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ABSTRACT. We use the periodic unfolding technique to derive corrector estimates for a
reaction-diffusion system describing concrete corrosion penetration in the sewer pipes.
The system, defined in a periodically-perforated domain, is semi-linear, partially dissipa-
tive, and coupled via a non-linear ordinary differential equation posed on the solid-water
interface at the pore level. After discussing the solvability of the pore scale model, we
apply the periodic unfolding techniques (adapted to treat the presence of perforations)
not only to get upscaled model equations, but also to prepare a proper framework for
getting a convergence rate (corrector estimates) of the averaging procedure.

Keywords: Corrector estimates, periodic unfolding, homogenization, sulfate corrosion

of concrete, reaction-diffusion systems.

1. INTRODUCTION

Concrete corrosion is a slow natural process that leads to the deterioration of concrete
structures (buildings, bridges, highways, etc.) leading yearly to huge financial losses ev-
erywhere in the world. In this paper, we focus on one of the many mechanisms of chemical
corrosion, namely the sulfation of concrete, and aim to describe it macroscopically by a
system of averaged reaction-diffusion equations whose effective coefficients depend on the
particular shape of the microstructure. The final aim of our research is to become capa-
ble to predict quantitatively the durability of a (well-understood) cement-based material
under a controlled experimental setup (well-defined boundary conditions). The striking
thing is that in spite of the fact that the basic physical-chemistry of this relatively easy
material is known [1], we have no control on how the microstructure changes (in time and
space) and to which extent these spatio-temporal changes affect the observable macro-
scopic behavior of the material. The research reported here goes along the line open in
[11], where a formal asymptotic expansion ansatz was used to derive macroscopic equa-

tions for a corrosion model, posed in a domain with locally-periodic microstructure (see
1



2 UNFOLDING AND CORRECTOR ESTIMATES

[17] for a rigorous averaging approach of a reduced model defined in a domain with locally-
periodic microstructures). A two-scale convergence approach for periodic microstructures
was studied in [10], while preliminary multiscale simulations are reported in [3]. Within
this paper we consider a partially dissipative reaction-diffusion system defined in a do-
main with periodically distributed microstructure. This system was originally proposed
in [2] as a free-boundary problem. The model equations describe the corrosion of sewer
pipes made of concrete when sulfate ions penetrate the non-saturated porous matrix of
the concrete viewed as a ”composite”. The typical concrete microstructure includes solid,
water and air parts, see Fig. 2.1. One could argue that the microstructure of a concrete
is neither uniformly periodic nor locally periodic, and the randomness of the pores and
of their distributions should be taken into account. However, periodic representations
of concrete microstructures often provide good descriptions. For what the macroscopic
corrosion process is concerned, the derivation of corrector estimates [for the periodic case]
is crucial for the identification of convergence rates of microscopic solutions. The stochas-
tic geometry of the concrete will be studied as future work with the hope to shed some
light on eventual connections between the role played by a locally-periodic distributed
microstructure vs. stationary random(-distributed) pores. In this spirit, we think that
there is much to be learnt from [18].

The main novelty of the paper is twofold: on one hand, we obtain corrector estimates
under optimal regularity assumptions on solutions of the microscopic model and obtain
the desired convergence rate (hence, we have now a confidence measure of our averaging
results); on the other hand, we apply for the first time an unfolding technique to derive
corrector estimates in perforated media. The main ideas of the methodology were pre-
sented in [12, 13] and applied to linear elliptic equations with oscillating coefficients, posed
in a fixed domain. Our approach strongly relies on these results. However, novel aspects
of the method, related to the presence of perforations in the considered microscopic do-
main, are treated here for the first time; see section 3. The main advantage of using the
unfolding technique to prove corrector estimates is that only H'-regularity of solutions of
microscopic equations and of unit cell problems is required, compared to standard meth-
ods (mostly based on energy-type estimates) used in the derivation of corrector estimates.
As a natural consequence of this fact, the set of choices of microstructures is now much
larger.

The paper is structured in the following fashion: After introducing model equations and
the assumed microscopic geometry of the concrete material, the section 2 goes on with
the main assumptions and basic estimates ensuring both the solvability of the microscopic
problem and the convergence of microscopic solutions to a solution of the macroscopic
equations, as € — 0. In section 3 we state and prove the corrector estimates for the
concrete corrosion model, Theorem 3.6, determining the range of validity of the upscaled
model.
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Note that the technique developed in this article can be applied in a straightforward way
to derive convergence rates for solutions of other classes of partial differential equations,

posed in domains with periodically-distributed microstructures.

2. PROBLEM DESCRIPTION

2.1. Geometry. We assume that concrete piece consists of a system of pores periodically
distributed inside the three-dimensional cube = [a, b]* with a,b € R and b > a. Since
usually the concrete in sewer pipes is not completely dry, we consider a partially saturated
porous material. We assume that every pore has three distinct non-overlapping parts: a
solid part, the water film which surrounds the solid part, and an air layer bounding the
water film and filling the space of Y as shown in Fig. 2.1. Note that the dark (black)
parts indicate the water-filled parts in the material where most of our model equations are
defined. The reference pore, Y = [0, 1], has three pair-wise disjoint domains Yy, ¥; and
Y, with smooth boundaries I'; and I'y as shown in Fig. 2.1. Moreover, Y = Y, UY; UY5.

%15 Al

FIGURE 1. Left: Periodic approximation of the concrete piece. Right: Our
choice of the microstructure.

Let ¢ be a small factor denoting the ratio between the characteristic length of the pore
Y and the characteristic length of the domain €2. Let x; and yx» be the characteristic
functions of the sets Y; and Y, respectively. The shifted set Y[ is defined by Y/ :=
Yy + B3 okje; for k= (ki ko, ks) € Z?, where e; is the j'™ unit vector. The union of all
Y} multiplied by ¢ that are contained within  defines the perforated domain 5, namely
Q5 = Upegs{eY} | €Y C Q).

Similarly, 5, I'5, and I'§ denote the union of Yy, eI'¥, and el'%, contained in ().

2.2. Microscopic equations. We consider a microscopic model

(O — V- (D:VW) = —f(uf,v°)  in (0,T) x €,
O — V- (DEVVR) = f(uf, v°) in (0,7) x Qf,
Ow® —V - (DE,Vw®) =0 in (0,7) x Q5,

katr‘f = n(u57r5) on (0,T> X F‘i,

with the initial conditions
uf(0,2) = up(z), v°(0,z) = vo(x) in Qf,

we(0,z) = wp(x) in QF, re(0,x) =ro(x) on I}
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and the boundary conditions

u®=0,v"=0o0n (0,7) x 02N 9N, w®=0on (0,7) x 92N N3, (3)

together with

(DZV’LLE v = —en(uf, re) on (0,7) x I,
DV v =0 on (0,T) x %,

§ DEVUE v =0 on (0,T) x I's, (4)
DiVv® - v = e(a®(x)w® — b%(z)v°) on (0,7) x I,

| Do Vur - v = —e(a®(x)w® — b*(z)v°) on (0,7) x I'5.

We consider the space Hio(Q5) = {u € H(Q) :u=00n 90NN}, i = 1,2.

Assumption 2.1. (Al) Dy, 0,D; € L>(0,T; Lyg (Y))**?, i € {u,v,w}, (Di(t,2)&,&) >
DYEI? for DY > 0, for every £ € R? and a.a. (t,x) € (0,T) x Y.

(A2) Reaction rate k3 € Ly¢ (T'y) is nonnegative and n(c, B) = k3(y)R(a)Q(B), where
R:R — Ry, Q: R — Ry are sublinear and locally Lipschitz continuous. Fur-
thermore, R(a)) =0 for a <0 and Q(B) =0 for 8 > Bax, with some Bar > 0.

(A3) f € CY(R?) is sublinear and globally Lipschitz continuous in both variables, i.e.
fle, B) < Cr(L+ ol +B]), | f(ea, B1) — flaz, B2)| < Cr(lon — as| + |81 — Bo|) and
fla,B8) =0 fora <0 orp <0.

(A4) The mass transfer functions at the boundary a,b € L% (I'2), a(y) and b(y) are
positive for a.a. y € I'y and there exists A,, Ay, M,, M, such that b(y)e?** M, =
a(y)ettM,, for a.a. y € Ty and t € (0,T).

(Ab) Initial data (uo,vo,wo,r0) € [H*(Q) N Hy(Q) N LX(Q)]* x Log(T'1) and ug(x) >
0,v9(x) > 0,wp(z) > 0 a.e. in Q, ro(x) >0 a.e. onTl}.

We define the oscillating coefficients:
Di(t,x) = Di (t,2) i € {u,v,w}, a*(x) == a (%), b(x) = b (), k¥(2) =k (%)

Definition 2.2. We call (uf, v, w®, ) a weak solution of (1)~(4) if u®,v* € L*(0,T; Hj,(25))N
HY 0,75 L*(95)), w® € L*0,T; Hjo,(Q5)) N HY(0,T; L*(Q5)), v € H'(0,T; L*(T5)) and
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satisfies the following equations

T
// oud + DNV + f(uf,v°)p)dudt = 50//77u , %) pdrydt, (5)

Iy

/T / (0" ¢ + DEVEV Y — f(uf,0°)¢)dwdt = & /T / w® — b5 v°) pdydt,  (6)

0 s 0 T3
T
// (0w + D, VuVp)dudt = —5// w® — b v°) pdydt, (7)
0 Q5 rs
//@r Wdydt = 5// u®, o) drydt (8)
0 T% 0 T:

for all p € L*(0,T; H3o (%)), ¢ € L*(0,T; Hj(925)), v € L*((0,T) xT'5) and u®(t) — uy,
vE(t) — vg in L2(Q5), we(t) = wo in L*(Q5), r°(t) — ro in L*(T5) ast — 0.

Lemma 2.3. Under the Assumption 2.1, solutions of the problem (1)—(4) satisfy the
following a priori estimates:

|[uf|| oo (0.1522(05)) + [V U] L2 (07 x05)
0% ]| Lo 0,22 (05)) + 1V V%] L2 (0,7 x025)

|[w || o022 (05)) + |V w®| |22 (0/m)x05)
£1/2 1/2

IA A IA IA
QO QAQ
c

|[75]] oo 0, L2(0e)) + €210 | 20,1y x15)

where the constant C' is independent of <.

Proof. First, we consider as test functions ¢ = u® in (5), ¢ = v in (6), 1» = w® in (7) and
use Assumption 2.1, Young’s inequality, and the trace inequality, i.e.

t t t
5//w5v€d’yd7 < C’//(\walg+€2]Vw8]2)d’yd7+0//(|v5\2—I—EQ\VUE\z)dfydT.
0 I3 0 O3 0 O

Then, adding the obtained inequalities, choosing € conveniently and applying Gronwall’s
inequality imply the first three estimates in Lemma.

Taking ¢» = r° as a test function in (8) and using (A2) from Assumption 2.1 and the
estimates for u®, yield the estimate for r°. The test function ¢ = 0,7 in (8), the sub-
linearity of R, the boundedness of () and the estimates for u° imply the boundedness of

51/2Hatre”Lz((O,T)XF‘i)' O

Lemma 2.4. (Positivity and boundedness) Let Assumption 2.1 be fulfilled. Then the
following estimates hold:

(i) us(t),v°(t) > 0 a.e. in Q, w(t) > 0 a.e. in Q5 and u*(t),r°(t) > 0 a.e. on I,
for a.a. t € (0,T).
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(ii) us(t) < Myett, vi(t) < Myet ae. in Q5 , wi(t) < Myete! a.e. in Q5 and
uf (t) < Myelt, ré(t) < Myet a.e. onT%, for a.a. t € (0,T).

Proof. (i) To show the positivity of a weak solution we consider u°~ as test function in (5),
v*" in (6), w* in (7) , and 7°~ in (8), where ¢~ = min{0, ¢} with ¢T¢~ = 0. The integrals

€~ are zero, since by Assumption 2.1

involving f(u®, v)u®™, f(u®,v*)v*"and n(u,r)u
f(u,v) is zero for negative u or v and n(u,r) is zero for negative u. In the integrals over
IS we use the positivity of @ and b and the estimate v*w®™ = (v°F7 + 07 )w*™ < v w"".
Due to the positivity of n, the right hand side in the equation for r; with the test function
) = 17, is nonpositive. Adding the obtained inequalities, applying both Young’s and
the trace inequalities, considering e sufficiently small, we obtain, due to positivity of the
initial data and using Gronwall’s inequality, that

[ (Ol 225y + 1077 Ol 205) + [0 Ol 205) + 1777 Ol 25y <0,

for a.a. t € (0,7). Thus, negative parts of the involved concentrations are equal zero a.e.
in (0,7) x Q5,7=1,2, or in (0,7) x I'§, respectively.

(ii) To show the boundedness of solutions, we consider (uf —e”«*M,)* as a test function
in (5), (v°—eA*M,)" in (6) and (w®—e ' M,)T in (7), where (¢p— M)* = max{0,¢p— M}
and A;, M;, i = u, v, w are positive numbers, such that ug(x) < M,, vo(z) < M, wo(x) <
M, a.e in Q, and A;, M; for i = v,w are given by (A4) in Assumption 2.1. Adding the
equations for uf, v, w® and using Assumption 2.1 yield, with U5, = (u® — e«'M,)",
Vi = (v° — e M)t and WE, = (w® — e'M,) T,

/(/@(\U;ﬂu Viel?) + VU + |VVAZ|2dx+/3t|W§4|2—|— |VW§/[|2dx)dt
0o Q5

< C/ [/ <(Cf<€AutMu+€AvtMv) —AueA”tMu)Ufw—f— US, |2+ |VE 2 + 2|V VE |2
0 Qs
+(Cpe™ M, + eMM,) — AUeA”tMU)VAZ>dx + / (\WW +52|VW§4|2>dx] dt.
2

Choosing A,, M, such that Cret“'M, + Cre*M, — A,e**M, < 0 and Cre«tM, +
CretM, — A,eM'M, < 0, and ¢ sufficiently small, Gronwall’s inequality implies the
estimates for u®, v°, w®, stated in Lemma.
Lemma 5.1 in Appendix and H'-estimates for «° in Lemma 2.3 imply u°(t) > 0 and
uf(t) < e'M, a.e on I'5 for a.a. t € (0,T). The assumption on 7 and equation (8) with
the test function (r® — eA"*M,)*, where ro(x) < M, a.e. on I'y, yield

i 1
e / / (§8t|(1”5 — MR 4 A M — e ML) ) dydt =
0 JIg

5/ / n(us, %) (r° — e M,) Tdrydt < C’n(Au,Mu)e/ / (r° — e M,) Tdrydt.
o Jrg o Jrg
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This, for A, and M,., such that C, < A, M,e*T implies the boundedness of ¢ on I'5 for
a.a. t € (0,7). o

Lemma 2.5. Under Assumption 2.1, we have the following estimates, independent of €:
10cu]| L2 0,7y x25) + 1000 || L2 0,717 (22)) + [ Oew® || 20,111 (025)) < C.

Proof. We test (5) with ¢ = 0,u°, and using the structure of 7, the regularity assumptions
on R and () and the boundedness of u* and r° on I'{, we estimate the boundary integral
b

v
e /0 t / in(ua,ra)&guadvdee /0 t / i ke <8t(R(u5)Q(r5)) —R(uE)Q’(T‘E)&gra)dvdT

gc/
(9]

where R(a) = [3" R(£)d. Then, Assumption 2.1, estimates in Lemma 2.3 and the fact
that D%/2 —&? > 0 for appropriate ¢, imply the estimate for d;uc.

t
(\u5\2+82\Vu5]2~|—|UU!2+62|Vu0]2>dx+Ce€/ / (1+\8t7’5|2>d7d7,
o Jre

€
1

In order to estimate 0,v° and 0;w®, we differentiate the corresponding equations with
respect to the time variable and then test the result with 9,v° and 0,w®, respectively. Due
to assumptions on f and using the trace inequality, we obtain

t t
|00 |?dz + C / |VO° [P dedr < C / / (|0 + *|VOw|?) dudr
Qf 0 Jag 0 <

t
—I—C/ / (|8,5u5|2 + |0 | + |Vv5|2)dxd7 +/ 10,0°(0) |2d, (10)
0o Jos Q

€
1

t t
|Oyw*|Pda + C/ Vo [P dedr < C/ / (|0ww®? + |Vw*|?) dadr
03 0 Jos 0 Jog

t
+ |atw€(0)\2d:c+c// (|0°)* + €*|VOu°|?) dadr. (11)
05 0 Jas

The regularity assumptions imply that [|0;v°(0)]|2(qs) and [[0;w®(0)||r2(ns) can be esti-
mated by the H%norm of vy and wy. Adding (10) and (11), making use of estimates for

owu®, Vu© and Vw®, and applying Gronwall’s Lemma, give the desired estimates. o

Lemma 2.6. (Ezistence & Uniqueness) Let Assumption 2.1 be fulfilled. Then there exists

a unique global-in-time weak solution in the sense of Definition 2.2.

Proof. The Lipschitz continuity of f, local Lipschitz continuity of 7 and the boundedness
of u® and r° on I'] ensure the uniqueness result. The existence of weak solutions follows
by a standard Galerkin approach, [14], using the a priori estimates in Lemmata 2.3, 2.4
and 2.5. m
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2.3. Unfolded limit equations. We define Q5,, = Int(Upegs{eY*,eY* Cc Q}), T5,,, =

int i,9nt

Uezs{eTF, eYF € Q}, R™) = RN {e(Y; +€), £ € Z"}, ' = {w € (R")! : dist(z, Q) <

7

Iyvne}, 1=1,2.

Definition 2.7. [4, 5, 7] 1. For any function ¢ Lebesgue-measurable on perforated domain
Q5 , the unfolding operator Ty, : Q0f — Q x Y;, i =1,2, is defined by

¢(5[§}Y+5y) ae. for y €Y, x €5,
0 ae. for yeY;, xeQ\Q

wnt?

Ty, (0)(2,y) =

where k := [Z] denotes the unique integer combination E?Zlkjej of the periods such that

x — [£] belongs to Y;,

€
2. For any function ¢ Lebesgue-measurable on oscillating boundary I';, the boundary

unfolding operator Tf : I'f — Q x Ty, i = 1,2 is defined by

gb(e[f]y +ey) ae for yely, ze Qfmv
0 ae. for y €Ty, x€Q\Q

nt:

Tr.(0)(x,y) =

We note that for w € H'(Q) it holds that 7y (w|a:) = Ty (w)|axy;-

Lemma 2.8. Under the Assumption 2.1, there exist u,v,w € L*(0,T; H}(Q))NH(0,T; L*(Q)),
a, v € L*((0,T) x Q; HY, (Y1), we L*(0,T) x Q;HL, (Y2)), and r € H (0, T, L*(Q x

per per

I'y)) such that (up to a subsequence) for e — 0

£ (uf) — u, £ () = in L*((0,T) x Q; HY(Y})),
0Ty, (u*) = dhu, O T, (v°) — Ow in L2((0,T) x Q2 x Y3),
¥, (W) = w, Ty, (W) — yw in L?((0,T) x Q; H\(Y)), (12)
v (Vuf) = Vu + Vi in L*((0,T) x Q x Y1),
v (Vv°) = Vo + V0 in L*((0,T) x Q x Yy),
v, (Vw®) = Vw + Vo in L?((0,T) x Q x Y3),
and
5, (1) =, OTE (rf) — O in L*((0,T) x Q x Ty),
T (u) = u in L2((0,T) x Q x T'y), (13)

5, (%) = v, T (wf) = w in L?((0,T) x Q x T'y).

Proof. Applying estimates in Lemmata 2.3, 2.5 and Convergence Theorem [7, 8], see
Theorem 5.3 in Appendix, implies the convergences for u, v*, w® in (12). The strong
convergence of ¢ is achieved by showing that 7 () is a Cauchy sequence in L*((0,T’) x
QxTy), for the proof see [10, 16]. A priori estimate for d;r° and the convergence properties
of T¢,, [7], imply the convergences of 75 (9;r°). To show the convergences (13), we make
use of the trace theorem, [9], and of the strong convergence of Ty, (u®) as € — 0, i.e.

|| F‘i(ua) — UHLQ((O,T)XQXIH) S CH fl(ua) — ’U,HLQ((O’T)XQ;Hl(YI)) —0ase—0. [}
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Theorem 2.9. Under the Assumption 2.1, the sequences of weak solutions of the problem
(1)-(4) converges as € — 0 to a weak solution (u,v,w,r) of a macroscopic model, i.e.
u,v,w € L*(0,T; HY(Q))NH(0,T; L*(Q)), r € HY(0,T; L*(2 x T'1)) and u,v,w,r satisfy
the macroscopic equations

T n a ] 5
/ / ey + Du(t,y) (w +y a—“vng) (Véy + Vydr) + f(u, v)dydydadt
0 Jaxr =1 9%

T
= —/ / n(u, r)prdy,dzdt,
0o Jaxr

T n 0 . -
/ / Owon + Dy(t,y) (Vo + D2 =0V, ) (Vo + V) — f(u,0)ordydedt
0 Jaxn =1 9

:/0 /Q ) (a(y)w — b(y)v)p1dry,dzdt, (14)

! "L ow . .
Outtn + Do) (T + 30 5V 4) (Vo + V) dudd
/0 /Qsz oo ( y>< ;aﬁj Y )( & v P2)dy

-/ ol b))y

T T
/ / Orpdryydrdt = / / n(u,r)dy,dzdt,
0 QXFl 0 QXF1

for ¢1, 05 € L*(0,T; Hy(2)), 1 € L*((0,T) x ; Hy,, (Y1), ¢2 € L*((0,T) x ; Hy,, (Y2))
and v € L*((0,T) x Q x T'y), where w’, w! and wi are solutions of the correspondent unit
cell problems

3
—V,(De(t,y)Vywl) =" 0, D (t,y) in Y, ¢ =u,v, (15)

k=1

3
—D¢(t, y)VwZ V= Z Dlgj(t, Y)vg on I'1 U T, wg is Y -periodic, [ wé(y)dy =0,
k=1 Vi

3
—V,(Du(t,y)Vywl) =Y 9, Di(ty) in Vs, (16)
k=1

3
—Dy(t,y)Vw! - v = Z DFi(t,y)vy, on Ty, wi is Y -periodic, [ wi (y)dy = 0.
k=1 Ya

Proof. Due to considered geometry of 27 and €25 we have

T T
/ / u® pdxdt :/ Ty (u¥) Ty (¢)dydzdt, i =1,2.
o Jas o Joxy, ' '

Applying the unfolding operator to (5)-(8), using Ty, D;(t, %) = Ds(t,y),i € {u,v} and

v, Dw(t,2) = Dy(t,y), considering the limit as ¢ — 0 and the convergences stated in
Theorem 2.8, we obtain the unfolded limit problem. Similarly as for microscopic problem,
using local Lipschitz continuity of 1 and f and boundedness of macroscopic solutions,

which follows directly from the boundedness of microscopic solutions, we can show the
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uniqueness of a solution of the macroscopic model. Thus the whole sequence of microscopic
solutions converge to a solution of the unfolded limit problem. The functions u, v, w are

defined in terms of u, v, w and solutions w?,w?, w? of unit cell problems (15) and (16), see

u? v

[10, 16]. 0

3. CORRECTOR ESTIMATES

First of all, we introduce the definition of local average and averaging operators. After
that, we show some technical estimates needed in the following.

Definition 3.1. [12, 4] 1. For any ¢ € LP(§X5), p € [1,00] and i = 1,2, we define the
local average operator (”mean in the cells”) M5, : Lp(gg) — LP(Q)

M5 (¢ /'TE y)dy = / dy, =€ Q.
WO = en|Y| o )

2. The operator Q5 : LP(Q?Q) — WHe(Q), i = 1,2 is defined as Q,—interpolation of
My, (¢), i.e. Q5 (d)(e€) = M5, (¢)(g€) for £ € Z" and

Qi(d)(z) = > Q)& +ek)Tit .. . forwec(Yi+¢), (el

ke{0,1}n

where for x € (Y; + &) and k = (ky, ..., k,) € {0,1}" points ' are given by

) if k=1,

£

1— o= ik =0.

)

T =

8. The operator Q5 : W'P(Q5) — Wh(Q) is defined by Q5(¢) = Q5(P(¢))|as, where Q5
is gwen in 2. and P : WIP(Q5) — WIP((R")?) is an extension operator, in the case there
exists P, such that |P(¢)|lwrr(wnyy < Clldllwirs)

Note Ty o M5, (¢) = M5.(¢) for ¢ € LP(Q) and M5, (¢)(z) = My, (75 (¢))(x), addi-

tionally >z, @k =
ke{0,1}n

Definition 3.2. [7, 8] 1. For p € [1 + oc] and i = 1,2, the averaging operator Uy, :
LP(Q x Y;) — LP(Q05) is defined as

ﬁ!@(s 2], + ez {&},)dz  for aa.x € Q5
0 for a.a.x € 5\ QF
2. U, LP(Q2 x I'y) — LP(I5) is defined as

Uy, () (x) =

1,ant*

d ey ren{zlyds foraas el

0 for a.a.x € TS\ I%

U, (®)(x) =

i,ant”

For w' € H!_(Y;), due to Vywi( ) =V, T (w(2)) = T (Vo' (£)) and U, (V,ywi(y))

per

Ui (T3 (Vaw'(£))) = eVaw'(£) = Vyw' (£), we have that U, (V,w'(y)) = V,w' (£).

€
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3.1. Basic estimates. In this subsection, we prove some technical estimates, used in the

derivation of corrector estimates.
Proposition 3.3. For ¢; € L*(0,T; H () and ¢ € L*(0,T; H* (%)) we have

|p1 — M3 (01)|l2((0,1)x2) < €C|IV b1l L2((0.1)x02)»

(17)
[¢2 — M5, (02) || 20,1y x05) < €CIV 2|l L2((0.1)x02)-
Proof. This proof is similar to [12]. For ¢y € L*(0,T; H'(Q2)) we can write
T = G1]eeavy () — M5 (¢1)(e€) € L*(0,T; H' (€ +eY)) with e(€ +Y) C Q.
Using Y; C Y and applying Poincaré inequality, we obtain
/ / |1 — M5, (¢1)(€) P ddt = / / b1(ey) "W / b1(e2) dz e"dydt

£+Y 0 &+Y £+Y;

§C€”/ / IV, é1(ey)|*dydt = Ce? / V01 () > dadt.

0 &+Y e(€4Y)

Then, we add all inequalities for ¢ € Z", such that (£ +Y) C Q, and obtain the
first estimate in (17). The second estimate follows from the decomposition of Q¢ into

Ugezne(§ +Y;) and Poincaré’s inequality as in the previous estimate. i

Lemma 3.4. For ¢ € L*(0,T; H*(Q)), ¢o € L*(0,T; H'(Q)) and w € H!, (Y;), we have

per
the following estimates

Vo — M3 (Vo) || 20, x0) < €C||@ 20,7512
[(M5(02,0) — Q3,(02,8)) Vywll L2 0.1y x02) < €C@ 20,7120 [ VWl 22 (%),
1Q%,(92) — M5, (02) || 20,y %) < €CNV D2l 20,1y 05369
1Q5,(#) — 9llr2(0.r)x0) < CIV O r2(0.1)x0):
1Q%,(02) = D2l 20,y x05) < €CIV D2l 120,y 20) (18)
19 — Tt (D)2 (0, xaxry) < eCIV|lL2(0,mx) + CIIVO 20,1 x 05,
IVQ3, (&2)[ 20m)x) < ClIV P2l 120y x02)
105 (w(¥)) — w)llr2vy) < ClIVywll2 vy,
||7;2(Q§q(¢2)) - Q%(%)HL?(Qin) < EC||V¢2||L2((O7T)XQ§)‘

Proof. The first inequality follows directly from the first estimate in (17) applied to V.

To show the second inequality, we use the definition of the operator ()., the equality
Zke{o 1)n z .ZF» =1, and obtain

Q3 (D)(2) = M5, (@) (x) = D (Q%(9)(e€ + k) — M5 (9)(6) 2y ... 2.

ke{0,1}n
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Then, it follows

2
/ Q5. (¢ — M5 ( )(a:)|2’Vyw(E>’dx
e(§+Y5)
<2 S |Q5 (8)(et + k) - /|Vyw )12 dy.
ke{0,1}n

For any ¢ € W' (Int(Y; U (Y; + ¢;))), the following estimate holds
[(Myite; (@) = My (9)] = [My (o + €5) — o(-))]
<I[(o(- +¢;) — () ))-
Thus, by the definition of Q5. (¢)(x) and by a scaling argument this implies
Q5 (0)(e€ + ek) — @5, (0)(e€)| < eClIV Pl L2(c(erviyve(ethivi))- (19)

We sum over £ € Z™ with (£ +Y;) C Qf and obtain the desired estimate. Using (19) we
obtain also that

/Q Q5 (6) — Ms () da

<fC ), ) ||v¢||i2(8(£+Y¢)U€(£+k+Yi))§52C/QE Vo|*da.

e(e+y;)chre  kef{o1}n

In the same way, using the estimates stated in Proposition 3.3, the fourth and fifth

estimates in (18) follows from:

1Q5;(¢2) — dallr2(0,1yx02) < |Q5;(d2) — M5, (d2) || L2((0.1)x0)
+[M5, (02) = D2l 1200,m)x05) < ECIV Pl 20,1y 0635 -
For ¢ € H'(2) applying the trace theorem to a function in L*(T;) yields

[ o= TPz < [ (16 = MO +IM5,(6) — T (0)F )i <

QxT; QxI';

ceIr / Voldo +C [ (IMS,(0) — T (0)F +IV,(M5,(6) — TE(O)) dud
QxY;

< T \/]V¢|2dm+0/\/\/{€ _ f2dz + / IV, 75 (6))Pdyde

QxY;

§520</|V¢|2d9&+/|v¢|2dw).
Q Q3

To obtain an estimate for the gradient of Q5. (¢2), with ¢, € L*(0, T; H*(Q)), we define

T;
K= (ko kit ks k) K= (koo ko, Lk, k) kG = (Bay o ko1, 0, K, -

and calculate

0Q5,(62) 3 Q5. (2) (€ + ki) — Q5 (h2)(e€ + ei%é>£kl e,

ax] __ c 1 b1 e
kI

Now, applying (19) we obtain the estimates for VQ5, (¢2) in L*((0,7) x ).

Y kn)
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For y € ¥i we have Qv (w(y))(y) —w(y) = {%Il}n(@% (W) (k) = w(y))gy* - .. g, where

g w—&, if ky =1, . ., . o

Y = . . The Poincaré’s inequality and the periodicity of w
l—(u—§&), ifk=0

imply the estimate for Q3. (w(y)) — w(y).

To derive the last estimate, we consider

1Tv.(Q¥,(92)) — @3, (02))l 2 (2xvi) < (| (Qy; (02)) — M5, (Qy, (02)) || 2x2)
H M5 (@5, (02)) — Qy; (P2)l22(0xvi) < ClIQY; (92) — M5, (Qy; (92))l| 2202
O M5, (@3, (92)) — Q3 (92)|2() < eClIVQY, (02)ll20) < eClVall 12y

3.2. Periodicity defect. In the derivation of error estimates we use a generalization of

the Theorem 3.4 proved in [12] for functions defined in a perforated domain:

Theorem 3.5. For any ¢ € HY(Q), i = 1,2, there exists ¢ € L2(; HY, (V;)):

p
W@y < CIVElzzn.

Here ¢° = Q5,().
The proofs of Theorem 3.5 go the same lines as in [12, Theorem 3.4], using the estimates
175 (D)l r20xvi) < Cllollizs),  [IVQY,(D)llr2) < ClIVEl 12qe)-

3.3. Error estimates. Under additional regularity assumptions on the solution of the
macroscopic problem, we obtain a set of error estimates. We emphasize here again that
the most important point is that only H'-regularity for the solutions of the microscopic
model and of the cell problems is required.

Theorem 3.6. Suppose (u®,v®,ws,r%) are solutions of the microscopic problem (1)-(4)
and u,v,w € L*(0,T; H*(Q))NH((0,T) xQ)), r € H*(0,T; L*(2 x T'y)) are solutions of
the macroscopic equations (14). Then we have the following corrector estimates:

[ = ullL2 0.1y x0) + IVU® = Vu — Z fol(axju)vywi||2m((o,:r)x9§) < Cez,
j=1

[0° = vl 20,1y x05) + VYT = Vo - ZQifl(8$jv)vyw1];||%2((0,T)><Q§) < Cez,

J=1

n A A
|w® — wl|p2(01)x03) + VW = Vw — Z Q% (00, w) Vi, |22 (0.myx25) < Ce
j=1

1 1
e2||rf _ulél (T(taxay))||L2((0,T)xF§) < Cez.
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4. PROOF OF THEOREM 3.6.

We define distance function p(z) = dist(z, ), domains Qf, = {z € Q, p(z) < £} and

pyin

prm {z € Q5, p(z) < e}, where p°(:) = 1nf{pT, 1}. Definition of p° yields
Vbl = Vbl iy = € (20)

Then, for ® € H*(Q) and w’ € HYY;), i = 1,2, j = u,v,w, we obtain the following

estimates, [12],

||VCI)||L2(Q;m)n + HQ%(VCI))HL?(Q;Z. + ||M6 (VCD)”I} ) = < 052 ||(I)||H2

[ i, +17 G)
€ LQ(Q’f’pym) 3

1
11 = p) Va@ll 2@ < IVa®@l[p20: < C2 [z, (21)

b J
L2, 5)" < Cet|[Vyw ||L2(K)"

V2 (p28s, ®) | 20yr < C(e77 + 1)[|®]| 120
|e02p-05, (0,000 (2]

£

ngaaxiQSYi<axj(I))wj <_>

3

1 .
< (Cez||P w’ ,
ey < IRl v

;
L) S Cel| | 2w’ [ 2vi) -

Now, for ¢y € L*(0,T; H'(Q)) given by
&1(2) = (@) — u(w) — epf( ZQ (s, ) (@) ()

we consider an extension ¢¢ from (0,7) x Qf into (0,7) x € such that

1651 t2(0myx0) < Clldrllr2(omyxas and [V r2omyxay < ClIV1llz2(0m)x0s)-
Due to zero boundary conditions such extension can be defined for whole €2. Notice that
Q5,(9,,u) and Vu are in L*(0,7; H'(Q)), but not in L*(0,T; H}(Q)).

We consider ¢ € L2(0,T; H(Q)) and ¢¢ € L2((0,T) x ,H}..(Y1)), given by Theorem
3.5, as test functions in the macroscopic equation (14) for u:

Oz

/ / (u,v ¢Edydxdt+/ / n(u,r qbedvdxdt =0.
OxYq QXFl

In the first term and in the last two integrals we replace ¢E by M5, (¢1), gbi by TF (¢1),
and u by Ty, (u). As next step, we introduce p° in front of Vu and 9,,u and replace V&S
by V@3, (¢1). Now, using Theorem 3.5, we replace Vi + Vy@f, by Ty, (V¢1), where
¢7 = Q3,(¢1) and obtain

T n a

/ /QXYIGtuqbajLD (y )(Vu—l—za_vw )(VﬁgaﬂLvy@&f)dydaL’dt

T / / T3 (f (u,0)) M5, () dyddt + / / 0, 7)TE (6n)dydadt = R,
0 QXYl 0 QXFl
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where
A :/o /Y 91 = T, () M5, (61) + (5 — M5, (60))

o Du(Vut 3 U9 ,d) (V@5 (60) — 60) + (T3 (Vo) — Vi — V,07))
g=1

n

0 ‘ ~ R ~
= DD (Vu+ Y a—;;ivywz) (Vi + V%) + f(u,0) (5 = M5, (61))

J=1

+(f = (f))Myl(Cbl)]dyd:Bdt—l— / /Q ) )(T5, (¢1) — 67)drydad.

Then we remove p®, replace Vu by M3, (Vu), 0,,u by M5, (0,,u) and, using M5, (¢) =
v, 0 M5, (¢), we apply the inverse unfolding

/OT / (atuM%(aﬁl) + Dg( 5 (Vu) + Zn:/\/l;(axju)vywﬂ< >>V ¢1) dedt
i s
+/OT . f(u, v) M5, (¢1)dxdt + /OT /er n(u, )Tz, (¢1)dydwdt = R + R,

where

[ [a= oo (va jf;a@uvywzxy)) (Vo)
+Du(y) (M5, (V) = Vu+ Z (M54 (00,10) = 00, u) Vi (9) ) T5, (V1) | dydadt.

Introducing p° in front of M3, (0,,u) and replacing M3, (¢1) by ¢1, M5, (Vu) by Vu,
3, (0x,u) by Q5. (0,u) yield

/ / 8tu¢1 +D Vu+2p Q3, (Oz;u)V wﬂ( )>V¢1 + fu,v)py |dzdt
— / / n(u, )Ty, (¢1)dydxdt + R+ R2+ R3, (22)
OxI'

where

T

B = [ [ [0 901 M5, 00)+ (0~ 1002 M 0,09, (2) 9o

—
0 Qf 1

Y DE (vu — M (Vu) + i 7 (Q5 (Ds,1) — MG, (B, 1)) V) ( ))V¢1] dudt.
j=1
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Now, we subtract from the equation for u® the equation (22) and obtain for the test

function ¢; = u® —u — gp° 231 Q5, (0p,u)wl, the equality
j:

/T/ [&g(us —u)(u® —u—ep° i Q5 (0, u)wl) +
0 j=1

Dy (V(u® —u) —p° Z Q5. (0s,u) Vywl) (V(u® —u) —e Z V. (0 Q5 (8xju)wi))

j=1 j=1

+(f(u5, 1)5) — f(u, U)) (uE — U — 5p5 Z Q%,Z (@ju)w{)] dxdt +

T

/ / (n(Teu®, Tor®) — m(u, ) TE, (0 = w — ep” Y Q5 (0w, u)w])dydwdt = Ry,

0 QXFl j:]'

where R, = R, + R2 + RJ.
We consider ¢° = T 7° —r as a test function in the equations for 7F (7°) and r and,
using local Lipschitz continuity of n and boundedness of u®, u, r*, r, obtain

/ / O T, e — r|Pdydadt < C/ (|75 7" — v + |TE uf — ul?)dydadt.
0 QXF1 0 QXF1
Applying Gronwall’s inequality and considering 7 (r5)(z,y) = ro(y) yield

| T (rf) — 7’”%2(er1) <C| ral(ua) - UH%%(O,T)xerl) + |l 51(7“(8)) - 7“0”%2(er1)

< C I8, (" = w)lE2(0.eanry + 1T (1) = ullfzgomynaern )
Then, for the boundary integral using the estimate in Lemma 3.4 we obtain
|| T ). T ) = ) T ()t <
0 QXFl

C(IT, (%) = 7l 2o, xaxrs) + 1T, (u%) = ull 20,0 xxrs) ) €l D1l 12 0,m) <)
< C([lvf = ull2(o.myxas) + eIV — )| 220 x05) + el Vull 20, x0)) X
(910l 2 0.y x05) + €l Vel 2(0.mx0s)) - (23)

Therefore, the ellipticity assumption, the Lipschitz continuity of f and Young inequality,
applied to the estimate for the boundary integral (23), imply

/T/ (at‘ff —ep° Z @3, (8wju)wi|2 + |V — pf Z Q3, (am].u)vngf) dxdt
0 i j=1 j=1

<[ L

+52/ /|Vu|2dxdt+Ru+C’j,
0 Q

0 —ep > Q5 (0w P+ 07 —ep” Y G5, (axjv)wgf)d:rdt
j=1

Jj=1
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where u° = u® — u, v° = v°* — v and

- //Z Q5 (002, u)wl|* + (1 + %) VQS, (O, ) wi | + |Q5, (O, u)wi |

q: J=1

+|Q§/l(3wjv)wi|2 + |Q§/1(axju)vwa| dxdt + C'/ / Z ’le Oz u w]| dxdt

1p7/n j 1
< 0(52”“”%2(0,@}12(9)) + 52”“”%{1((0,T)><Q) + 5||u||%2(0,T;H2(Q))) ||Wu||%{1(yl)n

+Ce? HUH%Q(O,T;Hl(Q)) [ ||%2(y1)n'

Here we used that

ffwwww@mwwwsé/h@w%w%wm_/u%@wwww
QF

95 e
1 Ql PN

The estimates of the error terms in the subsection 4.1 imply

|Ry| = R, + B2+ R3| < 201+ ||ullmomxo) + 1wl 2. m29)

vl 20,7381 (02)) + ||7‘||L2((0,T)x9xr1)) P11 20,717 (22)) -

Then, applying Young’s inequality, we obtain

/ / (O|a° — ep Z Q- (Opu)wl|* + VT — p° Z Q5 (05,0) Vywi|?) dadt

o Jos o =

SC/ / (|a= —ep ZQ (Op,w)wl|? + 0% — ep ZQ (0, w)w]|?) dudt
0 Jos

+C(e+e*)(1+ HUHHl((o,T)xQ) + HUHL2(O,T;H2(Q)))( + kuHHl(yl)n)

+052HU”%2(0,T;H1(Q)<1 + ||wUH%{1(Y1)”> + 52H7”H2Loo((o,T)xQxF1)-

Similarly, estimates for v* — v — ¢ Z Q% (0y,v)w] and w® —w — ¢ Z @3, (0n,w)wl, are
=1

obtained. The only difference is the boundary term. Applying the trace theorem and
estimates in Lemma 3.4, the boundary term can be estimated by

/Q . ((a(y)w — b(y)v) g5 — (a(y)TE, (w) — b(y) T, (v))7}52(¢1)>d7dm
SOAF(W—FNM+M—Iawogwg+m+m@_ (o)

+(w + v)|M3, (¢1) — T, (01)|) dyvde < eC([[v]|mrq) + [[wllm @) D1 0s)-
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Thus, we obtain for v = v — v and W°* = w® — w

/ / (atlfjs — EpEZQEY1 ((9zjv)w{;‘2 + |V — p° 2 :Qifl(axjv>vng|2)d$dt
0 § j=1 =
< C/ / (|ﬂ€ —ep° ZQ%(&%U)W{LP + ’f)e —¢ep° Q%ﬁ (aa;jv)wiP)dl’dt 4
o Jos p E ,

=1
C’// |w® —ep ZQ (O, w)w) |2+62|V71)E—pEZQi/Q(axjw)Vyw{;})\2)dxdt
=1

+C(5 +e?)(1+ ||U||L2(0,T;H2(Q)) + HUH%P((O,T)XQ)) (1+ ||wv||%{1(yl)n)
+Ce*([lullZ: O,T:H () T w7 (0,T;H()) ) + Ch,

/ / Oy —ep ZQ (Op,w)wi|* + |V — p° ZQYQ O, w) V| >dxdt
2 i=j
< C/ / |0° — ep® ZQ (Op,0)w? > + 2|V — p€ZQ§}1(8wjv)Vywﬁ|2>dxdt+
e =
/ / [W° — ep ZQ (O, w)wi|* + €| Vi — p‘EZQ‘EYZ(a%w)Vywi,F)dxdt
e |

+C(e+e)(1+ ||w||L2(0,T;H2(Q)) + Hw”%{l((O,T)xQ)) (1+ ||Wv||§11(yl)n)
+6'52||U||%2(0,T;Hl(ﬂ) + Clu,

where

Coi= & [ 37 (105 00u,00l) P+ (14 E)IV(QulBn, )l + 25, 0w

0 Qs Jj=1

+|QY1(8a:JU)wJ|2+ |QY1(8 U) wj| dwdt—'—/ / |QY1(8$JU)WJ| dxdt

1,p,in

+C€ / / Z |QYQ axjw)w] |2 + |Qy2(axjw)v W]| )d{[dt

2 =1
< 0(52HUHL2(0,T;H2(Q)) + 62HUHHl((o,T)xQ) + 5||UHL2(0,T;H2(Q)))||Wv||§11(y1)n

+€2CHUH%2(O,T;H1(Q))HWUH%Q(YQ” + €2CHwH%Q(O,T;H1(Q))wa”%ﬂ(Yg)"
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and

Cui= 520/ / > (@5 ey, [* + [VQ5, (D)) [* + @5, (D) [* +

0 o J1

|Q5, (0,,w)V ‘ d:vdt+€20//z Q5 (05, v)w ‘ + |05, @ij)vng!z)a@dt
0 qs 771

T

+ / / S |5 (8w [Pt < 20120 zea iy ool By
j=1

+C(5||wHL2(o,T;H2(Q)) + €2||w’|%2(0,T;H2(Q)) + €2le|%{1((0,T)><Q)) ||wwH§{1(Y2)"’
For sufficiently small €, adding the all estimates, removing p° by using the estimates (21),
applying Gronwall’s inequality and considering that u®(0) = ug, v°(0) = vg, v°(0) = vy we
obtain the estimates for u®, v*, w®, stated in the theorem.
To obtain the estimate for 7* —Ug (r), we consider the equations for 77 7¢ and 7 with the

test function 75 r° — r. Using the properties of Uf , the local Lipschitz continuity of 7,
and Gronwall’s inequality, yields

[ie—umpa<e [ mey—tase [ [ 7w -
Ff OxI' QxI'y

t
/ 1T (ro) — rodryde < / / T2 () — M () + [ M, () — uf’drdr
QXFl 0 QXFl
t n
0 1[5 3050,0 9 — 3 500
0 Jos =

+€2C’Z ({Q@l(&tju)wif + 62‘VQ§/1(8mju)wi}2 + {Qifl(@mju)vywif)] dxdr

j=1
<Cl(e+ 52)(”“”%2(0,T;H2(Q)) + ||u||%ll((0,T)><Q) + ||U||2L2(0,T;H2(Q)) + ||U||12ql((o,T)xQ)

+||w||%2(O,T;H2(Q)) + ||w||§{1((O,T)><Q) + ||r||%°°((O,T)><Q><F1))'

4.1. Estimates of the error terms. Now, we proceed to estimating the error terms
R, R2 and R3. Using the definition of p°, the extension properties of ¢¢, Theorem 3.5,
and the estimates (21) we obtain

n P ‘ ~ )
/Q OIS g Ved) (V95 + V)

< ClVull oy, oy 1+ D IVidllzzon) (Vi 2@) + V95 22501

Jj=1

< Ce||ul 2oy (1 + Z IV i l220m)) [V [l 22(05)
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The Theorem 3.5 and the estimates (20) and (21) imply

/ / Vu + Z a, uvyw7> (TY (Véy) — Vs — vyzﬁi)dydxdt
QxY;
< C(e"? + &) ||ull 2o, r,m20) (1 + Z IV ywl || L2(0,m)xv) ) | V1l 120,y x 0 -

We notice M5, (¢5) = M5, (¢1) and using estimates (20) and (21), Lemma 3.4, the fact
that ¢ is an extension of ¢; from Q into Q and ¢; = ¢y a.e in (0,T) x QF, implies

i "\ Ou . R
¢ —_ J € T
/o /QXY1 P D (Vu + ]Z 3xjv u)V(QY, (¢1) ¢1)dydxdt <

IV (p° Do (Vu + Z —V W) 20 mxaxr Q% (81) = &5l r2(0mxey <
]

Ce(e IVull oo ryxcrs, oy + I19%llz2) (14 D IIV@illz20m)) V95 2(0.m)x0)

j=1

S 0(51/2 + 8)”“”[/2(0771;112 1 -+ Z va HL2 Y1) HV¢1HL2 ((0,7)x Q%) -

Applying the estimates in Lemma 3.4, yields

/ / (0 (1 = T3, () M, (60) + a5 — M5, (1)) ) dydadt

0 QXYl
< Ce([18:Vull 2 o/ryxa |01 | 1202y + 100l 20V 1l L2(02)) -

Due to Lipschitz continuity of f, we can estimate

I (00) = T w0 (00) + 0055 — M (00 )y
< eO(IVullz2omyxa) + IVUllz2 o<l 91l 2o.r <)

+eC (1 + [Jull 20,y <) + [Vl 20,1 x2) [ V@1 l| 20,7 x22) -

For the boundary integral we have

/0 / )T (90) = G0t < a0y
(

1
(175, (01) = M5, (@)l 20,y xaxry) + M5, (61) — 69| L2((0,7)x2xy))
< 0(1 + HUHL2((0,T)xQ) + HTHLM((O,T)xerl)) X
(175, (¢1) = M3, (1)l 20,y x 511 (1)) + M5, (D1) — 65 L2 ((0,m)x))

< eC (1 + [Jull 20,1y x0) + Tl Lo (0,11 xx)) IV 1| L2 (0,7 x29) -
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Thus, collecting all estimates from above we obtain the estimate for R.:
IRy < CEY? + o) |lull2omsm @) (1 + Z IVl 200)) V01 22 (0.7 02

+C€(||U||H1((0,T)xﬂ) + HUHLZ’(O,T;HI(Q))) H<Z51||L2(0,T;H1(Q§)~

Using the estimates (21) implies

/T / (1— ) DZij\/l%(ﬁxju)vywi(g)vmdmdt
0 e =

< Z”ME (O, 1) HL2 ((0,7)x

1,p,in

- (T
IV () laaga, o V@1 le2(0m e

< 602 ||U||L2(0,T;H2(Q§))HvywiHLQ(Yl)||v¢1||L2((0,7—)><Q§)‘

=1
Thus, the last estimate and applying the estimates (18) and (21) yields
1Ral < IVl 2omyes,, , o (1 + IViwull 2y 1T (VO 220, xaxm)

+C¢l|ull L2 0,mm2(0) (1 + ||V WallL2(viymxn ) | Ty, (VO1) | 22 (0,7 x2xv2)
< (€2 + €)Cllull 20,120 (1 + IV ywull L2 v ymen )1 D1 |2 (0.7 <2 -

Due to estimates in (21) and in Lemma 3.4 we obtain also

Ry < €C(H(9tu||L2<(o,T)xQ§) + 1l 20,y <05) + [l 20,025 [ Vywul [ L2 (v ynen
+(V2ul| 20,y x05) + ||V2U||L2((0,T)x9§)||Vywu||L2(Y1)an> IVl L2(0,m)x02)-
In the similar way we show the estimates for the error terms in the equations for v and
w:
IR, < Ce: (1 + vl 20,msm200)) + |01 10,1y x ) + || wll 220,711 ()
+HwHL2(O,T;H1(Q))> P2l 20,711 (25))

1
|Ry| < Ce2 (1 + Hw||L2(O,T;H2(Q)) + HwHHl((O,T)xQ) + !lUHL?(o,T;Hl(Q)))H¢3||L2(O,T;H1(Qg))-
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5. APPENDIX

Lemma 5.1. Let Q C R" be a bounded domain with Lipschitz boundary. If z € HY(Q)N
L>(Q), then z € L>®(09).

Proof. Let z € HY ()N L>(Q). Since C=(1) is dense in H*(Q2), we consider a sequence of
smooth functions {f,} C C>(Q), such that f,, — z in H'(Q) and || fu| z=0) < [|2]lz=0)
Applying the trace theorem, see [9], we obtain f, — 2z in L*(9€). Thus, there exists a
subsequence { fn;} C {f.} converging pointwise, i.e., f;(x) — z(x) a.e. x € 02, and, due
t0 [| fri (@)l oo o) < [[2]|Lo2 (@), follows that [[z]| 1 (o) < [|2]|L=@) ae. = € OQ. o

Lemma 5.2. [4, 5] 1. For w € LP(§X), p € [1,00), we have
1T wllzoxyy = Y120l ey < 1Y V2 0]l 20

2. Foru e LP(I%), p € [1,00), we have

wnt) -

175 ullzoxry = V21V VP ull ae ) < eVPIYTP]ul 2y,

8. Ifwe LP(2), p € [1,00) then Tyw — w strongly in LP(2 X Y;) as e — 0.
4. Forw e WhP(Q), 1 < p < 400,
175 wllzo@xry < C(lwllzres) + el Vs
5. Forw € WHP(Q5) holds T¢ (w) € LP(Q, WP(Y;)) and V, T (w) = €T (Vw).
Let v € Lb, (Vi) and v°(x) = v(%), then Ty (v°)(z,y) = v(y).

per

7. For v,w € LP(Q5) and ¢, € LP(I'5) holds
Ty,(vw) = Ty, (v) Ty, (w) and Tg, (¢ ) = Tr, () Tr, (¥).

Theorem 5.3. [7, 8] Let p € (1,00) and i = 1,2.
1. For {¢.} C W'P(QX) satisfies ||pcllwrnisy < C, there exists a subsequence of {¢°}
(still denoted by ¢.), and ¢ € WIP(Q), ¢ € LP(Q; WLE(Y;)), such that

(W, (Y0),

per

)

v. 0 = ¢ strongly in L]

loc

V0. — ¢ weakly in  LP(Q;WR(Y))),

per
(Vo) = Vo + Vo weakly in  LP(Q x ;).

2. For {¢°} € WyP(Q) such that |\¢EHW01,p(QE < C there exists a subsequence of {¢°}

(still denoted by ¢.) and ¢ € WyP(R), ¢ € LP(Q; WLE(Y;)) such that

per
v.0° — ¢ strongly in  LP($; Wt (y;)),
TE(Ve") = Vo +Vydp  weakly in  LP(Q x Yj).
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3. For {¢} C LP(T5) such that e'/P||¢%||prey < C there exists a subsequence of {4}
and 1y € LP(Q x I';) such that
T (%) = weakly in LP(Q x T).
Proposition 5.4. [7, 8] 1. The operator Uy, is formal adjoint and left inverse of Ty, i.e
for 6 € LP(S%)
o(x) a.e for € Qiint?

0 a.e. for € Q\ Qfmt
2. For ¢ € LP(Q x Y;) holds U, ()|l zris) < [V 77[18ll oaxsy-

Uy, (Ty,(¢))(x) =

Theorem 5.5. [12] For any ¢ € H'(Q), there exists ¢. € HY, (Y5 L*(Q)):
|-l m i@y < CUVllLaay,
IT(Va6) = Vo = Vybelliz-r@yn < Cel|Vllap
Theorem 5.6. [13] For any ¢ € H'(Q) there ewists ¢. € H}, (Y3 L*(2)):
Ibellimeriz@y < ClVOlz@pn,
ITe(V20) = Vo = Vyoell i@y < CellVollz@r + CVEIVE ey,
where Q=1 = {x € R" : dist(x, 00) < I\/ne}.

The proofs of Theorems 5.5, 5.6 and 3.5 are based on the following fundamental results:

Theorem 5.7. [12] For any ¢ € H*(Y;, X) and X separable Hilbert space, there exists a
unique ¢ € H),.(Yi, X), i = 1,2, such that ¢ — = (H,,,(Y;, X))* and

(ol vix) S NMlmenxys 6= dllmmx) SC ) Nl 1yi — lyill gy x)-
J i i ( i )
j=1

Theorem 5.8. [12] For any ® € W'P(Y;) and for any k, k € {1,...,n}, there exists
e Wi = {0 € W(Y;), () = ¢(- +¢;),5 € {1,...,k}}, such that

k
H(I> - (I)k:HWLP(Yi) < CZ ||(I>|ej+yij - (I)|Yij lefl/p(yifyi =1,2,
j=1

where the constant C' is independent onn, Yy = {y € Y;, y; =0}, j € {1,...,n}.

(2
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