

a resource lock by any of the tasks τsi ∈ Ts. Assume that task

τsi locks resource Rl, so that the component ceiling is at least

equal to the resource ceiling rcsl. Furthermore, budget Qs

depletes during resource access. This means that component

Cs may overrun its normal budget Qs for at most an amount

of Xsl processor time, which allows to complete the critical

section initiated by task τsi.

We proof by contradiction that no task τsj ∈ Ts will miss

a deadline due to the payback of Xsl budget at the next

replenishment of the normal budget Qs, i.e. assume that there

exists a task τsj ∈ Ts that will miss a deadline after an overrun.

We tackle this proof obligation by distinguishing four cases:

tasks that may preempt the critical section (j < rcsl), tasks

that are blocked during the critical section (rcsl ≤ j < i), the

resource-locking task τsi itself (i = j) and tasks that have a

lower priority than the resource-locking task (i < j).

1) j < rcsl: these tasks may preempt the critical section.

Moreover, these tasks contribute to the length of Xsl for at most

a single preemption (Lemma 1). This means that if the task

7

arrives after depletion of Qs and an overrun takes place, then it

will execute in the overrun budget. Contrary to the assumptions

in [11], these task will actually consume the overrun budget

when it is available. An activation of task τsj which consumes

Csj of overrun budget cannot request the same amount of

budget in the next budget period Ps, because it has already

finished its execution during the overrun. And vice versa: if an

activation of task τsj requests for Csj of normal budget, then it

did not execute during a possible overrun in the previous budget

period. An overrun in the previous period could therefore have

at most a length of Xsl − Csj . If Csj of the overrun has not

been consumed, then the next budget supply will also not

be reduced with this amount of payback. Thus, the resources

requested by the current activation of task τsj , i.e. Csj , will

be available before task τsj will miss a deadline. Hence, no

higher priority task τsj where j < rcsl will miss a deadline

due to a payback.

2) rcsl ≤ j < i: these tasks are blocked during the critical

section by the resource ceiling. When we do not advance the

overrun budget Xsl compared to plain SRP-based resource

arbitration, these tasks are schedulable. The reason for this is

that the blocking duration of at most Xsl is already accounted

in the rbfs(t, j) of task τsj . A new periodic supply cannot

start with local blocking, because blocking should already start

in the previous provisioning and use the overrun (if needed).

Hence, OWP does not cause a deadline miss for any of the

tasks τsj that are blocked by the resource-accessing task τsi.

3) i = j: for the resource locking task τsi itself the same

reasoning holds as for the first case: it either consumes an

amount of hsil of the overrun budget in the previous budget

period or it consumes hsil from the normal budget Qs in the

current budget period. Both cases are mutually exclusive and

cannot cause a deadline miss.

4) i < j: these tasks have a lower priority than the resource-

locking task and have already accounted Xsl as interference in

their rbfs(t, j). Hence, similarly to case 3, these tasks cannot

assume that any budget would be immediately available after

replenishment of Qs in case of plain SRP-arbitration. The

overrun with payback mechanism does therefore not cause a

deadline miss to any of the tasks τsj where i < j.

By contradiction we have shown that advancing the resource

supply of Xs due to overrun with payback does not hamper

the schedulability of task set Ts compared to plain SRP-based

resource arbitration.

From both Lemma 2 and Lemma 3 we directly obtain the

following result:

Theorem 2: The local schedulability analysis for a task-

set Ts on an SRP+fixed-priority-scheduled periodic resource

Γs(Ps, Qs,Xs) can be applied when arbitrating global shared

resources using overrun with payback (OWP).

We believe this theorem yields an interesting result, because

it shows that the local schedulablity analysis of overrun with

and without payback are exactly the same. In particular, we

can reuse the sufficient schedulability condition for ONP as

presented in (10).

Finally, we answer the main question of this section:

to payback or not? The global schedulability analysis for

components arbitrated by overrun with payback is unchanged

and was already considerably better than the global analysis of

overrun without payback. In addition, we have improved the

local schedulability analysis, such that there is no difference

between ONP and OWP. Hence, there is no reason to deploy

overrun without a payback mechanism from a compositional

schedulability perspective.

VI. OPAQUE ANALYSIS: EFFICIENCY VS ABSTRACTION

In this section we define the notion of an opaque analysis.

Definition 1: An opaque analysis provides a sufficient

schedulability condition for a task set Ts. Even under global

resource sharing, it uses an unmodified processor supply

abstraction sbfΓs
(t) as in (1) and an unmodified processor

request bound for all tasks in Ts compared to their analysis

on a dedicated processor, i.e. rbfs(t, i) as in (11).

This definition makes it possible to compare the different syn-

chronization protocols at the same abstraction level. Moreover,

given an opaque analysis for SIRAP, OWP and ONP, we can

defer the selection of a global synchronization protocol until

component-integration time. We first investigate what analytical

opacity means. Secondly, we investigate what opacity means

for a component programmer.

A. Opacity from an analytical perspective

For the ONP and OWP, it is sufficient to know the maximum

resource holding time, Xsl, of an unspecified access to resource

Rl. Contrary to SIRAP, this information is independent of the

time values inspected for the local schedulability analysis and

the number of accesses to a resource by a job.

The ONP analysis has been improved in [19] by introducing

an explicit deadline using the EDP model for the budget supply.

However, since this deadline modifies the processor supply sbf

based on the value of Xs, this analysis violates our definition of

opacity. The same holds for the enhanced overrun in [11], which

we consider obsolete based on our new OWP analysis. Table I

gives an overview of analysis methods for global resource

sharing in HSFs based on their opacity compliance.

Table I
OVERVIEW OF THE SYNCHRONIZATION PROTOCOL’S SUPPORT FOR

INTEGRATING COMPONENTS INTO THE HSF WITH OPAQUE ANALYSIS.

Analysis Opacity

BROE [10] yes
HSRP - overrun without payback (ONP) [3] no
HSRP - overrun without payback (ONP) [11] yes
Enhanced overrun [11] no
Improved overrun without payback (IONP) [19] no
HSRP - overrun with payback (OWP) [3], [11] no
SIRAP [4], [14] no

We showed that ONP provides an opaque analysis for SIRAP

and we proposed an opaque OWP analysis.

B. Opacity from a programmer’s perspective

For a programmer, opacity serves two purposes. Firstly,

a component may use logical resources for which exclusive

local usage or global usage is determined upon component

8

integration [20]. From an opacity perspective [20], i.e. neither

the environment nor other components can modify a compo-

nent’s code, unified primitives may be desirable to access local

and global resources. The actual binding of function calls to

the synchronization primitives that arbitrate either global or

local resource access can be done at compile time or when the

component is loaded into the framework. This dynamic binding

of primitives makes it possible to decouple the specification

of global resources from their use in the implementation.

Secondly, a component may require external resources in

the component’s code. Opacity abstracts that the resource is

global to the component during development. Since accessing

global resources may block tasks in other components, a

programmer must specify any required global resource. The

system integrator cannot perform the global schedulability

analysis without a valid upper bound on the resource holding

times Xsl of each component Cs that shares resource Rl.

Only during integration time, however, one actually knows

whether or not the global resources specified in the timing

interface are globally shared, i.e. if resource Rl is not shared

by any other component, then resource Rl can be considered

as a local shared resource. If we have chosen the SIRAP

analysis to analyze global resource arbitration, then we need

to redo the local schedulability analysis at integration time

to make use of the fact that Rl is a local resource. With the

ONP analysis, which provides an upper bound for SIRAP, it

is unnecessary to redo the local analysis, because the local

analysis presented in (11) is compliant with local SRP. An

opaque analysis therefore facilitates an abstraction for global

resources sharing during component development.

VII. EVALUATION

This section evaluates the budgets allocated by the periodic

resource model under different protocols for global synchro-

nization. We look for the percentage of schedulable task sets.

Contrary to [15], [11], [14] where a protocol is chosen at the

system level, we investigate for which task-characteristics a

particular analysis method is better, i.e. at the component level.

From these results, we may later derive which protocol matches

the best with given system characteristics.

For each components the task periods Tsi are uniformly

drawn from the interval [140, 1000]. We assume deadlines

equal to periods, i.e. Tsi = Dsi and we assign deadline

monotonic priorities to tasks. The individual task utilizations

usi are generated using the UUnifast algorithm [21]. Using the

task’s utilization usi and the randomly generated period Tsi,

we can derive the worst-case execution time Csi of a task τsi,

i.e. Csi = usi × Tsi. All tasks access a single global resource

for a random duration between 0.1× Csi and 0.25× Csi. In

each simulation study a new set of 1000 systems is generated

and the following settings are changed:

1) Component utilization: The utilization of a component

U(T) is varied within a range of [0.05, 1.0] using

incremental steps of 0.05, see Figure 4.

2) Component periods: The period of the periodic resource

Ps is varied within a range of [5, 70] with incremental

steps of 5, see Figure 5.

For comparison purposes we included the results for the

improved local analysis of ONP [19], i.e. IONP. Both exper-

iments show that the different overrun methods have little

impact on the local schedulability of a task set on a periodic

resource. The main reason for this is the constraint that the

calculated budget Qs and the overrun budget Xs have to fit

within period Ps, i.e. we applied the constraint Qs +Xs ≤ Ps.

For SIRAP, we require that Xs ≤ Qs. Due to this constraint,

SIRAP’s performance is suppressed for small resource periods.

However, both figures show the cost of an opaque analysis in

the context of two-level FPPS-based HSFs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a
ti
o
 o

f
fe

a
s
ib

le
 t
a
s
k
 s

e
ts

Utilization (U(Τ))

SIRAP
IONP

ONP = IOWP
OWP

Figure 4. Ratio of schedulable task sets versus the utilization, where the
component period is Ps = 40 and the number of tasks is ns = 8.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

R
a
ti
o
 o

f
fe

a
s
ib

le
 t
a
s
k
 s

e
ts

Component period (Ps)

SIRAP
IONP

ONP = IOWP
OWP

Figure 5. Ratio of feasible task sets as a function of the component period,
where the number of tasks is ns = 8 and the utilization U(T) = 0.4.

The constraint, Qs +Xs ≤ Ps, is the main weakness for all

overrun variants, determined by the ratio Xs

Ps
. This ratio can

be increased by increasing the utilization (Figure 4), choosing

smaller resource periods (Figure 5), decreasing the number

of tasks (ns) or by increasing the range of the task periods.

When keeping the utilization U(T) constant, the last two

alternatives result in larger computation times and resource

access times. Since Xs is computed from a fixed fraction of

the tasks’ computation times, this increases the Xs

Ps
ratio. We

9

leave the remaining experimental results out of this paper due

to space constraints. Since OWP performs equally well as ONP

at the local level, and the global schedulability is superior for

OWP compared to ONP, OWP is prefered above ONP.

Note that the non-opaque IONP analysis in [19] may slightly

improve on IOWP and ONP. However, the global analysis for

OWP is always better than or equal to the global analysis of

ONP. This gives an advantage to ONP when both integration

tests in (6) and (8) yield the same result, i.e. when all component

periods are chosen approximately the same, so that also OWP

accounts for an overrun in each component period.

VIII. RECOMMENDATIONS AND CONCLUSIONS

This paper introduced the notion of opaque analysis for

resource sharing components that need to be integrated on

a single processor platform. An opaque analysis makes it

possible to defer the choice for a resource-sharing protocol

until component integration time. Although SIRAP’s analysis

is not opaque, we can use overrun without payback (ONP)

as a conservative and opaque alternative. We can obtain a

tighter schedulability analysis using SIRAP’s analysis, if we

are provided a task-set’s detailed timing information. Finally,

we also provided an opaque analysis for overrun with payback

(OWP), which dominates the opaque ONP. Only when all

component periods are almost the same, a non-opaque ONP

may take advantage over OWP.

REFERENCES

[1] I. Shin and I. Lee, “Compositional real-time scheduling framework with
periodic model,” ACM Trans. on Embedded Computing Systems, vol. 7,
no. 3, pp. 1–39, 2008.

[2] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline
scheduling environment,” Real-time Syst., vol. 9, no. 1, pp. 31–67, 1995.

[3] R. Davis and A. Burns, “Resource sharing in hierarchical fixed priority
pre-emptive systems,” in Real-Time Systems Symp., 2006, pp. 257–267.

[4] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchronization
protocol for hierarchical resource sharing in real-time open systems,” in
Conf. on Embedded Software, Oct. 2007, pp. 279–288.

[5] T. Baker, “Stack-based scheduling of realtime processes,” Real-Time

Syst., vol. 3, no. 1, pp. 67–99, March 1991.
[6] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:

an approach to real-time synchronisation,” IEEE Trans. on Computers,
vol. 39, no. 9, pp. 1175–1185, Sept. 1990.

[7] Z. Deng and J.-S. Liu, “Scheduling real-time applications in open
environment,” in Real-Time Systems Symp., Dec. 1997, pp. 308–319.

[8] T.-W. Kuo and C.-H. Li, “A fixed-priority-driven open environment for
real-time applications,” in Real-Time Systems Symp., 1999, pp. 256–267.

[9] G. Lipari and S. Baruah, “Efficient scheduling of real-time multi-
task applications in dynamic systems,” in Real-Time Technology and

Applications Symp., May 2000, pp. 166–175.
[10] M. Bertogna, N. Fisher, and S. Baruah, “Resource-sharing servers for

open environments,” IEEE Trans. on Industrial Informatics, vol. 5, no. 3,
pp. 202–219, Aug. 2009.

[11] M. Behnam, T. Nolte, M. Sjodin, and I. Shin, “Overrun methods and
resource holding times for hierarchical scheduling of semi-independent
real-time systems,” IEEE Trans. on Industrial Informatics, vol. 6, no. 1,
pp. 93–104, Feb. 2010.

[12] M. Caccamo and L. Sha, “Aperiodic servers with resource constraints,”
in Real-Time Systems Symp., Dec. 2001, pp. 161–170.

[13] P. Holman and J. Anderson, “Locking in pfair-scheduled multiprocessor
systems.” in Proc. Real-Time Systems Symp., Dec. 2002, pp. 149–158.

[14] M. Behnam, T. Nolte, and R. J. Bril, “Bounding the number of self-
blocking occurrences of sirap,” in Real-Time Systems Symp., Dec. 2010.

[15] M. Behnam, T. Nolte, M. Åsberg, and R. J. Bril, “Overrun and skipping
in hierarchically scheduled real-time systems,” in Conf. on Embedded

Real-Time Computing Systems and Applications, Aug. 2009, pp. 519–526.

[16] L. Almeida and P. Peidreiras, “Scheduling with temporal partitions:
response-time analysis and server design,” in Conf. on Embedded

Software, Sept. 2004, pp. 95–103.
[17] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and

resource hold times,” in Parallel and Distributed Processing Symp., 2007.
[18] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework

using EDP resource models,” in Real-Time Sys. Symp., 2007, pp. 129–138.
[19] M. Behnam, T. Nolte, and R. J. Bril, “Tighter schedulability analysis

of synchronization protocols based on overrun without payback for
hierarchical scheduling frameworks,” in Conf. on Engineering of Complex

Computer Systems, April 2011.
[20] P. López Martinez, L. Barros, and J. Drake, “Scheduling configuration of

real-time component-based applications,” in Reliable Softw. Technology -

Ada-Europe, ser. LNCS. Springer, 2010, vol. 6106, pp. 181–195.
[21] E. Bini and G. Buttazzo, “Biasing effects in schedulability measures,”

in Euromicro Conf. on Real-Time Systems, July 2004, pp. 196–203.

APPENDIX

CONSTRUCTING SELF-BLOCKING SETS

For the SIRAP analysis [14] we need to construct a multi-

set Gsort

si (t) of self-blocking durations that a task τsi may

experience in a time interval of length t. The self-blocking

term Isi of a task τsi is defined as follows:

Isi(t) =
∑

1≤l≤z(t)

Gsort

si (t)[l], (16)

where z(t) =
⌈

t
Ps

⌉

defines an upper bound to the number of

self-blocking occurrences within a time interval of length t and

Gsort

si (t) defines an multi-set (i.e. a set including duplicates

of values Xsil) of self-blocking lengths that a task τsi may

experience by itself and other tasks τsj in the same component.

This multi-set contains the extra blocking that a task may

suffer due to self-blocking by lower priority tasks:

I lowsi = max(0,max{Xsjl | i < j ∧Xsjl > 0 ∧ rcl ≤ i}). (17)

In addition, the multi-set contains the self-blocking durations

of task τsi itself and the interference caused by self-blocking

of higher priority tasks, so that we can define the multi-set

Gsi(t) as follows [14]:

Gsi(t) = {I lowsi }∪

⋃

(1≤j≤i)

⋃

(

1≤k≤
⌈

t
Tsj

⌉)

⋃

(Rl∈Rs)

⋃

(1≤a≤msjl)

{Xsjl}

. (18)

The term
⋃

(j≤i) iterates over all tasks τsj with an higher

priority than task τsi and includes the self-blocking by task

τsi itself when i = j; the term
⋃

(

1≤k≤
⌈

t
Tsj

⌉) considers all

activations of task τsj in an interval of length t; the term
⋃

(Rl∈Rs)
considers all resources Rl accessed by task τsj

and, finally, the term
⋃

(1≤a≤msjl)
iterates over the number of

resource accesses to resource Rl by task τsj . In other words:

during each job-activation a task τsj may accesses a shared

resource Rl for msjl times and it can self-block at any of these

attempts. Finally, we sort the values in the multi-set Gsi(t)
in non-increasing order, resulting in the multi-set Gsort

si (t).
Equation (16) contributes a number of z(t) largest self-blocking

occurrences that a task τsi may experience in an interval of

length t, i.e. the first z(t) elements of Gsort

si (t).

10

	CRTS2011Preface
	Binder1.pdf
	CRTSKeynote.pdf
	2_Final_Manuscript
	7_Final_Manuscript
	9_Final_Manuscript
	1_Final_Manuscript
	6_Final_Manuscript
	4_Final_Manuscript

