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Preface

Process industry has confronted a major change in the market during the past
decades. World wide competition has drastically increased and environmental
legislation has been tightened severely on the consumption of natural resources.
Market driven operation in process industry has in addition confronted further
complicating factors related to hard operating constraints imposed upon pro-
duction sites in terms of required reduction of consumption of energy and ma-
terials. The environmental constraints imposed by legislation has in addition
resulted in a significant increase of process complexity and costs of production
equipment. More advanced process support systems will therefore be requi-
red to exploit the freedom available in process operation. This thesis presents
an example of a model based control technology that can be used to support
process operation in the most flexible way, in accordance with market require-
ments.

The model predictive control technology is used to steer processes closer to
their physical limits in order to obtain a better economic result. This is perhaps
one of the most appealing and attractive approaches in industrial process con-
trol practice. Despite of its importance, various problems associated with this
subject still remain unsolved, providing respectful challenges for researchers.
There is a wide spectrum of essential issues to be investigated in the area of
process control. This thesis represents an attempt to light up several aspects
related to the model predictive control approach for nonlinear processes. It is
my hope that this work will have some impact on further research in this field
as well as the industrial practice.

There are many people who have contributed to my work in different ways
and who deserve my deep gratitude. First of all I would like to thank my
supervisor Prof. Ton Backx for his continuous support during these four years.
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other colleagues and professors.

I want to express my gratitude to Dr. Siep Weiland who provided a unique
support, not only during the entire work on this PhD thesis, but also during
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instructive comments and suggestions. I would also like to thank Prof. Okko
Bosgra who kindly agreed to be my second promotor and provided a lot of
suggestions for the final version of my thesis.
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support and understanding. I would not have passed through the last two years
without her.

Andrey Tyagunov
Eindhoven, April 2004



Abstract

Process industry requires now accurate, efficient and flexible operation of the
plants. There is always a need for development of innovative technologies and
integrated software tools for process modelling, dynamic trajectory optimiza-
tion and high-performance industrial process control. Process dynamics tend
to become too complex to be efficiently controlled by the current generation of
control and optimization techniques. The main goal of research in this thesis
was the development of advanced process control technology and its implemen-
tation in an integrated real-time software environment. The research was done
as part of the international European project: “INtegration of process COntrol
and plantwide OPtimization” (INCOOP).

The only advanced control technology which made a significant impact on
industrial control engineering is model predictive control (MPC). Specifically,
the research in this thesis is focused on MPC for nonlinear processes. Nonlinear
MPC optimizations become computationally expensive to be solved in real-
time. This thesis presents various MPC algorithms for nonlinear plants using
successive linearizations. The prediction equation is computed via nonlinear
integration. Local linear approximation of the state equation is used to develop
an optimal prediction of the future states. The output prediction is made linear
with respect to the undecided control input moves, which allows to reduce the
MPC optimization to a quadratic programming problem (QP).

It is shown that the constrained QP problem can be solved in various ways.
First of all, one can use the model equations to eliminate the states, thus re-
ducing the number of variables in the optimization. However, this makes the
problem formulation dense. Solving QPs with these methods typically requires
a computational time that increases with the third power of the number of opti-
mization variables. The constrained optimization programs tend to become too
large to be solved in real-time when these standard QP solvers are used. Many
industrial examples show that large-scale, usually stiff, nonlinear systems may
require long prediction horizons to fulfill certain performance specifications.
These requirements increase the number of variables in the optimization. Nai-
ve implementations of standard QP solvers could be inefficient for such MPC
problems. A structured interior-point method (IPM) has been developed in this
thesis to solve the MPC problem for large-scale nonlinear systems to reduce the
computational complexity. The developed optimization algorithm explicitly ta-
kes the structure of the given problem into account such that the computational
cost varies linearly with the number of optimization variables, compared with
the cubic growth for the standard QP solvers. The algorithm also easily allows
to introduce multiple linear models, thus making the control more flexible. The
state elimination was not carried out and the structure given by the dynamics
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of the plant reflected in the Karush-Kuhn-Tucker (KKT) equations that were
used to solve the QP using an interior-point method. The structured IPM was
implemented using primal-dual Mehrotra’s algorithm including prediction, cor-
rection and centering steps. The optimization variables consist of the inputs
and the states over the horizon, but the optimization problem becomes sparse
to allow computational time reduction, which is an important issue for on-line
implementations of MPC for nonlinear stiff systems.

In this thesis the effectiveness of the structured IPM based model predictive
controller was demonstrated on several industrial chemical processes, e.g. a
continuous stirred tank reactor and a stiff nonlinear batch reactor. These types
of systems are usually represented by dynamics with time constants of different
magnitude. A range of control problems, such as reference tracking, process
start-up and disturbance rejection, has been efficiently solved in this thesis by
the proposed high-performance MPC controller. The controller has also been
successfully tested as part of the INCOOP’s integrated process control and
optimization software environment.
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Introduction

1.1 Process industry perspective
1.2 Model Predictive Control

overview
1.3 Industrial technology
1.4 Receding horizon strategy

1.5 Integration of process
control and plantwide
optimization

1.6 Objectives and main
results of the thesis

1.1 Process industry perspective

Process industry has confronted a major change in the market during the past
decades. World wide competition has drastically increased and environmental
legislation has been tightened severely on the consumption of natural resources.
Market driven operation in process industry has in addition confronted further
complicating factors related to hard operating constraints imposed upon pro-
duction sites in terms of required reduction of consumption of energy and ma-
terials. The environmental constraints imposed by legislation has in addition
resulted in a significant increase of process complexity and costs of production
equipment. More advanced process support systems will therefore be required
to exploit the freedom available in process operation. Many of the process in-
dustries are still operating their production facilities in a supply driven mode.
This implies that no direct connection exists in these companies between actual
market demand and actual production. Products are often produced cyclically
in fixed sequences.

One of the major reasons for the changes is globalization of the market.
Globalization is one of the results of the recent developments in the fields
of telecommunication, transportation and advanced automation, which have
emerged from the rapid developments in electronics, computer and information
technology. As a consequence process industry has nowadays confronted a
strongly competitive environment. The market has developed from a supplier
driven market to a demand driven market. These changes have far reaching
consequences for producers. The market requires producers to respond quickly
and reliably to product demands. Products have to be delivered with short
notice in strictly defined time windows at the right quality and in the requested
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volume. The competition between product suppliers is heavy in a saturated
market. If products meet imposed specifications, price will become the main
discriminating factor to get a customer to decide to buy the product from a
given supplier. After optimization of production, costs will level off at some
minimum that can hardly be further reduced without a further improvement
of the applied production processes.

In order to prepare for these drastic changes, tight control of the production
processes over a broad operating range is needed. Process operation has to
enable a completely predictable and reproducible operation with changeover
between different operating points that correspond to the production of various
product types under different economic objectives (minimize costs, maximize
production rate, minimize stock, benefit from fluctuating prices, etc.). The
strategy that results in the most profitable conditions has to be selected from
a variety of potential operating scenarios to produce the desired product type.
This decision is based on a thorough understanding of both process behavior
and process operation. The freedom, available in process operation, must be
used to predictably produce precisely what is required in terms of quality,
volume and time with the best achievable business result.

This thesis presents an example of a model based control technology that
can be used to support process operation in the most flexible way, in accordance
with market requirements. The model predictive control technology is used
to steer processes closer to their physical limits in order to obtain a better
economic result.

1.2 Model Predictive Control overview

1.2.1 Introduction

The MPC research literature is large, but review papers have appeared at regu-
lar intervals. Theoretical and practical issues associated with MPC technology
are summarized in several recent articles. The three MPC papers presented at
the CPC conference in 1996 are an excellent starting point [45, 54, 73]. Qin
and Badgwell [73] present a brief history of MPC technology and a survey of
industrial MPC algorithms and applications that practitioners may find par-
ticularly useful. Meadows and Rawlings summarize theoretical properties of
MPC algorithms in [59]. Morari and Lee discuss the past, present, and future
of MPC technology in their recent review [64]. Kwon provides a very extensive
list of references [42]. A more recent overview of MPC theory development
can be found in [25]. Moreover, several excellent books have appeared re-
cently [65, 86, 8]. The status of industrial MPC for nonlinear plants is covered
in the proceedings of the 1998 conference [2].

The success of MPC technology as a process control paradigm can be at-
tributed to three important factors. First and foremost is the incorporation
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of an explicit process model into the control calculation. This allows the con-
troller, in principle, to deal directly with all significant features of the process
dynamics. Secondly the MPC algorithm considers plant behavior over a future
horizon in time. This means that the effects of feedforward and feedback dis-
turbances can be anticipated and removed, allowing the controller to drive the
plant more closely along a desired future trajectory. Finally the MPC controller
considers process input, state and output constraints directly in the control cal-
culation. This means that constraint violations are far less likely, resulting in
tighter control at the optimal constrained steady-state for the process. It is
the inclusion of constraints that most clearly distinguishes MPC from other
process control paradigms.

Though manufacturing processes are inherently nonlinear, the vast major-
ity of MPC applications to date are based on linear dynamic models, the most
common being step and impulse response models derived from the convolution
integral. There are several potential reasons for this. Linear empirical models
can be identified in a straightforward manner from process test data. In ad-
dition, most applications to date have been in refinery processing [73], where
the goal is largely to maintain the process at a desired steady-state (regula-
tor problem), rather than moving rapidly from one operating point to another
(servo problem). A carefully identified linear model is sufficiently accurate in
the neighborhood of a single operating point for such applications, especially
if high quality feedback measurements are available. Finally, by using a lin-
ear model and a quadratic objective, the nominal MPC algorithm takes the
form of a highly structured convex Quadratic Program (QP), for which reliable
solution algorithms and software can easily be found [98]. This is important
because the solution algorithm must converge reliably to the optimum in no
more than a few tens of seconds to be useful in manufacturing applications.
For these reasons, in many cases a linear model will provide the majority of
the benefits possible with MPC technology.

Nevertheless, there are cases where nonlinear effects are significant enough
to justify the use of NMPC technology. These include at least two broad
categories of applications:

• Regulator control problems where the process is highly nonlinear and
subject to large frequent disturbances (pH control, etc.).

• Servo control problems where the operating points change frequently and
span a sufficiently wide range of nonlinear process dynamics (polymer
manufacturing, ammonia synthesis, etc.).

1.2.2 Nonlinear models

Many processes are nonlinear with varying degrees of severity. Although in
many situations the process will be operating in the neighborhood of a steady
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state, and therefore a linear representation will be adequate, there are some
very important situations where this does not occur. On one hand, there are
processes for which the nonlinearities are so severe (even in the vicinity of steady
states) and so crucial to the closed loop stability, that a linear model is not
sufficient. On the other hand, there are processes that experience continuous
transitions (start-ups, shutdowns, etc.) and spend a great deal of time away
from a steady-state operating region, or never reach steady-state operation as is
the case of batch processes where the whole operation is carried out in transient
mode.

For these processes a linear control law will not be very effective, so nonlin-
ear controllers will be essential for improved performance or simply for stable
operation. There is nothing in the basic concepts of MPC against the use of a
nonlinear model. Therefore, the extension of MPC ideas to nonlinear processes
is straightforward at least conceptually. However, this is not a trivial matter,
and there are many open issues (see [11]), such as:

• The availability of nonlinear models due to the lack of identification tech-
niques for nonlinear processes.

• The computational complexities for solving the model predictive control
of nonlinear processes.

• The lack of stability and robustness results for the case of nonlinear sys-
tems.

Some of these problems are partially solved and MPC, with the use of
nonlinear models, is becoming a field of intense research and will become more
common as users demand higher performance.

Developing adequate nonlinear empirical models may be very difficult and
there is no model form that is clearly suitable to represent general nonlinear
processes. Part of the success of standard MPC was due to the relative ease
with which step and impulse responses or low order transfer functions could
be obtained. Nonlinear models are much more difficult to construct, either
from input/output data correlation or by the use of first principles from well
known mass and energy conservation laws. A major mathematical obstacle to a
complete theory of nonlinear processes is the lack of a superposition principle for
nonlinear systems. Because of this, the determination of models from process
input/output data becomes a very difficult task. The amount of plant tests
required to identify a nonlinear plant is much higher than that for a linear
plant.

A nonlinear model inside the MPC controller can be represented in state
space form (see, for example [73, 76]):

Px = f(x, u)
y = g(x)
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u ∈ U

x ∈ X,

where P = d
dt for continuous time and P is the forward shift Px(k) = x(k + 1)

for discrete time, u is input, x is state, y is output, all assuming (real) values
in some finite dimensional vector space. If the model is nonlinear, there is no
advantage in keeping the constraints as linear inequalities, so we consider the
constraints as membership in more general regions U, X.

The use of nonlinear models in MPC is motivated by the possibility to
improve control by improving the quality of the forecasting. The basic fun-
damentals in any process control problem—conservation of mass, momentum
and energy, considerations of phase equilibria, relationships of chemical ki-
netics, and properties of final products—all introduce nonlinearity into the
process description. In which settings use of nonlinear models for forecasting
delivers improved control performance is an open issue, however. For continu-
ous processes maintained at nominal operating conditions and subject to small
disturbances, the potential improvement would appear small. For processes
operated over large regions of the state space—semi-batch reactors, frequent
product grade changes, processes subject to large disturbances, for example—
the advantages of nonlinear models appear larger.

1.2.3 Theoretical developments for nonlinear MPC

In principle the NMPC method is limited to those problems for which a global
optimal solution to the dynamic optimization can be found between one con-
trol execution and the next. With a linear model and a quadratic objective,
the resulting optimization problem takes the form of a highly structured con-
vex Quadratic Program (QP) for which there exists a unique optimal solution.
Several reliable standard solution codes are available for this problem. Intro-
duction of a nonlinear model leads, in the general case, to a loss of convexity.
This means that it is much more difficult to find a solution, and once found,
it cannot be guaranteed to be globally optimal. For both cases, recent re-
search efforts are aimed at exploiting the structure to improve the efficiency
and reliability of solution codes [98].

Stability

The early major contribution to receding horizon (model predictive) control for
nonlinear systems was the demonstration by Keerthi and Gilbert [39] that, for
time-varying, constrained, nonlinear, discrete-time systems, the addition of a
terminal stability constraint x(k + N |k) = xs to the open-loop optimal control
problem ensures that, under mild conditions, the resultant receding horizon
controller is stabilizing. This result is a significant generalization of the earlier
linear results.
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It is interesting to note that some of the very first MPC papers describe
ways to address nonlinear process behavior while still retaining a linear dynamic
model in the control algorithm. Richalet et al. [79], for example, describe how
nonlinear behavior due to load changes in a steam power plant application was
handled by executing their Identification and Command (IDCOM) algorithm
at a variable frequency. Prett and Gillette [72] describe applying a Dynamic
Matrix Control (DMC) algorithm to control a fluid catalytic cracking unit.
Model gains were obtained at each control iteration by perturbing a detailed
nonlinear steady-state model.

Recent research efforts on the problem of stability of NMPC with a perfect
model (the so-called nominal stability problem) has produced three basic solu-
tions (outlined in [1]). The first solution, proposed by Keerthi and Gilbert [39],
involves adding a terminal state constraint to the NMPC algorithm of the form:
x(k + N |k) = xs. With such a constraint enforced, the objective function for
the controller becomes a Lyapunov function for the closed loop system, leading
to nominal stability. Unfortunately such a constraint may be quite difficult to
satisfy in real time; exact satisfaction requires an infinite number of iterations
for the numerical solution code. This motivated Michalska and Mayne [61]
to seek a less stringent stability requirement. Their main idea is to define a
neighborhood W around the desired steady-state xs within which the system
can be steered to xs, by a constant linear feedback controller. They add to
the NMPC algorithm a constraint of the form: (x(k + N |k)− xs) ∈ W. If the
current state x(k) lies outside this region then the NMPC algorithm is solved
with the above constraint. Once inside the region W the control switches to
the previously determined constant linear feedback controller. Michalska and
Mayne describe this as a dual-mode controller.

A third solution to the nominal stability problem, described by Meadows et
al. [58], involves setting the prediction horizon and control horizons to infinity.
For this case the objective function also serves as a suitable Lyapunov function,
leading to nominal stability. They demonstrate that if the initial NMPC calcu-
lation has a feasible solution, then a feasible solution exists at each subsequent
time step.

Infinite horizon NMPC

In linear MPC, infinite horizons (approximated by very large horizons) are in
many cases a practical route to achieving stability as there exist very efficient
ways to solve the corresponding huge quadratic programming problems. For
nonlinear problems, on the other hand, the solution of such large optimization
problems is extremely difficult if not impossible to obtain. Therefore finite
horizons are indispensable in NMPC and infinite horizon NMPC only plays a
role as a conceptual theoretical method.

In principle, it would be desirable to have a controller design procedure
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that would allow to determine stabilizing prediction and control horizons for
an NMPC setup based on the plant model and the chosen stage cost. This
problem is, however, very difficult and has not yet been solved. There are
even no analysis methods available that permit to analyze closed loop stability
based on knowledge of the plant model, the objective functional and the horizon
lengths.

Nevertheless, there are possibilities to achieve closed loop stability despite
the fact that this property cannot be analyzed. The idea behind these ap-
proaches is to modify the NMPC setup such that stability of the closed loop
can be guaranteed independent of the choice of the horizon length, independent
of the choice of the stage cost and for any plant to be controlled. This is usu-
ally achieved by adding suitable equality or inequality constraints (and possibly
suitable additional terms to the cost functional) to the setup. These additional
constraints are not motivated by physical restrictions or desired performance
requirements but have the sole purpose of enforcing stability of the closed loop.
Therefore, they are usually termed stability constraints [54, 55]. NMPC for-
mulations with a modified setup to achieve closed loop stability independent
of the choice of the performance parameters in the cost functional are usually
labelled NMPC approaches with guaranteed stability. A well-known control
method with guaranteed stability is the standard linear quadratic regulator
(LQR) that also achieves closed loop stability independent of the choice of the
positive definite weighting matrices in the quadratic cost functional [37].

NMPC with zero state terminal equality constraint

The most widely suggested NMPC scheme with guaranteed stability utilizes
a stability constraint in the form of a zero state terminal equality constraint
[39, 40, 56]: x(k + N |k) = 0, that forces the state to be zero at the end of the
finite horizon. Keerthi and Gilbert [39] were the first to show that feasibility
of an NMPC formulation with zero state terminal equality constraint implies
stabilization of a class of nonlinear constrained systems. Later, this result was
further expanded in [77, 58]. Continuous time versions can be found in [56].
Under reasonable conditions, asymptotic stability for the closed-loop system
can be proven.

Guaranteeing stability by imposing a zero state terminal equality constrains
is by far the most popular technique at present. For one, this is certainly due
to the clear theoretical framework, but also due to the fact that no on-line
computation or tuning is needed. On the other hand, a terminal equality
constraint is an artificial additional burden that may require significant extra
on-line computation cost (see [17, 15] for a comparison to other approaches)
and even more importantly, leads in many cases to a severely restricted region
of operation due to feasibility problems.
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Dual-mode NMPC

From a computational point of view, an exact numerical satisfaction of a zero
state terminal equality constraint is impossible. If only an approximated satis-
faction of the terminal equality constrained is enforced, i.e. we only require the
terminal state to lie in a small region around the origin, then the guaranteed
stability is in general lost. In order to relax the equality stability constraint
while not compromising the closed loop asymptotic stability of the origin, the
so-called dual-mode NMPC scheme was introduced in [61]. The term dual-
mode refers to two different controllers that are applied in different regions of
the state space depending on the state being inside or outside of some terminal
region that contains the origin. If the state is outside this terminal region, an
NMPC controller with a variable horizon is applied. If the current state lies
inside the terminal region, a linear state feedback u(k) = Kx(k) is applied.
Closed-loop control with this scheme is implemented by switching between the
two controllers.

Under the assumption that the Jacobian linearization of the nonlinear sys-
tem is stabilizable, a simple procedure to determine a suitable terminal region
and a linear feedback matrix K that satisfy certain requirements in the con-
tinuous time case is proposed in [56]. Under fairly weak conditions, it can be
shown that starting from outside the terminal region, the nonlinear system with
the predictive controller will reach the terminal region in a finite time. Closed-
loop stability follows from the use of the stabilizing local linear feedback law
thereafter. Discrete time versions of dual-mode NMPC with fixed horizons are
described in [21, 83].

Computationally this approach is more attractive than the one imposing
a terminal equality constraint, as inequality constraint can be handled more
effectively during optimization than equality constraints. In addition, less fea-
sibility problems have to be expected and hence the region of attraction will be
larger. It was also shown in [61] that the feasibility of the optimization prob-
lem, and not necessarily the optimality, is needed for closed-loop stability. A
drawback of this approach is the involved implementation due to the required
switching between control strategies, the need to determine a local stabilizing
state feedback gain and the terminal region, and the fact that the predicted
open loop and the actual closed loop trajectories will in general be different.

Contractive NMPC

In contractive NMPC as suggested in [100, 26], a stability constraint of the form
‖x(k + N |k)‖2 ≤ α2‖x(k)‖2 is added to the control problem. This constraint
directly forces the magnitude of the state vector to contract by a pre-specified
factor each time a new input is calculated. This constraint is referred to as
contraction stability constraint. Different from standard NMPC, the entire
input function uN

k over the interval [k, k + N − 1] is applied to the nonlinear
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system. The next optimization problem is only solved at time instance k + N .
In the formulation suggested by [26], an additional second stability constraint is
included in the formulation and, like in the dual-mode NMPC case, the horizon
length N ≤ Nmax is used as an additional minimizer.

The feasibility has to be assumed for all time instances for which an opti-
mization is performed. Hence, this approach is not very attractive for applica-
tions, since the feasibility of the optimization problem at subsequent sampling
instances is in general not guaranteed.

Quasi-infinite horizon NMPC

In the quasi-infinite horizon NMPC scheme [14, 17] an inequality stability con-
straint x(k+N |k) ∈ Ω and a quadratic terminal penalty term Φ(x(k+N |k)) =
x(k + N |k)>Px(k + N |k) are added to the standard setup. The basic idea
behind this scheme is that the terminal penalty term is not a performance
specification that can be chosen freely, but rather that matrix P is determined
off-line according to a specific procedure such that the objective function with
Φ chosen to approximate an infinite horizon prediction cost functional. This
way closed-loop stability can be achieved, while only an optimization problem
over a finite horizon must be solved numerically.

In this setting the optimal value of the finite horizon optimization problem
bounds that of the corresponding infinite horizon optimization problem. In
this sense, the prediction horizon in the nonlinear MPC scheme can be thought
of as expanding quasi to infinity. Similar versions for discrete time nonlinear
systems can be found in [28, 24]. Like in the dual-mode approach, the use of the
terminal inequality constraint gives the quasi-infinite horizon nonlinear MPC
scheme computational advantages. The implementation is simpler than the
dual-mode approach, because no switching between control strategies is needed.
Moreover, the additional terminal penalty term is introduced to approximate
an infinite horizon objective functional and thus predicted open loop and actual
closed loop trajectories will be at least similar and control performance can be
adjusted via the stage cost. Like for dual-mode NMPC, it is not necessary to
find optimal solutions of the control problem in order to guarantee stability.
Feasibility also implies stability here (see [17]).

Robust NMPC

A number of results have been published for linear predictive control schemes
(see for example [30, 101, 31, 103, 41, 5, 47, 20]). Even though the analy-
sis of robustness properties in nonlinear NMPC must still be considered an
unsolved problem in general, some preliminary results are available. Firstly,
some of the schemes discussed above (including zero state terminal equality,
dual-mode, contractive, quasi-infinite horizon NMPC) have some inherent ro-
bustness properties, or can be made robust by simple changes (for example
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the use of conservative terminal inequality constraints in the dual-mode ap-
proach [61]). However, these results essentially only state that sufficiently
“small” model uncertainties do not affect closed loop stability. But they do
not permit to derive controllers that guarantee stability for a given uncertainty
description with given bounds on the size of this uncertainty. Typically, for all
these approaches no explicit quantitative nonlinear uncertainty model or only
very simple ones, like for example gain and additive perturbations in [23], are
used. This is not surprising as the definition of meaningful uncertainty descrip-
tions for nonlinear systems is an open problem not only in the NMPC context,
but also in other areas of control. First NMPC approaches that make use of
quantitative uncertainty models are described in [32, 6, 19, 85, 51, 104]. More
detailed discussions of this issue can be found in [54, 55, 16].

1.2.4 Industrial implementations of nonlinear MPC

While theoretical aspects of NMPC algorithms have been discussed quite effec-
tively in several recent publications (see, for example, [54] and [59]), descrip-
tions of industrial NMPC applications are much more difficult to find. This
is probably due to the fact that industrial activity in NMPC applications has
only begun to take off in the last few years.

From the practical side, industrial implementation of MPC with nonlinear
models has already been reported, so it is certainly possible. But the implemen-
tations are largely without any established closed-loop properties, even nominal
properties. A lack of supporting theory should not and does not, examining the
historical record, discourage experiments in practice with promising new tech-
nologies. But if nonlinear MPC is to become widespread in the environment
of applications, it must eventually become reasonably reliable, predictable, ef-
ficient and robust against on-line failure.

In the survey of MPC technology [73], over 2200 commercial applications
were discovered. However, almost all of these were implemented with linear
models and were clustered in refinery and petrochemical processes. Figure 1.1
(from [73]) shows a rough distribution of the number of MPC applications ver-
sus the degree of process nonlinearity. MPC technology has not yet penetrated
deeply into areas where process nonlinearities are strong and market demands
require frequent changes in operating conditions. It is these areas that provide
the greatest opportunity for NMPC applications.

Table 1.1 (from [73]) lists the industrial products and the companies sup-
plying them. The following sub-sections describe these aspects in more detail.

State-space models

The first issue encountered in NMPC implementation is the derivation of a
dynamic nonlinear model suitable for model predictive control. In the gen-
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Figure 1.1: Distribution of MPC applications versus the degree of process
nonlinearity.

Company Product name
Adersa Predictive Functional Control (PFC)

Aspen Technology Aspen Target
Continental Controls Multivariable Control (MVC)

DOT Products NOVA Nonlinear Controller (NOVA-NLC)
Pavilion Technologies Process Perfecter

Table 1.1: NMPC companies and product names.

eral practice of linear MPC, the majority of dynamic models are derived from
plant testing and system identification. For NMPC, however, the issue of plant
testing and system identification becomes much more complicated.

A class of state-space models is adopted in the Aspen Target product, which
has a linear dynamic state equation and a nonlinear output relation (see [73]).
More specifically, the output nonlinearity is modelled with a linear relation
superimposed with a nonlinear neural network. A difficult issue in nonlinear
modelling is not the selection of a nonlinear relation, but rather the selection
of a robust and reliable identification algorithm. The identification algorithm
discussed in [102] builds one model for each output separately. Besides the
identification of the state-space model, a model confidence index (MCI) is also
calculated on-line. If the MCI indicates that the neural network prediction is
unreliable, the neural net nonlinear map is gradually turned off and the model
calculation relies on the linear model only. Another feature of this modelling
algorithm is the use of extended Kalman filters (EKF) to correct for model-
plant mismatch and unmeasured disturbances [102]. The EKF provides a bias
and gain correction to the model on-line. This function replaces the constant
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output error feedback scheme typically employed in MPC practice.

Input-output models

The MVC algorithm and the Process Perfecter use input-output models. To
simplify the system identification task, both products use a static nonlinear
model superimposed upon a linear dynamic model. Martin, et al. [52] describe
the details of the Process Perfecter modelling approach. Their presentation is
in single-input-single-output form, but the concept is applicable to multi-input-
multi-output models. It is assumed that the process input and output can be
decomposed into a steady-state portion which obeys a nonlinear static model
and a deviation portion that follows a dynamic model. The identification of
the linear dynamic model is based on plant test data from pulse tests, while
the nonlinear static model is a neural network built from historical data. It
is believed that the historical data contain rich steady-state information and
plant test is needed only for the dynamic sub-model.

First principles models

Since empirical modelling approaches can be unreliable and require tremendous
amount of experimental data, some products provide the option to use first
principles models. These products usually ask the user to provide the first
principles models with some kind of open equation editor, then the control
algorithms can use the user-supplied models to calculate future control moves.
The NOVA-NLC falls in this category. In both cases, model parameters must
be estimated from plant data.

Output feedback

In the face of unmeasured disturbances and model errors, some form of feed-
back is required to remove steady-state offset. The most common method for
incorporating feedback into MPC algorithms involves comparing the measured
and predicted process outputs. The difference between the two is added to
future output predictions to bias them in the direction of the measured output.
This can be interpreted as assuming that an unmeasured step disturbance en-
ters at the process output and remains constant for all future time. For the case
of a linear model and no active constraints, Rawlings, et al. [77] have shown
that this form of feedback leads to offset-free control. Many industrial NMPC
algorithms provide the constant output feedback option.

When the process has a pure integrator, the constant output disturbance
assumption will no longer lead to offset-free control. For this case it is common
to assume that an integrating disturbance with a constraint ramp rate has en-
tered at the output. The PFC, Aspen Target, and Process Perfecter algorithms
provide this feedback option.
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It is well known from linear control theory that additional knowledge about
unmeasured disturbances can be exploited to provide better feedback by de-
signing a Kalman Filter [38]. Muske and Rawlings demonstrate how this can
be accomplished in the context of MPC [66]. It is interesting to note (see [73])
that a number of industrial NMPC algorithms provide options for output feed-
back based on a nonlinear generalization of the Kalman Filter known as the
Extended Kalman Filter (EKF) [29]. Aspen Target provides an EKF to esti-
mate both a bias and a feedback gain. NOVA-NLC uses an EKF to develop
complete state and noise estimates.

Steady-state and dynamic optimization

The PFC, Aspen Target, MVC, and Process Perfecter controllers split the con-
trol calculation into a local steady-state optimization followed by a dynamic
optimization. Optimal steady-state targets are computed for each input and
output; these are then passed to a dynamic optimization to compute the opti-
mal input sequence required to move toward these targets. These calculations
involve optimizing a quadratic objective that includes input and output contri-
butions. The exception is the NOVA-NLC controller that performs the dynamic
and steady-state optimizations simultaneously. At the dynamic optimization
level, an MPC controller must compute a set of MV adjustments that will
drive the process to the steady-state operating point without violating con-
straints. Almost all the products (see [73]) mentioned above use the same type
of dynamic objective and constant weight matrices in the objective function.

Constraint formulation

There are basically two types of constraints used in industrial MPC technol-
ogy: hard and soft. Hard constraints are those which should never be violated.
Soft constraints allow the possibility of a violation; the magnitude of the vio-
lation is generally subjected to a quadratic penalty in the objective function.
All of the NMPC algorithms described here allow hard input maximum, mini-
mum, and rate of change constraints to be defined. These are generally defined
so as to keep the lower level MV controllers in a controllable range, and to
prevent violent movement of the MV’s at any single control execution. The
PFC algorithm also accommodates maximum and minimum input acceleration
constraints which are useful in mechanical servo control applications.

The Aspen Target, MVC, NOVA-NLC, and Process Perfecter algorithms
perform rigorous optimizations subject to the hard input constraints. The
PFC algorithm, however, enforces input hard constraints only after performing
an unconstrained optimization. This is accomplished by clipping input values
that exceed the input constraints. All control products enforce output con-
straints as part of the dynamic optimization. The Aspen Target, NOVA-NLC,
and Process Perfecter products allow options for both hard and soft output
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constraints. The PFC product allows only hard output constraints, while the
MVC product allows only soft output constraints. The exclusive use of hard
output constraints is generally avoided in MPC technology because a distur-
bance can cause such a controller to lose feasibility.

The Process Perfecter product applies soft constraints by using a frustum
method that permits a larger control error in the beginning of the horizon than
in the end, but no error is allowed outside the frustum. At the end of the
horizon the frustum can have a non-zero zone, instead of merging to a single
line, which is determined based on the accuracy of the process model to allow
for model errors.

Output trajectories

Industrial MPC controllers use four basic options to specify future CV behav-
ior: a setpoint, zone, reference trajectory or funnel [73]. All of the NMPC con-
trollers described here provide the option to drive the CV’s to a fixed setpoint,
with deviations on both sides penalized in the objective function. In practice
this type of specification is very aggressive and may lead to very large input ad-
justments, unless the controller is detuned in some fashion. This is particularly
important when the model differs significantly from the true process. For this
reason all of the controllers provide some way to detune the controller using
either move suppression, a reference trajectory, or time-dependent weights.

All of the controllers also provide a CV zone control option, designed to keep
the CV within a zone defined by upper and lower boundaries. A simple way
to implement zone control is to define soft output constraints at the upper and
lower boundaries. The PFC, Aspen Target, MVC, and NOVA-NLC algorithms
provide a CV reference trajectory option, in which the CV is required to follow
a smooth path from its current value to the setpoint. Typically a first order
path is defined using an operator entered closed loop time constant. In the limit
of a zero time constant the reference trajectory reverts back to a pure setpoint;
for this case, however, the controller would be sensitive to model mismatch
unless some other strategy such as move suppression is also being used. In
general, as the reference trajectory time constant increases, the controller is
able to tolerate larger model mismatch.

Output horizon and input parameterization

Industrial MPC controllers generally evaluate future CV behavior over a finite
set of future time intervals called the prediction horizon. This finite output
horizon formulation is used by all of the industrial algorithms. The length of
the horizon is a basic tuning parameter for these controllers, and is generally
set long enough to capture the steady-state effects of all computed future MV
moves. This is an approximation of the infinite horizon solution for closed loop
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stability, and may explain why none of the industrial NMPC algorithms include
a terminal state constraint.

The PFC and Aspen Target controllers allow the option to simplify the
calculation by considering only a subset of future points called coincidence
points, so named because the desired and predicted future outputs are required
to coincide at these points. A separate set of coincidence points can be defined
for each output, which is useful when one output responds quickly relative to
another.

Industrial MPC controllers use three different methods to parameterize the
MV profile: a single move, multiple moves, and basis functions [73]. The
MVC product computes a single future input value; the PFC controller also
provides this option. The Aspen Target, NOVA-NLC, and Process Perfecter
controllers can compute a sequence of future moves spread over a finite control
horizon. The length of the control horizon is another basic tuning parameter
for these controllers. Better control performance is obtained as the control
horizon increases, at the expense of additional computation.

The PFC controller parameterizes the input function using a set of poly-
nomial basis functions. This allows a relatively complex input profile to be
specified over a large (potentially infinite) control horizon, using a small num-
ber of unknown parameters. This may provide an advantage when controlling
nonlinear systems. Choosing the family of basis functions establishes many of
the features of the computed input profile; this is one way to ensure a smooth
input signal, for example. If a polynomial basis is chosen then the order can be
selected so as to follow a polynomial setpoint signal with no lag. This feature
is important for mechanical servo control applications.

Solution methods

The PFC controller performs an unconstrained optimization using a nonlinear
least-squares algorithm. The solution can be computed very rapidly, allowing
the controller to be used for short sample time applications. Some performance
loss may be expected, however, since input constraints are enforced by clipping.

The Aspen Target product uses a multi-step Newton-type algorithm de-
veloped by Oliveira and Biegler [70, 71], and makes use of analytical model
derivatives. Due to the sparseness of the state space model in Aspen Tar-
get, the derivative computation is straightforward. The Newton algorithm
makes use of the QPKWIK solver which has the advantage that intermediate
solutions, although not optimal, are guaranteed feasible. This permits early
termination of the optimization algorithm if the optimum is not found within
the sampling time. Aspen Target uses the same QPKWIK engine for local
steady-state optimization and the dynamic MV calculation.

The MVC and Process Perfecter products use a generalized reduced gra-
dient (GRG) code called GRG2 developed by Lasdon and Warren [44]. The
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NOVA-NLC product uses the NOVA optimization package, a proprietary mixed
complementarity nonlinear programming code developed by DOT Products.

1.2.5 Future needs for NMPC technology development

Although many academic research results are available for NMPC, many issues
(see [73]) that affect industrial practice are as yet unresolved:

• Modelling approaches. There is no systematic approach for building non-
linear dynamic models for NMPC. The first difficult issue is how to per-
form plant tests. To capture any nonlinearity in the process, extensive
testing using a multilevel design is desired. This will make the testing
period much longer than that of a linear plant test. In the case of empir-
ical approaches, guidelines for plant tests are needed to build a reliable
model.

• Control and optimization. Because of the use of a nonlinear model, the
NMPC calculation usually involves a non-convex nonlinear program, for
which the numerical solution is very challenging. Speed and the assurance
of a reliable solution in real-time are major limiting factors in existing
applications.

• Output feedback. Most current NMPC implementations use the tradi-
tional bias correction to the model prediction based on current measure-
ments. While this approach is meaningful for linear MPC because of the
principle of superposition, it is questionable how general this approach
is to nonlinear processes. Nonlinear state estimation may provide an
optimal approach to this issue.

• Justification of NMPC. Because of the difficulties involved in NMPC im-
plementations, the added benefit of applying NMPC has to be justified.
To deal with this problem most products provide linear MPC as a back-
up. In the case that NMPC is not needed or difficult to implement, linear
MPC is implemented instead. Criteria on where NMPC is needed are de-
sirable but difficult to obtain. Benchmarks on the justification of NMPC
are required on an array of industrial processes. Unfortunately, only one
such activity has been reported so far [27].

• Other issues. Other issues that are applicable to linear MPC technology
[74] should also be of the same level of concern for NMPC, if not more.
These issues include multiple prioritized objective functions, determining
controllable sub-processes, tuning, ill-conditioning, and fault tolerance.
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1.3 Industrial technology

The main reasons for increasing acceptance of MPC technology by the process
industry since 1985 are clear:

• MPC is a model based controller design procedure, which can handle
processes with large time-delays, non-minimum phase, unstable and non-
linear processes.

• It is an easy-to-tune method, in principle there are several basic param-
eters to be tuned.

• Industrial processes have their limitations in valve capacity, technological
requirements and are supposed to deliver output products with some pre-
specified quality specifications. MPC can handle these constraints in a
systematic way during the design and implementation of the controller.

• Finally MPC can handle structural changes, such as sensor and actuator
failures, changes in system parameters and system structure by adapting
the control strategy on a sample-by-sample basis.

There is a number of names denoting particular variants of predictive control,
usually with corresponding acronyms. Examples of these are:

• Dynamic Matrix Control (DMC),

• Extended Prediction Self-Adaptive Control (EPSAC),

• Generalized Predictive Control (GPC),

• Model Algorithmic Control (MAC),

• Predictive Functional Control (PFC),

• Quadratic Dynamic Matrix Control (QDMC),

• Sequential Open Loop Optimization (SOLO),

and so on. Generic names which have become widely used to denote the whole
area of predictive control are Model Predictive Control (MPC) and Model-
Based Predictive Control (MBPC).

1.3.1 Commercial predictive control schemes

Although there are companies that make use of technology developed in-house,
that is not offered externally, the ones listed below (some already mentioned
before) can be considered representative of the current state of the art of Model
Predictive Control technology. Their product names and acronyms are:
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• Aspen Technology: Dynamic Matrix Control (DMC-Plus), Setpoint Mul-
tivariable Control Architecture (SMCA).

• Adersa: Identification and Command (IDCOM), Hierarchical Constraint
Control (HIECON) and Predictive Functional Control (PFC).

• Honeywell Profimatics: Profit Control, Robust Model Predictive Control
Technology (RMPCT) and Predictive Control Technology (PCT).

• Pavilion Technologies: Process Perfector.

• SCAP Europa: Adaptive Predictive Control System (APCS).

• IPCOS: IPCOS Novel Control Architecture (INCA).

Notice that each product is not the algorithm alone, but it is accompa-
nied by additional packages, usually identification or plant test packages. Qin
and Badgwell [74] present the results obtained from an industrial survey in
1997. The total number of applications reported in the paper is over 2200
and is quickly increasing. The majority of applications (67%) are in the area
of refining, one of the original application fields of MPC, where it has a solid
background. An important number of applications can be found in petrochem-
icals and chemicals. Significant growth areas include pulp and paper, food
processing, aerospace and automotive industries. Other areas such as gas, util-
ity, furnaces or mining and metallurgy also appear in the report. The DMC
corporation reports the largest total number of applications (26%), while the
other four vendors share the remaining applications almost equally.

The past three years have shown rapid progress in the development and
application of industrial NMPC technology. While MPC applications are con-
centrated in refining [73], NMPC applications cover a much broader range of
application areas. Areas with the largest number of NMPC applications in-
clude chemicals, polymers, air and gas processing. Although not shown in the
table, it has been observed that the size and scope of NMPC applications are
typically much smaller than that of linear MPC applications [53]. This is likely
due to the computational complexity of NMPC algorithms.

1.4 Receding horizon strategy

Model predictive control is a control strategy developed around certain common
key principles:

– Explicit on-line use of a process model to forecast the process output at
future time instants.

– Calculation of an optimal control action based on the minimization of
one or more cost functions, possibly including constraints on the process
variables.
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– Receding horizon implementation.

The various MPC algorithms differ mainly in the type of model used to rep-
resent the process and its disturbances, as well as the cost functions to be
minimized, with or without constraints. Referring to Figure 1.2, the MPC
principle is characterized by the following strategy:

FuturePast -�
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y(k)
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k

u(k)

yref(k)

Figure 1.2: Receding horizon principle within MPC.

– at each current moment k, the process output y(k + j) is predicted over
a finite time horizon j = 1, . . . , N . The predicted output values at time
k are indicated by y(k + j|k) and the value N is called the prediction
horizon. The prediction is done by means of a model of the process; it is
assumed that this model is available. The forecast depends on the past
inputs and outputs, but also on the future control scenario {u(k+j|k), j =
0 . . . Nc − 1} (i.e. the control actions that we intend to apply from the
present moment k on);

– a reference trajectory {yref(k + j|k), j = 1 . . . N}, starting at yref(k|k) =
y(k), is defined over the prediction horizon, describing how we want to
guide the process output so as to minimize the tracking error e(k+j|k) =
yref(k + j|k)− y(k + j|k);

– an output measurement ŷ(k) available for feedback and state estimation;

– the control sequence {u(k+j|k), j = 0 . . . Nc−1} is calculated on the basis
of a measurement in order to minimize a specified cost function, depend-
ing on the predicted output errors {yref(k+j|k)−y(k+j|k), j = 1 . . . N}.
Also, in most methods there is some structuring of the future control law
{u(k + j|k), j = 0 . . . Nc − 1} and there might also be constraints on the
process variables;

– the first element u(k|k) of the optimal control sequence {u(k + j|k), j =
0 . . . Nc−1} is actually applied to the real process and defines the control
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action when ranging over all k ∈ Z+. All other elements of the calculated
control vector can be forgotten, because at the next sampling instant all
time-sequences are shifted, a new output measurement y(k+1) is obtained
and the whole procedure is repeated. This leads to a new control input
u(k +1|k +1), which is generally different from the previously calculated
u(k + 1|k). This principle is called the “receding horizon” strategy.

1.4.1 Open-loop vs. closed-loop MPC

Assume that at time k, we measure the state x(k). Let Jk(x(k), u) denote
the (nonnegative) cost that input u occurs at time k when starting on initial
condition x(k). We may define two different general MPC problems:

Open-loop MPC

Given x(k), find uopt : TN → U (TN = [k, . . . , k+N ]) such that the performance
objective function Jk(x(k), u) is minimized over all u : TN → U that satisfies
constraints and model equations.

Static state feedback

Given x(k), find a sequence πopt := (πk)N
k=0 of state mappings πk : X → U such

that the input
u(k + j) := πk+j(x(k + j|k))

minimizes Jk(x(k), π) over all feedback strategies.
From receding horizon perspective the open-loop strategy produces an opti-

mal control input u(k) = uopt(k), k ∈ Z+, whereas the feedback strategy gives
an optimal state law u(k) = πopt

k (x(k)), k ∈ Z+. Note that both depend on
x(k) only, but the feedback strategies explicitly take the state on the prediction
horizon into consideration to define the input. Feedback strategies have there-
fore the advantage that the effect of disturbances can be taken into account.
However, the computation and synthesis of feedback strategies is much more
difficult and involved than the synthesis of open-loop strategies. In this thesis
we will mainly focus on open-loop strategies.

1.5 Integration of process control and plantwide

optimization

The aim of the INCOOP project is to delivering high-performance process
controllers and process optimization technology that enable given production
processes to respond fast and reliably to market demand within permitted
operating constraints of governed processes. The project had to set the first
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important steps in realizing a fully integrated, dynamic and nonlinear process
control and optimization system.

1.5.1 Research motivation: role of MPC

The research in the INCOOP project has been motivated by the need to im-
prove MPC techniques, which is probably the most widely used multivariable
control design in industry. Commercially available model predictive controllers
vary in many details, but they are all based on finite time horizon optimization
problems, based on one linear model at a time. The characteristic feature of
model predictive controllers is that the control strategy is determined by the
optimization of a performance function on a finite time interval. This interval
stretches from the current time to a time instant, which is a fixed time slot
ahead. The optimal control is calculated and implemented only until new mea-
surements become available. Based on the new measurements, an update of the
control strategy is determined by repeating the optimization of the performance
function at the next time step. In this way, the control strategy depends on
the measurements and could therefore be called of feedback type. The current
generation of industrial MPC covers only a restricted range of the overall oper-
ating envelope of the process, due to the linear model used. For the INCOOP
project the whole relevant operating range of the process is to be covered by
the MPC. Hence a new MPC is needed, that fulfills this requirement.

The project architecture consists of several modules, such as dynamic real-
time optimizer, state estimator and the MPC controller (see Figure 1.3). The

State and
disturbance
estimates

Plant

Time scale
separationEstimation

Optimal

reference
trajectories

6

�

?

Dynamic

Real-Time
Optimization

-

Model
Predictive
Control

?

Constraints
Objectives

Control
inputs

Measurements

?

Disturbances

-

Slow

Fast

-

Figure 1.3: Role of MPC in the INCOOP project.
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purpose of the MPC module is to achieve on-line accurate tracking of the
trajectory delivered by the dynamic real-time optimizer.

The model predictive control component (MPC) solves a constrained opti-
mization problem on-line and determines an optimal control input over a fixed
future time horizon, based on the predicted future behavior of the process.
Although more than one control move is generally calculated, only the first
one is implemented. At the next sampling time, the optimization problem is
reformulated and solved with new measurements obtained from the system.
The optimal reference trajectories for the manipulated and the controlled vari-
ables are produced by the dynamic real-time trajectory optimizer and passed
to the model predictive control module. The status of all process variables,
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Figure 1.4: MPC delta mode.

including control variables, updates of the model parameters and estimates of
disturbance signals are assumed to be available on-line and input to the MPC
module. The current status of the real-time optimization is also transferred
to the MPC block to ensure feasibility and proper functionality of all system
components. Given the initial status of the process, estimates of disturbances
and the reference trajectories, the optimizer in the MPC module produces the
manipulated variables, such that input and output trajectories follow the ref-
erence trajectories as close as possible subject to the constraints imposed in
the optimization. The time horizon for which the MPC block operates will be
smaller than the time horizon of the trajectory optimizer module. This sepa-
ration of time scales is motivated by the intuitive idea that MPC compensates
for fast changes in the process behavior that are not taken into account in the
trajectory optimizer module. The MPC module will be operating in a so-called
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delta mode. This structure is shown in Figure 1.4. This means that the dif-
ferences between actual trajectories and reference trajectories are treated, in a
well defined sense within the algorithm.

Nonlinear high-performance MPC results in wide bandwidth control by en-
abling large prediction/control horizon. This technology makes it possible to
control processes with large range of process dynamics and close tracking of
optimum trajectories (e.g. transitions, recovery of process upsets). The op-
timization techniques developed in high-performance nonlinear MPC enables
control of poorly conditioned processes (stiff systems).

The model predictive controller is one of the essential components of the
control hierarchy in the project. One of the goals of the project is to de-
velop a nonlinear multivariable predictive control system (MPC) that supports
large bandwidth, high-performance quality control, accurate transition trajec-
tory tracking control, dynamic constraint handling and performance based con-
straint pushing over a large operating envelope.

The aims of this thesis can be outlined as:

• investigate possibilities for development of efficient MPC technology for
a broad class of systems, relevant for application in process industry.

• develop efficient numerical tools for the implementation of model predic-
tive controllers, so as to allow large range of nonlinear system dynamics,
flexible constraint handling and reduction of computational complexity.

1.6 Objectives and main results of the thesis

1.6.1 Research objectives

As it was already mentioned in Section 1.2 an important limitation of nonlin-
ear MPC is the high computational load. The type of optimization problem
that has to be solved online is dependent on the cost function and the applied
nonlinear model. Due to the scale of industrial processes and high-performance
requirements, the optimization problems that have to be solved online are large.
The solution must be obtained in a limited amount of time because it is im-
plemented in a receding horizon fashion.

The high computational complexity has restricted the use of this technol-
ogy to relatively slow systems encountered in the chemical and petrochemical
industry. There are several reasons why it is desirable to decrease the sampling
time that is achievable with this technology. In process industry the motiva-
tion is obvious for those systems which mostly exhibit fast dynamics. Higher
sampling rates are also necessary for fast systems such as mechanical systems.
For these applications the current generation model predictive control is not
feasible due to the high computational load, while efficient constraint handling
can have important benefits in these industrial sectors.
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For unconstrained systems, both linear and nonlinear, singular perturba-
tion theory provides a firm theoretical basis for separating time scales. For
constrained systems this theory is not applicable. Constraints are not related
to a certain time scale. The constraints are usually incorporated in a controller
running at a low sampling frequency due to purely practical reasons. The rea-
son is that with the current state of technology it is not yet possible to run
model predictive control at a high sampling frequency due to the large com-
plexity of the online computation. If MPC is fast enough to run at the higher
sampling rate, this situation can be avoided.

The specific properties of the processes encountered in industry make it
difficult to obtain an accurate model of the behavior of the system. First
of all, the systems are usually large. The large scale appears not only from
the high number of inputs and outputs but also from the complex dynamics
that are modelled. These circumstances give rise to solve large optimization
problems. Secondly, the systems are usually sensitive for directional changes
in the inputs (for example, distillation columns). In system theoretical terms
this is denoted as a bad conditioning in space. Finally, the processes exhibit
dynamical phenomena that take place at totally different time-scales: very fast
phenomena and slow phenomena have to be accounted for. This is denoted with
a stiff system or a system with bad conditioning in time. Numerical problems
are likely to occur during simulation of such systems.

It is clear that a new high-performance MPC technology and more com-
putationally efficient algorithms are required for large scale industrial systems.
The research objectives in this thesis are outlined as follows:

• develop a computationally efficient MPC technology for a broad class of
nonlinear systems.

• extend the MPC algorithm with capabilities for control of different system
dynamics and for flexible constraint handling.

• improve computational efficiency in optimization to allow online MPC
application.

1.6.2 Main results

The MPC module solves on-line a constrained optimization problem and deter-
mines an optimal control input over a fixed future time-horizon, based on the
predicted future behavior of the process and on the desired reference trajectory.
The MPC module respects the dynamic constraints of the process. A number
of MPC schemes have been investigated, implemented and thoroughly tested.

Some specific features of the developed MPC controller are as follows:

– The predicted future process behavior has been represented as the sum
of a non-linear prediction component and a component based on linear
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time-varying models defined along the reference trajectory, which need to
be tracked. The first component constitutes a future output prediction
using non-linear simulation models, given past process inputs and mea-
sured disturbance history. The second component uses linearized models
for prediction of future process outputs as required for calculation of op-
timum future process input manipulations (see Figure 1.5). We assume
for that “small” inputs δu the superposition principle holds so that the
output y = ynom + ylin.

– The end-point state of the transition process is controlled inside a region
around a setpoint by means of a quadratic weighting of the final state.

– The constrained optimization problem leads to a quadratic programming
problem, which is a convex optimization problem. A new routine has
been developed for the efficient calculation of solutions of this problem.
The computational cost of this optimization approach varies linearly with
the number of optimization variables. This significantly improves some
standard QP solvers for which the computational cost is cubic in the
number of optimization variables (horizon N).

– The state estimator produces at each sampling instant an optimal es-
timate of the initial state which is used as initialization of the MPC
optimization.

– The status of the real-time optimization is transferred to the MPC module
to ensure feasibility and proper functionality of all system components.
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Given the initial status of the process, estimates of disturbances and the
reference trajectories, the optimizer in the MPC module produces the manip-
ulated variable such that input and output trajectories follow the reference
trajectories as close as possible subject to the constraints imposed in the opti-
mization. The MPC module is operating in delta-mode, which means that the
differences between actual trajectories and reference trajectories are treated, in
a well-defined sense, within the algorithm.

The need for high frequent solutions of a quadratic program and the re-
peated linearizations of the nonlinear model determine the main computational
load in the MPC module. This load increases with increasing prediction hori-
zons. A structured interior point method has been employed and implemented
as a highly efficient numerical procedure for solving large scale quadratic pro-
grams. Its main merit is a feasible computational load for long prediction
horizons. As such it allows to control the process over substantially larger
bandwidths than standard QP solvers such as active set methods (ASM) or
commercial algorithms (e.g. Mosek [3]).
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2.1 Basic properties of MPC

The flexibility of a receding horizon implementation has been useful in ad-
dressing various implementation issues that traditionally have been problem-
atic. There are certain advantages which have led to the popularity of MPC
in industrial applications. On the other hand, there are several difficulties as-
sociated with MPC, both inherent and imposed by the involved optimization,
which make its analysis very hard.

Advantages of MPC

• Constraints handling

• Straightforward application to MIMO case

• Handling systems with time-delays

• Compensation for actuator-sensor failures

From a practical viewpoint, an attractive feature of MPC is its ability to nat-
urally and explicitly handle both multivariable input and output constraints
by direct incorporation into the on-line optimization. Specifically, the repeated
optimization performed at each time step is required to satisfy the imposed
constraints. The most important, and also the most easily handled, are hard
constraints or saturation of the control input, which makes MPC very useful
in a variety of applications.
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Limitations of MPC

• Stability/Robustness
Theoretical aspects associated with stability and performance properties
of MPC have proven to be a complicated and difficult issue. Stability
tends to be problematic because of the following facts

1. The presence of constraints in the optimization problem results in a
nonlinear closed-loop system, even if the model and plant dynamics
are linear.

2. There is no explicit functional description of the control algorithm,
as is required for most stability analyses.

In general, there is no stability guarantee when using MPC, and only re-
cently theoretical results have emerged, pushing forward this topic. Still,
concerns such as robust performance analysis and robust synthesis are
difficult and remain generally unsolved.

• Optimization
The purely local nature of the underlying Euler-Lagrange treatment of
optimal control remains one of the major challenges facing application
of MPC to nonlinear systems, because the resulting nonlinear optimiza-
tion problems rarely have exploitable convexity properties. For these
reasons, an essential issue, both theoretical and practical, is whether the
optimization can be successfully employed in MPC. Since in most cases,
the optimal solution, even if there are no constraints, is unknown and
uncomputable, it is not easy to evaluate results obtained by using MPC.

• Noise handling
Most of the existing MPC techniques are open-loop strategies. As it was
already mentioned in the previous chapter, the feedback strategies have
an advantage that the effect of noise and disturbances can be efficiently
taken into account. However, the design of such feedback strategies is
more difficult that conventional open-loop MPC control.

• Performance assessment
Achievable performance is usually unknown and generally impossible to
assess or evaluate before the actual computation of MPC controllers.

Linear vs. Nonlinear MPC

While for linear plants the MPC problem is usually reduced to simple linear
or quadratic programs, for which efficient software exists, application of the
MPC concept to nonlinear systems leads, in general, to involved nonlinear pro-
gramming (NLP) problems. In general, the optimization problem is nonconvex
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and leads to many difficulties impacting on implementation of MPC. These
difficulties are related to feasibility and optimality, computation and stability
aspects.

The important distinction in NLP is not linear versus nonlinear, but rather
convex versus nonconvex. If the resulting nonlinear optimization problem is
convex (e.g. for the linear system, convex cost function and convex I/O con-
straints), there exist methods which ensure convergence to a global minimum,
which is unique if the performance criterion is strictly convex.

On the other hand, if the system to be controlled is nonlinear, even if the
cost function and constraint sets are convex, the control problem will be, in
general, a nonconvex nonlinear optimization problem. Therefore, finding a
global optimum can be a difficult and computationally very demanding task,
if possible at all. In other words, non-convexity makes the solution of the NLP
uncertain.

2.2 Process models and prediction

An important difference between Model Predictive control (MPC) and PID-
kind design methods is the explicit use of a model. This aspect is both the
advantage and the disadvantage of MPC. The advantage is that the behavior
of our controller can be studied in detail, simulations can be made and possible
failures in plant or controller can be well detected. The disadvantage is that
a detailed study of the plant behavior has to be done before the actual MPC-
design can be started. About 80% of the work that has to be done, is in
modelling and identification of the plant [79]. However, in the final result this
effort and the investment to obtain a good model nearly always pay back in a
short time.

The models applied in MPC serve two purposes:

• Prediction of expected future process output behavior on the basis of
inputs and known disturbances applied to the process in the past.

• Calculation of the next process input signal that minimizes the control
objective function.

The models required for these tasks do not necessarily have to be the same. The
model applied for prediction may differ from the model applied for calculation
of the next control action. In practice though both models are almost always
chosen to be the same. As the models play such an important role in model
predictive control the models are discussed in this chapter. The models applied
are so called Input-Output (IO) models. These models describe the input-
output behavior of the process.

The models applied in the controller are chosen to be linear models there-
fore. Two types of IO models are applied:
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• Direct Input-Output models (IO models) in which the input signal u is
directly applied to the models.

• Increment Input-Output models (IIO models) in which the increments
∆u of the input signal are applied to the models instead of the input
directly.

For applications of linear MPC, we consider models of the form

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

It is assumed that the sample time has been normalized to 1. The model
is assumed to be time-invariant because of technical convenience only (time-
variant models can be considered without serious loss of generality). Here we
describe linear models, nonlinear aspects will be considered in the next chapter.
Throughout the thesis we use only discrete-time models. These assumptions
have to be validated against the actual process behavior as part of the process
modelling or process identification phase. In this chapter only discrete time
models will be considered. The control algorithm will always be implemented
on a digital computer. The design of a discrete time controller is obvious.
Further a linear time-invariant continuous time model can always be trans-
formed into a linear time-invariant discrete time model using a zero-order hold
z-transformation.

2.3 Optimal control

A general formulation of the optimal control problem, which is a dynamic
optimization problem, amounts to a minimization of a cost function subject to
a set of differential and algebraic constraint and some additional equality and
inequality constraints:

minu(t) J(x0, u(t)), t ∈ [t0, tf ]
subject to ẋ = f(x, u), x(t0) = x0

h(x(t), u(t)) = 0
g(x(t), u(t)) ≤ 0

Here, J is a (non-negative) cost function, f is assumed to be sufficiently smooth
so that ẋ = f(x, u) has a unique (absolutely continuous) solution on [t0, tf ] for
any input u. Among admissible controls there exist either open-loop or feedback
strategies. We will focus on open-loop strategies throughout this thesis. To
solve this problem basically two possible solution strategies are available:

1. Dynamic programming. This strategy boils down to finding a solution
to the Hamilton Jacobi Bellman partial differential equation. Which is,
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for problems with a large number of states and inputs, a very large com-
putational problem due to the problem of dimensionality in Bellman’s
method. A consequence of this approach is that the optimal input is a
function of the state. In this respect the Hamilton-Jacobi-Bellman ap-
proach represents a closed-loop optimal strategy.

2. Classical Variational Approach. This strategy amounts to finding nec-
essary conditions for optimality using the Euler-Lagrange equations. A
general formulation of the necessary conditions for optimality is provided
by Pontryagin Minimum Principle.

The dynamic programming approach has provided some important results in
the specific case of unconstrained linear systems with a quadratic cost function.
Kalman [37] showed that the HJB partial differential equation has a solution
for this case and provided a method to compute this optimum mathematically
using the Riccati difference equation (RDE) for the finite horizon case and
the algebraic Riccati equation (ARE) for the infinite horizon case. This is the
solution to the well known linear quadratic regulator (LQR) problem. For the
discrete time case the unconstrained LQR problem and its solution are given
next.

2.3.1 Unconstrained linear case

We consider the problem of having an initial state x(k) at time k, and finding
a control sequence {u(k + j)}N−1

j=0 , which will minimize the finite horizon cost
function

JN (x(k), u) =
N−1∑

j=0

[∥∥x(k + j)
∥∥2

Q(j)
+

∥∥u(k + j)
∥∥2

R(j)

]
+

∥∥x(k + N)
∥∥2

PN
(2.1)

subject to x(k + 1) = Ax(k) + Bu(k), where Q(j) ≥ 0, R(j) ≥ 0, PN ≥ 0
and ‖x‖2Q means x>Qx = 〈x,Qx〉 with 〈., .〉 the standard inner product. The
optimal control is found by iterating backwards the Riccati difference equation
[65, 8]:

P (j) = A>P (j+1)A−A>P (j+1)B(B>P (j+1)B+R(j))−1B>P (j+1)A+Q(j)

for j = 0, . . . , N − 1 with P (N) = PN and forming the state feedback gain
matrix

K(j) = (B>P (j + 1)B + R(j))−1B>P (j + 1)A.

The optimal control sequence is then given by

u(k + j) = −K(j)x(k + j)
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and the optimal value of the cost (2.1) obtained in this way is Jopt
N (x(k)) =

‖x(k)‖2P (0). In [8, 65] it was shown that stability can sometimes be guaranteed
with finite horizons, even when there is no explicit terminal constraint. The
closed-loop asymptotic stability of the finite horizon model predictive control
scheme with a varying weight on the end-point state was investigated in [97].

For the infinite horizon case we have the following cost function

J∞(x(k), u) = lim
N→∞

JN (x(k), u)

and the weighting matrices are constant: Q(j) = Q,R(j) = R for all j ≥ 0.
If R > 0, the pair (A,B) is stabilizable, and the pair (A,Q1/2) is detectable,
then the limit P = limj→∞ P (j) exists, is non-negative and is the unique non-
negative definite solution of the algebraic Riccati equation

P = A>PA−A>PB(B>PB + R)−1B>PA + Q.

Moreover, K = limj→∞K(j) exists and is given by

K = (B>PB + R)−1B>PA

and the optimal control sequence becomes the constant state feedback law

u(k + j) = −Kx(k + j).

It can be proved that this feedback law is stabilizing so that all the eigenvalues of
the closed-loop state transition matrix A−BK lie strictly within the unit circle
(if the stated conditions hold). The optimal cost is now Jopt

∞ (x(k)) = ‖x(k)‖2P .

2.4 The finite horizon MPC problem

Continuous time optimal control needs the solution of a function optimization
problem. This is an infinite dimensional optimization problem which is in many
cases intractable. The main idea of model predictive control is to restrict the
set of possible inputs such that only a finite dimensional optimization problem
has to be solved. This is done by using a discrete time model and a finite
horizon. Instead of calculating a closed form state or output feedback as was
possible for the LQR problem, the receding horizon principle is used. This
implies that the optimal input trajectory is calculated at each time instant on
the basis of the last measurement of the output. In this way the optimal control
solution can be utilized in a feedback strategy also if no closed form expression
exists for the optimal feedback controller.

Model predictive control is applied in many settings in which e.g. the system
description and the cost function differ. The description of model predictive
control in this section is restricted to a linear model subject to linear input and
output constraints and a quadratic cost function. In Figure 1.2 the general
principle of model predictive control is graphically depicted.
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2.4.1 Model

Suppose a linear, discrete-time, state-space model of the plant is given in the
form

x(k + 1) = Ax(k) + Bu(k) (2.2)
y(k) = Cyx(k) (2.3)
z(k) = Czx(k) (2.4)

where x is an nx-dimensional state vector, u is an nu-dimensional input vector,
y is an ny-dimensional vector of measured outputs and z is an nz-dimensional
vector of outputs which are to be controlled, either to particular set-points, or
to satisfy some constraints, or both. The components in y and z may overlap,
and may be the same – that is, all the controlled outputs could as well be
measured. We will assume that y = z, and we will then use C to denote both
Cy and Cz.

As usual, our plant model (2.2) expresses the plant state x in terms of the
values of the input u. But the cost function will penalize rates of change of
the input, (∆u)(k) = u(k)− u(k− 1), rather than the input values themselves.
We shall see in the next section that the predictive control algorithm will in
fact produce the rate of change ∆u rather than u. It is therefore convenient
for many purposes to regard the controller as producing the signal ∆u, and
the plant as having this signal as its input. That is, it is often convenient
to regard the discrete-time integration from ∆u to u as being included in the
plant dynamics to ultimately obtain an offset-free tracking controller. The
MPC controller produces the signal ∆u, which is passed to the plant. There
are several ways of including this “integration” in a state-space model. All of
them involve augmenting the state vector. For example, one way is to define
the state vector

ξ(k) =
[

x(k)
u(k − 1)

]
.

Then, assuming the linear model (2.2) holds for the real plant state, we have
[

x(k + 1)
u(k)

]
=

[
A B
0 I

] [
x(k)

u(k − 1)

]
+

[
B
I

]
∆u(k) (2.5)

y(k) =
[

C 0
] [

x(k)
u(k − 1)

]
. (2.6)

The reason for using one of these standard forms is mainly that it con-
nects well with the standard theory of linear systems and control. We may
also generalize this model by including the effects of measured or unmeasured
disturbances, and of measurement noise. We are going to assume that the
sequence of actions at time step k is the following:
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1. Obtain measurements y(k).

2. Compute the required plant input sequence {u(k + j|k)}N
j=0.

3. Apply u(k) to the plant.

This implies that there is always some delay between measuring y(k) and ap-
plying u(k). For this reason there is no direct feed-through from u(k) to y(k)
in the measured output equation (2.3), so that the model is strictly proper.

2.4.2 Problem formulation

For the basic formulation of predictive control we shall assume that the plant
model is linear, that the cost function is quadratic, and that constraints are
in the form of linear inequalities. Furthermore, we shall assume that the cost
function does not penalize particular values of the input vector u(k), but only
changes of the input vector, ∆u(k), which are defined as before. This for-
mulation coincides with that used in the majority of the predictive control
literature.

To make the formulation useful in the real world, we shall not assume
that the state variables can be measured, but that we can obtain an estimate
x̂(k|k) of the state x(k), the notation indicating that this estimate is based
on measurements up to time k – that is, on measurements of the outputs up
to y(k), and on knowledge of the inputs only up to u(k − 1), since the next
input u(k) has not yet been determined. Signals u(k+ j|k) will denote a future
value (at time k + j) of the input u, which is assumed at time k. Signals
x(k + j|k) and y(k + j|k) will denote the predictions, made at time k, of the
variables x and y at time k+j, on the assumption that some sequence of inputs
u(k + i|k)(i = 0, 1, . . . , j− 1) has been applied. These predictions will be made
consistently with the assumed linearized model (2.2)–(2.4). We will usually
assume that the real plant is governed by the same equations as the model,
although this is not really true in practice.

A cost function J penalizes deviations of the predicted controlled outputs
y(k + j|k) from a (vector-valued) reference trajectory yref(k + j|k). Again the
notation indicates that this reference trajectory may depend on measurements
made up to time k; in particular, its initial point may be the output measure-
ment y(k). But it may also be a fixed set-point, or some other predetermined
trajectory. We define the cost function to be

Jk(x(k), u) =
N∑

j=1

∥∥y(k+j|k)−yref(k+j|k)
∥∥2

Q(j)
+

Nc−1∑

j=0

∥∥∆u(k+j|k)
∥∥2

R(j)
(2.7)
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subject to the element-wise constraints

ymin ≤ y(k + j|k) ≤ ymax j = 0, . . . , N (2.8)
umin ≤ u(k + j|k) ≤ umax j = 0, . . . , Nc − 1 (2.9)

∆umin ≤ ∆u(k + j|k) ≤ ∆umax j = 0, . . . , Nc − 1. (2.10)

Although (2.8)–(2.10) are amplitude constraints, we may have more general
polytopic type constraints, which can be easily incorporated in the MPC theory
of this chapter.

There are several points to note here. The prediction horizon has length
N , but we do not necessarily have to start penalizing deviations of y from yref

immediately, because there may be some delay between applying an input and
seeing any effect. Nc is the control horizon. We will always assume that Nc <
N , and that ∆u(k+j|k) = 0 for j > Nc, so that u(k+j|k) = u(k+Nc−1|k) for
all j > Nc, i.e. a zero order hold is applied on the input for j > Nc. The form
of the cost function (2.7) implies that the error vector y(k + j|k)− yref(k + j|k)
is penalized at every point in the prediction horizon if Q(j) > 0. This is
indeed the most common situation in predictive control. But it is possible to
penalize the error at only a few coincidence points, by setting Q(j) = 0 for
same values of j. It is also possible to have different coincidence points for
different components of the error vector by setting appropriate elements of the
weighting matrices Q(j) to 0. To allow for these possibilities, we do not insist
on Q(j) > 0, but allow the weaker condition Q(j) ≥ 0. (At least this condition
is required, to ensure that Jk ≥ 0.)

We also need R(j) ≥ 0 to ensure that Jk > 0. Again, we do not insist
on the stronger condition that R(j) > 0, because there are cases in which the
changes in the control signal are not penalized. The weighting matrices R(j)
are sometimes called move suppression factors, since increasing them penalizes
changes in the input vector more heavily.

The cost function (2.7) only penalizes rates of the input vector, not its
value. In some cases an additional term of the form

∑ ‖u(k + j|k) − u0‖2S is
added, which penalizes deviations of the input vector from some ideal setpoint
value. Usually this is done only if there are more inputs than variables which
are to be controlled to setpoints. We shall not include such a term in our basic
formulation.

The prediction and control horizons N and Nc, the weights Q(j) and R(j),
and the reference trajectory yref(k + j), all affect the behavior of the closed-
loop combination of plant and predictive controller. Some of these parameters,
particularly the weights, may be dictated by the economic objectives of the
control system, but usually they are in effect tuning parameters which are
adjusted to give satisfactory dynamic performance.
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2.4.3 Prediction: full state measurement

We will start with the simplest situation. Assume that the whole state vector
is measured, so that x̂(k|k) = x(k) = y(k) (so C = I). Also assume that we
know nothing about any disturbances or measurement noise. Then all we can
do is to predict by iterating the model (2.2)–(2.3). So we get

x(k + 1|k) = Ax(k) + Bu(k|k)
x(k + 2|k) = Ax(k + 1|k) + Bu(k + 1|k)

= A2x(k) + ABu(k|k) + Bu(k + 1|k)
...

x(k + N |k) = Ax(k + N − 1|k) + Bu(k + N − 1|k)
= ANx(k) + AN−1Bu(k|k) + . . . + Bu(k + N − 1|k)

which can be summarized as

x(k + j|k) = Ajx(k) +
[

Aj−1 Aj−2 . . . I
]
B




u(k|k)
...

u(k + j − 1|k)




for j = 1, . . . , N . In the first line we have used u(k|k) rather than u(k), because
at the time when we need to compute the predictions we do not yet know what
u(k) will be.

Now recall that we have assumed that the input may only change at times
k, k + 1, . . . , k + Nc − 1, and will remain constant after that. So we have
u(k + j|k) = u(k + Nc − 1) for Nc < j < N − 1. In fact, we will later want to
have the predictions expressed in terms of ∆u(k + j|k) rather than u(k + j|k),
so let us do that now. Recall that ∆u(k + j|k) = u(k + j|k)− u(k + j − 1|k),
and that at time k we already know u(k − 1). So we have

u(k|k) = ∆u(k|k) + u(k − 1)
u(k + 1|k) = ∆u(k + 1|k) + ∆u(k|k) + u(k − 1)

...
u(k + Nc − 1|k) = ∆u(k + Nc − 1|k) + . . . + ∆u(k|k) + u(k − 1)

then for 1 ≤ j ≤ Nc

x(k + 1|k) = Ax(k) + B[∆u(k|k) + u(k − 1)]
x(k + 2|k) = A2x(k) + AB[∆u(k|k) + u(k − 1)]

+B [∆u(k + 1|k) + ∆u(k|k) + u(k − 1)]︸ ︷︷ ︸
u(k+1|k)

= A2x(k) + (A + I)B∆u(k|k) + B∆u(k + 1|k)
+(A + I)Bu(k − 1)
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till the end of the control horizon

x(k + Nc|k) = ANcx(k) + (ANc−1 + . . . + A + I)B∆u(k|k)
. . . + B∆u(k + Nc − 1|k)
+(ANc−1 + . . . + A + I)Bu(k − 1)

That is, we get

x(k + j|k) = Ajx(k)

+
[ ∑j−1

i=0 AiB . . . B
]



u(k|k)
...

u(k + j − 1|k)




+
j−1∑

i=0

AiBu(k − 1)

for j ≤ Nc. Next

x(k + Nc + 1|k) = ANc+1x(k) + (ANc + . . . + A + I)B∆u(k|k)
. . . + (A + I)B∆u(k + Nc − 1|k)
+(ANc + . . . + A + I)Bu(k − 1),
...

x(k + N |k) = ANx(k) + (AN−1 + . . . + A + I)B∆u(k|k)
. . . + (AN−Nc + . . . + A + I)B∆u(k + Nc − 1|k)
+(AN−1 + . . . + A + I)Bu(k − 1),

which is summarized as

x(k + j|k) = Ajx(k)

+
[ ∑j−1

i=0 AiB . . .
∑j−Nc

i=0 AiB
]



u(k|k)
...

u(k + Nc − 1|k)




+
j−1∑

i=0

AiBu(k − 1)

for Nc < j ≤ N .
Notice the adjustments we had to make after introducing the control horizon

to restrict the interval where input signal may change. We are now ready to
combine all state predictions in one expression. Finally we can write this in
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matrix-vector form:



x(k + 1|k)
...

x(k + Nc|k)
x(k + Nc + 1|k)

...
x(k + N |k)




=




A
...

ANc

ANc+1

...
AN




︸ ︷︷ ︸
Φ

x(k) +




B
...∑Nc−1

i=0 AiB∑Nc
i=0 AiB

...∑N−1
i=0 AiB




︸ ︷︷ ︸
Γ

u(k − 1)+




B · · · 0
AB + B · · · 0

...
. . .

...∑Nc−1
i=0 AiB · · · B∑Nc
i=0 AiB · · · AB + B

...
...

...∑N−1
i=0 AiB · · · ∑N−Nc

i=0 AiB




︸ ︷︷ ︸
Gy




∆u(k|k)
...

∆u(k + Nc − 1|k)


 .(2.11)

The prediction of y is now obtained as

y(k + j|k) = Cx(k + j|k) (2.12)

for j = 1, . . . , N .

2.4.4 Solving the MPC problem

We can rewrite the objective function (2.7) as

Jk =
∥∥Y (k)− Yref(k)

∥∥2

Q
+

∥∥∆U(k)
∥∥2

R
, (2.13)

where

Y (k) =




y(k + 1|k)
...

y(k + N |k)


 Yref(k) =




yref(k + 1|k)
...

yref(k + N |k)




∆U(k) =




∆u(k|k)
...

∆u(k + Nc − 1|k)
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and the weighting matrices Q and R are given by

Q =




Q(1) 0 . . . 0
0 Q(2) . . . 0
...

...
. . .

...
0 0 . . . Q(N)




R =




R(0) 0 . . . 0
0 R(1) . . . 0
...

...
. . .

...
0 0 . . . R(Nc − 1)




From (2.11)–(2.12) we see that Y (k) has form

Y (k) = Φx(k) + Γu(k − 1) + Gy∆U(k) (2.14)

for suitable matrices Φ, Γ and Gy. Define

E(k) = Yref(k)− Φx(k)− Γu(k − 1). (2.15)

This vector can be thought of as a “tracking error”, in the sense that it is the
difference between the future target trajectory and the “free response” of the
system, namely the response that would occur over the prediction horizon if no
input changes were made – that is, if we set ∆U(k) = 0. If E(k) really were 0,
then it would indeed be correct to set ∆U(k) = 0. Now we can write

Jk =
∥∥Gy∆U(k)− E(k)

∥∥2

Q
+

∥∥∆U(k)
∥∥2

R
(2.16)

= [∆U>(k)G>
y − E>(k)]Q[Gy∆U(k)− E(k)] + ∆U>(k)R∆U(k)

= ∆U>(k)[G>
y QGy + R]∆U(k)− 2E>(k)QGy∆U(k) + E>(k)QE(k)

This has the form

Jk =
1
2
∆U>(k)H∆U(k) + f>∆U(k) + const, (2.17)

where
H = 2(G>

y QGy + R)

and
f = −2G>

y QE(k)

and neither H nor f depends on ∆U(k).
Recall that a simple relationship exists between the input increments ∆u

and control input u:



u(k|k)
u(k + 1|k)

...
u(k + Nc − 1|k)


 = M




∆u(k|k)
∆u(k + 1|k)

...
∆u(k + Nc − 1|k)


 + Fu(k − 1),
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where

M =




I 0 · · · 0
I I · · · 0
...

...
. . .

...
I I · · · I


 , F =




I
I
...
I


 .

The constraints (2.8)–(2.10) can be rewritten as a single inequality



I
−I
M
−M
Gy

−Gy




∆U(k) ≤




b1

−b2

d1 − Fu(k − 1)
−d2 + Fu(k − 1)

y1 − Φx(k)− Γu(k − 1)
−y2 + Φx(k) + Γu(k − 1)




, (2.18)

where b1, b2, d1 and d2 are of dimension Ncnu and consist of Nc copies of
∆umax, ∆umin, umax and umin respectively. In the same way, vectors y1 and y2

are of dimension Nny and consist of N copies of ymax, ymin.
So, from (2.17) we see that we have to solve the following constrained op-

timization problem

min
∆U(k)

1
2
∆U>(k)H∆U(k) + f>∆U(k) (2.19)

subject to the inequality constraint (2.18). This is a standard optimization
problem known as the Quadratic Programming (QP) problem, and standard
algorithms are available for its solution (see Appendix A).

Remember that we use only the part of this solution corresponding to the
first step, in accordance with the receding horizon strategy. So if the number
of plant inputs is nu then we just use the first nu rows of the vector ∆Uopt(k).
We can represent this as

∆uopt(k) =
[
Inu 0 . . . 0︸ ︷︷ ︸

(Nc−1) times

]
∆Uopt(k).

We assume that Q ≥ 0 and R > 0, which will be the case if R(j) > 0
for each j. This ensures that the Hessian G>

y QGy + R > 0. In this case the
QP problem which we have to solve is strictly convex. Because of the strict
convexity a unique solution exists and we can guarantee termination of the
optimization problem. Because of the additional structure of the QP problem,
we can estimate how long it will take to solve. This is an extremely desirable
property for an algorithm which has to be used on-line, so as to keep up with
the real-time operation of the plant.

An other important issue is feasibility. We call a state x ∈ Rnx feasible if
there exists u : TN → Rnu (TN = [k, . . . , k + N ]) such that (2.7)–(2.10) hold
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together with (2.2) that achieves finite cost J(x, u). If x is not feasible then
it is called infeasible. Suppose that for a feasible problem J(x(k), u) at time
k there exists uopt such that J(x(k), uopt) is minimal. Let xopt denote the
corresponding state trajectory. Then it can be shown that for xopt(k + 1) =
Ax(k) + Buopt(k) the problem J(xopt(k + 1), u) at time k + 1 is also feasible if
all eigenvalues of matrix A lie strictly inside the unit circle (|λ(A)| < 1). This
can be proved by noting that at time k + 1 the input signal

u(k + 1 + j|k) =
{

uopt(k + 1 + j|k) j = 0, . . . , N − 2
uopt(k + N |k) j = N − 1

satisfies the constraints (2.9), because uopt satisfies the constraints and ‖y(k +
N + 1)‖ ≤ ‖y(k + N)‖ (as the system is stable and strictly proper).

A major problem which can occur with constrained optimization is that the
problem may be infeasible. Standard QP solvers just stop in such cases. This
is obviously unacceptable as a substitute for a control signal which must be
provided to the plant. So when implementing predictive control it is essential
to take steps either to avoid infeasibility, or to have a “back-up” method of
computing the control signal. Various approaches to this have been suggested,
including:

• Avoid “hard” constraints on y.

• Actively manage the constraint definition at each k.

• Actively manage the horizons at each k.

• Use non-standard solution algorithms.

We will discuss some of these options in later chapters.

2.4.5 Stability issues

In the early eighties it became clear that model predictive control did not
provide a stable closed loop system for all values of the tuning variables. This
is a property that for example LQ optimal control did possess. It is a favorable
property because no tuning is necessary to obtain stability and the tuning
can be adjusted on-line without the danger of running unstable. Especially
the academic community tried to gain insight in the stability problem and
developed numerous approaches to obtain a closed loop system with guaranteed
stability.

In [100] it is shown how a contraction constraint can be used to force the
state to decrease with time and stability follows independent of the various
parameters in the objective function.
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Another approach is to use the value function J(x) = infu J(x, u) as a
Lyapunov function for the closed loop. One wishes to show that

J(x(k))− J(x(k + 1)) > 0 (2.20)

along trajectories x of the closed loop system, because a Lyapunov function
must be decreasing. There are several ways to assure that this is the case.

When a constraint for the final state x(k + N) = 0 is added to, it can be
shown [43] that the value function is a Lyapunov function for the closed loop.
A property of this approach is that the additional state constraint may lead
to infeasibility. This means that there is no input trajectory that satisfies all
the constraints. Due to this infeasibility problem this approach may not be
appropriate for industrial systems.

An other very elegant approach is given in [78]. There it is shown that the
requirement (2.20) is fulfilled if the output horizon is set to infinity N = ∞.
They show how this infinite dimensional optimization problem is solvable with
finite dimensional quadratic programming.

2.4.6 Mathematical programming: optimality conditions

In control a signal has to be searched for that is optimal in some sense. Clearly,
optimization theory plays an important role in this field. In this section a brief
review is given of some basic concepts of optimization theory that are used in
this thesis.

In optimization theory two classes of problems can be distinguished:

1. Mathematical programming problems. In this class only algebraic rela-
tions occur.

2. Dynamic optimization problems. In this class apart from algebraic rela-
tions also differential equations occur.

The second class is usually considered in optimal control problems. The first
class will be briefly discussed in the sequel of this section. In this thesis one
convex optimization problem gets special attention, namely the quadratic pro-
gramming problem.

A general formulation of a mathematical programming problem is the fol-
lowing

minx∈Rn f(x)
subject to h(x) = 0

g(x) ≤ 0

where the objective function f(x) is at least twice differentiable, the set of equal-
ity and inequality constraints h(x) = (h1(x), . . . , hm(x)), g(x) = (g1(x), . . . , gp(x))
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are vector valued functions, where the functions hi, gi are assumed to be con-
tinuous and twice differentiable. The gradient of a function and set of functions
is denoted as

∂xf(x) =
[

∂f

∂x1
, . . . ,

∂f

∂xn

]
, ∂xh(x) =




∂h1
∂x1

· · · ∂h1
∂xn

...
...

...
∂hm

∂x1
· · · ∂hm

∂xn


 ,

where the gradient is defined as a row vector. Several strategies are available
to solve this type of problem (see [67]). We will give some basic results of
optimization theory that play a role in this thesis.

An important notion that is explained first is the notion of feasible point
and feasible direction. A feasible point x is for unconstrained optimization
simply a point in Rn and for constrained optimization a point that satisfies
h(x) = 0, g(x) ≤ 0. All points that are feasible are denoted with the feasible
region. A vector d ∈ Rn is a feasible direction at x if there is an ᾱ > 0
such that all points {x + αd | 0 ≤ α ≤ ᾱ} are feasible points. With respect to
the optimization problem stated above, two types of optimal points can be
distinguished: local and global minima.

Definition 2.4.1 A point x∗ ∈ Rn is said to be a local minimum of f if there
is an ε such that f(x) ≥ f(x∗) for all feasible |x−x∗| < ε and a global minimum
of f if f(x) ≥ f(x∗) for all feasible x.

Hence, a global optimum is to be preferred over a local one as no better value
of the cost function can be obtained. The first order necessary condition of
unconstrained optimality is given next.

Theorem 2.4.2 (First-order necessary condition [69, 67]) If x∗ is a lo-
cal minimum point of f , then for any d ∈ Rn that is a feasible direction we
have ∂xf(x∗)d ≥ 0.

This reduces to the well known requirement that the gradient is zero, ∂f(x∗) =
0 if x∗ is an interior point of the feasible region.

Theorem 2.4.3 (Second-order necessary condition [69, 67]) If x∗ is a
local minimum point of f , then for any d ∈ Rn that is a feasible direction we
have (1) ∂xf(x∗)d ≥ 0 and (2) if ∂xf(x∗)d = 0, then d>∂2

xf(x∗)d ≥ 0.

This reduces to the well-known requirement of the second derivative to be
positive (semi)definite if x∗ is a point in the interior of the feasible region.

These conditions have a straightforward extension if constraints are present
in the problem. The first order conditions are also denoted more commonly as
Karush-Kuhn-Tucker (KKT) conditions.
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Theorem 2.4.4 (First-order necessary conditions: constrained case)
Let x∗ be a local minimum of f satisfying the constraints h(x∗) = 0, g(x∗) ≤ 0.
Then there are Lagrange multipliers λ ∈ Rm and µ ∈ Rp with µ ≥ 0 such that

∂xf(x∗) + λ>∂xh(x∗) + µ>∂xg(x∗) = 0
µ>g(x∗) = 0.

The second-order conditions are given next, where the following notation is
adopted for the second derivative of a function

[F (x)]ij =
∂2f

∂xi∂xj
(x).

The notation for the second derivative of vectors of functions h(x) is given by
the tensor H(x) that always occurs in a product with a vector λ> = [λ1 . . . λm]
such that the tensor is reduced to the matrix

λ>H(x) =
m∑

k=1

λkHk(x),

where the second derivative of the consecutive functions is given by

[Hk(x)]ij =
∂2hk

∂xi∂xj
(x)

for k = 1, . . . ,m and i, j = 1, . . . , n. This definition also applies to g(x).

Theorem 2.4.5 (Second-order necessary conditions: constrained case)
Let x∗ be a local minimum of f satisfying the constraints h(x∗) = 0, g(x∗) ≤ 0.
If we denote by M the tangent plane

M = {y | ∂xh(x∗)y = 0, ∂xgi(x∗)y = 0 for i ∈ I}

with I = {i | gi(x∗) = 0} being a finite set of indices, the active inequality
constraints, then there is a λ ∈ Rm, µ ∈ Rp, µ ≥ 0 such that the matrix

L(x∗) = F (x∗) + λ>H(x∗) + µ>G(x∗)

is positive semidefinite on M , that is y>L(x∗)y ≥ 0 for all y ∈ M .

The optimality conditions for unconstrained and equality constrained prob-
lems are practically equal. Therefore the complexity of algorithms for these
cases are generally of the same order. For inequality constrained problems the
first-order conditions are much more complicated than for the other classes of
problems, which expresses itself in the high complexity and computational load
of algorithms.
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2.4.7 Primal-dual interior-point methods

As it was mentioned in the previous sections, in linear model predictive con-
trol the optimal inputs are achieved by solving quadratic programs (QPs). In
the next chapter, we present a method for solving these quadratic programs
efficiently. To solve the quadratic problem that arises in model predictive con-
trol, we employ a primal-dual interior-point method (IPM). In this chapter,
we present the details of a primal-dual interior point method for the solution
of quadratic programs of the structure found in our specific applications. For
more details on primal-dual interior point methods, see [99]. The basic frame-
work for the development of this method is similar to the linear MPC problem
formulation found in [75], the highlight of which is the property that the QP
solution time is a linear function of the prediction horizon length, rather than
a cubic relationship. These details will be discussed in the next chapter.

Consider a convex quadratic program similar to (2.19):

min
w

1
2w>Hw + f>w, (2.21)

subject to Aeqw = beq,

Ainw ≤ bin,

where matrix H is positive semidefinite. We have also introduced an equality
constraint in this formulation. The Karush-Kuhn-Tucker (KKT) conditions
for optimality are that there exist Lagrange multipliers p and λ such that the
following conditions hold:

Hw + A>
eqp + A>

inλ + f = 0,

−Aeqw + beq = 0,

(−Ainw + bin)λ = 0,

−Ainw + bin ≥ 0,

λ ≥ 0.

The convex nature of the objective guarantees that these conditions are neces-
sary and sufficient for optimality (see [69, 67]). It is convenient to replace the
last two conditions with the equivalent, but easier to handle, system




Hw + A>
eqp + A>

inλ + f
−Aeqw + beq

−Ainw + bin − t
TΛe


 = 0, (2.22)

(λ, t) ≥ 0,

in which t is the vector of slack variables, Λ and T are matrices with λ and t
on the diagonals, respectively, and e is a vector of ones.
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A very common IPM technique is the primal-dual Mehrotra’s prediction-
corrector algorithm [60]. Primal-dual interior-point methods solve the quadratic
program by iterating from an initial guess to the optimal one. Using the nota-
tion in (2.22), the iterates are determined by solving the linear system




H A>
eq A>

in 0
−Aeq 0 0 0
−Ain 0 0 −I

0 0 T Λ







∆w
∆p
∆λ
∆t


 =




rH

rAeq

rAin

rt


 , (2.23)

for specific choices of the right hand side variables. The set of linearized KKT
equations is solved three times in each iteration. First a classical Newton
step is calculated in the primal-dual space to approach the optimum of the
non-linear KKT equations. This first step is also called the predictor step.
However, if only this Newton step is considered, the convergence will become
very slow once one approaches the constraint boundaries in the primal-dual
space (given by t>λ = 0) and therefore a centering step is calculated that brings
the current iterate back to the interior region in the primal-dual space. Indeed,
the best convergence turns out to be reached when the so-called “central path”
is followed in the primal-dual space. This central path can be parameterized by
τ and is defined as τ = t>λ. Finally, a corrector step is added that uses second-
order information from the solution of the Newton step (i.e. information about
the curvature of the central path) to approach this central path even closer.
The centering and the correction can be carried out together.

Thus, in the Mehrotra predictor-corrector algorithm, we solve (2.23) twice;
the first phase is the predictor or affine-scaling step, while the second phase
is the centering-correction direction. The value of τ is mostly written as the
product of a centering parameter σ ∈ [0, 1] and the so-called duality gap µ,
defined as the average value of the product of t and λ. So, the first step for the
solution of the QP is to determine the duality gap

µ =
t>λ

nin
,

in which nin is the number of rows in Ain. The duality gap is a measure of the
feasibility of the solution and it makes sure that we take a step which centers all
pair-wise t, λ-products at the same rate. As the algorithm proceeds, the duality
gap converges to zero, as required by the fourth equation of (2.22). The second
step is to solve (2.23) with the affine-scaling step with the right-hand side




rH

rAeq

rAin

rt


 =




−Hw −A>
eqp−A>

inλ− f
Aeqw − beq

Ainw − bin + t
−TΛe


 . (2.24)
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We denote the solution to the predictor step by (∆waff, ∆paff, ∆λaff, ∆taff). The
next step is to determine the maximum affine-scaling step length by

αaff = arg max {α ∈ [0, 1]|(λ, t) + α(∆λaff, ∆taff) ≥ 0} . (2.25)

The scalar αaff determines the duality gap for the full step to the boundary

µaff =
(λ + αaff∆λaff)>(λ + αaff∆λaff)

nin
.

Using this value, we define
σ = (µaff/µ)3.

The next step is to solve for the corrector step. We determine

(∆wcc, ∆pcc, ∆λcc,∆tcc)

by solving (2.23) with



rH

rAeq

rAin

rt


 =




0
0
0

−∆Taff∆Λaffe + σµe


 . (2.26)

The overall search direction is then defined by

(∆w, ∆p, ∆λ, ∆t) = (∆waff, ∆paff, ∆λaff, ∆taff) + (∆wcc,∆pcc,∆λcc, ∆tcc).

To keep (λ, t) strictly nonnegative, we determine

αmax = arg max {α ∈ [0, 1]|(λ, t) + α(∆λ, ∆t) ≥ 0} (2.27)

and define the new iterate as

(w, p, λ, t)+ = (w, p, λ, t) + αmaxγ(∆w, ∆p, ∆λ, ∆t),

in which the heuristic factor γ is chosen to be close to 1. The process is repeated
until convergence to within a specified tolerance is achieved.

In our algorithm, we perform block elimination on (2.23) and solve the more
condensed system




H A>
eq A>

in

−Aeq 0 0
−Ain 0 Λ−1T







∆w
∆p
∆λ


 =




r̂H

r̂Aeq

r̂Ain


 , (2.28)

noting that
∆t = Λ−1(rt − T∆λ). (2.29)
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In practice, the linear programs in (2.25) and (2.27) are not solved by a linear
programming method. Instead, we present the more convenient solution

α = min
{ −1

min{(∆λ,∆t)/(λ, t)} , 1
}

, (2.30)

which is valid unless all elements of (∆λ, ∆t) are nonnegative, in which case
α = 1.

2.5 Implementation and tuning

2.5.1 Estimated state and observer dynamics

We need to address the more realistic case, when we do not have measurements
of the whole state vector, and must use an observer. We will see that the so-
lution is very similar to the solution in the previous case. The only difference
is that we use an observer, and use the state estimate x̂(k|k) to replace the
measured state x(k). Now we have more dynamic complexity in the controller,
because the state vector includes the observer state. We will obtain an optimal
estimate by solving a stochastic linear quadratic problem, where we have Gaus-
sian noises acting on the states and outputs, and the observer gain is obtained
using Kalman filtering theory (see, for example [4, 9, 8]).

In order to use this theory, we put our plant and assumptions into standard
form. Instead of the model (2.2)–(2.3) which we used before, we will now use
the model

x(k + 1) = Ax(k) + Bu(k) + Bdd(k) (2.31)
y(k) = Cx(k) + v(k), (2.32)

where the unmeasured disturbance d is modelled as a stochastic process, which
is assumed to be generated through the following difference equation

xw(k + 1) = Awxw(k) + Bww(k)
d(k) = Cwxw(k),

where w(k) is a discrete-time white noise with covariance Rw ≥ 0. The mea-
surements of y(k) are corrupted by white noise v(k) with covariance Rv > 0.
We also assume w and v to be uncorrelated, i.e. E{wv>} = 0. Combining the
equations gives

x̃(k + 1) =
[

A BdCw

0 Aw

]
x̃(k) +

[
B
0

]
u(k) +

[
0

Bw

]
w(k)

y(k) =
[

C 0
]
x̃(k) + v(k),
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where x̃(k) =
[

x>(k) x>w(k)
]>.

Let this state-space representation be denoted by (Ã, B̃, B̃w, C̃) and x̂(k|k)
be the estimate of the state x̃(k). Assume that x̃(0) ∈ N(x̄, P0) is independent
of w and v. The estimation error e(k) = x̃(k) − x̂(k|k) satisfies Ee(k) = 0
provided x̂(0) = x̄. An optimal (minimum error variance) estimate can then
be obtained by iterating the following equations which define the Kalman filter

Correction: x̂(k|k) = x̂(k|k − 1) + L′(k)
[
y(k)− C̃x̂(k|k − 1)

]

Prediction: x̂(k + 1|k) = Ãx̂(k|k) + B̃u(k),

where the Kalman filter gain L′(k) is given by

L′(k) = P (k)C̃>
[
C̃P (k)C̃> + Rv

]−1

and where the covariance P (k) = Ee(k)e>(k) satisfies

P (k + 1) = ÃP (k)Ã> − ÃP (k)C̃>
[
C̃P (k)C̃> + Rv

]−1

C̃P (k)Ã> + B̃wRwB̃>
w,

where P (0) = P0 represents Ex̃(0)x̃>(0). The limit P∞ = limk→∞ P (k) exists,
which is a solution to the (filtering) algebraic Riccati equation

P∞ = ÃP∞Ã> − ÃP∞C̃>
[
C̃P∞C̃> + Rv

]−1

C̃P∞Ã> + B̃wRwB̃>
w.

The stationary Kalman filter gain is obtained as

L′∞ = P∞C̃>
[
C̃P∞C̃> + Rv

]−1

.

Note that the Kalman filter equations have the form of an observer, with a
special choice of observer gain. If the pair (Ã, B̃wR

1/2
w ) is stabilizable and the

pair (C̃, Ã) is detectable, then state-transition matrix Ã(I − L′∞C̃) has all its
eigenvalues inside the unit circle. Also, note that Rv ≥ 0 or even Rv = 0 is
allowed, provided that C̃P∞C̃> > 0 or C̃P (k)C̃> > 0 ∀ k.

To obtain the vector of predicted controlled outputs, Y (k), we go back to
equation (2.14), and simply replace x(k) by the best estimate of it available to
us, namely

[
Inx 0

]
x̂(k|k). So now we define

Y (k) = Φ
[

Inx 0
]
x̂(k|k) + Γu(k − 1) + Gy∆U(k).

The controller structure in this case is shown in Figure 2.1. Once these changes
have been made, the derivation of the optimal control ∆uopt(k) is exactly the
same as before. That is, we solve Jk([ Inx 0 ]x̂(k|k), u) subject to (2.2) and
constraints.
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Figure 2.1: MPC controller structure with state estimator.

2.5.2 Limitations of the current technology

The existing industrial MPC technology has several limitations, as pointed out
in [66]. The most relevant ones are:

• Over-parameterized models: most of the commercial products use a step
or impulse response model of the plant. For instance, a first order process
can be described by a transfer function model using only three parameters
(gain, time constant and dead-time) while a step response model may
require an infinite number of coefficients to describe the same dynamics.
Besides, these models can not be inferred from observations of unstable
processes. These problems can be overcome by using an auto-regressive
parametric model.

• Tuning: the tuning procedure is not clearly defined since the trade-off
between tuning parameters and closed loop behavior is generally not very
clear. Tuning in the presence of constraints may be even more difficult,
and even for the nominal case, it is not easy to guarantee closed loop
stability; that is why so much effort must be spent on prior simulations.
The feasibility of the problem is one of the most challenging topics of
MPC nowadays.

• Sub-optimality of the dynamic optimization: several packages provide
sub-optimal solutions to the minimization of the cost function in order to
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speed up the solution time. It can be accepted in high speed applications
(tracking systems) where solving the problem at every sampling time may
not be feasible, but it is difficult to justify for process control applications
unless it can be shown that the sub-optimal solution is always very nearly
optimal.

• Model uncertainty: although model identification packages provide es-
timates of model uncertainty, only one product (RMPCT) uses this in-
formation in the control design. All other controllers can be detuned in
order to improve robustness, although the relation between performance
and robustness is not very clear.

• Constant disturbance assumption: although perhaps the most reasonable
assumption is to consider that the output disturbance will remain con-
stant in the future, better feedback would be possible if the distribution
of the disturbance could be characterized more carefully.

• Analysis: a systematic analysis of stability and robustness properties of
MPC is not possible in its original finite horizon formulation. The control
law is in general time-varying and cannot be represented in the standard
closed loop form, especially in the constrained case.

The technology is continually evolving and the next generation will have
to face new challenges in open topics such as model identification, unmeasured
disturbance estimation and prediction, systematic treatment of modelling error
and uncertainty or such an open field as nonlinear model predictive control.

2.6 Design case studies

2.6.1 Evaporation process

The first nonlinear process is based on the forced-circulation evaporator de-
scribed in [68], and shown in Figure 2.2. A feed stream enters the process at
concentration X1 and temperature T1, with flow rate F1. It is mixed with a
recirculating liquor, which is pumped through the evaporator at flow rate F3.
The evaporator itself is a heat exchanger, which is heated by steam flowing at
a rate F100, with entry temperature T100 and pressure P100. The mixture of
feed and recirculating liquor boils inside the heat exchanger, and the resulting
mixture of vapor and liquid enters a separator, in which the liquid level is L2.
The operating pressure inside the evaporator is P2. Most of the liquid from the
separator becomes the recirculating liquor. A small portion of it is drawn off
as product, with concentration X2, at a flow rate F2 and temperature T2. The
vapor from the separator flows to a condenser at flow rate F4 and temperature
T3, where it is condensed by being cooled with water flowing at a rate F200,
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Figure 2.2: Evaporation process.

with entry temperature T200 and exit temperature T201. The details of the
process model are given below.

Process liquid mass balance

A mass balance on the total process liquid (solvent and solute) in the system
yields

ρA
dL2

dt
= F1 − F4 − F2,

where ρ is the liquid density and A is the cross-sectional area of the separator.
(The product ρA is assumed to be constant at 20 kg/m.)

Process liquid solute mass balance

A mass balance on the solute in the process liquid phase yields

M
dX2

dt
= F1X1 − F2X2,

where M is the amount of liquid in the separator and is assumed to be constant
at 20 kg.
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Process vapor mass balance

A mass balance on the process vapor in the evaporator will express the total
mass of the water vapor in terms of the pressure that exists in the system

C
dP2

dt
= F4 − F5,

where C is a constant that converts the mass of vapor into an equivalent pres-
sure and is assumed to have a value of 4 kg/kPa. This constant can be derived
from the ideal gas law.

Process liquid energy balance

The process liquid is assumed to always exist at its boiling point and to be
perfectly mixed (assisted by the high circulation rate). The liquid temperature
is

T2 = 0.5616 P2 + 0.3126 X2 + 48.43,

which is a linearization of the saturated liquid line for water about the standard
steady-state value and includes a term to approximate boiling point elevation
due to the presence of the solute. The vapor temperature is

T3 = 0.507 P2 + 55.0,

which is a linearization of the saturated liquid line for water about the standard
steady-state value.

The dynamics of the energy balance are assumed to be very fast so that

F4 = (Q100 − F1CP (T2 − T1))/λ,

where CP is the heat capacity of the liquor and is assumed constant at a value
of 0.07 kW/K(kg/min) and λ is the latent heat of vaporization of the liquor
and is assumed to have a constant value of 38.5 kW/(kg/min).

The sensible heat change between T2 and T3 for T4 is considered small
compared to the latent heat. It is assumed that there are no heat losses to the
environment or heat gains from the energy input of the pump.

Heater steam jacket

Steam pressure P100 is a manipulated variable which determines steam temper-
ature under assumed saturated conditions. An equation relating steam temper-
ature to steam pressure can be obtained by approximating the saturated steam
temperature-pressure relationship by local linearization about the steady-state
value

T100 = 0.1538 P100 + 90.
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The rate of heat transfer to the boiling process liquid is given by

Q100 = UA1(T100 − T2),

where UA1 is the overall heat transfer coefficient times the heat transfer area
and is a function of the total flow-rate through the tubes in the evaporator

UA1 = 0.16 (F1 + F3).

The steam flow-rate is calculated from

F100 = Q100/λs,

where λs is the latent heat of steam at the saturated conditions, assumed
constant at a value of 36.6 kW/(kg/min). The dynamics within the steam
jacket have been assumed to be very fast.

Condenser

The cooling water flow-rate F200 is a manipulated variable and the inlet tem-
perature T200 is a disturbance variable. A cooling water energy balance yields

Q200 = F200CP (T201 − T200),

where CP is the heat capacity of the cooling water assumed constant at 0.07
kW/(kg/min). The heat transfer rate equation is approximated by

Q200 = UA2(T3 − 0.5 (T200 + T201)),

where UA2 is the overall heat transfer coefficient times the heat transfer area,
which is assumed constant with a value of 6.84 kW/K.

These two equations can be combined to eliminate T201 to give explicitly

Q200 =
UA2(T3 − T200)

1 + UA2/(2CP F200)
.

It follows that
T201 = T200 + Q200/(F200CP ).

The condensate flow-rate is
F5 = Q200/λ,

where λ is the latent heat of vaporization of water assumed constant at 38.5
kW/K(kg/min). The dynamics within the condenser have been assumed to be
very fast.

State variables L2, X2 and P2 are the controlled outputs for this process.
These outputs, together with their initial equilibrium (steady-state) values and
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Output variable Equilibrium Lower limit Upper limit
Separator level L2 1 m 0 2
Product composition X2 25 % 0 50
Operating pressure P2 50.5 kPa 0 100

Table 2.1: Output variables.

Input variable Equilibrium Lower limit Upper limit
Product flow rate F2 2.0 kg/min 0 4
Steam pressure P100 194.7 kPa 0 400
Cooling water flow rate F200 208.0 kg/min 0 400

Table 2.2: Input variables.

Disturbance Equilibrium
Circulating flow rate F3 50.0 kg/min
Feed flow rate F1 10.0 kg/min
Feed concentration X1 5.0 %
Feed temperature T1 40.0 ◦C
Cooling water entry temperature T200 25.0 ◦C

Table 2.3: Disturbance variables.

constraints, are given in Table 2.1. The manipulated variables are chosen to be
F2, P100 and F200 (see Table 2.2). There are five disturbance signals, namely
F3, F1, X1, T1 and T200, which are left fixed at their equilibrium values (Table
2.3).

Input and output constraints are imposed in the optimization. The level
L2 is kept at the value of 1 m. The setpoint for X2 is ramped down linearly
from 25% to 15% over a period of 20 minutes, and the operating pressure P2

is simultaneously ramped up from 50.5 kPa to 70 kPa. The process is sampled
with T = 1 min. The tuning parameters include prediction horizon N = 30,
control horizon Nc = 3 and the following constant weighting matrices:

Q =




103 0 0
0 102 0
0 0 102


 , R = I3.

The result of linear MPC application with a single model obtained at the initial
equilibrium condition is given in Figure 2.3 (dashed line). We see that control
is initially satisfactory and the setpoints are held quite closely, even when X2

and P2 start changing as they flow their ramp setpoints. But about half-way
through the ramp the separator level L2 drifts considerably off its setpoint
and does not return to it. Although the product concentration X2 tracks the
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Figure 2.3: Outputs with linear MPC based on a single linear model (dashed)
and model re-linearized every 10 min (solid).

setpoint quite closely and settles correctly at the required steady-state level,
the operating pressure P2 drifts away from its setpoint. The deterioration of
the closed-loop behavior is due to the fact that the linearized model used by
the MPC has become a very inaccurate representation of the small-deviation
behavior of the evaporator at the new operating conditions.

The most common way of dealing with plant nonlinearities in practice is to
re-linearize or adapt the linear internal model. Figure 2.3 also shows the result
of linear MPC when the internal model is re-linearized every 10 minutes. It
remains a reasonably good representation of the plant behavior throughout the
change of operating conditions, and it is clearly seen that the tracking control
is much better. The product concentration and operating pressure are both
held close to their setpoints, and the separator level, although still undergoing
considerable deviations from its setpoint, is now controlled much better than
before.

2.6.2 High-purity binary distillation column

The second case study is concerned with MPC controller design for a high
purity distillation column. Figure 2.4 presents the distillation process, its 82-
state nonlinear model can be found in [84]. The column contains 41 trays that
are located along its length. The raw material enters the column at a flow rate
of F and with composition zf. The top product, the distillate, is condensed and
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Figure 2.4: Binary high-purity distillation column.

removed at a flow rate of D and with composition Xd. The bottom product is
removed as a liquid at a flow rate of B and with composition Xb. The operation
of the column requires that some of the bottom product is reboiled at a rate
of Vb to ensure the continuity of the vapor flow. In the same way, some of the
distillate is refluxed to the top tray at a rate of L to ensure the continuity of
the liquid flow. The vapor boilup Vb and the reflux flow L are the manipulated
variables. Feed flow rate F with composition zf act as disturbances.

The distillation column is known to be an ill-conditioned process. This can
be shown by considering the following steady-state model of the column

G =
[

87.8 −86.4
108.2 −109.6

]
(2.33)

for scaled output variables. Thus, since the elements are much larger than 1 in
magnitude this suggests that there will be no problems with input constraints.
However, this is somewhat misleading as the gain in the low-gain direction
(corresponding to the smallest singular value) is actually only just above 1. To
see this we consider the SVD of G:

G =
[

0.625 −0.781
0.781 0.625

] [
197.2 0

0 1.39

] [
0.707 −0.708
−0.708 −0.707

]>
.

From the first input singular vector, ū =
[

0.707 −0.708
]> we see that the
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gain is 197.2 when we increase one input and decrease the other input by a
similar amount. On the other hand, from the second input singular vector,
u =

[ −0.708 −0.707
]>, we see that if we increase both inputs by the same

amount then the gain is only 1.39. The reason for this is that the plant is such
that the two inputs counteract each other. Thus, the distillation process is ill-
conditioned, at least at steady-state, and the condition number is 197.2/1.39
= 141.7.

The model in (2.33) represents two point (dual) composition control of a
distillation column, where the top composition is to be controlled at Xd = 0.99
(output y1) and the bottom composition at Xb = 0.01 (output y2), using reflux
L (input u1) and boilup Vb (input u2) as manipulated inputs. The upper left
element of the gain matrix G is 87.8. Thus an increase in u1 by 1 (with u2

constant) yields a large steady-state change in y1 of 87.8, that is, the outputs
are very sensitive to changes in u1. Similarly, an increase in u2 by 1 (with u1

constant) yields y1 = −86.4. Again, this is a very large change, but in the
opposite direction of that for the increase in u1. We therefore see that changes
in u1 and u2 counteract each other, and if we increase u1 and u2 simultaneously
by 1, then the overall steady-state change in y1 is only 87.8 - 86.4 = 1.4.

Physically, the reason for this small change is that the compositions in the
distillation column are only weakly dependent on changes in the internal flows
(i.e. simultaneous changes in the internal flows L and Vb). This can also
be seen from the smallest singular value, σ(G) = 1.39, which is obtained for
inputs in the direction u =

[ −0.708 −0.707
]>. From the output singular

vector y =
[ −0.781 0.625

]> we see that the effect is to move the outputs
in different directions, that is, to change y1 − y2. Therefore, it takes a large
control action to move the compositions in different directions, that is, to make
both products purer simultaneously. This makes sense from a physical point
of view.

On the other hand, the distillation column is very sensitive to changes in
external flows (i.e. increase u1−u2 = L−Vb). This can be seen from the input
singular vector ū =

[
0.707 −0.708

]> associated with the largest singular
value, and is a general property of distillation columns where both products
are of high purity. The reason for this is that the external distillate flow (which
varies as Vb − L) has to be about equal to the amount of light component in
the feed, and even a small imbalance leads to large changes in the product
compositions.

The MPC objective would be to bring the controlled outputs Xd and Xb

to the setpoints of 0.99 and 0.01, respectively. Figure 2.5 shows the outputs
of the nonlinear distillation column controlled by a linear MPC. The linear
controller used only one linear model obtained at the setpoint values. We see
that it quite difficult to efficiently tune the linear MPC controller and make
the outputs smoothly approach the given setpoints.

As in the case of a distillation column, the process encountered by the con-
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Figure 2.5: Top and bottom product compositions simulated with linear MPC.

troller may require excessive input movement in order to control the outputs
independently. This problem arises if two outputs respond in an almost iden-
tical way to the available inputs. It is important to note that this is a feature
of the process to be controlled, any algorithm which attempts to control an ill-
conditioned process must address this problem. For a process with gain matrix
G, the condition number of G>G provides a measure of process ill-conditioning,
a high condition number means that small changes in the future error vector
will lead to large MV moves.

Three active strategies are currently used by MPC controllers to deal with
ill-conditioned processes: singular value thresholding, controlled variable rank-
ing and LP slack variables. Input move suppression also improves the condition
number of the process internal model, this can be thought of as a passive strat-
egy for dealing with ill-conditioning.

The Singular Value Thresholding (SVT) method involves decomposing the
process model using a singular value decomposition. Singular values below a
threshold magnitude are discarded, and a process model with a much lower
condition number is then reassembled and used for control. The neglected
singular values represent the direction along which the process hardly moves
even if a large MV change is applied, the SVT method gives up this direction to
avoid erratic MV changes. This method solves the ill-conditioning problem at
the expense of neglecting the smallest singular values. If the magnitude of these
singular values is small comparing to model uncertainty, it may be better to
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neglect them anyway. After thresholding, the collinear CV’s are approximated
with the principal singular direction. In the case of two collinear CV’s, for
example, this principal direction is a weighted average of the two CV’s. Note
that the SVT approach is sensitive to output weighting. If one CV is weighted
much more heavily than another, this CV will represent the principal singular
direction.

At other way to address this issue is to use a user-defined set of CV con-
trollability ranks. When a high condition number is detected, the controller
drops low priority CV’s until a well-conditioned sub-process remains. The sub-
process will be controlled without erratic input movement but the low priority
CV’s will be uncontrolled. Note, however, that if a low priority CV is dropped
because it’s open loop response is close to that of a high priority output, it
will follow the high priority CV and will therefore still be controlled in a loose
sense. In the case of two collinear CV’s having no differentiable priority, it may
be desirable to use an weighted average of the two.

The DMC algorithm handles steady-state ill-conditioning through the use
of slack variable weights in the steady-state LP. If two outputs are nearly
collinear, the LP will select the one with the largest slack variable weight for
control. Controllers that use input move suppression, such as DMC algorithm,
provide an alternative strategy for dealing with ill-conditioning. Input move
suppression factors increase the magnitude of the diagonal elements of the ma-
trix to be inverted in the least squares solution, directly lowering the condition
number. The move suppression values can be adjusted to the point that er-
ratic input movement is avoided for the commonly encountered sub-processes.
In the limit of infinite move suppression the condition number becomes one for
all sub-processes. There probably exists a set of finite move suppression factors
which guarantee that all sub-processes have a condition number greater than a
desired threshold value. In the case of two collinear CV’s, the move suppression
approach gives up a little bit on moving each CV towards its target. The move
suppression solution is similar to that of the SVT solution in the sense that it
tends to minimize the norm of the MV moves.

In the next chapter we present an MPC algorithm for nonlinear systems,
which allows the direct use of multiple linear models on the prediction horizon.
We will also investigate its performance on the distillation column in case of
high purity components.

2.6.3 Motivating example: Oil fractionator

In this section we shall consider the well-known heavy oil fractionator (dis-
tillation column) problem, as defined in [50]. This is a linear model which
does not represent a real, existing process, but was devised to exhibit the most
significant control engineering features faced on real oil fractionators. It was
intended to serve as a standard problem on which various control solutions
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could be demonstrated in simulation. The fractionator is shown in Figure 2.6.
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Figure 2.6: Heavy oil fractionator.

A gaseous feed enters at the bottom of the fractionator. Three product streams
are drawn off, at the top, side and bottom of the fractionator (shown on the
right-hand side in the Figure 2.6). There are also three circulating (reflux)
loops at the top, middle (subsequently referred to as intermediate) and bottom
of the fractionator, which are shown on the left-hand side of the Figure 2.6.
Heat is carried into the fractionator by the feed, and these circulating reflux
loops are used to remove heat from the process, by means of heat exchang-
ers. The heat removed in this way is used to supply heat to other processes,
such as other fractionators. The amount of heat removed by each reflux loop
is expressed as heat duty; the larger the duty, the more heat is recirculated
back into the fractionator, and thus the smaller the amount of heat removed.
The gains from heat duties to temperatures are therefore positive. The heat
removed in the top two reflux loops is determined by the requirements of other
processes, and these therefore act as disturbance inputs to the fractionator.
An important difference between them is that the Intermediate Reflux Duty is
considered to be measured, and is therefore available for feed-forward control,
whereas the Upper Reflux Duty is an unmeasured disturbance. The Bottoms
Reflux Duty, by contrast, is a manipulated variable, which can be used to con-
trol the process. The Bottoms Reflux is used to generate steam for use on
other units; so, although the Bottoms Reflux Duty can be used to control the
oil fractionator, keeping it as low as possible corresponds to generating as much
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steam as possible, and is therefore economically advantageous. There are two
additional manipulated variables (that is, control inputs): the Top Draw and
the Side Draw, namely the flow rates of the products drawn off at the top and
side of the fractionator. Again, these are defined in such a way that a positive
change leads to an increase of all temperatures in the fractionator. Altogether,
then, there are five inputs to the fractionator, of which three are manipulated
variables (control inputs) and two are disturbances.

There are seven measured outputs from the fractionator. The first two
outputs are the compositions of the Top End Point product and of the Side
End Point product. These are measured by analyzers, and the composition is
represented by a scalar variable in each case. The remaining five outputs are all
temperatures: the Top Temperature, the Upper Reflux Temperature, the Side
Draw Temperature, the Intermediate Reflux Temperature, and the Bottoms
Reflux Temperature. Only three of these outputs are to be controlled: the
Top End Point and Side End Point compositions, and the Bottoms Reflux
temperature. The remaining four output measurements are available for use
by the controller. (In the original problem definition the possibility is raised
that the two analyzers may be unreliable, in which case these additional output
measurements play an important role in allowing control to continue without
having the analyzer measurements available.)

The transfer function from each input to output is modelled as a first-order
lag with time delay. We shall order the inputs and outputs as shown in Table
2.4. The nominal transfer functions from the control and disturbance inputs

Variable Function Symbol
Top Draw Control input u1

Side Draw Control input u2

Bottoms Reflux Duty Control input u3, z4

Intermediate Reflux Duty Measured disturbance dm

Upper Reflux Duty Unmeasured disturbance du

Top End Point Controlled and measured output y1, z1

Side End Point Controlled and measured output y2, z2

Top Temperature Measured output y3

Upper Reflux Temp. Measured output y4

Side Draw Temp. Measured output y5

Intermediate Reflux Temp. Measured output y6

Bottoms Reflux Temp. Controlled and measured output y7, z3

Table 2.4: Oil fractionator variables.

to all the outputs are given in Table 2.5. The step response of the fractionator
confirms that the nominal plant is asymptotically stable, and that the settling
times range from about 10 minutes (from the Intermediate Reflux Duty to the
Side Draw Temperature) to about 250 minutes (from the Side Draw to the Side
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End Point).

u1 u2 u3 dm du

y1, z1 4.05 e−27s

50s+1 1.77 e−28s

60s+1 5.88 e−27s

50s+1 1.20 e−27s

45s+1 1.44 e−27s

40s+1

y2, z2 5.39 e−18s

50s+1 5.72 e−14s

60s+1 6.90 e−15s

40s+1 1.52 e−15s

25s+1 1.83 e−15s

20s+1

y3 3.66 e−2s

9s+1 1.65 e−20s

30s+1 5.53 e−2s

40s+1 1.16 1
11s+1 1.27 1

6s+1

y4 5.92 e−11s

12s+1 2.54 e−12s

27s+1 8.10 e−2s

20s+1 1.73 1
5s+1 1.79 1

19s+1

y5 4.13 e−5s

8s+1 2.38 e−7s

19s+1 6.23 e−2s

10s+1 1.31 1
2s+1 1.26 1

22s+1

y6 4.06 e−8s

13s+1 4.18 e−4s

33s+1 6.53 e−s

9s+1 1.19 1
19s+1 1.17 1

24s+1

y7, z3 4.38 e−20s

33s+1 4.42 e−22s

44s+1 7.20 1
19s+1 1.14 1

27s+1 1.26 1
32s+1

Table 2.5: Oil fractionator model.

The focus of the control performance specifications is on rejecting distur-
bances, while minimizing the Bottoms Reflux Duty (u3) and satisfying con-
straints. There are setpoint specifications on the Top End Point and Side
End Point compositions. Since we have a linearized model, we may as well
assume that the set-points are at 0. There is a requirement that at steady
state these two outputs should be within ±0.005 of the set-point. The dy-
namic response requirement is more ambiguous, being that closed-loop speed
of response should be between 0.8 and 1.25 of the open-loop speed. We shall
assume that this refers to set-point response, rather than disturbance response;
that removes most of the ambiguity because the open-loop response speed of
the Top End Point and the Side End Point compositions to each of the three
control inputs is nearly the same, with similar time delays and time constants.
For disturbance rejection, the requirement is to return the Top and Side End
Point compositions to their setpoints as quickly as possible, subject to satis-
fying constraints. The trade-off between returning these compositions to their
set-points and minimizing the Bottoms Reflux Duty, should these conflict, is
not specified. In addition there are constraints on inputs and outputs as shown
in Table 2.6 (T is the sampling time). The variables have been scaled so that

Output constraints |zi| ≤ 0.5 for i = 1, 2, 3
Input constraints |ui| ≤ 0.5 for i = 1, 2, 3
Input move constraints |∆ui| ≤ 0.05T for i = 1, 2, 3

Table 2.6: Input and output constraints.

they all have similar constraints, and the input move constraints, which are
0.05 per minute for each input, have been expressed as limits on |∆uj |, consis-
tently with our earlier notation, in terms of the sampling and control update
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interval T . Note that the Bottoms Reflux Temperature has constraints but no
set-point, so it has a zone objective. The two disturbance inputs are known to
take values in the range ±0.5, but they are otherwise unspecified.

One of the objectives is to minimize the Bottoms Reflux Duty, which is
one of the control inputs. The most straightforward way to do this is to make
this input also an output. Since we require the model to be strictly proper (no
direct feed-through from input to output) we define a new controlled output
as z4(k) = u3(k− 1) for all k. It can be shown that a suitable setpoint for this
output would be −0.32.

The impact of the sampling time on computational requirements is more
significant. Closed-loop settling times in response to set-point changes are re-
quired to be in the region of 120-250 minutes (the relevant open-loop time
constants range from 40 to 60 minutes; closed-loop time constants are to be
between 80% and 125% of these values; take the settling time to be 3 × time
constant and add the time delay of between 14 and 28 minutes). We will try
a relatively long prediction horizon. Since constraints are to be enforced at all
times, the option of choosing a small number of coincidence points is not avail-
able, at least for constraint enforcement – it remains a possibility for penalizing
tracking errors in the cost function. Choosing a small sampling interval will
therefore lead to a large prediction horizon, which will be computationally de-
manding. On the other hand, the effect of the Intermediate Reflux Duty, which
is a measured disturbance, on the Bottoms Reflux Temperature, is relatively
fast, with no time delay and a time constant of 27 minutes. Therefore choosing
a sampling interval as large as 10 minutes may not give enough opportunity
for effective feed-forward action. We shall therefore choose T = 4 minutes.

If only the Top and Side End Point compositions and the Bottoms Reflux
Temperature have been retained as outputs, and the Bottoms Reflux Duty is
brought out as an additional output (with a one-step delay), then a minimal
state-space realization of a discrete-time model, with T = 4 minutes, has 80
states. Reducing the number of states would speed up the controller computa-
tions and reduce the risks of hitting numerical problems. We will use a reduced
order approximate model with 20 states for MPC design, as proposed in [50],
where balanced model reduction techniques were used. In order to predict
beyond the expected settling time up to 300 minutes, the choice of sampling
interval T = 4 minutes will require a prediction horizon N = 75.

The choice of control horizon will have a large impact on the computa-
tional load on the controller algorithm. Since there is a large spread of slow
and fast dynamics in the various transfer functions of the fractionator, the use
of blocking, namely non-uniform intervals between control decisions seems ap-
propriate here, as that allows control adjustments to be made throughout the
predicted transient period without having too many decision variables in the
optimization problem. Guided by precess step responses, we guess that it may
be appropriate to keep u(k|k), u(k +1|k), u(k +3|k), u(k +7|k) and u(k +15|k)
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as the decision variables, so that the blocking pattern is as follows, each block
being twice as long as the previous one:

u(k|k)
u(k + 1|k) = u(k + 2|k)
u(k + 3|k) = u(k + 4|k) = u(k + 5|k) = u(k + 6|k)
u(k + 7|k) = u(k + j|k) for j = 8, 9, . . . , 14

u(k + 15|k) = u(k + j|k) for j = 16, 17, . . .

In this way we have only 15 decision variables (3 control inputs × 5 decision
times).

Next we must choose weights for the cost function. Since the Bottoms
Reflux Temperature (z3) has a zone objective only, the tracking error weight
for it is 0. We assume that the variables have already been scaled such that
equal errors on each of these are equally important. We will also keep the
weights constant over the prediction horizon, except that we will not weight
the Top End Point errors during the first seven steps, or the Side End Point
errors during the first four steps, because of the long time delays in the transfer
functions involved. The weights may be adjusted in order to change the trade-
off between tracking the Top End Point and Side End Point compositions, and
minimizing the Bottoms Reflux Duty. After several experiments we come up
with

Q(j) = diag(0, 0, 0, 1) for j ≤ 4
Q(j) = diag(0, 10, 0, 1) for 5 ≤ j ≤ 7
Q(j) = diag(20, 10, 0, 1) for j ≥ 8.

We impose the penalty weighting R(j) = I3 on control moves.
Figure 2.7 shows the response with these tuning parameters, when the set-

points for z1 and z2 are both 0, the set-point for u3 is −0.32. Both the plant
and the internal model had zero initial state vectors. The steady-state errors
on z1 and z2 are +0.001 and −0.001, respectively, which is within specification.

Next we examine the effect of a disturbance on the Intermediate Reflux
Duty (dm), which is a measured disturbance, and can therefore be countered
by feed-forward action. Figure 2.8 shows the fractionator initially at the same
steady state as reached at the end of the run shown in Figure 2.7. A disturbance
is expressed in steps, each step lasting 4 minutes:

dm(k) =





0 for k ≤ 12
+0.5 for 12 < k ≤ 37
0 for 37 < k ≤ 62
−0.5 for 62 < k ≤ 87
0 for k > 87.
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Figure 2.7: Setpoint tracking response simulated with linear MPC.
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Figure 2.8: Response to a measured disturbance simulated with linear MPC.

Recall that an increase in the Intermediate Reflux Duty corresponds to less heat
being taken away from the fractionator. Thus the initial disturbance of +0.5
allows the Bottoms Reflux Duty (u3) to be reduced at first. This, however,
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leads to the Bottoms Reflux Temperature (z3) falling below its constraint, so
u3 increases again, this being compensated by a reduction of u1 away from its
constraint; u2 follows a similar pattern to u3. When the disturbance ceases,
there is a transient lasting about 100 minutes, by the end of which all the
variables have returned to their initial values. Then the disturbance dm = −0.5
arrives; u1 cannot increase now, since it is already at its upper constraint, so
u3 has to increase (from −0.32 to −0.22) for as long as the disturbance lasts.
Note that the Bottoms Reflux Temperature (z3) now moves away from its
lower constraint, since it is a zone rather than a setpoint variable. Finally (for
k > 87, namely after about 350 minutes) the disturbance ceases again, and all
the variables return to their initial values.

2.6.4 Concluding remarks

In the previous example it was shown that the performance of industrial model
predictive control is limited by the large computational complexity of the con-
trol strategy. We may need to reduce the degrees of freedom in the optimization
by precisely defining the points where the input signal may change. This pro-
hibits the use of sampling times smaller than several minutes. Even for systems
with relatively fast dynamics, so called stiff systems, large sampling times have
to be used and thereby neglecting the fast dynamics. Therefore, with the cur-
rent generation of MPC technology it is not possible to increase the sampling
frequency and achieve good performance results.

New technology is needed to deal with high-performance model predictive
control of large-scale, fast sampled systems. It is clear from the previous ex-
ample that the on-line computational load of linear MPC is almost exclusively
determined by a quadratic programming problem. Several optimization algo-
rithms are available to solve a quadratic programming problem (see Appendix
A). Two strategies are most widely used: active set methods and interior-point
methods.

It is investigated in this thesis how the degrees of freedom in the optimiza-
tion algorithms can be chosen carefully, such that a good trade-off between
performance and computational complexity is obtained. A structured interior-
point method (SIPM) will be proposed in the next chapter for high-performance
model predictive control of large-scale stiff systems. The computational load
can be then reduced by choosing effective optimization techniques.
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Model Predictive Control for

Nonlinear Processes

3.1 Nonlinear models and
predictive control

3.2 Algorithm overview
3.3 MPC algorithm for

nonlinear systems

3.4 Structured interior-point
method

3.5 Implementation of the
structured interior-point
algorithm

3.6 MPC application results

3.1 Nonlinear models and predictive control

Model predictive control (MPC), also referred to as receding horizon control,
is a method that applies on-line optimization to a model of a system, with the
aim of steering the system to a desired target state. In recent years, MPC has
become a prominent advanced control technique, especially in the petrochem-
ical process industry. However, for computational reasons, MPC applications
largely have been limited to linear models; that is, those in which the dynamics
of the system model are linear. Such models often do not capture the dynam-
ics of the system adequately, especially in regions that are not close to the
target state. In these cases, nonlinear models are necessary to describe accu-
rately the behavior of physical systems. Different models may have static gain
or dynamic type nonlinearities. From an algorithmic point of view, nonlinear
model predictive control requires the repeated solution of nonlinear optimal
control problems. At certain times during the control period, the state of the
system is estimated, and an optimal control problem is solved over a finite
time horizon (commencing at the present time), using this state estimate as
the initial state. The control component at the current time is used as the
input to the system. Algorithms for nonlinear optimal control, which are often
specialized nonlinear programming algorithms, can therefore be used in the
context of nonlinear model predictive control, with the additional imperatives
that the problem must be solved in real time, and that good estimates of the
solution may be available from the state and control profiles obtained at the
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previous time-point. The linear MPC problem is well studied from an opti-
mization standpoint. It gives rise to a sequence of optimal control problems
with quadratic objectives and linear dynamics, which can be viewed as struc-
tured convex quadratic programming problems. These problems can be solved
efficiently by algorithms that exploit the structure. For example, an interior-
point method that uses a recursive relation to solve the linear systems at each
iteration has been described by Rao, Wright, and Rawlings [75]. The nonlinear
MPC problem has been less widely studied, and is a topic of recent interest.

Model Predictive Control (MPC), also known as moving or receding horizon
control, has originated in industry as a real-time computer control algorithm
to solve linear multi-variable problems that have constraints and time delays.
MPC has received a great deal of attention and receives an ever growing interest
for applications in industrial process control. Various MPC algorithms differ
mainly in the type of model that is used to represent the process and its dis-
turbances, as well as the cost functions to be minimized subject to constraints.
During the last decade, many formulations have been developed for linear and
nonlinear, stable and unstable plants [57, 66, 73, 78]. In MPC the controller
predicts the behavior of a plant over a prediction horizon using the model and
measurements, and determines a manipulated variable sequence that optimizes
some open-loop performance objective over the horizon. This manipulated vari-
able sequence is implemented until the next measurement becomes available.
Then the optimization problem is solved again.

3.2 Algorithm overview

Due to computational limitations, nonlinear MPC technology has not yet been
practiced at a large industrial scale. As an alternative to a fully nonlinear MPC,
we introduce a different MPC algorithm that uses linear time-varying prediction
models, obtained by applying a local linearization along the nominal input and
state trajectory. In this way, the problematic setup of the standard NMPC
approach is avoided, performance analysis may be simplified, and computa-
tional efficiency is significantly improved. Local linear approximation of the
state equation was used to develop an optimal prediction of the future states.
The output prediction was made linear with respect to the undecided control
input moves, which allowed to reduce the MPC optimization to a quadratic
programming problem (QP).

The block diagram of the proposed MPC algorithm for nonlinear systems is
presented in Figure 3.1 giving the structure of the whole chapter. The process
model is given in Section 3.3.1 and the problem itself is formulated in Sec-
tion 3.3.3. Having selected the nominal input trajectory we construct output
prediction via linearization of the process dynamics (Sections 3.3.4 and 3.3.5).
Finally the MPC optimization problem is given in an algebraic form (see Sec-
tion 3.3.6). We propose to use a structured interior-point method (SIPM) to
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Figure 3.1: Algorithm overview.
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reduce the computational complexity of the QP optimization. This optimiza-
tion algorithm is given in Sections 3.4 and 3.5.

3.3 MPC algorithm for nonlinear systems

Nonlinear MPC optimizations tend to become too large to be solved in real-
time. To reduce computational complexity, we propose to convert the NMPC
optimization problem to either a linear program or a quadratic program (QP).
In this paper we consider a nonlinear MPC scheme where the predicted future
process behaviour is represented as a cumulative effect of a nonlinear predic-
tion component and a component based on linear models defined along the
predicted trajectory [22, 46, 82]. The first component constitutes a future out-
put prediction using nonlinear simulation models, given past process inputs and
measured disturbance signals. The second component uses linearized models
for prediction of future process outputs as required for calculation of optimum
future process inputs that bring the process behavior closest to the desired be-
havior. MPC controller solves online a constrained optimization problem and
determines optimal control inputs over a fixed future time-horizon, based on
the predicted future behaviour of the process, and based on the desired refer-
ence trajectory. The optimization programs (typically constrained QPs) tend
to become too large to be solved in real-time when standard QP solvers are
used. To reduce computational complexity we propose to solve QP problem
using a structured interior-point method [75, 10]. The cost of this approach
is linear in the horizon length, compared with the cubic growth for the stan-
dard approach. The effectiveness of the proposed NMPC algorithm will be
demonstrated in the next chapter on two industrial chemical processes, namely
a continuous stirred tank reactor and a stiff nonlinear batch reactor.

3.3.1 Model

Consider the system equations of a nonlinear process model

ẋ = f(x, u, d) (3.1)
y = g(x, d), (3.2)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu denotes the input signal, y(t) ∈
Rny is the measured output and d(t) ∈ Rnd represents unmeasured disturbance.
For digital MPC controller design the control signal can be assumed to be
constant between the sampling intervals t ∈ [kT, (k + 1)T ]. We can express a
discrete version of the model (3.1) and (3.2) as follows:

x(k) = FT (x(k − 1), u(k − 1), d(k − 1)) (3.3)
y(k) = g(x(k), d(k)), (3.4)
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where FT (x(k−1), u(k−1), d(k−1)) denotes the terminal state vector obtained
by integrating (3.1) for one sample interval T with the initial condition x(k−1)
and constant inputs u(k − 1) and d(k − 1).

For the purpose of state estimation, it is common to express the unmeasured
signal d as a stochastic process. Without loss of generality, we assume that d
is generated through the following stochastic difference equation:

xw(k) = Awxw(k − 1) + Bww(k − 1) (3.5)
d(k) = Cwxw(k), (3.6)

where w(k) is a discrete-time white noise with covariance Rw.
It is also possible that the measurements of y(k) are corrupted by measure-

ment noise v(k) as follows:

ŷ(k) = g(x(k), d(k)) + v(k). (3.7)

We assume that v(k) is white noise with covariance Rv.
Combining (3.3) and (3.4) with (3.5)–(3.7), we arrive at the following aug-

mented model:
[

x(k)
xw(k)

]
=

[
FT (x(k − 1), u(k − 1), Cwxw(k − 1))

Awxw(k − 1)

]
+

[
0

Bw

]
w(k − 1)

(3.8)
ŷ(k) = g(x(k), Cwxw(k)) + v(k). (3.9)

From this point on, our discussion will be based on the augmented form of the
model.

3.3.2 State estimation

A straightforward extension of the optimal linear filter (“Kalman filter”) is the
extended Kalman filter. The basic idea of EKF is to perform linearization at
each time step to approximate the nonlinear system as a time-varying system
affine in the variables to be estimated, and to apply the linear filtering theory
to it.

Let us consider the model of (3.8) and (3.9). We will use the notation x(k|l)
and xw(k|l) to denote the optimal estimates (i.e., minimum variance estimates)
for x(k) and xw(k) based on the measurements up to time l. In probabilistic
terms, they represent the conditional expectation of the Gaussian variables
x(k) and xw(k) with the conditions given by the measurements ŷ1, . . . , ŷl. We
may also express the confidence in these estimates through the conditional
covariance matrix Σk|l, i.e.,

Σk|l = E
{[

x(k)− x(k|l)
xw(k)− xw(k|l)

] [
x(k)− x(k|l)

xw(k)− xw(k|l)
]>}

.
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The problem of recursive state estimation can be viewed as computing the new
estimates x(k|k) and xw(k|k) and covariance matrix Σk|k based on the previous
estimates x(k−1|k−1) and xw(k−1|k−1), their covariance matrix Σk−1|k−1,
and new measurement ŷ(k). It is instructive to view this as two sub-problems:
“model prediction” and “measurement correction”.

Model prediction

In the model prediction step of state estimation, the objective is to compute
the estimates of the new states without using the new information of ŷ(k), i.e.
compute x(k|k−1), xw(k|k−1) and Σk|k−1 from x(k−1|k−1), xw(k−1|k−1)
and Σk−1|k−1.

This is in general a very difficult problem as the assumed normal distri-
butions of the initial state variables are destroyed by propagation through
nonlinear dynamics. Extended Kalman filter simplifies the problem signifi-
cantly by making the following linear approximation of (3.8) with respect to
x(k − 1) = x(k − 1|k − 1) and xw(k − 1) = xw(k − 1|k − 1):

[
x(k)
xw(k)

]
≈

[
FT (x(k − 1|k − 1), u(k − 1), Cwxw(k − 1|k − 1))

Awxw(k − 1|k − 1)

]

+ Φk−1

[
x(k − 1)− x(k − 1|k − 1)

xw(k − 1)− xw(k − 1|k − 1)

]
+ Γww(k − 1), (3.10)

where

Γw =
[

0
Bw

]

and Φk is calculated using the following formula:

Φk−1 =
[

Ak−1 Bd
k−1Cw

0 Aw

]

where Ak−1 and Bd
k−1 are obtained via zero-order-hold discretization of the

following Jacobians:

Ãk−1 =
∂f

∂x

∣∣∣∣
x(k−1|k−1),u(k−1),Cwxw(k−1|k−1)

B̃d
k−1 =

∂f

∂d

∣∣∣∣
x(k−1|k−1),u(k−1),Cwxw(k−1|k−1)

.

For example, Ãk−1 is the Jacobian matrix for f(x, u, d) with respect to x eval-
uated at x = x(k − 1|k − 1), u = u(k − 1) and d = Cwxw(k − 1|k − 1). We
also assume that these Jacobian matrices remain constant throughout the time
period between t = k − 1 and t = k. Note that x(k) and xw(k) are Gaussian
variables because of the linear approximation of (3.10).
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Let e(k − 1) and ew(k − 1) represent x(k − 1)− x(k − 1|k − 1) and xw(k −
1)− xw(k − 1|k − 1), respectively. Then with e(0) = 0 we have

Ee(k − 1|k − 1) = 0, Eew(k − 1|k − 1) = 0, Ew(k − 1|k − 1) = 0

since x(k−1|k−1) and xw(k−1|k−1) represent the optimal estimates (condi-
tional means of x(k− 1) and xw(k− 1)) and w(k− 1) is zero-mean white noise,
the effect of which does not appear in the measurements up to ŷ(k − 1).

Hence, for the approximate system (3.10),
[

x(k|k − 1)
xw(k|k − 1)

]
=

[
FT (x(k − 1|k − 1), u(k − 1), Cwxw(k − 1|k − 1))

Awxw(k − 1|k − 1)

]
.

In addition, since (3.10) can be rewritten as
[

x(k)
xw(k)

]
≈

[
x(k|k − 1)
xw(k|k − 1)

]

+ Φk−1

[
x(k − 1)− x(k − 1|k − 1)

xw(k − 1)− xw(k − 1|k − 1)

]
+ Γww(k − 1),

Σk|k−1, the covariance matrix for the error
[

x(k|k − 1)− x(k)
xw(k|k − 1)− xw(k)

]

can be easily computed from Σk−1|k−1 as follows:

Σk|k−1 = Φk−1Σk−1|k−1Φ>
k−1 + ΓwRwΓ>w.

Measurement correction

In the measurement correction stage of state estimation, the new information
ŷ(k) is used to improve the state estimates. The problem can be formally stated
as compute x(k|k), xw(k|k) and Σk|k from x(k|k− 1), xw(k|k− 1), Σk|k−1 and
measurement ŷ(k). Because ŷ(k) is a nonlinear function of the states, the above
is a nonlinear estimation problem that does not yield an analytical solution in
general. In the EKF, the problem is again simplified by linearizing the output
equation (3.9) at x(k|k − 1) and xw(k|k − 1):

ŷ(k) ≈ g(x(k|k − 1), Cwxw(k|k − 1))

+ Ξk

[
x(k)− x(k|k − 1)

xw(k)− xw(k|k − 1)

]
+ v(k), (3.11)

where
Ξk =

[
Ck Cd

kCw

]
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and Ck and Cd
k are Jacobian matrices defined as follows:

Ck =
∂g

∂x

∣∣∣∣
x(k|k−1),Cwxw(k|k−1)

Cd
k =

∂g

∂d

∣∣∣∣
x(k|k−1),Cwxw(k|k−1)

.

Since we are given the means and covariances of the stochastic variables x(k)−
x(k|k − 1), xw(k) − xw(k|k − 1), and v(k), the linear filtering theory can be
applied to find the conditional means x(k|k) and xw(k|k) with the measurement
condition (3.11):

[
x(k|k)
xw(k|k)

]
≈

[
x(k|k − 1)
xw(k|k − 1)

]

+ Lk(ŷ(k)− g(x(k|k − 1), Cwxw(k|k − 1)),

where
Lk = Σk|k−1Ξ>k (ΞkΣk|k−1Ξ>k + Rv)−1.

In addition, the conditional covariance matrix Σk|k expressing the confidence
of the corrected state estimates is

Σk|k = (I − LkΞk)Σk|k−1.

Implementation

In summary, under the assumption that the nonlinear system (3.8) and (3.9) is
well approximated by the affine system of (3.10) and (3.11) obtained via local
linearization, the following Kalman filter provides the optimal estimates:
Model Prediction:

[
x(k|k − 1)
xw(k|k − 1)

]
=

[
FT (x(k − 1|k − 1), u(k − 1), Cwxw(k − 1|k − 1))

Awxw(k − 1|k − 1)

]

(3.12)
Measurement Correction:

[
x(k|k)
xw(k|k)

]
≈

[
x(k|k − 1)
xw(k|k − 1)

]

+ Lk(ŷ(k)− g(x(k|k − 1), Cwxw(k|k − 1)), (3.13)

where
Lk = Σk|k−1Ξ>k (ΞkΣk|k−1Ξ>k + Rv)−1,

Σk|k−1 = Φk−1Σk−1|k−1Φ>
k−1 + ΓwRwΓ>w,

Σk|k = (I − LkΞk)Σk|k−1.
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Note that the model update equation (3.12) requires nonlinear integration of
ODE (3.1) with known initial condition and constant inputs.

For control applications with relatively short sample intervals, the required
computation time for (3.13) and control move computation may be comparable
to the sampling time. Then, ŷ(k) may not be used for computing the estimate of
x(k), under closed-loop conditions. In this case, the EKF can be implemented
as an estimator where the measurement correction step precedes the model
prediction step.

3.3.3 MPC problem formulation

At time instant tk := kT we consider an MPC problem which amounts to
finding an optimal control sequence {u(k + j)}N−1

j=0 minimizing the quadratic
objective function

Jk(x(k|k), u) =
N∑

j=1

[∥∥y(k + j)− yref(k + j)
∥∥2

Q(j)
+ (3.14)

∥∥u(k + j − 1)− uref(k + j − 1)
∥∥2

R(j)

]
+ x>(k + N)Q̄x(k + N)

subject to the element-wise constraints

ymin ≤ y(k + j) ≤ ymax (3.15)
umin ≤ u(k + j) ≤ umax (3.16)

∆umin ≤ ∆u(k + j) ≤ ∆umax (3.17)

for j = 0, . . . , N−1, where ∆u(k) := u(k)−u(k−1) and N > 0 is the prediction
horizon. State constraints can be easily formulated using (3.15). Note that the
objective function (3.14) can also use ∆u(k + j) instead of u(k + j) itself.
Here, ‖x‖2Q will mean x>Qx. In this formulation it is assumed that a full state
estimate is available at time tk = kT . The MPC is trying to make inputs
and outputs follow its reference trajectories uref(k + j) and yref(k + j). The
prediction horizon N is a design parameter and the tuning parameters include
positive semi-definite weighting matrices Q(j) ∈ Rny×ny , Q̄ ∈ Rnx×nx and
R(j) ∈ Rnu×nu . Note that the problem formulation can also use any convex
objective function Jk(u).

3.3.4 Approximation and prediction

In order to implement a predictive control algorithm, long-term prediction of
the key states is required. Clearly, since the underlying system is nonlinear,
the future states (and hence the outputs) are related to the current states
and current/future inputs in a nonlinear fashion. This makes the problem of
finding the optimal input sequence a complex nonlinear optimization problem.
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We propose to make the relationship linear via local linearization, which is dual
to the local linearization used for deriving the extended Kalman filter.

We define the one-step ahead prediction of the states as
[

x(k + 1|k)
xw(k + 1|k)

]
=

[
FT (x(k|k), u(k), Cwxw(k|k))

Awxw(k|k)

]
, (3.18)

where FT (x(k|k), u(k), Cwxw(k|k)) denotes the terminal state vector obtained
by integrating (3.1) for one sample interval T with the initial condition x(k|k)
at time kT and constant input u(k) between kT and (k + 1)T .

More generally we define multi-step prediction

x(k + j|k) := FjT (x(k|k), {u(k + i)}j−1
i=0 , {d(k + i)}j−1

i=0 ) =
FT (. . . (FT (x(k|k), u(k), d(k)), . . .), u(k + j − 1), d(k + j − 1))

as j compositions of FT to represent the terminal states obtained by inte-
grating (3.1) for j sampling intervals with initial condition x(k|k) and piece-
wise constant input. Note from (3.18) that the state x(k + 1|k) is related to
the undecided manipulated variable u(k) through nonlinear integration. This
makes the optimization required for the input move computation a nonlinear
problem. To prevent this we further approximate the equation by lineariz-
ing FT (x(k|k), u(k)) at some nominal input value unom(k) (its choice will be
explained later):

[
x(k + 1|k)
xw(k + 1|k)

]
≈

[
FT (x(k|k), unom(k), Cwxw(k|k))

Awxw(k|k)

]

+
[

Bk|k
0

]
(u(k)− unom(k)), (3.19)

where Bk|k is obtained via zero-order-hold discretization of one of the following
Jacobians:

Ac
k|k =

∂f

∂x

∣∣∣∣
x(k|k),unom(k),Cwxw(k|k)

Bc
k|k =

∂f

∂u

∣∣∣∣
x(k|k),unom(k),Cwxw(k|k)

.

Remark 1 The Jacobians can be calculated numerically. Suppose that for a
linearization point (x∗, u∗) and a small value δ we define a state perturbation
vector as x∗per := δ(1 + 10−3|x∗|). For example, the j-th column of the matrix
A becomes

A(:, j) =
[
f
(
(x∗(1), . . . , x∗(j) + x∗per(j), . . . , x

∗(nx))>, u∗
)

(3.20)

−f
(
(x∗(1), . . . , x∗(j)− x∗per(j), . . . , x

∗(nx))>, u∗
)]

/ 2x∗per(j).
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The other Jacobians are calculated in a similar way. The procedure may also
require further refinement of the matrices.

We can generalize the idea to develop multi-step predictions. Note from
(3.18) that

[
x(k + 2|k)
xw(k + 2|k)

]
=

[
FT (x(k + 1|k), u(k + 1), Cwxw(k + 1|k))

Awxw(k + 1|k)

]
, (3.21)

where x(k + 2|k) is related in a nonlinear fashion not only to u(k + 1), but
also to u(k) appearing in expression (3.18) for x(k + 1|k). By appropriate
linearization, we would like to derive an approximation that is linear with
respect to the undecided inputs u(k) and u(k + 1). The linear relationship
that approximates the local behavior can be obtained by linearizing the ex-
pression FT (x(k + 1|k), u(k + 1), Cwxw(k + 1|k)) with respect to x(k + 1|k) =
FT (x(k|k), unom(k), Cwxw(k|k)) and u(k + 1) = unom(k + 1) as follows

FT (x(k + 1|k), u(k + 1), Cwxw(k + 1|k)) ≈ F2T (x(k|k), unom, d)
+Ak+1|k(x(k + 1|k)− FT (x(k|k), unom(k), Cwxw(k|k)))
+Bk+1|k(u(k + 1)− unom(k + 1)), (3.22)

where Ak+1|k and Bk+1|k are obtained via zero-order-hold discretization of the
following Jacobians:

Ac
k+1|k =

∂f

∂x

∣∣∣∣
FT (x(k|k),unom(k),Cwxw(k|k)),unom(k+1),Cwxw(k+1|k)

Bc
k+1|k =

∂f

∂u

∣∣∣∣
FT (x(k|k),unom(k),Cwxw(k|k)),unom(k+1),Cwxw(k+1|k)

.

Note that unom is a piecewise constant input taking, for instance, values of
{unom(k), unom(k + 1)} at the time interval [k, k + 2]. Signal d is a piecewise
constant input taking the value of Cw(Aw)ixw(k|k) during the time interval
[k + i, k + i + 1].

Note from (3.19) that

x(k + 1|k)− FT (x(k|k), unom(k), Cwxw(k|k)) ≈ Bk|k(u(k)− unom(k)).

Substitute the affine approximation (3.22) into (3.21) to obtain
[

x(k + 2|k)
xw(k + 2|k)

]
≈

[
F2T (x(k|k), unom, d)

(Aw)2xw(k|k)

]

+
[

Ak+1|kBk|k Bk+1|k
0 0

] [
u(k)− unom(k)

u(k + 1)− unom(k + 1)

]
.
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Carrying out the same derivations for x(k + j|k), j = 1, . . . , N , we obtain
[

x(k + j|k)
xw(k + j|k)

]
≈

[
FjT (x(k|k), unom, d)

(Aw)jxw(k|k)

]

+
[ ∏j−1

i=1 Ak+i|kBk|k
∏j−1

i=2 Ak+i|kBk+1|k . . . Bk+j−1|k
0 0 . . . 0

]

×




u(k)− unom(k)
u(k + 1)− unom(k + 1)

...
u(k + j − 1)− unom(k + j + 1)


 , (3.23)

where Ak+i|k and Bk+i|k are obtained via zero-order-hold discretization of the
following Jacobians:

Ac
k+i|k =

∂f

∂x

∣∣∣∣
FiT (x(k|k),unom,d),unom(k+i),Cwxw(k+i|k)

Bc
k+i|k =

∂f

∂u

∣∣∣∣
FiT (x(k|k),unom,d),unom(k+i),Cwxw(k+i|k)

. (3.24)

Note that the expression (3.23) requires integration of the ODE (3.1) for j
sample time steps into the future and computation of the matrices for each of
the j sample times (i.e., Ak+i|k and Bk+i|k for i = 0, . . . , j − 1).

To reduce the computational complexity, the matrices Ak+i|k and Bk+i|k
can be kept constant at the initial values of Ak|k and Bk|k throughout the
prediction horizon. To avoid the computational complexity, we will adopt this
simplification. Hence, (3.23) simplifies to

[
x(k + j|k)
xw(k + j|k)

]
≈

[
FjT (x(k|k), unom, d)

(Aw)jxw(k|k)

]
(3.25)

+
[

Aj−1
k|k Bk|k Aj−2

k|k Bk|k . . . Bk|k
0 0 . . . 0

]

×




u(k)− unom(k)
u(k + 1)− unom(k + 1)

...
u(k + j − 1)− unom(k + j + 1)


 .

Similar techniques as described above can be found in, for example [46, 80, 89].
In order to develop a prediction for the output that is linear with respect to

the undecided input moves, we linearize equation (3.2) with respect to x(k|k):

y(k) ≈ g(x(k|k), Cwxw(k|k)) +
[

Ck|k Cd
k|kCw

] [
x(k)− x(k|k)

xw(k)− xw(k|k)

]
,
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where Ck|k and Cd
k|k are Jacobian matrices defined as

Ck|k =
∂g

∂x

∣∣∣∣
x(k|k),Cwxw(k|k)

Cd
k|k =

∂g

∂d

∣∣∣∣
x(k|k),Cwxw(k|k)

.

Carrying out the same idea,

y(k + j|k) = g(x(k + j|k), Cwxw(k + j|k))
≈ g(x(k|k), Cwxw(k|k))

+
[

Ck|k Cd
k|kCw

] [
x(k + j|k)− x(k|k)

xw(k + j|k)− xw(k|k)

]
(3.26)

we obtain the output prediction.

3.3.5 Optimizing control input in output prediction

Define the so-called optimizing control input

δu(k + j|k) = u(k + j|k)− unom(k + j|k)

as a difference between the actual input signal and the selected nominal trajec-
tory (see Figure 3.2). Every MPC cycle will try to refine the nominal trajectory

-

6

6

unom(k + j|k)

u(k + j|k)

k + N

δu(k + j|k)

?

k

Figure 3.2: Optimizing control input.

by means of δu(k + j|k) to obtain the optimal input for the given nonlinear
model.

Remark 2 The local linearization in (3.23) makes sense only when the computed
inputs {u(k+ i)}j−1

i=0 do not deviate much from unom. For nonlinear models this
can be achieved by finding a nominal trajectory unom(k + j|k) which is as close
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as possible to the optimal strategy uopt(k + j|k). A simple but effective choice
is to start with unom(k+j|k) = uopt(k+j|k−1), i.e. the optimal control policy
derived at the previous sample. Naturally, the input trajectories computed in
the subsequent optimization is likely to be a better approximation of the actual
future input sequence [22, 82].

Combine (3.26) with the optimal multi-step prediction equation (3.25) for
x(k + j|k) to obtain the complete output prediction




y(k + 1|k)
y(k + 2|k)

...
y(k + N |k)


 = (3.27)

=




I
I
...
I


 (g(x(k|k), Cwxw(k|k))− Ck|kx(k|k)− Cd

k|kCwxw(k|k))

+




Ck|kFT (x(k|k), unom, d)
Ck|kF2T (x(k|k), unom, d)

...
Ck|kFNT (x(k|k), unom, d)


 +




Cd
k|kCwAw

Cd
k|kCw(Aw)2

...
Cd

k|kCw(Aw)N




xw(k|k)

+




g1 0 · · · 0
g2 g1 · · · 0
...

...
...

...
gN gN−1 · · · g1







δu(k)
δu(k + 1)

...
δu(k + N − 1)


 ,

where gj = Ck|kAj−1
k|k Bk|k, j = 1, . . . , N represent the Markov parameters. Note

that FNT (x(k|k), unom, d) can be computed recursively since

FNT (x(k|k), {unom(k + i)}N−1
i=0 , {d(k + i)}N−1

i=0 ) =
FT (F(N−1)T (x(k|k), {unom(k + i)}N−2

i=0 , {d(k + i)}N−2
i=0 ),

unom(k + N − 1), d(k + N − 1)).

Note also that the first term of the right-hand side of (3.27) drops out if the out-
put vector consists of linear combinations of the state (i.e., y(k) = Ck|kx(k)). In
order to keep the notation simple, we will denote (3.27) in the matrix notation
as

Y = Ynom + GyδU,

where Ynom is a vector notation for the first three components in the right hand
side of (3.27), and it can be computed from the state estimate x(k|k) by per-
forming an integration of the nonlinear ODE. Matrix Gy must be recomputed
at each time step based on the updated Jacobian matrices.
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3.3.6 Algebraic problem formulation

Note that a simple relationship exists between the control actions ∆u and δu:

∆u(k) = u(k)− u(k − 1)
= unom(k) + δu(k)− u(k − 1)

∆u(k + 1) = u(k + 1)− u(k)
= unom(k + 1) + δu(k + 1)
− unom(k)− δu(k)

etc.

Then 


∆u(k)
∆u(k + 1)

...
∆u(k + N − 2)
∆u(k + N − 1)




= E




δu(k)
δu(k + 1)

...
δu(k + N − 2)
δu(k + N − 1)




+ F,

with

E =




I 0 · · · 0 0
−I I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0
0 0 · · · −I I




, F = EUnom −




u(k − 1)
0
...
0
0




,

where

Unom = (u>nom(k), u>nom(k + 1), . . . , u>nom(k + N − 2), u>nom(k + N − 1))> .

The latter relationship will be used to formalize constraints on input incre-
ments. Once Unom has been specified and using (3.25), the objective function
(3.14) becomes a quadratic form in δU :

J(δU) =
(Ynom + GyδU − Yref)>Q(Ynom + GyδU − Yref)

+ (Unom + δU − Uref)>R(Unom + δU − Uref)
+ (FNT (x(k|k), unom, d) + Gx(N)δU)>Q̄(FNT (x(k|k), unom, d) + Gx(N)δU),

where Gy is introduced in (3.27) and the state prediction defines

Gx(N) =
[

AN−1
k|k Bk|k AN−2

k|k Bk|k . . . Bk|k
]
.

The block diagonal matrices are constructed as Q = diag(Q(1), . . . , Q(N)) ∈
RNny×Nny and R = diag(R(1), . . . , R(N)) ∈ RNnu×Nnu .
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The end point weighting Q̄ can be obtained for example by solving the
discrete time algebraic Riccati equation. This choice is motivated by recent
developments in infinite horizon MPC or the LQR problem. This choice of
the end point weighting gives the minimal addition to the quadratic objective
function if the horizon length is extended to infinity. The solution to the Riccati
equation uses a local linearization of the system at the end of the prediction
horizon and the weighting matrices Q(N) and R(N):

Q̄ = A>
k+N |kQ̄Ak+N |k

+ A>
k+N |kQ̄Bk+N |k(B>

k+N |kQ̄Bk+N |k + R(N))B>
k+N |kQ̄Ak+N |k

+ C>
k+N |kQ(N)Ck+N |k.

The objective function can easily be transformed into the standard quadratic
cost index

J(δU) =
1
2
δU>HδU + f>δU + c, (3.28)

where

H = 2(G>
y QGy + G>

x(N)Q̄Gx(N) + R) (3.29)

f = 2G>
y Q(Ynom − Yref) + 2R(Unom − Uref)

+ 2G>
x(N)Q̄FNT (x(k|k), unom, d) (3.30)

c = (Ynom − Yref)>Q(Ynom − Yref)
+ (Unom − Uref)>R(Unom − Uref)
+ F>

NT (x(k|k), unom, d)Q̄FNT (x(k|k), unom, d). (3.31)

Then the optimization problem amounts to solving a quadratic programing
problem with the objective function (3.28) with (3.29)–(3.31) subject to the
constraints (3.15)–(3.17). The constraints can be transformed into the following
form 



E
−E
I
−I
Gy

−Gy




δU ≤




b1 − F
−b2 + F

d1 − Unom

−d2 + Unom

y1 − Ynom

−y2 + Ynom




, (3.32)

where b1, b2, d1 and d2 are of dimension Nnu and consist of N copies of ∆umax,
∆umin, umax and umin respectively. In the same way, vectors y1 and y2 are of
dimension Nny and consist of N copies of ymax, ymin.

3.3.7 Constraint types and softening

A problem may occur when an optimizer is faced with an infeasible problem.
This can happen because an unexpectedly large disturbance has occurred or



3.4. Structured interior-point method 93

the real plant behaves differently from the model. There is really no way
in which the plant can be kept within the specified constraints in that case,
except moving on the boundary of the constraint. Although there will be
no such circumstances for our design examples, it is still important to have a
strategy for dealing with infeasibility to prevent the online MPC optimizer from
producing an infeasible solution. One systematic way is to allow the constraints
to be crossed occasionally, if necessary, rather that keeping them as “hard”
boundaries which can never be crossed. There is an important distinction
between input and output constraints. Usually input constraints can never be
softened, because of the actuators having limited ranges of action.

One way to soften output constraints is to add new variables, so-called
“slack-variables”, which are defined in such a way that they are non-zero only
if the constraints are violated and they are very heavily penalized in the cost
function. We propose to penalize 1-norm of the constraint violations, then the
quadratic cost index (3.28) and the constrains (3.32) can be modified as

1
2
δU>HδU + f>δU + W>ε (3.33)

subject to 


E
−E
I
−I
Gy

−Gy




δU ≤




b1 − F
−b2 + F

d1 − Unom

−d2 + Unom

y1 − Ynom

−y2 + Ynom




+ ε, ε ≥ 0, (3.34)

where ε is a nonnegative vector of dimension equal to the number of constraints
(3.32), W is a penalizing column vector. This is still a QP problem, though
with a larger number of variables. Some of the constraints can be retained as
hard constraints if the corresponding elements in W are assumed to tend to
infinity. Thus, penalizing the 1-norm of constraint violations requires a separate
slack variable for every constraint, at every point of the prediction horizon for
which the constraint is enforced. With elements in W large enough, the choice
for 1-norm penalty on constraint violations gives an “exact penalty” method,
which means that constraint violations will not occur unless there is no feasible
solution to the original “hard” problem. That is, the same solution will be
obtained as with an original formulation, if a feasible solution exists.

3.4 Structured interior-point method

The constrained quadratic optimization problem (3.14) can be solved in various
ways. First of all, one can use the model equations to eliminate the states,
thus reducing the number of variables in the optimization, while, however,
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making the problem formulation dense. If the states are not eliminated, the
optimization variables consist of the inputs and the states over the horizon,
but the optimization problem is sparse and structured and these properties
can be exploited to reduce the cost to solve the QP. Therefore it depends
on the number of inputs, states and the length of the horizon which method
requires minimal computational effort, which is an important issue for on-line
implementations of MPC for large, stiff systems.

If the states are eliminated, one can either use a standard active set method
or a standard interior-point method [67, 69]. Active set methods (ASM) try
iteratively to find the set of constraints that are active at the optimum. To
obtain that goal they solve an equality constrained problem at each time step to
determine a new search direction. This means that in each iteration a dense set
of equations in Nnu variables has to be solved. Moreover, the total number of
iterations will increase with the number of active constraints since typically in
each iteration only one or some constraints will become active. This leads to the
fact that ASMs, though still widely used as the standard methods for solving
the QPs in the MPC algorithms, may lead to very computationally expensive
procedures if applied on large MPC problems with many constraints.

Interior-point methods (IPM) try to solve the nonlinear set of Karush-Kuhn-
Tucker equations iteratively by making linear approximations to this set. An
advantage over ASMs is that interior-point methods can efficiently make use of
sparsity in the constraints, and will therefore often be faster for solving MPC
related problems, since bound or rate of change constraints on the control
inputs give rise to sparse constraint matrices. Also the number of iterations to
reach a point close to the optimum is typically independent of the number of
constraints and will be smaller as for ASMs.

Solving QPs with these standard methods typically requires a computa-
tional time that increases with the third power of the number of variables
Nnu.

For problems with large horizons, methods that do not eliminate the states,
but that exploit the structure of the given MPC problem have been developed
of which the cost varies linearly with the horizon length. In this chapter we
discuss such a method, based on [75, 10] that will be suited for the problems
discussed in this thesis.

3.4.1 States as optimization variables in MPC

We will consider a general linear MPC optimization problem with quadratic
cost function based on (3.14) with inclusion of a terminal state cost,

min
{u(j)}N−1

j=0

N−1∑

j=0

[
(ynom(j) + y(j)− yref(j))>Qy(j)(ynom(j) + y(j)− yref(j))+ (3.35)

(unom(j) + δu(j)− uref(j))>R(j)(unom(j) + δu(j)− uref(j))
]
+ x>(N)Q̄x(N)
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subject to
Cu(j)δu(j) + Cx(j)x(j) ≤ Cc(j)

for j = 0, . . . , N , where Cu(N) = 0. Next

x(j + 1) = Ajx(j) + Bjδu(j),
y(j) = Cjx(j)

for j = 0, . . . , N − 1, where x(j) are the states of the linearized system here.
Matrices Cu(j), Cx(j) and Cc(j) are defined as real matrix valued mappings on
T ⊆ Z. To simplify the notation we omitted index k in the above formulation
and will use just u(j) instead of the optimizing control input δu(j) from now
on. We also introduce the following signals

ysig(j) = yref(j)− ynom(j)
usig(j) = uref(j)− unom(j),

so that the quadratic objective function becomes

min
{u(j)}N−1

j=0

N−1∑

j=0

[
(y(j)− ysig(j))>Qy(j)(y(j)− ysig(j))+

(u(j)− usig(j))>R(j)(u(j)− usig(j))
]
+ x>(N)Q̄x(N)

Note that in this formulation we may use different weighting Qy(j) and R(j)
at all points on the horizon. Moreover, the algorithm will also allow easily to
introduce multiple linear models, as derived in (3.23). Indeed, with constant
linear models, the Hessian of the optimization problem with eliminated states
remains constant, but when using multiple linear models, this Hessian will vary,
thus introducing an extra cost for the optimization to build this Hessian for
each time step.

As mentioned before, if this state elimination is not carried out, the struc-
ture given by the dynamics of the plant (i.e. states and inputs at time step
j only interact with states and inputs of the nearest time steps) will reflect
in the optimization problem and thus also in the Karush-Kuhn-Tucker(KKT)
equations that can be used to solve the QP using an interior-point method.

Notice that in the optimization problem formulation, bound constraints on
inputs and states are included. Input bounds for instance, are obtained by
taking (for j = 0, . . . , N − 1),

Cu(j) =
[

I
−I

]
, Cx(j) =

[
0
0

]
.

However all types of constraints interconnecting variables of different time
steps, like rate of change constraints, are not included in the above formu-
lation. Also notice that constraints on the states can be defined if necessary.
For sake of simplicity these cases are omitted here, although methods exist to
include these types of constraints, see e.g. [75].
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3.4.2 Structured KKT equations

To obtain the KKT equation in the inputs and the states, the outputs y(j)
are eliminated using y(j) = Cjx(j). Defining Q(j) = C>Qy(j)C, Qref(j) =
C>Qy(j) and the slacks variables tj for the inequalities as

tj := Cc(j)− Cu(j)u(j)− Cx(j)x(j), j = 0, . . . , N,

the problem can be written as

min
{u(j)}N−1

j=0

N−1∑

j=0

(x>(j)Q(j)x(j) + u>(j)R(j)u(j))− (3.36)

N−1∑

j=0

(y>sig(j)Q
>
ref(j)x(j) + u>sig(j)R(j)u(j)) + x>(N)Q̄x(N)

subject to

Cu(j)u(j) + Cx(j)x(j) + tj = Cc(j), j = 0, . . . , N

and

x(j + 1) = Ajx(j) + Bju(j), j = 0, . . . , N − 1
tj ≥ 0, j = 0, . . . , N.

Notice that the future values of ysig and usig are already specified at this point
and the optimal control sequence will not depend casually on these signals.
Introducing Langrange multipliers pj for the state space model equality con-
straints and λj for the inequality constraints, and taking into account the given
state at the current time step x(0), the following set of KKT equations is ob-
tained, where constant parts are written on the right hand side

R(j)u(j) + B>
j pj + C>

u (j)λj = R(j)usig(j) j = 0, . . . , N − 1
Q(j)x(j) + A>

j pj − pj−1 + C>
x (j)λj = Qref(j)ysig(j) j = 1, . . . , N − 1

Q̄x(N)− pN−1 + C>
x (N)λN = 0

−x(j + 1) + Ajx(j) + Bju(j) = 0 j = 0, . . . , N − 1
Cu(j)u(j) + Cx(j)x(j) + tj = Cc(j) j = 0, . . . , N − 1

t>j λj = 0 j = 0, . . . , N
λj ≥ 0 j = 0, . . . , N
tj ≥ 0 j = 0, . . . , N

(3.37)
This set of equations will be referred to as the structured Karush-Kuhn-Tucker
equations or SKKT equations. The next step is to solve these SKKT equations
by applying an interior point method that exploits the given structure.
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3.4.3 Interior-point method based on SKKT equations

An interior point method to solve the above KKT equations will be an iterative
method where a step direction is obtained by solving a set of linear algebraic
KKT equations in each iteration. This set of equations will exploit the structure
of the given KKT equations by ordering them according to the time variable
j. These equations will be referred to as structured algebraic KKT (SAKKT)
equations. Introducing a vector of variables

wj = col (u(j), λj , tj , pj , x(j + 1))

for j = 0, . . . , N − 1, define vector w of optimization variables in the following
way

w = col (w0, . . . , wN−1, λN , tN ) (3.38)

so that the resulting system has a particular block-wise diagonal structure. The
variables are grouped according to the prediction stage, so that the resulting
matrix (2.23) is sparse. The equations are rearranged such that the overall ma-
trix is overlapping block diagonal. This structure enables the efficient solution
of the primal-dual interior-point step.

Let w0 be a chosen starting point and let wi be the result of the i-th
iteration. Define ∆wi for i = 1, . . . , ni with ni the number of iterations as the
step direction to be calculated in the i-th iteration to obtain the next iterate
as

wi = wi−1 + αi∆wi, (3.39)

where αi is the step length. This direction is, according to [69], calculated by
solving the linear set of SAKKT equations

W i∆wi = ri, (3.40)

where W i is obtained from the linearization of (3.37) and thus a function of
wi−1, and ri is the residual at the i-th iteration.

Since the algebraic KKT equations will be ordered according to wi, i.e.
ordered according to j, the first part will contain the algebraic KKT equations
for j = 0. From linearizing the equations in (3.37) for time step j = 0 the
following set of equations is obtained for j = 0 at the i-th iteration




R(0) C>
u (0) 0 B>

0 0
Cu(0) 0 Inc 0 0

0 T i−1
0 Λi−1

0 0 0
B0 0 0 0 −Inx







∆ui(0)
∆λi

0

∆ti0
∆pi

0

∆xi(1)




= ri
0, (3.41)

where
T i−1

0 = diag(ti−1
0 )

Λi−1
0 = diag(λi−1

0 )
(3.42)
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and

ri
0 =




ri
u(0)

ri
λ0

ri
t0

ri
p0


 . (3.43)

These residuals will be discussed later on.
For j = 1, . . . , N − 1, the linearization gives




−Inx
Q(j) 0 C>

x (j) 0 A>
j 0

0 0 R(j) C>
u (j) 0 B>

j 0
0 Cx(j) Cu(j) 0 Inc 0 0
0 0 0 T i−1

j Λi−1
j 0 0

0 Aj Bj 0 0 0 −Inx







∆pi
j−1

∆xi(j)
∆ui(j)
∆λi

j

∆tij
∆pi

j

∆xi(j + 1)




= ri
j

(3.44)
with, analogous to the above definitions for j = 0,

T i−1
j = diag(ti−1

j )
Λi−1

j = diag(λi−1
j )

(3.45)

and

ri
j =




ri
x(j)

ri
u(j)

ri
λj

ri
tj

ri
pj




. (3.46)

Finally, for j = N we obtain



−Inx Q̄ C>

x (N) 0
0 Cx(N) 0 Inc

0 0 T i−1
N Λi−1

N







∆pi
N−1

∆xi(N)
∆λi

N

∆tiN


 = ri

N (3.47)

with
T i−1

N = diag(ti−1
N )

Λi−1
N = diag(λi−1

N )
(3.48)

and

ri
N =




ri
x(N)

ri
λN

ri
tN


 . (3.49)

Notice that the structure shows itself by the fact that in the SAKKT equations
for a given time instant j, there is only a very small overlap with other time
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instants in the sense that the step directions for the previous Lagrange multi-
plier of the state space equations and for the next state, ∆pi

j−1 and ∆xi(j +1)
respectively, appear in the j-th block.

This structure also shows if all the SAKKT equations are written down.
This entire set of linear SAKKT equations to be solved in each interior-point
iteration, is given by (3.40), where in the left hand side W i is equal to




R(0) C>u (0) 0 B>0 0
Cu(0) 0 Inc 0 0

0 T i−1
0 Λi−1

0 0 0
B0 0 0 0 −Inx

−Inx Q(j) 0 C>x (j) 0 A>j 0

0 0 R(j) C>u (j) 0 B>j 0

0 Cx(j) Cu(j) 0 Inc 0 0

0 0 0 T i−1
j Λi−1

j 0 0

0 Aj Bj 0 0 0 −Inx

. . .
−Inx Q̄ C>x (N) 0

0 Cx(N) 0 Inc

0 0 T i−1
N Λi−1

N




It can be seen that this matrix is a banded matrix, consisting of overlapping
blocks.

Before trying to solve these equations, let us perform some row operations
in the different blocks to eliminate some variables. These eliminations are
performed for the blocks defined in (3.44), but where appropriate they will also
be applied on the blocks defined in (3.41) and (3.47).

First, and analogous to what is done in classical interior point methods, the
step directions belonging to the slack variables of the inequality constraints tj
are eliminated. From the equation of the inequality slacks

T i−1
j ∆λi

j + Λi−1
j ∆tij = ri

tj

we have that, similar to (2.29), for all j = 0, . . . , N

∆tij = (Λi−1
j )−1ri

tj
− (Λi−1

j )−1T i−1
j ∆λi

j .

Elimination of ∆tij gives




−Inx Q(j) 0 C>
x (j) A>

j 0
0 0 R(j) C>

u (j) B>
j 0

0 Cx(j) Cu(j) −(Λi−1
j )−1T i−1

j 0 0
0 Aj Bj 0 0 −Inx







∆pi
j−1

∆xi(j)
∆ui(j)
∆λi

j

∆pi
j

∆xi(j + 1)




=
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=




ri
x(j)

ri
u(j)

ri
λj
− (Λi−1

j )−1ri
tj

ri
pj


 . (3.50)

and the SAKKT equation for λj , j = 0, . . . , N allows, from the third row of
(3.50)

Cx(j)∆xi(j) + Cu(j)∆ui(j)− (Λi−1
j )−1T i−1

j ∆λi
j = ri

λj
− (Λi−1

j )−1ri
tj

to obtain

∆λi
j = Si−1

j (−ri
λj

+ (Λi−1
j )−1ri

tj
+ Cx(j)∆xi(j) + Cu(j)∆ui(j)),

where

Si−1
j = (T i−1

j )−1Λi−1
j =




λi−1
j (1)

ti−1
j (1)

λi−1
j (2)

ti−1
j (2)

. . .
λi−1

j (nc)

ti−1
j (nc)




. (3.51)

Note that nc was representing the number of inequality constraints, as de-
fined in Section 3.4.1. We are about to introduce some extra variables before
we continue with the elimination.

Introducing

R̃(j) = R(j) + C>
u (j)Si−1

j Cu(j) j = 0, . . . , N − 1
Q̃(j) = Q(j) + C>

x (j)Si−1
j Cx(j) j = 1, . . . , N − 1

Q̃(N) = Q̄ + C>
x (N)Si−1

j Cx(N)
M̃(j) = C>

u (j)Si−1
j Cx(j) j = 1, . . . , N − 1

r̃i
u(j) = ri

u(j) + C>
u (j)Si−1

j (ri
λj
− (Λi−1

j )−1ri
tj

)
= ri

u(j) + C>
u (j)Si−1

j ri
λj
− C>

u (j)(T i−1
j )−1ri

tj
) j = 0, . . . , N − 1

r̃i
x(j) = ri

x(j) + C>
x (j)Si−1

j (ri
λj
− (Λi−1

j )−1ri
tj

)
= ri

x(j) + C>
x (j)Si−1

j ri
λj
− C>

x (j)(T i−1
j )−1ri

tj
) j = 1, . . . , N

(3.52)
one can eliminate ∆λi

j from the expressions for ∆ui(j) and ∆xi(j) obtaining

j = 0 : R̃(0)∆ui(0) + B>
0 ∆pi

0 = r̃u(0)

j = 1, . . . , N − 1 : R̃(j)∆ui(j) + M̃(j)∆xi(j) + B>
j ∆pi

j = r̃u(j)

Q̃(j)∆xi(j) + M̃>(j)∆ui(j) + A>
j ∆pi

j −∆pi
j = r̃x(j)

j = N : Q̃(N)∆xi(N)−∆pi
N = r̃x(N)

(3.53)
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The set of equations that remains to be solved is now given by

W̃ i∆w̃i = r̃i,

where

W̃ i =




R̃(0) B>
0 0

B0 0 −Inx

−Inx
Q̃(1) M̃>(1) A>

j 0
0 M̃(1) R̃(1) B>

j 0
0 Aj Bj 0 −Inx

. . .
−Inx Q̃(N)




,

∆w̃i =




∆ui(0)
∆pi

0

∆xi(1)
∆ui(1)

...
∆ui(N − 1)

∆pi
N−1

∆xi(N)




, r̃i =




r̃i
u(0)

r̃i
p0

r̃i
x(1)

r̃i
u(1)

...
r̃i
u(N−1)

r̃i
pN−1

r̃i
x(N)




.

The computational cost to solve this set of linear equations will vary lin-
early with the horizon length if matrix W̃ i ia made block diagonal. Several
approaches similar to Schur complement technique can be applied in this case.
A Riccati recursion scheme can also be used to solve this structured set of equa-
tions by getting rid of the overlap. For this purpose, introduce the auxiliary
variables Πj and πj giving the relation between ∆pi

j−1 and ∆xi(j),

∆pi
j−1 = Πj∆xi(j)− πj , j = 1, . . . , N (3.54)

How to deduce these auxiliary variables will become clear later on. Next,
replace the overlap equation in x(j), given by

−∆pi
j−1 + Q̃(j)∆xi(j) + A>

j ∆pi
j + M̃>(j)∆ui(j) = r̃i

x(j) (3.55)

in each block with this new equation. This way one obtains a set of equations
that is easily solved as follows. First introduce the variables

R̂(j) = R̃(j) + B>
j Πj+1Bj j = 0, . . . , N − 1

Q̂(j) = Q̃(j) + A>
j Πj+1Aj j = 1, . . . , N − 1

M̂(j) = M̃(j) + B>
j Πj+1Aj j = 1, . . . , N − 1

r̂i
u(j) = r̃i

u(j) + B>
j Πj+1r

i
pj

+ B>πj+1 j = 0, . . . , N − 1
r̂i
x(j) = r̃i

x(j) + A>
j Πj+1r

i
pj

+ A>πj+1 j = 1, . . . , N − 1

(3.56)
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The 0-th block has become

W̃ i
0∆w̃i

0 =




R̃(0) B>
0 0

B0 0 −Inx

0 −Inx
Π1







∆ui(0)
∆pi

0

∆xi(1)


 =




r̃i
u(0)

r̃i
p0

π1


 , (3.57)

which can be solved for ∆ui(0), ∆pi
0 and ∆xi(1) easily as follows

R̃(0)∆ui(0) = r̃i
u(0) −B>

0 ∆pi
0

= r̃i
u(0) −B>

0 (Π1∆xi(1)− π1)

= r̃i
u(0) −B>

0 (Π1(B0∆ui(0)− r̃i
p0

)− π1),

which allows to write the solutions as

∆ui(0) = R̂−1(0)r̂i
u(0)

∆xi(1) = B0∆ui(0)− r̃i
p0

∆pi
0 = Π1∆xi(1)− π1. (3.58)

Having determined ∆ui(0), ∆pi
0 and ∆xi(1), the next step is to deduce a re-

cursive scheme to find ∆ui(j), ∆pi
j and ∆xi(j + 1) for j = 1, . . . , N , given the

solution for ∆ui(j − 1),∆pi
j−1 and ∆xi(j).

If ∆xi(j) is given, then the j-block can be written as




M̃(j) R̃(j) B>
j 0

Aj Bj 0 −Inx

0 0 −Inx Πj+1







∆xi(j)
∆ui(j)
∆pi

j

∆xi(j + 1)


 =




r̃i
u(j)

r̃i
pj

πj+1


 , (3.59)

which can be easily transformed into



R̃(j) B>
j 0

Bj 0 −Inx

0 −Inx Πj+1







∆ui(j)
∆pi

j

∆xi(j + 1)


 =




r̃i
u(j) − M̃(j)∆xi(j)
r̃i
pj
−Aj∆xi(j)

πj+1


 (3.60)

and the solution is obtained analogous to that of (3.57) as

∆ui(j) = R̂−1(j)(r̂i
u(0) − M̃(j)∆xi(j))

∆xi(j + 1) = Bj∆ui(j)− r̃i
pj

+ Aj∆xi(j)

∆pi
j = Πj+1∆xi(j + 1)− πj+1. (3.61)

The recursive scheme for determining the step directions is now complete.
The only thing that remains, is to find the auxiliary variables. To that

purpose, the equations that were omitted are used as starting point. The
omitted equation of the final block reads

−∆pi
N−1 + Q̃(N)∆xi(N) = r̃i

x(N) (3.62)
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Comparing with the equation (3.54), it is clear that

ΠN = Q̃(N), πN = r̃i
x(N). (3.63)

We solve the system by starting at this last stage and working backwards. The
omitted equation of the (N − 1)-th block reads

−∆pi
N−2+Q̃(N−1)∆xi(N−1)+A>

N−1∆pi
N−1+M̃(N−1)∆ui(N−1) = r̃i

x(N−1).
(3.64)

To obtain ΠN−1 and πN−1 from this equation, one should eliminate ∆pi
N−1.

This can be done using (3.54) and the equations (3.61) for j = N − 1,

∆pi
N−1 = ΠN∆xi(N)− πN (3.65)

= ΠN (AN−1∆xi(N − 1) + BN−1∆ui(N − 1) + r̃i
pN−1

)− πN

= ΠNAN−1∆xi(N − 1)
+ ΠNBN−1R̂

−1(N − 1)(r̂i
u(N−1) − M̃(N − 1)∆xi(N − 1))

+ ΠN r̃i
pN−1

− πN .

Equation (3.64) can now be transformed into

−∆pi
N−2 + (Q̂(N − 1)−A>

N−1ΠNBN−1R̂
−1(N − 1)M̂(N − 1))∆xi(N − 1)

= r̂i
x(N−1) −A>

N−1ΠNBN−1R̂
−1(N − 1)r̂i

u(N−1) (3.66)

and thus ΠN−1 and πN−1 are obtained. The reasoning can be repeated for all
j = 1, . . . , N − 1, leading to the following recursive definition of the auxiliary
variables

Πj = Q̂(j)−A>
j Πj+1BjR̂

−1(j)B>
j Πj+1A

πj = r̂i
x(j) −A>

j Πj+1BjR̂
−1(j)r̂i

u(j). (3.67)

We are now able to solve the systems (3.57) and (3.60) by applying the recursion
scheme and updating Πj and πj until we obtain their respective values at j = 1.

3.5 Implementation of the structured interior-

point algorithm

We are about to formulate the complete structured interior-point algorithm to
be used in MPC for nonlinear processes. The algorithm will be further tested on
complex systems exhibiting strong nonlinearities and stiffness. A very common
IPM technique is the primal-dual Mehrotra’s prediction-corrector algorithm.
As it was already defined before in (3.39), primal-dual interior-point methods
solve the quadratic program by iterating from an initial guess to the optimal
one. Different ways exist to calculate these iterates [60, 99, 69] inside the IPM.
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3.5.1 IPM and calculation of the residuals

In the previous section a solution was found to the SAKKT equations to be
solved in each iteration of an interior-point method for problem (3.37). This
means a global IPM can now be deduced. Different choices of standard interior-
point methods can be used, mainly differing in the way the steps in the primal-
dual space are obtained, which is done by defining the residuals (see, for ex-
ample [69, 67]). Here we adopt the method presented in Section 2.4.7.

This leads to solving the SAKKT equations where the residuals for the
predictor step, denoted by pri, can be written as

pri
u(j) = R(j)usig(j)−R(j)ui−1(j) + B>

j pi−1
j + C>

u (j)λi−1
j , j = 0, . . . , N − 1

pri
p0

= A0x(0) + B0u
i−1(0) + xi−1(1)

pri
pj

= Ajx
i−1(j) + Bju

i−1(j) + xi−1(j + 1), j = 1, . . . , N − 1
pri

x(j) = Qref(j)ysig(j)−Q(j)xi−1(j)−A>
j pi−1

j + pi−1
j−1 − C>

x (j)λi−1
j

pri
x(N) = Q̄xi−1(N) + pi−1

N−1 − C>
x (N)λi−1

N
pri

λ0
= Cc(0)− Cx(0)x(0)− Cu(0)ui−1(0)− ti−1

0
pri

λj
= Cc(j)− Cx(j)xi−1(j)− Cu(j)ui−1(j)− ti−1

j
pri

λN
= Cc(N)− Cx(N)xi−1(N)− ti−1

N
pri

tj
= −T i−1

j λi−1
j , j = 0, . . . , N

(3.68)
The centering-corrector step is defined by putting all residuals ccri to zero,
except those of the slack equations, which become

ccri
tj

= −(∆ptij)
>∆pλi

j − σiµi1 (3.69)

for j = 0, . . . , N , where ∆pw is the step direction solution obtained from the
predictor step.

Once the step direction is obtained, the step length can be calculated anal-
ogous to standard IPMs and similar to (2.30) as

α = max(max(−∆λi
j

λi
j

,−∆tij
tij

)/(1− δ), 1), (3.70)

where δ is a small number, typically 0.05, and the inner maximum is taken over
all j = 1, . . . , nin.

3.5.2 The overall structured interior-point algorithm

The overall IPM that will be used now consists of the following steps.
Structured Interior-Point Algorithm for MPC:

1. Calculate the residuals pri using (3.68).

2. Calculate ΠN and πN using (3.63).
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3. For j = N − 1 : 1,

3.1 Calculate Πj and πj using (3.67).

3.2 Calculate R̂(j), Q̂(j), M̂(j), r̂i
u(j) and r̂i

x(j) using (3.56) and (3.52).

4. For j = 0 : N ,

4.1 Calculate all step directions ∆pwi using (3.58) and (3.61).

5. Calculate µi and σi.

6. Calculate the residuals ccri using (3.69).

7. Repeat steps 2-4 for the centering step to determine ∆ccwi.

8. Calculate the step length α.

9. Calculate a new iterate wi.

It was shown that in many cases the structured method can solve MPC
problem much faster for longer prediction horizons than standard QP solvers
[87, 10]. In the next chapter the effectiveness of the proposed SIPM based
MPC algorithm will be demonstrated on several industrial chemical processes,
such as a continuous stirred tank reactor and a stiff nonlinear batch reactor.

3.6 MPC application results

3.6.1 Evaporation process

We come back to the design example introduced in the previous chapter. In the
the evaporation process the level L2 is kept at the value of 1m. The setpoint
for X2 is ramped down linearly from 25% to 15% over a period of 20 minutes,
and the operating pressure P2 is simultaneously ramped up from 50.5 kPa to 70
kPa. These specifications determined the reference trajectory Yref. Every time
step the MPC controller obtained a new linear model, which was used for the
whole prediction horizon. The tuning parameters include prediction horizon
N = 30 and the following weighting matrices:

Q =




200 0 0
0 50 0
0 0 50


 , R =




10 0 0
0 1 0
0 0 0.1


 .

Different QP solvers gave good performance results, where the reference trajec-
tories were followed quite closely. Figure 3.3 shows the controlled outputs after
using the structured interior-point based MPC on the evaporation process.

Figure 3.4 gives the comparison of the maximal time required to solve one
MPC problem using ASM, Mosek IPM [3] and structured IPM with different
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Figure 3.3: Outputs simulated with SIPM based MPC.

number of variables (Nnu). We see that although Mosek is much faster than
ASM, these two standard QPs exhibit the behavior related to the third power
of the number of variables.

At the same time we also noticed that it took the structured IPM in the
MPC controller approximately 5 seconds to solve each optimization problem.
The tests also showed that the time increased linearly with the horizon length.
For horizons N > 25 the structured IPM became faster than MATLAB’s ASM,
and so it could be implemented online with longer horizons, if required, con-
sidering the sampling time T = 1 minute for this process. The structured IPM
algorithm also became faster than Mosek for N > 160. Thus the evaporation
process is an example which can prove the efficiency of the structured IPM for
longer prediction horizons.

3.6.2 High-purity binary distillation column

The MPC objective is to bring the controlled outputs Xd and Xb to the set-
points of 0.99 and 0.01, respectively (see Figure 3.5). The process was sampled
with T = 2 minutes. The prediction horizon was chosen to be N = 20 and the
weighting matrices are

Q = 10−4

[
10 0
0 20

]
, R =

[
1 0
0 1

]
.
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Figure 3.4: MPC computational time comparison for the evaporation process.
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Figure 3.5: Top and bottom product compositions simulated with SIPM based
MPC (solid) and linear MPC (dashed).

As it was shown in Section 2.6.2, it could be difficult to make both products
Xd and Xb purer. Figure 3.6 illustrates such a rather successful attempt,
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although it really becomes quite difficult for the MPC controller to reach purer
product compositions.
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Figure 3.6: High-purity grade change simulated with SIPM based MPC.

Figure 3.7 gives the comparison of the maximal time required to solve one
MPC problem using ASM and the structured IPM with different number of
variables (Nnu), where we have similar behavior to the one in the previous
example. We also found that it took the structured IPM in the MPC con-
troller approximately 10.6 seconds to solve each optimization problem for the
distillation column. We noticed that the structured IPM became faster than
MATLAB’s ASM only for N > 140 and it failed to compete with Mosek even
for much longer horizons. This could definitely be attributed to the fact that
the algorithm retains states as optimization variables. In this process we have 2
inputs and 82 states which give this big increase in the number of optimization
variables. So, the structured IPM is definitely not a good choice for the MPC
optimizer unless we use reduced models of the distillation process.

3.6.3 MPC with reduced linear models

To reduce the computational complexity of the MPC problem for the distilla-
tion column we are going to use model reduction software from SLICOT library
[95]. Three basic model reduction algorithms belonging to the class of methods
based on or related to balancing techniques can be found in [62, 49, 33]. These
methods are primarily intended for the reduction of linear, stable, continuous-
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Figure 3.7: MPC computational time comparison for the distillation process.

or discrete-time systems. They rely on guaranteed error bounds and have par-
ticular features which recommend them for use in specific applications. Here
we present the main features of balancing related model reduction.

Overview of balanced model reduction methods

Consider the n-th order original state-space model (A,B, C, D) with the trans-
fer function matrix G(s) = C(sI −A)−1B + D, and let (Ar, Br, Cr, Dr) be an
r-th order approximation of the original model (r < n), with the transfer func-
tion Gr = Cr(sI − Ar)−1Br + Dr. A large class of model reduction methods
can be interpreted as performing first a similarity transformation Z yielding

[
Z−1AZ Z−1B

CZ D

]
:=




A11 A12 B1

A21 A22 B2

C1 C2 D




and then defining the reduced model (Ar, Br, Cr, Dr) as the diagonal system
(A11, B1, C1, D). When writing Z :=

[
Z1 Z2

]
and Z−1 :=

[
L> V >

]>,
then Z1L is a projector on Z1 along L since LZ1 = Ir. Thus the reduced
system is (Ar, Br, Cr, Dr) = (LAZ1, LB, CZ1, D).

Partitioned forms as above can be used to construct a so-called singular
perturbation approximation (SPA). The matrices of the reduced model in this
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case are given by

Ar = A11 + A12(γI −A22)−1A21

Br = B1 + A12(γI −A22)−1B2

Cr = C1 + C2(γI −A22)−1A21

Dr = D + C2(γI −A22)−1B2

(3.71)

where γ = 0 for a continuous-time system and γ = 1 for a discrete-time system.
Note that SPA formulas preserve the DC-gains of stable original systems.

Specific requirements for model reduction algorithms are formulated and
discussed in [96]. Such requirements are: (1) applicability of methods regardless
the original system is minimal or not; (2) emphasis on enhancing the numerical
accuracy of computations; (3) relying on numerically reliable procedures.

The first requirement can be fulfilled by computing L and Z1 directly, with-
out determining Z or Z−1. In particular, if the original system is not minimal,
then L and Z1 can be chosen to compute an exact minimal realization of the
original system [92].

The emphasis on improving the accuracy of computations led to so-called
algorithms with enhanced accuracy. In many model reduction methods, the
matrices L and Z1 are determined from two positive semi-definite matrices P
and Q, called generically gramians. The gramians can be always determined in
Cholesky factorized forms P = S>S and Q = R>R, where S and R are upper-
triangular matrices. The computation of L and Z1 can be done by computing
the singular value decomposition (SVD)

SR> =
[

U1 U2

]
diag(Σ1, Σ2)

[
V1 V2

]>
,

where
Σ1 = diad(σ1, . . . , σr), Σ1 = diad(σr+1, . . . , σn)

and σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . ≥ σn ≥ 0 are the Hankel singular values of the
system.

The so-called square-root (SR) methods determine L and Z1 as [90]

L = Σ−1/2
1 V >

1 R, Z1 = S>U1Σ
−1/2
1 .

If r is the order of a minimal realization of G then the gramians corresponding
to the resulting realization are diagonal and equal. In this case the minimal
realization is called balanced. The SR approach is usually very accurate for
well-equilibrated systems. However if the original system is highly unbalanced,
potential accuracy losses can be induced in the reduced model if either L or Z1

is ill-conditioned.
In order to avoid ill-conditioned projections, a balancing-free (BF) approach

has been proposed in [81] in which always well-conditioned matrices L and Z1

can be determined. These matrices are computed from orthogonal matrices
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whose columns span orthogonal bases for the right and left eigenspaces of the
product PQ corresponding to the first r largest eigenvalues σ2

1 , . . . , σ2
r . Be-

cause of the need to compute explicitly P and Q as well as their product, this
approach is usually less accurate for moderately ill-balanced systems than the
SR approach.

A balancing-free square-root (BFSR) algorithm which combines the advan-
tages of the BF and SR approaches has been introduced in [92]. Matrices L
and Z1 are determined as

L = (Y >X)−1Y >, Z1 = X,

where X and Y are n × r matrices with orthogonal columns computed from
the QR decompositions S>U1 = XW and R>V1 = Y Z, while W and Z are
non-singular upper-triangular matrices. The accuracy of the BFSR algorithm
is usually better than either of SR or BF approaches.

The SPA formulas can be used directly on a balanced minimal order realiza-
tion of the original system computed with the SR method. A BFSR method to
compute SPAs has been proposed in [91]. The matrices L and Z1 are computed
such that the system (LAZ1, LB, CZ1, D) is minimal and the product of corre-
sponding gramians has a block-diagonal structure which allows the application
of the SPA formulas.

Provided the Cholesky factors R and S are known, the computation of ma-
trices L and Z1 can be done by using exclusively numerically stable algorithms.
Even the computation of the necessary SVD can be done without forming the
product SR>. Thus the effectiveness of the SR or BFSR techniques depends
entirely on the accuracy of the computed Cholesky factors of the gramians.

Algorithms for stable and unstable systems

In the Balance & Truncate (B&T) method for stable systems [62] P and Q are
the controllability and observability gramians satisfying a pair of continuous-
or discrete-time Lyapunov equations

AP + PA> + BB> = 0 A>Q + QA + C>C = 0
APA> + BB> = P A>QA + C>C = Q.

These equations can be solved directly for the Cholesky factors of the gramians
by using numerically reliable algorithms proposed in [34]. The BFSR version
of the B&T method is described in [92]. Its SR version [90] can be used to
compute balanced minimal representations. Such representations are also use-
ful for computing reduced order models by using the SPA formulas [49] or the
Hankel-norm approximation (HNA) method [33]. A BFSR version of the SPA
method is described in [91]. Note that the B&T, SPA and HNA methods be-
long to the family of absolute error methods which try to minimize ‖∆a‖∞,
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where ∆a is the absolute error ∆a = G−Gr. For an r-th order approximation,
we have generally

‖G−Gr‖∞ ≤ 2
n∑

k=r+1

σk.

In case of optimal HNA method, the optimum Gr achieves

inf ‖G−Gr‖H = σr+1

and even a feed-through matrix Dr can be chosen (see [33] for details) such
that the error bound is one half of the bound for B&T and SPA.

The reduction of unstable systems can be performed by using the methods
for stable systems in conjunction with two embedding techniques. The first
approach consists in reducing only the stable projection of G and then includ-
ing the unstable projection unmodified in the resulting reduced model. The
following is a simple procedure for this computation:

1. Decompose additively G as G = G1 + G2, such that G1 has only stable
poles and G2 has only unstable poles.

2. Determine G1r, a reduced order approximation of the stable part G1.

3. Assemble the reduced model Gr as Gr = G1r + G2r.

Note that for the model reduction at step 2 any of methods available for stable
systems can be used.

The second approach is based on computing a stable rational coprime fac-
torization (RCF) of G. The following procedure can be used to compute an
r-th order approximation Gr of an n-th order (not necessarily stable) system
G:

1. Compute a left coprime factorization of the transfer function matrix G in
the form G = M−1N , where M,N are stable and proper rational transfer
function matrices.

2. Approximate the stable system of order n [N M ] with [Nr Mr] of order
r.

3. Form the r-th order approximation Gr = M−1
r Nr.

The coprime factorization approach used in conjunction with the B&T or
BST methods fits in the general projection formulation described before. The
gramians necessary to compute the projection are the gramians of the system
[N M ]. The computed matrices L and Z1 by using either the SR or BFSR
methods can be directly applied to the matrices of the original system. The
main computational problem is how to compute the RCF to allow a smooth and
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Figure 3.8: Order of reduced linear models of the distillation process.
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efficient embedding which prevents computational overheads. Two factoriza-



114 Model Predictive Control for Nonlinear Processes

tion algorithms proposed recently compute particular RCFs which fulfill these
aims: the RCF with prescribed stability degree [93] and the RCF with inner
denominator [94]. Both are based on a numerically reliable Schur technique for
pole assignment. The state matrix of the resulting factors is already in a real
Schur form, thus the method has no overhead if the system is already stable
since this reduction is always necessary even for stable systems. Note that the
approximations computed for the factors of a coprime factorization with inner
denominator by using the SPA method preserve these property also at the level
of the reduced factors.

Using the described above balanced model reduction techniques [95], we
managed to decrease the MPC computational time for the distillation column.
The model order was constantly changing, which is reflected in Figure 3.8.
The previous and the new computational results of MPC simulation based on
reduced linear models are presented in Figure 3.9.
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Chemical Process Applications

4.1 MPC of a benchmark
continuous stirred tank
reactor

4.2 A stiff nonlinear DAE test
problem

4.3 Polymerization process

4.1 MPC of a benchmark continuous stirred

tank reactor

We consider a benchmark problem for nonlinear control system design, which
is based on a specific continuous stirred tank reactor (CSTR) that is described
in [18]. The benchmark problem is characterized by a number of interesting
features:

• The steady state gain changes its sign at the operating point. Thus, linear
controllers with integral action will not be able to stabilize this reactor
and accomplish satisfying performance [63].

• The zero dynamics changes its stability property at this operating point.
Therefore, the qualitative behavior of the CSTR differs considerably for
different setpoints and disturbances.

• The problem has a “real world” background.

• A complete set of performance objectives is given.

A discussion on the reasons and implications of the first two points can be
found in [18].

4.1.1 Description of a CSTR

The reactor under consideration is a continuous stirred tank reactor with a
cooling jacket in which cyclopentenol is produced from cyclopentadiene by acid-
catalyzed electrophylic hydration in aqueous solution. The reaction scheme and
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parameters are derived by theoretical modeling based on physical properties
described in the literature for a real process.

Figure 4.1 shows a schematic diagram of the reactor. The main reaction is
given by the transformation of cyclopentadiene (substance A) to the product
cyclopentenol (substance B). The initial reactant cyclopentadiene also reacts in
an unwanted parallel reaction to the by-product dicyclopentadiene (substance
D). Furthermore, cyclopentanediol (substance C) is formed in an unwanted
consecutive reaction from the product cyclopentenol. This, so-called van der
Vusse reaction, is described by the following reaction scheme:

A k1−→ B k2−→ C

2A k3−→ D

The input flow with its rate V̇ is fed to the reactor. It contains only cyclopen-

�
?

?

?

6

V̇ , A

V̇ , A, B, C, D
Q̇K

VR

mK

Figure 4.1: Schematic representation of the CSTR.

tadiene (substance A) with concentration cA0 at temperature T0. Heat can be
withdrawn from the coolant by an external heat exchanger with rate Q̇K .

In order to control concentrations and temperatures of the reactor, its dy-
namics are described by the following nonlinear differential equations that are
derived from component balances for substances A and B and from energy bal-
ances for the reactor and cooling jacket.
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Component balances:

ċA =
V̇

VR
(cA0 − cA)− k1(T )cA − k3(T )c2

A (4.1)

ċB = − V̇

VR
cB + k1(T )cA − k2(T )cB (4.2)

Energy balances:

Ṫ =
V̇

VR
(T0 − T )− 1

ρCp
(k1(T )cA∆HRAB

(4.3)

+k2(T )cB∆HRBC
+ k3(T )c2

A∆HRAD
)

+
kwAR

ρCpVR
(TK − T )

ṪK =
1

mKCPK
(Q̇K + kwAR(T − TK)), (4.4)

cA ≥ 0, cB ≥ 0.

The concentrations of substances A and B are cA and cB respectively. The
temperature in the reactor is denoted by T , while the temperature in the cooling
jacket is given by TK . The reaction velocities ki are assumed to depend on the
temperature via the Arrhenius law

ki(T ) = ki0 exp
(
− Ei

R(T + 273.15)

)
, i = 1, 2, 3. (4.5)

Values for the physical and chemical parameters in equations (4.1)–(4.5) are
given in Table 4.1. It should be noted that most parameters are only known
within bounds.

4.1.2 Control problem at the point of optimal yield

The reactor is operated at a point where optimal yield (see [15, 13]) with respect
to the product B is achieved (within a tolerance of 0.02 mol/l). The yield Φ
of product B is defined as the ratio between product concentration cB and
concentration of initial reactant cA0 of the feed in steady-state

Φ =
cB

∣∣
S

cA0
,

and is a measure for the effectiveness of the production. This optimal operating
point was found in [13] by optimization of the steady state yield with respect to
the design variables steady state feed flow V̇

VR

∣∣
S
, steady state heat rate Q̇K

∣∣
S
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Name of parameter Symbol Value of parameter
pre-exponential factor k10 (1.287± 0.04) · 1012 h−1

pre-exponential factor k20 (1.287± 0.04) · 1012 h−1

pre-exponential factor k30 (9.043± 0.27) · 109 h−1

activation energy for reaction k1 E1 81.1344 kJ mol−1

activation energy for reaction k2 E2 81.1344 kJ mol−1

activation energy for reaction k3 E3 71.1712 kJ mol−1

enthalpies of reaction k1 ∆HRAB
(4.2± 2.36) kJ

mol l

enthalpies of reaction k2 ∆HRBC
−(11.0± 1.92) kJ

mol l

enthalpies of reaction k3 ∆HRAD
−(41.85± 1.41) kJ

mol l

density ρ (0.9342± 4.0 · 10−4)kg
l

heat capacity Cp (3.01± 0.04) kJ
kg K

heat transfer coeff. for cooling jacket kw (4032± 120) kJ
h m2 K

surface of cooling jacket AR 0.215 m2

reactor volume VR 0.01 m3

coolant mass mK 5.0 kg
heat capacity of coolant CPK (2.0± 0.05) kJ

kg K

universal gas constant R 8.3144 J
mol K

Table 4.1: CSTR model parameters.

and feed temperature T0

∣∣
S
. It is described by the following values [18]:

cA0

∣∣
S

= 5.10 mol
l cA

∣∣
S

= 2.14 mol
l

T0

∣∣
S

= 104.9 ◦C cB

∣∣
S

= 1.09 mol
l

V̇
VR

∣∣
S

= 14.19 h−1 T
∣∣
S

= 114.2 ◦C
Q̇K

∣∣
S

= −1113.5 kJ
h TK

∣∣
S

= 112.9 ◦C

(4.6)

The operating point of optimal yield is very desirable for economic reasons.
The reactors behave strongly nonlinear with unstable zero dynamics leading to
a difficult control problem at this operating point. A nonlinear MPC controller
was proposed in [13] to drive the yield to the maximum level even in the
presence of disturbances. It is clear that this control problem was especially
challenging, as the controller always tries to drive the reactor to the point
of optimal yield, and that point is characterized by difficulties like changing
steady-state gain. The prediction horizon was chosen to be N = 200, the
control horizon of only one sample, that means the controller had only one
degree of freedom. The sampling interval was 20 seconds. In order to make
real-time control possible, the manipulated variables stayed constant over two
sampling periods as is done for the “blocking” technique. It is very important
for the maximum yield controller that the high yield has to be maintained in
steady-sate and not only in a short time. This was achieved in the proposed
controller by hard restrictions on the degrees of freedom of the controller. That
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is, control horizon very short, and large enough prediction horizon.
We assume that the concentration cA and cB , the jacket temperature TK

and the reactor temperature T can be measured. So, all the states are measured
outputs in this example. The feed of the reactor is assumed to come from an
upstream unit. Therefore, the feed temperature T0 is assumed to be able to
vary between

100 ◦C ≤ T0 ≤ 115 ◦C

and is considered as an unmeasurable disturbance. Its nominal value from
(4.6) will be used further in our tests. We use the flow rate normalized by the
reactor volume V̇

VR
and the heat rate Q̇K as manipulated variables, which are

constrained by

3 h−1 ≤ V̇

VR
≤ 35 h−1

−9000
kJ

h
≤ Q̇K ≤ 0

kJ

h
.

Although we can calculate system Jacobians numerically, it is worth ob-
taining their analytical representation:

A =




− V̇
VR
− k1 − 2k3cA 0 −∂k1

∂T cA − ∂k3
∂T c2

A 0
k1 − V̇

VR
− k2

∂k1
∂T cA − ∂k2

∂T cB 0
A(3, 1) − 1

ρCp
k2∆HRBC A(3, 3) kwAR

ρCpVR

0 0 kwAR

mKCP K
− kwAR

mKCP K


 ,

where

A(3, 1) = − 1
ρCp

(k1∆HRAB + 2k3cA∆HRAD )

A(3, 3) = − V̇

VR
− 1

ρCp

(
∂k1

∂T
cA∆HRAB

+
∂k2

∂T
cB∆HRBC

+
∂k3

∂T
c2
A∆HRAD

)

− kwAR

ρCpVR

and

B =




cA0 − cA 0
−cB 0

T0 − T 0
0 1

mKCP K


 ,

where
∂ki

∂T
=

ki(T )Ei

R(T + 273.15)2
, i = 1, 2, 3.

A typical step response shows a slight difference in time constants of the
product compositions and temperatures (see Figure 4.2).
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Figure 4.2: Step response of the CSTR.

4.1.3 Process start-up

First, we demonstrate a start-up for this process. We will start from some
initial conditions different from the nominal point of optimal yield. This is
also useful and important for optimal design of reactors and the control of
reactors in the start-up phase. We assume that initial conditions are such that
the reactor contains no species A or B. The jacket and reactor temperature
are both equal to the feed temperature. The problem is characterized by a
change of sign in the steady-state gain at the operating point, meaning linear
controllers cannot stabilize this reactor without sacrificing performance. The
MPC control objective is to steer the process to the optimal operating point
defined in (4.6).

Figures 4.3 through 4.5 show the results of applying the structured IPM
based MPC proposed in Section 3.4 to this problem. The sampling time is 20
seconds and the horizon length is chosen to be N = 30. All the states are
assumed to be measured and there is no plant-model mismatch. The weighting
matrices were chosen to be

Q =




10 0 0 0
0 5 0 0
0 0 2 0
0 0 0 2


 , R =

[
10 0
0 0.1

]
.

Note that the controller is able to stabilize the process after saturating one of
the input constraints for the first half of the simulation. Despite the theoretic
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Figure 4.3: Concentrations cA and cB simulated with SIPM based MPC.
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Figure 4.4: Reactor and jacket temperatures simulated with SIPM based MPC.

difficulties, like a change of sign of the steady-state gain, it was shown that
with simulations that the closed-loop system is stable and has good nominal
performance. Overall, the performance of the MPC controller on this example
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Figure 4.5: Manipulated variables simulated with SIPM based MPC.

is excellent.
The computational burden is a very important criterion for real-time im-

plementation. We are going to demonstrate the effectiveness of the nonlinear
MPC algorithm proposed in Section 3.4 comparing with the quasi-infinite hori-
zon NMPC scheme described in [15]. That scheme was presented as computa-
tionally advantageous for real-time implementation, where the control horizon
was chosen to be considerably shorter than the prediction horizon, namely
Nc = 1 and N = 70. Having much more degrees of freedom in the structured
IPM based MPC controller, we still managed to solve the problem faster than
in [15] with comparable performance results. This demonstrates that the MPC
technology developed in this thesis has far-ranging advantages for real-time
control implementation.

4.1.4 Feed temperature disturbance attenuation

It becomes more difficult to steer the process to the optimal operating point
in the presence of feed temperature disturbance. Figure 4.7 shows the MPC
controlled response of the CSTR to a normally distributed feed disturbance
(Figure 4.6).

The same tuning parameters as in the previous case were used for compar-
ison. It is clear from Figure 4.8 that the manipulated variable is oscillating
again after saturating one of the input constraints. Although we observe a
slight oscillation in the reactor and cooling temperatures, the MPC controller
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Figure 4.7: Output variables simulated with SIPM based MPC in the presence
of feed temperature disturbance.

shows a good disturbance attenuation performance.

4.1.5 Reference tracking problem

Next, we want to be able to produce substance B with concentration cB in the
following range

0.8
mol

l
≤ cB

∣∣
S
≤ 1.09

mol

l
.
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Figure 4.8: Manipulated variables simulated with SIPM based MPC in the
presence of feed temperature disturbance.

The controller has to compensate the effects of changes in the setpoint value
cB

∣∣
S
. In order to test the performance of the controller, we suggest step changes

in the setpoint from their maximal value to the minimal value and back. The
maximal steady state offset should not exceed 0.02 mol/l (control tolerance).

A “reference” solution to this benchmark problem was described in [18].
It was very time consuming to solve the on-line optimization problem posed.
The complexity depends mainly on the number of independent variables Ncnu.
In order to reduce the number of independent variables, a technique called
“blocking” was used. The idea is not to allow the manipulated variables to
vary at every future sampling time but to require them to be constant over
several sampling periods. In addition, the control horizon Nc was chosen to be
smaller than the prediction horizon N and the manipulated variables were kept
constant after the control horizon. In physical terms, a manipulated variable
sequence of only Nc steps could not make the system follow the setpoint exactly
over all N steps, when Nc < N . Therefore, only the setpoint change in the
control horizon was considered in [18] for each optimization.

It is known that for linear non-minimum phase systems the closed-loop
system can become unstable if the control action is too aggressive (i.e. the
prediction horizon is too “short” or the control horizon is too “long”). This
happens also in the nonlinear case, especially when the operating point is at the
point of optimal yield as in the case of the CSTR considered. Similar to [13],
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the prediction horizon of N = 200 and the control horizon of Nc = 3 were
chosen in [18]. The manipulated variables were also kept constant over two
sampling periods.

In our tests we are trying to exploit the long horizon capabilities of the MPC
algorithm developed in the previous chapter. So, we do not use “blocking”
technique and consider the setpoint change over the whole prediction horizon
for each optimization. Here, we chose the prediction horizon to be N = 50 and
further observed better tracking performance with the increase of the horizon.
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Figure 4.9: Concentration cB simulated with SIPM based MPC.

Figures 4.9 and 4.10 show the MPC controlled response of the CSTR to
step changes in the reference trajectory for cB

∣∣
S

from maximum to minimum
and back to maximum value. We see that the concentration of product B is in
the required control tolerance of the reference. Long horizon controller capa-
bilities made it possible to observe almost no overshoot. Due to the operation
at this highly nonlinear operating point, the control problem is very challeng-
ing. Despite the difficulty of the problem very satisfying control performance
is achieved with the developed MPC technique. The bigger number of opti-
mization variables (Nnu) gives us flexibility to obtain good reference tracking
results. Thus, a large number of degrees of freedom allowed achieving excellent
performance results with a significant reduction of computational complexity
at the same time.
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Figure 4.10: Manipulated variables simulated with SIPM based MPC.

4.2 A stiff nonlinear DAE test problem

Using the kinetic model of a batch reactor system presented in [7, 48], we have
formulated an MPC control problem for stiff nonlinear DAEs. The example
in its original form was given by the Dow Chemical Company as a challenging
test problem for parameter estimation software [12, 7]. The desired product
AB is formed in the reaction

HA + 2BM −→ AB + MBMH.

(For proprietary reasons, the true nature of the reacting species has been dis-
guised.) The reaction is initiated by adding a catalyst QM to the mixture of
reactants; QM is assumed to be completely dissociated to Q+ and M− ions.
The proposed reaction mechanism involves three slow reactions

M− + BM
k1,k−1←→ MBM−

A− + BM k2−→ ABM−

M− + AB
k3,k−3←→ ABM−

and three rapid acid-base reactions

MBMH K1←→ MBM− + H+

HA K2←→ A− + H+

HABM K3←→ ABM− + H+
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which are assumed to be at equilibrium. The equilibrium constants K1,K2 and
K3 are taken as constants over the range of temperatures employed. For the
reaction rates k1, k−1 and k2, an Arrhenius temperature dependence is assumed

ki = k̂i exp
(
− Ei

RT

)
, i = 1,−1, 2,

where T is the reaction temperature in K, and k̂i, Ei and R denote the frequency
factor, the activation energy, and the universal gas constant, respectively. Fur-
thermore, based on similarities of the reacting species, it is supposed that

k3 = k1, k−3 =
1
2
k−1.

In the kinetic model describing the batch reactor system, the following state
variables are used:

x0 = [HA] + [A−]
x1 = [BM]
x2 = [HABM] + [ABM−]
x3 = [AB]
x4 = [MBMH] + [MBM−]
x5 = [M−]
z0 = − log([H+])
z1 = [A−]
z2 = [ABM−]
z3 = [MBM−]

Differential and algebraic states are denoted by xj and zj , respectively. All
species concentrations [·] are given in gmol per kg of the reaction mixture.
Note that a logarithmic transformation is employed in case of z0, since H+ is
close to zero and changes rapidly over several orders of magnitude in the course
of the reaction.

4.2.1 Batch reactor model

Now the kinetic model can be stated in the form of six differential mass balance
equations

ẋ0 = −k2x1z1

ẋ1 = −k1x1x5 + k−1z3 − k2x1z1

ẋ2 = k2x1z1 + k3x3x5 − k−3z2

ẋ3 = −k3x3x5 + k−3z2

ẋ4 = k1x1x5 − k−1z3

ẋ5 = −k1x1x5 + k−1z3 − k3x3x5 + k−3z2,

(4.7)
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then an electroneutrality condition and three equilibrium conditions

0 = [Q+]− x5 + 10−z0 − z1 − z2 − z3

0 = z1 −K2x0/(K2 + 10−z0)
0 = z2 −K3x2/(K3 + 10−z0)
0 = z3 −K1x4/(K1 + 10−z0).

(4.8)

Reaction time is measured in hr. The fixed model parameters are given in
Table 4.2 (see [7]). In order to formulate an MPC control problem based on

Parameter name Symbol Value
frequency factor for k1 k̂1 1.3708 · 1012 kg gmol−1hr−1

frequency factor for k−1 k̂−1 1.6215 · 1020 kg gmol−1hr−1

frequency factor for k2 k̂2 5.2282 · 1012 kg gmol−1hr−1

activation energy for k1 β1 = E1/R 9.2984 · 103 K
activation energy for k−1 β−1 = E−1/R 1.3108 · 104 K
activation energy for k2 β2 = E2/R 9.5999 · 103 K

equilibrium reaction constant K1 2.575 · 10−16 gmol kg−1

equilibrium reaction constant K2 4.876 · 10−14 gmol kg−1

equilibrium reaction constant K3 1.7884 · 10−16 gmol kg−1

Table 4.2: Batch reactor parameters.

this model, we choose the reaction temperature T as control function

u = T with 293.15 K ≤ u(t) ≤ 393.15 K.

The model (4.7) and (4.8) is a set of non-linear differential and algebraic
equations. These can be written in the form

f(ẋ, x, z, u) = 0. (4.9)

Here x and z are the sets of differential and algebraic variables respectively,
while ẋ are the derivatives of x with respect to time. On the other hand, u
is the set of input variables that are given functions of time. Now consider a
point (ẋ∗, x∗, z∗, u∗) on the simulation trajectory that satisfies equation (4.9).
By linearizing the above equations at this point, we can obtain a linear model
of the form

∂f

∂ẋ
δẋ +

∂f

∂x
δx +

∂f

∂z
δz +

∂f

∂u
δu = 0, (4.10)

where, for example, δx denotes the deviation of the variable x from the lin-
earization point x∗ and all the partial derivatives are evaluated on the reference
trajectory.
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For most DAE systems of index 1, the matrix
[

∂f
∂ẋ

∂f
∂z

]
is non-singular,

and consequently the above system can be re-arranged to the form

[
δẋ
δz

]
= −

[
∂f
∂ẋ

∂f
∂z

]−1[
∂f
∂x

∂f
∂u

] [
δx
δu

]
, (4.11)

which is a linearized form of the original non-linear system (4.9). Although
we can calculate the linearized model in (4.10) numerically, using technique
similar to (3.20), we derive its analytical representation here as well:

∂f

∂ẋ
=

[
I 0

]>

∂f

∂x
=




0 k2z1 0 0 0 0
0 (k1x5+k2z1) 0 0 0 k1x1
0 −k2z1 0 −k3x5 0 −k3x3
0 0 0 k3x5 0 k3x3
0 −k1x5 0 0 0 −k1x1
0 k1x5 0 k3x5 0 (k1x1+k3x3)
0 0 0 0 0 −1

−K2
(K2+10−z0 )

0 0 0 0 0

0 0
−K3

(K3+10−z0 )
0 0 0

0 0 0 0
−K1

(K1+10−z0 )
0




∂f

∂z
=




0 k2x1 0 0
0 k2x1 0 −k−1

0 −k2x1 k−3 0
0 0 −k−3 0
0 0 0 k−1

0 0 −k−3 −k−1

−10−z0 log(10) −1 −1 −1
−10−z0 log(10)K2x0

(K2+10−z0 )2
1 0 0

−10−z0 log(10)K3x2
(K3+10−z0 )2

0 1 0
−10−z0 log(10)K1x4

(K1+10−z0 )2
0 0 1




∂f

∂u
=




∂k2
∂u x1z1

∂k1
∂u x1x5 − ∂k−1

∂u z3 + ∂k2
∂u x1z1

−∂k2
∂u x1z1 − ∂k3

∂u x3x5 + ∂k−3
∂u z2

∂k3
∂u x3x5 − ∂k−3

∂u z2

−∂k1
∂u x1x5 + ∂k−1

∂u z3
∂k1
∂u x1x5 − ∂k−1

∂u z3 + ∂k3
∂u x3x5 − ∂k−3

∂u z2

0
0
0
0




,
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where
∂ki

∂u
= k̂i

Ei

RT 2
exp

(
− Ei

RT

)
, i = 1,−1, 2,

and
∂k3

∂u
=

∂k1

∂u
,

∂k−3

∂u
=

1
2

∂k−1

∂u
.

4.2.2 Setpoint tracking problem

The aim of this section is to demonstrate the applicability of the structured IPM
based MPC for control of stiff DAE systems. The initial catalyst concentration
(which is equal to [Q+]) is chosen as

p = [Q+] = 0.014178 gmol kg−1, 0 gmol kg−1 ≤ p ≤ 0.0262 gmol kg−1

for our MPC control problem (see [48]). At initial time t = 0 hr, we impose
the conditions

x0(0) = 1.5778
x1(0) = 8.32

x2(0) = x3(0) = x4(0) = 0
x5(0) = p
z0(0) = 7
z1(0) = 1.0 · 10−8

z2(0) = z3(0) = 0.

A dynamic optimization problem was solved in [48] to determine optimal
steady-state values for all the variables. The MPC objective in our case is to
bring the differential and algebraic variables to those values as fast as possible.
The sampling time for this process was 1 minute and the prediction horizon was
chosen to be N = 30. Figures 4.11 and 4.12 present the results of the developed
MPC application to the DAE test problem. The achieved performance is similar
to the optimal solution found in [48]. The differential variables reached the
optimal steady-state in approximately 1.75 hr. The example shows that the
MPC algorithm developed in the previous section is fully capable to control such
complex stiff systems without significant computational burden comparing to
the results in [48].

4.3 Polymerization process

The purpose of this section is to present the experimental results obtained with
the INCOOP software architecture [36, 88], where the MPC technology devel-
oped in Section 3.4 has also been tested. Here we describe Bayer continuous
polymerization process (see Figure 4.13) with a subsequent separation unit and
monomer recycle [35]. We will not be able to present specific details on the
process and all figures will be scaled to conceal the real values of the variables.
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Figure 4.11: State variables simulated with SIPM based MPC.
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Figure 4.12: Algebraic variables simulated with SIPM based MPC.

The process uses monomers, catalyst and solvent to produce a specialty
polymer. Complex reaction mechanism consists of more than 80 reactions.
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The plant is operated in an open loop unstable point due to runaway reac-
tion. Various polymer grades are produced, where frequent load changes are
required due to fluctuating polymer demand. The process also becomes chal-
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Figure 4.13: Polymerization process.

lenging for on-line optimization and control because of the presence of external
disturbances due to sudden load changes and scheduled grade changes along
with nominal process disturbances.

The process is described by an empirical DAE model with rigorous reactor
system and an approximate model for the cooling unit. The whole model
consists of 200 differential variables and approximately 2500 algebraic variables.
Embedded base-level controllers are used along with a steady state filter for
checking if a steady-state is achieved.

Process measurements include

– reactor temperature and holdup (online, with fast sampling time without
delay),

– polymer quality in terms of viscosity (online and with lab samples, ap-
proximately 5 minutes sampling time with 30 minute delay),

– reactor conversion (online, fast sampling time without delay),

– inlet monomer flow rate (online), recycle and outlet flow rates (online,
with uncertainty and bias).
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Most of the flow measurements are affected by noise.

4.3.1 Optimal load change problem

Frequent changeovers are necessary and currently result in off-spec produc-
tion during transition due to suboptimal trajectories. Open loop dynamics of
reactor are unstable and stabilized by cascaded temperature control thus lim-
iting the maximum speed of transitions. Polymer production rate needs to be
adjusted spontaneously due to planned or unplanned throughput changes in
downstream processing units. The trajectories have to be optimized to avoid
production of off-spec material. Reactor residence time should reach new set-
point as soon as possible. Product quality (molecular weight/viscosity) should
not leave product specification.

The objective of the optimal load change problem is a quick transition with-
out off-spec polymer production. Path constraints are imposed on monomer in-
let and recycle flow-rates, reactor temperature and recycle buffer vessel holdup.
The transition endpoint constraint is formalized in terms of a subsequent
steady-state after the transition. The manipulated variables include monomer
inlet and recycle flow rates, catalyst flow rate. Reactor temperature is con-
trolled by a base-level controller.
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Figure 4.14: CV1: Reactor volume.

The disturbances during on-line control include 6 samples delay in viscosity
measurement, where all measurements are obtained with high level of noise
(5% bias in output flow-rate measurement). Besides that the problem is ill-
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conditioned, the main difficulty is due to an unstable control system in case of
tracking reference trajectories with level control being switched off. The tested
scenario is represented by a problem with optimal load change from 50% to
90% and catalyst concentration of 95% of its nominal value.
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The developed INCOOP solution was a two-level approach for model-based
dynamic optimization and model predictive control [36]. The EKF-MPC al-
gorithm applied to this process is described in [88] and is similar to the one
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proposed in the previous chapter. The simulation results are presented in Fig-
ures 4.14–4.20 (see also [35]). The application of the developed technology
shows that load changes can be realized fast and with no off-spec product.
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Optimized profiles are significantly different from conventional operating pro-
cedure. Optimization results for several investigated scenarios predict that load
changes can be realized with no off-spec material (compared to several hours
of off-spec production in conventional manual operation).

The problem has practical relevance and is also related to an optimal grade
change problem. Continuous polymerization plant produces different grades of
the same polymer with frequent changeovers. The trajectories need to be opti-
mized to minimize production of intermediate grade during transition. So the
objective here is to achieve minimum grade transition time with a subsequent
steady-state. Path constraints and manipulated variable are all the same. The
problem is complicated by uncertain reaction rate parameters and major pro-
cess disturbances such as solvent concentration, unreliable flow measurements.
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5

Conclusions and Outlook

5.1 Review of the results 5.2 Recommendations for
further research

5.1 Review of the results

This thesis presents a strategy for efficient model predictive control for non-
linear processes. Nonlinear model predictive control is a technology that is
receiving increased attention from both academic researchers and industrial
practitioners. Its strengths include its ability to handle constraints in input,
state and output variables and the use of nonlinear process models that cap-
ture the behavior of the system in wider operating regions than linear models.
While simpler methods for nonlinear control and estimation have been applied
in industry for at least a decade, these methods are, in general, not reliable for
process models.

One of the research objectives was to develop a computationally efficient
MPC technology for a broad class of nonlinear systems. Real-time implemen-
tation of model predictive control is currently only possible for relatively slow
systems with low dynamic performance specification, e.g. petrochemical plants.
This is due to the high computational load of the MPC technology. In other
industries, faster dynamics need to be controlled within the constraints of the
system. In this research several possibilities are discussed to improve the com-
putational efficiency of model predictive control technology. More specifically,
in this thesis it is investigated what kind of techniques in model predictive
control can be used to improve the efficiency of MPC applied to large-scale
industrial systems exhibiting both fast and slow dynamics.

In this thesis we extended the MPC algorithm with capabilities for control
of different system dynamics and for flexible constraint handling. Many formu-
lations of nonlinear MPC have already been investigated by researchers, some
incorporating terminal state constraints, others narrowing constraints so as to
force the state to its setpoint. The formulations for the fully nonlinear MPC
have been available for several years, but due to computational limitations,
this technology has not yet been practiced. As an alternative to fully nonlinear
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MPC, we introduced a different MPC algorithm that uses linear time-varying
prediction models, obtained by applying a local linearization along a nominal
input and state trajectory. In this way, the problematic setup of the standard
NMPC approach is avoided, performance analysis is simplified, and computa-
tional efficiency is significantly improved. Local linear approximation of the
state equation was used to develop an optimal prediction of the future states.
The output prediction was made linear with respect to the undecided control
input moves, which allowed to reduce the MPC optimization to a quadratic pro-
gramming problem (QP). When compared with the standard local linearization
based MPC which uses linear time-invariant prediction models, the proposed
MPC provides more accurate approximations to the nonlinear system.

In Chapter 3 a technique has been proposed to improve computational ef-
ficiency in optimization to allow online MPC application. Solving QPs with
standard methods typically requires computational time that increases with
the third power of the number of optimization variables. The constrained op-
timization programs tend to become too large to be solved in real-time when
these standard QP solvers are used. Many industrial examples show that large-
scale, usually stiff, nonlinear systems may require long prediction horizons to
fulfill certain performance specifications. These requirements increase the num-
ber of variables in the optimization. Naive implementations of standard QP
solvers could be inefficient for such MPC problems. A structured interior-point
method (IPM) has been developed in this thesis to solve the MPC problem
for large-scale nonlinear systems to reduce the computational complexity. The
developed optimization algorithm explicitly takes the structure of the given
problem into account such that the computational cost varies linearly with
the number of optimization variables, compared with the cubic growth for the
standard optimizers. The quadratic programs that are solved by this method
possess a special overlapping block-diagonal structure and are decomposed and
solved efficiently using a tailored primal-dual interior-point methods. The al-
gorithm also easily allows to introduce multiple linear models, thus making
the control more flexible. The state elimination was not carried out and the
structure given by the dynamics of the plant reflected in the Karush-Kuhn-
Tucker (KKT) equations that were used to solve the QP using an interior-point
method. The structured IPM was implemented using primal-dual Mehrotra’s
algorithm including prediction, correction and centering steps. The optimiza-
tion variables consist of the inputs and the states over the horizon, but the
optimization problem becomes sparse to allow computational time reduction,
which is an important issue for on-line implementations of MPC for nonlin-
ear stiff systems. Finally, this computational approach was used to explore
the fundamental differences between linear and nonlinear MPC performance
properties. In the thesis the effectiveness of the structured IPM based model
predictive controller was demonstrated on several industrial chemical processes.
We compared nonlinear and linear MPC and concluded that a nonlinear model
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generally performed better than a linear model obtained from linearizing the
original nonlinear model. We developed MPC for nonlinear systems and we
showed in Chapters 3 and 4 that this performs better than a linear MPC for
many examples relevant to the chemical process community.

5.2 Recommendations for further research

Nonlinear models have significant advantages over linear models for control and
estimation. At the same time, they also present new problems that must be ad-
dressed to guarantee their usefulness. From an algorithmic point of view, pure
nonlinear model predictive control requires the repeated solution of nonlinear
optimal control problems. At certain times during the control period, the state
of the system is estimated, and an optimal control problem is solved over a finite
time horizon, using this state estimate as the initial state. The control com-
ponent at the current time is used as the input to the system. Algorithms for
nonlinear optimal control, which are often specialized nonlinear programming
algorithms, can therefore be used in the context of nonlinear model predictive
control, with the additional imperatives that the problem must be solved in
“real time” and that good estimates of the solution may be available from the
state and control profiles obtained at the previous sample.

An important aspect of future research in this area is the adaptation of
the proposed optimization algorithm for solving true nonlinear MPC problems
by directly exploiting the system structure. The standard SQP algorithms
could be extended and approximated by a sequence of quadratic programming
subproblems based on the proposed structured interior-point method.

In recent years, researchers have investigated computational strategies for
model predictive control, leaving the dual problem of moving horizon state es-
timation (MHE) largely untouched. The nonlinear state estimation problem
often is assumed solved by the extended Kalman filter (EKF). On the other
hand, moving horizon estimation, handles constraints and nonlinear models
naturally in its framework, and has been successful in estimating states of
nonlinear models for which the EKF fails. Among other things, it would be in-
teresting to address the practical issues of implementing MHE on a constrained
nonlinear system and investigate how the state estimation problem is tied to
the nonlinear model predictive control framework.

The practical implementation of model predictive control and moving hori-
zon state estimation involves interaction between the individual elements. When
these components are connected to form a closed-loop system, the nonlinear
model can exhibit different behavior than is possible using a linear model. Al-
though the behavior of the closed-loop linear MPC system is well studied, the
behavior of the corresponding nonlinear system is not well characterized.

An other important question is the closed-loop behavior of nonlinear model
predictive control, especially in combination with moving horizon state estima-
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tion. The focus should be on the aspects of the resulting closed-loop system
that are specific to nonlinear models. One such issue is the effect of choosing
integrating disturbance models to account for unmeasured nonzero mean dis-
turbances. The choice of disturbance models is an important issue for nonlinear
plants. The choice of disturbance models can determine whether a system can
be stabilized and will be crucial for a certain class of nonlinearities. More
research is required on the proper choice of a disturbance model in case of
unmeasured disturbances or plant–model mismatch. While input and output
disturbance models often perform adequately, process knowledge could be used
to model integrating disturbances more effectively. For instance, if disturbances
are known to enter a process through a specific parameter, it seems reasonable
to add the integrator to that parameter. Methods should also be developed to
analyze aspects of closed-loop stability.

An other interesting aspect is the development of feedback strategies to ef-
ficiently handle disturbances in closed-loop. From receding horizon perspective
the open-loop strategy produces an optimal control input, whereas the feed-
back strategy gives an optimal state law. Both depend on the initial state only,
but the feedback strategies explicitly take the state on the prediction horizon
into consideration to define the input. Feedback strategies have therefore the
advantage that the effect of disturbances can be taken into account. However,
the computation and synthesis of feedback strategies is much more difficult and
involved than the synthesis of open-loop strategies.

While this study has answered some open questions about practical imple-
mentation of model predictive control for nonlinear processes, other questions
remain open, and still others have been raised in this investigation. There are
a lot of open issues, such as efficient constraint handling and robustness to
plant–model mismatch. Current nonlinear MPC formulations do not permit
to derive controllers that guarantee stability for a given uncertainty descrip-
tion with given bounds on the size of this uncertainty. Typically, for all these
approaches no explicit quantitative nonlinear uncertainty models or only very
simple ones are used. This is not surprising as the definition of meaningful
uncertainty descriptions for nonlinear systems is an open problem not only in
the NMPC context, but also in other areas of control.

One of the biggest questions about nonlinear model predictive control con-
cerns the ability to develop a reliable nonlinear model. Until nonlinear models
are more easily identified, the impact of nonlinear solution methods will not
be fully realized. To better understand the advantages and disadvantages of
different formulations of nonlinear MPC, the control community needs to fo-
cus on a useful set of benchmark problems. In the future, these benchmark
examples will further define the new challenges of nonlinear MPC.



A

Dynamic Programming

A.1 Interior-Point Methods A.2 Active Set Methods

A.1 Interior-Point Methods

In the 1980s it was discovered that many large linear programs could be solved
efficiently by formulating them as nonlinear problems and solving them with
various modifications of nonlinear algorithms such as Newton’s method. One
characteristic of these methods was that they required all iterates to satisfy
the inequality constraints in the problem strictly, so they soon became known
as interior-point methods. By the early 1990s, one class, namely primal-dual
methods, had distinguished itself as the most efficient practical approach and
proved to be a strong competitor to the simplex method on large problems.
These methods are the focus of this chapter.

The motivation for interior-point methods arose from the desire to find
algorithms with better theoretical properties than the simplex method. The
simplex method can be quite inefficient on certain problems. Roughly speak-
ing, the time required to solve a linear program may be exponential in the
size of the problem, as measure by the number of unknowns and the amount
of storage needed for the problem data. In practice, the simplex method is
much more efficient than this bound would suggest, but its poor worst-case
complexity motivated the development of new algorithms with better guaran-
teed performance. Among them is the ellipsoid method proposed, which finds
a solution in time that is at worst polynomial in the problem size. Unfortu-
nately this method approaches its worst-case bound on all problems and is not
competitive with the simplex method.

Interior-point methods share common features that distinguish them from
the simplex method. Each interior-point iteration is expensive to compute and
can make significant progress towards the solution, while the simplex method
usually requires a larger number of inexpensive iterations. The simplex method
works its way around the boundary of the feasible polytope, testing a sequence
of vertices in turn until it finds the optimal one. Interior-point methods ap-
proach the boundary of the feasible set only in the limit. They may approach
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the solution either from the interior or the exterior of the feasible region, but
they never actually lie on the boundary of this region.

In this chapter we outline some of the basic ideas behind primal-dual
interior-point methods. We describe in detail a practical predictor-corrector
algorithm proposed by Mehrotra, which is the basis of much of the current
generation of software.

A.1.1 Linear programming: primal-dual methods

Consider the linear programming problem in standard form

min c>x, subject to Ax = b, x ≥ 0, (A.1)

where c and x are vectors in Rn, b is a vector in Rm, and A is an m×n matrix.
The dual problem for (A.1) is

max b>λ, subject to A>λ + s = c, s ≥ 0, (A.2)

where λ is a vector in Rm and s is a vector in Rn. Primal-dual solutions of
(A.1), (A.2) are characterized by the Karush-Kuhn-Tucker conditions

A>λ + s = c, (A.3a)
Ax = b, (A.3b)

xisi = 0, i = 1, 2, . . . , n, (A.3c)
(x, s) ≥ 0. (A.3d)

Primal-dual methods find solutions (x∗, λ∗, s∗) of this system by applying
variants of Newton’s method to the three equalities in (A.3) and modifying the
search directions and step lengths so that the inequalities (x, s) ≥ 0 are satis-
fied strictly at every iteration. The equations (A.3a), (A.3b), (A.3c) are only
mildly nonlinear and so are not difficult to solve by themselves. However, the
problem becomes much more difficult when we add the nonnegativity require-
ment (A.3d). The nonnegativity condition is the source of all the complications
in the design and analysis of interior-point methods.

To derive primal-dual interior-point methods, we restate the optimality con-
ditions, (A.3) in a slightly different form by means of a mapping F from R2n+m

to R2n+m:

F (x, λ, s) =




A>λ + s− c
Ax− b
XSe


 = 0 (A.4a)

(x, s) ≥ 0, (A.4b)

where
X = diag(x1, x2, . . . , xn), S = diag(s1, s2, . . . , sn), (A.5)
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and e = (1, 1, . . . , )>. Primal-dual methods generate iterates (xk, λk, sk) that
satisfy the bounds (A.4b) strictly, that is, xk > 0 and sk > 0. This property is
the origin of the term interior-point. By respecting these bounds, the methods
avoid spurious solutions, that is, points that satisfy F (x, λ, s) = 0 but not
(x, s) ≥ 0. Spurious solutions abound, and do not provide useful information
about solutions of (A.1) or (A.2), so it makes sense to exclude them altogether
from the region of search.

Many interior-point methods actually require the iterates to be strictly fea-
sible, that is, each (xk, λk, sk) must satisfy the linear equality constraints for
the primal and dual problems. If we define the primal-dual feasible set F and
strictly feasible set Fo by

F = {(x, λ, s)|Ax = b, A>λ + s− c, (x, s) ≥ 0}, (A.6a)
Fo = {(x, λ, s)|Ax = b, A>λ + s− c, (x, s) > 0}, (A.6b)

the strict feasibility condition can be written concisely as

(xk, λk, sk) ∈ Fo.

Like most iterative algorithms in optimization, primal-dual interior-point
methods have two basic ingredients: a procedure for determining the step and
a measure of the desirability of each point in the search space. As mentioned
above, the search direction procedure has its origins in Newton’s method for
the nonlinear equations (A.4a). Newton’s method forms a linear model for
F around the current point and obtains the search direction (∆x, ∆λ, ∆s) by
solving the following system of linear equations:

J(x, λ, s)




∆x
∆λ
∆s


 = −F (x, λ, s),

where J is the Jacobian of F . If the current point is strictly feasible (that is,
(x, λ, s) ∈ Fo), the Newton step equations become




0 A> I
A 0 0
S 0 X







∆x
∆λ
∆s


 =




0
0

−XSe


 . (A.7)

A full step along this direction usually is not permissible, since it would violate
the bound (x, s) ≥ 0. To avoid this difficulty, we perform a line search along
the Newton direction so that the new iterate is

(x, λ, s) + α(∆x,∆λ, ∆s),

for some line search parameter α ∈ (0, 1]. Unfortunately, we often can take
only a small step along the direction (a ¿ 1) before violating the condition



146 Dynamic Programming

(x, s) > 0. So, the pure Newton direction (A.7), which is known as the affine
scaling direction, often does not allow us to make much progress toward a
solution.

Primal-dual methods modify the basic Newton procedure in two important
ways:

1. They bias the search direction toward the interior of the nonnegative
orthant (x, s) ≥ 0, so that we can move further along the direction before
one of the components of (x, s) becomes negative.

2. They keep the components of (x, s) from moving “too close” to the bound-
ary of the nonnegative orthant.

A.1.2 The central path

The central path C is an arc of strictly feasible points that plays a vital role in
primal-dual algorithms. It is parametrized by a scalar τ > 0, and each point
(xτ , λτ , sτ ) ∈ C solves the following system:

A>λ + s = c, (A.8a)
Ax = b, (A.8b)

xisi = τ, i = 1, 2, . . . , n, (A.8c)
(x, s) > 0. (A.8d)

These conditions differ from the KKT conditions only in the term τ on the
right-hand-side of (A.8c). Instead of the complementarity condition (A.3c), we
require that the pairwise products xisi have the same value for all indices i.
From (A.8), we can define the central path as

C = {(xτ , λτ , sτ )|τ > 0}.

It can be shown that (xτ , λτ , sτ ) is defined uniquely for each τ > 0 if and only
if Fo is nonempty.

Another way of defining C is to use the mapping F defined in (A.4) and
write

F (xτ , λτ , sτ ) =




0
0
τe


 , (xτ , sτ ) > 0. (A.9)

The equations (A.8) approximate (A.3) more and more closely as τ goes to zero.
If C converges to anything as τ ↓ 0, it must converge to a primal-dual solution
of the linear program. The central path thus guides us to a solution along a
route that steers clear of spurious solutions by keeping all x and s components
strictly positive and decreasing the pairwise products xisi, i = 1, 2, . . . , n, to
zero at roughly the same rate.
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Primal-dual algorithms take Newton steps toward points on C for which
τ > 0, rather than pure Newton steps for F . Since these steps are biased
toward the interior of the nonnegative orthant defined by (x, s) ≥ 0, it usually
is possible to take longer steps along them than along the pure Newton steps
for F , before violating the positivity condition.

To describe the biased search direction, we introduce a centering parameter
σ ∈ [0, 1] and a duality measure µ defined by

µ =
1
n

n∑

i=1

xisi =
x>s

n
, (A.10)

which measures the average value of the pair wise products xisi. By writing
τ = σµ and applying Newton’s method to the system (A.9), we obtain




0 A> I
A 0 0
S 0 X







∆x
∆λ
∆s


 =




0
0

−XSe + σµe


 . (A.11)

The step (∆x, ∆λ, ∆s) is a Newton step toward the point (xσµ, λσµ, sσµ) ∈ C, at
which the pairwise products xisi are all equal to σµ. In contrast, the step (A.7)
aims directly for the point at which the KKT conditions (A.3) are satisfied.

If σ = 1, the equations (A.11) define a centering direction, a Newton step
toward the point (xµ, λµ, sµ) ∈ C, at which all the pairwise products xisi are
identical to µ. Centering directions are usually biased strongly toward the
interior of the nonnegative orthant and make little, if any, progress in reducing
the duality measure µ. However, by moving closer to C, they set the scene for
substantial progress on the next iteration. (Since the next iteration starts near
C, it will be able to take a relatively long step without leaving the nonnegative
orthant.) At the other extreme, the value σ = 0 gives the standard Newton
step (A.7), sometimes known as the affine-scaling direction. Many algorithms
use intermediate values of σ from the open interval (0, 1) to trade off between
the twin goals of reducing µ and improving centrality.

So far, we have assumed that the starting point (x0, λ0, s0) is strictly feasible
and, in particular, that it satisfies the linear equations Ax0 = b, A>λ0 + s0 = c.
All subsequent iterates also respect these constraints, because of the zero right-
hand-side terms in (A.11).

For most problems, however, a strictly feasible starting point is difficult
to find. Infeasible-interior-point methods require only that the components
of x0 and s0 be strictly positive. The search direction needs to be modified
so that it improves feasibility as well as centrality at each iteration, but this
requirement entails only a slight change to the step equation (A.11). If we
define the residuals for the two linear equations as

rb = Ax− b, rc = A>λ + s− c, (A.12)
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the modified step equation is



0 A> I
A 0 0
S 0 X







∆x
∆λ
∆s


 =




−rc

−rb

−XSe + σµe


 . (A.13)

The search direction is still a Newton step toward the point (xσµ, λσµ, sσµ) ∈ C.
It tries to correct all the infeasibility in the equality constraints in a single step.
If a full step is taken at any iteration (that is, α = 1), the residuals rb, and rc

become zero, and all subsequent iterates remain strictly feasible in the primal-
dual algorithm.

A.1.3 A practical primal-dual algorithm

Most existing interior-point codes for general-purpose linear programming prob-
lems are based on a predictor-corrector algorithm proposed by Mehrotra [60].
A corrector step is added to the search direction, so that the algorithm more
closely follows a trajectory to the primal-dual solution set. An important fea-
ture of Mehrotra’s algorithm is that it chooses the centering parameter σ adap-
tively. At each iteration, Mehrotra’s algorithm first calculates the affine-scaling
direction (the predictor step) and assesses its usefulness as a search direction.
If this direction yields a large reduction in µ without violating the positivity
condition (x, s) > 0, the algorithm concludes that little centering is needed, so
it chooses σ close to zero and calculates a centered search direction with this
small value. If the affine-scaling direction is not so productive, the algorithm
enforces a larger amount of centering by choosing a value of σ closer to 1.

The algorithm thus combines three steps to form the search direction: a
predictor step, which allows us to determine the centering parameter σk, a
corrector step using second-order information of the path leading toward the
solution, and a centering step in which the chosen value of σk is substituted
in (A.13). We will see that computation of the centered direction and the
corrector step can be combined, so adaptive centering does not add further to
the cost of each iteration.

In concrete terms, the computation of the search direction (∆x, ∆λ, ∆s)
proceeds as follows. First, we calculate the predictor step (∆xaff,∆λaff,∆saff)
by setting σ = 0 in (A.13), that is,




0 A> I
A 0 0
S 0 X







∆xaff

∆λaff

∆saff


 =




−rc

−rb

−XSe + σµe


 . (A.14)

To measure the effectiveness of this direction, we find αpri
aff and αdual

aff to be
the longest step lengths that can be taken along this direction before violating
the nonnegativity conditions (x, s) ≥ 0, with an upper bound of 1. Explicit
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formulae for these values are as follows:

αpri
aff = min

(
1, min

i:∆xaff
i <0

− xi

∆xaff
i

)
, (A.15a)

αdual
aff = min

(
1, min

i:∆saff
i <0

− si

∆saff
i

)
. (A.15b)

We define µaff to be the value of µ that would be obtained by a full step to
the boundary, that is

µaff = (x + αpri
aff ∆xaff)>(s + αdual

aff ∆saff)/n, (A.16)

and set the centering parameter σ to be

σ =
(

µaff

µ

)3

.

It is easy to see that this choice has the effect mentioned above: when good
progress is made along the predictor direction, we have µaff ¿ µ, so the σ
obtained from this formula is small and conversely.

The corrector step is obtained by replacing the right-hand-side in (A.14)
by (0, 0,−∆Xaff∆Saffe), while the centering step requires a right-hand-side of
(0, 0, σµe). We can obtain the complete Mehrotra step, which includes the
predictor, corrector and centering step components, by adding the right-hand-
sides for these three components and solving the following system




0 A> I
A 0 0
S 0 X







∆xaff

∆λaff

∆saff


 =




−rc

−rb

−XSe−∆Xaff∆Saffe + σµe


 . (A.17)

We calculate the maximum steps that can be taken along these directions before
violating the nonnegativity condition (x, s) > 0 by formulae similar to (A.15),
namely

αpri
max = min

(
1, min

i:∆xi<0
− xk

i

∆xi

)
, (A.18a)

αdual
max = min

(
1, min

i:∆si<0
− sk

i

∆si

)
. (A.18b)

and then choose the primal and dual step lengths as follows:

αpri
k = min(1, ηαpri

max), αdual
k = min(1, ηαdual

max), (A.19)

where η ∈ [0.9, 1) is chosen so that η → 1 near the solution, to accelerate the
asymptotic convergence. (For details of the choice of η and other elements of
the algorithm such as the choice of starting point (x0, λ0, s0) see Mehrotra [60].)

We summarize this discussion by specifying Mehrotra’s algorithm:
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Given (x0, λ0, s0) with (x0, s0) > 0;
for k = 0, 1, 2, . . .

Set (x, λ, s) = (xk, λk, sk) and solve (A.14) for (∆xaff, ∆λaff, ∆saff);
Calculate αpri

aff , αdual
aff and µaff as in (A.15) and (A.16);

Set centering parameter to σ = (µaff/µ)3;
Solve (A.17) for (∆x, ∆λ, ∆s);
Calculate αpri

k and αdual
k from (A.19);

Set

xk+1 = xk + αpri
k ∆x,

(λk+1, sk+1) = (λk, sk) + αdual
k (∆λ, ∆s).

end (for).
It is important to note that no convergence theory is available for Mehrotra’s

algorithm at least in the form in which it is described above. In fact, there
are examples for which the algorithm diverges. Simple safeguards could be
incorporated into the method to force it into the convergence framework of
existing methods. However, most programs do not implement these safeguards,
because the good practical performance of Mehrotra’s algorithm makes them
unnecessary.

A.1.4 Quadratic programming: IPM

An optimization problem with a quadratic objective function and linear con-
straints is called a quadratic program. Problems of this type are important
in their own right, and they also arise as subproblems in methods for gen-
eral constrained optimization, such as sequential quadratic programming and
augmented Lagrangian methods.

The primal-dual interior-point approach can be applied to convex quadratic
programs through a simple extension of the linear-programming algorithms.
The resulting algorithms are simple to describe, relatively easy to implement,
and quite efficient on certain types of problems.

For simplicity, we restrict our attention to convex quadratic programs with
inequality constraints, which we write as follows

min
x

1
2
x>Gx + x>d, (A.20a)

subject to Ax ≥ b, (A.20b)

where G is symmetric and positive semidefinite, A is a m×n matrix. (Equality
constraints can be accommodated with simple changes to the approaches de-
scribed below.) We can specialize the KKT conditions to obtain the following
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set of necessary conditions for (A.20): If x∗ is a solution of (A.20), there is a
Lagrange multiplier vector λ∗ such that the following conditions are satisfied
for (x, λ) = (x∗, λ∗):

Gx−A>λ + d = 0,

Ax− b ≥ 0,

(Ax− b)iλi = 0, i = 1, 2, . . . , m,

λ ≥ 0.

By introducing the slack vector y = Ax− b, we can rewrite these conditions as

Gx−A>λ + d = 0, (A.21a)
Ax− y − b ≥ 0, (A.21b)

yiλi = 0, i = 1, 2, . . . , m, (A.21c)
(y, λ) ≥ 0. (A.21d)

It is easy to see the close correspondence between (A.21) and the KKT con-
ditions (A.3) for the linear programming problem (A.1). As in the case of
linear programming, the KKT conditions are not only necessary but also suffi-
cient, because the objective function is convex and the feasible region is convex.
Hence, we can solve the convex quadratic program (A.20) by finding solutions
of the system (A.21).

We can rewrite (A.21) as a constrained system of nonlinear equations and
derive primal-dual interior-point algorithms by applying modifications of New-
ton’s method to this system. Analogously to (A.4), we define

F (x, y, λ) =




Gx−A>λ + d
Ax− y − b

Y Λe


 = 0,

(y, λ) ≥ 0,

where

Y = diag(y1, y2, . . . , ym), Λ = diag(λ1, λ2, . . . , λm), e = (1, 1, . . . , )>.

Given a current iterate (x, y, λ) that satisfies (y, λ) > 0, we can define a duality
measure µ by

µ =
1
m

m∑

i=1

yiλi =
y>λ

m
, (A.22)

similarly to (A.10).
The central path C is the set of points (xτ , yτ , λτ )(τ > 0) such that

F (xτ , yτ , λτ ) =




0
0
τe


 , (yτ , λτ ) > 0.
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The generic step (∆x, ∆y, ∆λ) is a Newton-like step from the current point
(x, y, λ) toward the point (xσµ, yσµ, λσµ) on the central path, where σ ∈ [0, 1]
is a parameter chosen by the algorithm. As in (A.13), we find that this step
satisfies the following linear system:




G 0 −A>

A −I 0
0 Λ Y







∆x
∆y
∆λ


 =




−rd

−rb

−ΛSe + σµe


 , (A.23)

where
rd = Gx−A>λ + d, rb = Ax− y − b.

We obtain the next iterate by setting

(x+, y+, λ+) = (x, y, λ) + α(∆x,∆y, ∆λ),

where α is chosen to retain the inequality (y+, λ+) > 0 and possibly to satisfy
various other conditions.

Mehrotra’s predictor-corrector algorithm can also be extended to convex
quadratic programming with the exception of one aspect: The step lengths
in primal variables (x, y) and dual variables λ cannot be different, as they
are in the linear programming case. The reason is that the primal and dual
variables are coupled through the matrix G, so different step lengths can disturb
feasibility of the equation (A.21a).

The major computational operation is the solution of the system (A.23) at
each iteration of the interior-point method. This system may be restated in
more compact forms. The augmented system form is

[
G −A>

A Λ−1Y

] [
∆x
∆y

]
=

[ −rd

−rb + (−y + σµΛ−1e)

]
, (A.24)

and a symmetric indefinite factorization scheme can be applied to the coefficient
matrix. The normal equations form is

(G + A>(Y −1Λ)A)∆x = −rd + A>(Y −1Λ)[−rb − y + σµΛ−1e],

which can be solved by means of a modified Cholesky algorithm. Note that
the factorization must be recomputed at each iteration, because the change in
y and λ leads to changes in the nonzero components of A>(Y −1Λ)A.

A.2 Active Set Methods

We now describe active set methods (ASM), which are generally the most
effective methods for small- to medium-scale problems. The general quadratic
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program (QP) can be stated as

min
x

q(x) =
1
2
x>Gx + x>d, (A.25a)

subject to a>i x = bi, i ∈ E (A.25b)
a>i x ≥ bi, i ∈ I (A.25c)

where G is a symmetric n × n matrix, E and I are finite sets of indices, and
d, x, and {ai}, i ∈ E ∪ I, are vectors with n elements. Quadratic programs
can always be solved (or can be shown to be infeasible) in a finite number
of iterations, but the effort required to find a solution depends strongly on
the characteristics of the objective function and the number of inequality con-
straints. If the Hessian matrix G is positive semidefinite, we say that (A.25) is
a convex QP, and in this case the problem is sometimes not much more difficult
to solve than a linear program. Nonconvex QPs, in which G is an indefinite
matrix, can be more challenging, since they can have several stationary points
and local minima. In this chapter we describe algorithms that find the solution
of a convex quadratic program or a stationary point of a general (nonconvex)
quadratic program.

A.2.1 Constrained QP

We begin our discussion of algorithms for quadratic programming by consid-
ering the case where only equality constraints are present. As we will see in
this chapter, active set method for general quadratic programming solve an
equality-constrained QP at each iteration.

Let us denote the number of constraints by m, assume that m ≤ n, and
write the quadratic program as

min
x

1
2
x>Gx + x>d, (A.26a)

subject to Ax = b, (A.26b)

where A is the m× n Jacobian of constraints defined by A = [ai]>i∈E. For the
present, we assume that A has full row rank (rank m), and that the constraints
(A.26b) are consistent.

The first-order necessary conditions for x∗ to be a solution of (A.26) state
that there is a vector λ∗ such that the following system of equations is satisfied

[
G −A>

A 0

] [
x∗

λ∗

]
=

[ −d
b

]
. (A.27)

It is easy to derive these conditions as a consequence of the general result for
first-order optimality conditions. As before, we call λ∗ the vector of Lagrange
multipliers. The system (A.27) can be rewritten in a form that is useful for
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computation by expressing x∗ as x∗ = x + p, where x is some estimate of the
solution and p is the desired step. By introducing this notation and rearranging
the equations, we obtain

[
G −A>

A 0

] [ −p
λ∗

]
=

[
g
c

]
. (A.28)

where
c = Ax− b, g = d + Gx, p = x∗ − x. (A.29)

The matrix in (A.28) is called the Karush-Kuhn-Tucker (KKT) matrix.
We also discuss an algorithm for solving QPs that contain inequality con-

straints and possibly equality constraints. Classical active-set methods can
be applied both to convex and non-convex problems, and they have been the
most widely used methods since the 1970s. We begin our discussion with a
brief review of the optimality conditions for inequality-constrained quadratic
programming. Note that the Lagrangian for the problem (A.25) is

L(x, λ) =
1
2
x>Gx + x>d−

∑

i∈I∪E

λi(a>i x− bi). (A.30)

In addition, we define the active set A(x∗) at an optimal point x∗ as the indices
of the constraints at which equality holds, that is,

A(x∗) = {i ∈ I ∪ E : a>i x∗ = bi}. (A.31)

We conclude that any solution x∗ of (A.25) satisfies the following first-order
conditions

Gx∗ + d−
∑

i∈A(x∗)

λ∗i ai = 0, (A.32a)

a>i x∗ = bi, for all i ∈ A(x∗) (A.32b)
a>i x∗ ≥ bi, for all i ∈ I \A(x∗) (A.32c)

λ∗i ≥ 0, for all i ∈ I ∩A(x∗). (A.32d)

In the optimality conditions for quadratic programming given above we need
not assume that the active constraints are linearly dependent at the solution.
Second-order sufficient conditions for x∗ to be a local minimizer are satisfied if
Z>GZ is positive definite, where Z is defined to be a null-space basis matrix
for the active constraint Jacobian matrix

[ai]>i∈A(x∗).

The point x∗ is actually a global solution for the equality-constrained case when
this condition holds. When G is not positive definite, the general problem
(A.25) may have more than one strict local minimizer at which the second-
order necessary conditions are satisfied. Such problems are referred to as being
“nonconvex” or “indefinite”, and they cause some complication for algorithms.
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A.2.2 Specification of ASM for convex QP

We start by discussing the convex case, in which the matrix G in (A.25a) is
positive semidefinite. Since the feasible region defined by (A.25b), (A.25c) is
a convex set, any local solution of the QP is a global minimizer. The case in
which G is an indefinite matrix raises complications in the algorithms.

Recall the definition (A.31) above of the active set A(x) at the optimal
point x∗, it will be called an optimal active set. If A(x∗) were known in ad-
vance, we could find the solution by applying one of the techniques for equality-
constrained QP to the problem

min
x

q(x) =
1
2
x>Gx + x>d subject to a>i x = bi, i ∈ A(x∗).

Of course, we usually don’t have prior knowledge of A(x∗), and as we will
now see, determination of this set is the main challenge facing algorithms for
inequality-constrained QP.

An active-set method starts by making a guess of the optimal active set, and
if this guess turns out to be incorrect, it repeatedly uses gradient and Lagrange
multiplier information to drop one index from the current estimate of A(x∗)
and add a new index. An active-set approach for linear programming is the
simplex method. Active-set methods for QP differ from the simplex method
in that the iterates may not move from one vertex of the feasible region to
another. Some iterates (and, indeed, the solution of the problem) may lie at
other points on the boundary or interior of the feasible region.

Active-set methods for QP come in three varieties, known us primal, dual,
and primal-dual. We restrict our discussion to primal methods, which generate
iterates that remain feasible with respect to the primal problem (A.25) while
steadily decreasing the primal objective function.

Primal active-set methods usually start by computing a feasible initial iter-
ate x0, and then ensure that all subsequent iterates remain feasible. They find
a step from one iterate to the next by solving a quadratic subproblem in which
a subset of the constraints in (A.25b), (A.25c) is imposed as equalities. This
subset is referred to as the working set and is denoted at the kth iterate xk by
Wk. It consists of all the equality constraints i ∈ E (see A.25b) together with
some–but not necessarily all–of the active inequality constraints. An important
requirement we impose on Wk is that the gradients ai of the constraints in the
working set be linearly independent, even when the full set of active constraints
at that point has linearly dependent gradients.

Given an iterate xk and the working set Wk, we first check whether xk

minimizes the quadratic q in the subspace defined by the working set. If not,
we compute a step p by solving an equality-constrained QP subproblem in
which the constraints corresponding to the working set Wk are regarded as
equalities and all other constraints are temporarily disregarded. To express
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this subproblem in terms of the step p, we define

p = x− xk, gk = Gxk + d,

and by substituting for x into the objective function (A.25a), we find that

q(x) = q(xk + p) =
1
2
p>Gp + g>k p + c,

where c = 1
2x>k Gxk + d>xk is a constant term. Since we can drop c from the

objective without changing the solution of the problem, we can write the QP
subproblem to be solved at the kth iteration as follows

minp
1
2p>Gp + g>k p, (A.33a)

subject to a>i p = 0 for all i ∈ Wk. (A.33b)

We denote the solution of this subproblem by pk. Note that for each i ∈
Wk, the term of a>i x does not change as we move along pk, since we have
a>i (xk + pk) = a>i xk = bi. It follows that since the constraints in Wk were
satisfied at xk, they are also satisfied at xk + αpk, for any value of α.

Suppose for the moment that the optimal pk from (A.33) is nonzero. We
need to decide how far to move along this direction. If xk + pk is feasible with
respect to all the constraints, we set xk+i = xk + pk. Otherwise, we set

xk+i = xk + αkpk, (A.34)

where the step-length parameter αk is chosen to be the largest value in the
range [0, 1) for which all constraints are satisfied. We can derive an explicit
definition of αk by considering what happens to the constraints i /∈ Wk, since
the constraints i ∈ Wk will certainly be satisfied regardless of the choice of αk.
If a>i pk ≥ 0 for some i /∈ Wk, then for all αk ≥ 0 we have a>i (xk + αkpk) ≥
a>i xk ≥ bi. Hence, this constraint will be satisfied for all nonnegative choices
of the step-length parameter. Whenever a>i pk < 0 for some i /∈ Wk, however,
we have that a>i (xk + αkpk) ≥ bi only if

αk ≤ bi − a>i xk

a>i pk
.

Since we want αk to be as large as possible in [0, 1] subject to retaining feasi-
bility, we have the following definition

αk = min

(
1, min

i/∈Wk,a>i pk<0

bi − a>i xk

a>i pk

)
. (A.35)

We call the constraints i for which the minimum in (A.35) is achieved the
blocking constraints. (If αk = 1 and no new constraints are active at xk +αkpk,
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then there are no blocking constraints on this iteration.) Note that it is quite
possible for αk to be zero, since we could have a>i pk < 0 for some constraint i
that is active at xk but not a member of the current working set Wk.

If αk < 1, that is, the step along pk was blocked by some constraint not
in Wk, a new working set Wk+1 is constructed by adding one of the blocking
constraints to Wk.

We continue to iterate in this manner, adding constraints to the working
set until we reach a point x̂ that minimizes the quadratic objective function
over its current working set Ŵ. It is easy to recognize such a point because
the subproblem (A.33) has solution p = 0. Since p = 0 satisfies the optimality
conditions (A.28) for (A.33), we have that

∑

i∈Ŵ

aiλ̂i = g = Gx̂ + d, (A.36)

for some Lagrange multipliers λ̂i, i ∈ Ŵ. It follows that x̂ and λ̂ satisfy the
first KKT condition (A.32a), if we define the multipliers corresponding to the
inequality constraints that are not in the working set to be zero. Because of
the control imposed on the step-length, x̂ is also feasible with respect to all the
constraints, so the second and third KKT conditions (A.32b) and (A.32c) are
satisfied by x̂.

We now examine the signs of the multipliers corresponding to the inequality
constraints in the working set, that is, the indices i ∈ Ŵ∩I. If these multipliers
are all nonnegative, the fourth KKT condition (A.32d) is also satisfied, so we
conclude that x̂ is a KKT point for the original problem (A.25). In fact, since
G is positive semidefinite, we can show that x̂ is a local minimizer. When G is
positive definite, x̂ is a strict local minimizer.

If, on the other hand, one of the multipliers λ̂j , j ∈ Ŵ ∩ I, is negative, the
condition (A.32d) is not satisfied, and the objective function q may be decreased
by dropping this constraint. We then remove an index j corresponding to one
of the negative multipliers from the working set and solve a new subproblem
(A.33) for the new step. This strategy produces a direction p at the next
iteration that is feasible with respect to the dropped constraint (see [69]).

Having given a complete description of the active-set algorithm for convex
QP, we can give the following formal specification:

Compute a feasible starting point x0;
Set W0 to be a subset of the active constraints at x0;
for k = 0, 1, 2, . . .

Solve (A.33) to find pk;
if pk = 0

Compute Lagrange multipliers λ̂i that satisfy (A.36),
set Ŵ = Wk;

if λ̂i ≥ 0 for all i ∈ Wk ∩ I;
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STOP with solution x∗ = xk;
else

Set j = arg mini∈Wk∩I λ̂j ;
xk+1 = xk; Wk+1 ← Wk \ {j};

else (∗pk 6= 0∗)
Compute αk from (A.35);
xk+1 ← xk + αkpk;
if there are blocking constraints

Obtain Wk+1 by adding one of the blocking constraints to Wk+1;
else

Wk+1 ← Wk;
end (for)

Various techniques can be used to determine an initial feasible point. One
such is to use the “Phase I” approach. Though no significant modifications
are needed to generalize this method from linear programming to quadratic
programming, we describe a variant here that allows the user to supply an
initial estimate x̃ of the vector x. This estimate need not be feasible, but
prior knowledge of the QP may be used to select a value of x̃ that is “not too
infeasible”, which will reduce the work needed to perform the Phase I step.

Given x̃, we define the following feasibility linear program:

min
(x,z)

e>z

subject to a>i x + γizi = bi, i ∈ E,

a>i x + γizi ≥ bi, i ∈ I,

z ≥ 0,

where e = (1, . . . , 1)>, γi = −sign(a>i x̃− bi) for i ∈ E, while γi = 1 for i ∈ I. A
feasible initial point for this problem is then

x = x̃, zi = |a>i x̃− bi| (i ∈ E), zi = max(bi − a>i x̃, 0) (i ∈ I).

It is easy to verify that if x̃ is feasible for the original problem (A.25), then (x̃, 0)
is optimal for the feasibility subproblem. In general, if the original problem has
feasible points, then the optimal objective value in the subproblem is zero, and
any solution of the subproblem yields a feasible point for the original problem.
The initial working set W0 for the given above algorithm can be found by taking
a linearly independent subset of the active constraints at the x component of the
solution of the feasibility problem. (Further remarks on the active-set method
can be found in [69]).
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Model and controller symbols

A, B,C, D Plant state space matrices
Aw, Bw, Cw Disturbance model matrices
J Performance objective function
Q Output weighting matrix
R Input weighting matrix
Q̄ End-point state weighting matrix
N Prediction horizon
Nc Control horizon
k Discrete time instant
j Time instant on the horizon
H Hessian matrix
f Nonlinear model state equation
g Nonlinear model output equation
T Sampling time
FT One-step ahead nonlinear prediction
Φ,Γ Prediction matrices in MPC and EKF
E Output error matrix
Gy Output prediction matrix
P ARE solution
Σ Covariance matrix
L Kalman filter gain
t, ε Slack variables
λ, p Lagrange multipliers
µ Duality gap
Cu, Cx, Cc Constraint matrices
∆w IPM step direction
α Step length
W Linearized KKT matrix
r IPM residuals
Π, π Structured IPM auxiliary variables

Signals

d Disturbance signal
u Input signal
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δu Optimizing control input
unom Nominal input trajectory
v Measurement noise
w Discrete-time white noise
x Plant state variable
xw Disturbance model state variable
y Measured output
ynom Nominal output trajectory
yref Output reference trajectory
z Performance output

Superscripts

i IPM iteration
d Discrete-time system

Abbreviations

APC Advanced Process Control
ARE Algebraic Riccati Equation
ASM Active Set Method
DAE Differential Algebraic Equations
DARE Discrete Algebraic Riccati Equation
DCS Distributed Control System
DMC Dynamic Matrix Control
EKF Extended Kalman Filter
FIR Finite Impulse Response
IDCOM Identification and Command
INCOOP INtegration of process COntrol and plantwide OPtimization
IPM Interior-Point Method
KKT Karush-Kuhn-Tucker conditions
LP Linear Programming
LPV Linear Parameter-Varying
LQ Linear Quadratic
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
LTV Linear Time-Varying
MIMO Multi Input Multi Output
MP Mathematical Programming
MPC Model Predictive Control
NLP Nonlinear Programming
NMPC Nonlinear Model Predictive Control
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QP Quadratic Programming
RDE Riccati Difference Equation
RTDO Real-Time Dynamic Optimization
SIPM Structured Interior-Point Method
SQP Sequential Quadratic Programming
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Samenvatting

De proces industrie heeft dringend behoefte aan technieken voor het nauwkeurig,
efficient en flexibel bedrijven van haar plants. Dit vereist een doorlopende on-
twikkeling van innovatieve technieken en de bijbehorende gëıntegreerde soft-
ware gereedschappen voor het modelleren van de processen, het optimaliseren
van de transitiepaden en het modelgebaseerd regelen van de processen. Met de
toenemende eisen neigen de modellen, die de procesdynamica beschrijven, te
complex te worden voor de huidige generatie modelgebaseerde regel- en opti-
malisatie technieken. Het doel van het in dit proefschrift beschreven research
project is de ontwikkeling van een nieuwe generatie regeltechniek, die aan de
strakkere eisen ten aanzien van transitie gedrag en storingsonderdrukking vol-
doet en de realisatie van een prototype gëıntegreerde real-time software omgev-
ing. Het research project is uitgevoerd als onderdeel van een 5e kader pro-
gramma Europees R&D project getiteld: “Integration of process Control and
plantwide dynamic Optimization (INCOOP)”.

De enige geavanceerde regeltechniek, die breed door de procesindustrie is
geaccepteerd is de Model Predictive Control (MPC). Het onderzoek beschreven
in dit proefschrift spitst zich toe op MPC voor niet-lineaire processen. De
optimalisatie binnen niet-lineaire MPC is in het algemeen een zeer rekenin-
tensieve taak. Dit proefschrift beschrijft verschillende MPC algorithmen voor
niet-lineaire processen, die gebruik maken van opeenvolgende linearisaties. De
predicties worden berekend met behulp van simulaties met het niet-lineaire pro-
ces model. Voor het berekenen van een optimale voorspelling van de toekom-
stige toestandsvector wordt gebruik gemaakt van locale linearisaties van de
toestandsvergelijkingen. De voorspellingen van de uitgangen worden berekend
op basis van lineaire benaderingen voor de toekomstige ingangs manipulaties.
Dit maakt het mogelijk het optimalisatie probleem binnen de MPC op te lossen
als een Quadratisch Programmeer (QP) probleem.

In het proefschrift wordt beschreven hoe het QP probleem op verschillende
manieren opgelost kan worden. In de eerste plaats kunnen de modelvergelijkin-
gen worden gebruikt om toestanden te elimineren en daarmee het aantal vari-
abelen in de optimalisatie te reduceren. Dit resulteert echter in een nagenoeg
volledig gevulde matrices. Het oplossen van een QP met dit soort methoden
resulteert in het algemeen in rekentijden die kubisch toenemen met het aantal
te optimaliseren variabelen. De rekentijden worden daarmee in het algemeen
veel te lang voor het real-time oplossen van de beoogde niet-lineaire regelprob-
lemen met deze standaard QP algorithmen. Veel industriële processen hebben
een dynamisch gedrag dat resulteert in grote, stijve optimalisatieproblemen, die
een lange predictie horizon vereisen om aan de gestelde specificaties te kunnen
voldoen. Dit soort eisen resulteert dan ook in optimalisatie problemen met veel
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variabelen. Standaard implementaties van de QP algorithmen zijn dan ook niet
toepasbaar voor het oplossen van de hier beoogde MPC optimalisatie proble-
men. In dit proefschrift is een gestructureerde interior-point methode (IPM)
ontwikkeld, die het MPC probleem voor grote niet-lineaire systemen reduceert
tot een complexiteit die real-time oplosbaar is. De in samenwerking met de
KU-Leuven (Ir. Jeroen Buijs en Prof. Bart De Moor) ontwikkelde methode
gebruikt expliciet de structuur van het op te lossen probleem, waardoor de
rekentijd slechts lineair toeneemt met het aantal te optimaliseren variabelen.
Het algorithme laat ook het gebruik van meerdere lineaire modellen toe, wat een
bredere regeltechnische toepassing ondersteunt. De eliminatie van toestanden
wordt hierbij niet gedaan en de structuur, die voortvloeit uit de dynamica van
het proces wordt gereflecteerd in de Karush-Kuhn-Tucker (KKT) vergelijkin-
gen, die worden gebruikt om het QP probleem op te lossen. De gestructureerde
IPM is gemplementeerd met behulp van het “primal-dual Mehrotra” algorithme
inclusief de predictie, correctie en centreer stappen. De te optimaliseren vari-
abelen zijn de ingangen en de toestanden van het proces over de volledige
horizon. Het optimalisatie probleem wordt hierbij echter een ijl probleem. Dit
resulteert in een significante reductie van de rekentijd, hetgeen zeer belangrijk
is voor het toepassen van MPC op niet-lineaire stijve systemen.

In dit proefschrift wordt de effectiviteit van de gestructureerde IPM geba-
seerde MPC aangetoond op diverse industriële processen. Als voorbeelden wor-
den onder andere een CSTR (Continuous Stirred Tank Reactor) en een stijve,
niet-lineaire batch reactor gebruikt. Dit soort systemen heeft in het algemeen
dynamica, waarvan de tijdconstanten meerdere decades uiteen kunnen liggen.
Een aantal regelproblemen, zoals het volgen van een referentie trajectorie, het
opstarten van het proces en het onderdrukken van verstoringen, worden effi-
cient opgelost met de in dit proefschrift beschreven hoog presterende MPC.
De regelaar is verder getest op de processen, die als testcases in INCOOP zijn
gebruikt. Ook deze tests toonden dezelfde successen.




