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Analysis of the dial-a-ride problem

of Hunsaker and Savelsbergh

Murat Firat∗ Gerhard J. Woeginger†

Abstract

Hunsaker and Savelsbergh [Operations Research Letters 30, 2002] discussed feasi-
bility testing for a dial-a-ride problem under maximum wait time and maximum ride
time constraints. We show that this feasibility test can be expressed as a shortest
path problem in vertex-weighted interval graphs, which leads to a simple linear time
algorithm.

Keywords: Dial-a-ride; feasibility check; shortest path; difference constraint system.

1 Introduction

Dial-a-ride problems concern the dispatching of a vehicle to satisfy requests where an item
(or a person) has to be picked up from a specific location and has to be delivered to some
other specific location. Dial-a-ride problems arise in many practical application areas,
as for instance shared taxi services, courier services, and transportation of elderly and
disabled persons.

Hunsaker & Savelsbergh [4] analyzed the following feasibility question for a dial-a-ride
problem arising in a taxi company: An instance specifies a sequence of 2n+ 1 events that
have to be served (one after the other and in the given order) by a single vehicle. The
first event is the dispatch of the vehicle from a central facility. The remaining 2n events
are grouped into a set P of pairs (i, j) with i < j. In every pair (i, j) the earlier event i is
the pickup and the later event j is the delivery of some fixed item (we stress that the two
events in such a pair are not necessarily consecutive in the event sequence). The problem
consists in deciding whether there exist 2n+ 1 time points for these 2n+ 1 events subject
to the following three families of constraints.

Time windows: The ith event (1 ≤ i ≤ 2n + 1) must occur during a pre-specified time
window between time points αi and βi with αi ≤ βi.
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Riding times: The riding time from the ith to the (i + 1)th event (1 ≤ i ≤ 2n) is γi,i+1.
For every pickup and delivery pair (i, j) ∈ P, the time from pickup to delivery can
be at most δi,j > 0 time units.

Waiting times: At the ith pickup or delivery location (2 ≤ i ≤ 2n + 1), the vehicle can
wait for at most ωi times units before departing.

We note that there are three points in which our problem description deviates from
the one by Hunsaker & Savelsbergh [4]. First, our riding time bounds δi,j can be arbitrary
numbers, whereas the riding time bounds in [4] are proportional to the distances between
pickup location and delivery location. In this respect, our model is slightly more general
and contains the model in [4] as a special case. Secondly, our waiting time bounds ωi

depend on the event, whereas the waiting time bounds in [4] all are identical. Again this
is a slight extension of the model in [4], which also is mentioned in the discussion section
of [4]. Thirdly, the problem in [4] also incorporates item sizes and a capacity bound for the
vehicle. These capacity constraints are independent of the timing and riding constraints,
and they can be checked separately in O(n) overall time. This independent subproblem
has been discussed and settled in [4], and there is no reason for re-discussing it here.

Hunsaker & Savelsbergh [4] design a sophisticated linear time algorithm that tests
for the existence of a schedule that satisfies the three constraint families listed above.
Tang, Kong, Lau & Ip [5] identify a crucial gap in the algorithm of [4], and they also
provide a concrete counter-example where the algorithm declares a feasible instance to
be infeasible. As a partial repair [5] provides another algorithm for the problem with
a weaker quadratic running time O(n2). We note that such a quadratic running time
is too slow for practical applications: The feasibility test shows up as a subproblem in
improvement-based algorithms, and has to be performed many times.

Contribution of this note. We formulate the dial-a-ride feasibility test of [4] as a sys-
tem of linear inequalities (Sections 3 and 4), which by standard methods can be rewritten
into a system of difference constraints (Section 5). By carefully analyzing the structure
of these difference constraints (Section 6), we then transform the problem into a shortest
path problem in a vertex-weighted interval graph. All in all, this yields the desired linear
time O(n) algorithm for the feasibility test.

2 Preliminaries

Suppose that αi+1 < αi for some i with 1 ≤ i ≤ 2n. Since the vehicle cannot serve the ith
event before time αi, it cannot arrive at the (i + 1)th location before time αi. Hence we
may update the data as αi+1 := αi. All updates (for all values of i) can be performed by
a single O(n) time pass over the locations in increasing order of i. A symmetric argument
shows that whenever βi+1 < βi holds for some i with 1 ≤ i ≤ 2n, then we may update
βi := βi+1. Furthermore, all such updates can be done during a single O(n) time pass
over the locations in decreasing order of i.
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Therefore we assume throughout that the left and right endpoints of the time intervals
form two non-decreasing sequences α1 ≤ α2 ≤ · · · ≤ α2n+1 and β1 ≤ β2 ≤ · · · ≤ β2n+1.

3 Linear equations and inequalities

We formulate the dial-a-ride problem as a system of linear equations and inequalities. The
ith event (1 ≤ i ≤ 2n+1) is described by three real variables: The arrival time Ai and the
departure time Di of the vehicle at the location of the ith event, and the time point Ei

at which the actual pickup/delivery occurs. For the first event, we identify the variables
E1 and D1 so that they coincide with the dispatch time of the vehicle from the central
facility.

A1 = α1 and E1 = D1 (1)

Clearly the ith event must fit between the arrival and the departure time of the vehicle.

Ai ≤ Ei ≤ Di for i = 2, . . . , 2n+ 1. (2)

Now let us express the constraints of the problem. The ith event must occur during its
time window [αi, βi].

αi ≤ Ei ≤ βi for i = 1, . . . , 2n+ 1. (3)

The riding time γi,i+1 from the ith to the (i+ 1)th event yields

Ai+1 = Di + γi,i+1 for i = 1, . . . , 2n. (4)

For every pickup and delivery pair (i, j) ∈ P, the time from pickup to delivery is con-
strained by

Ej ≤ Ei + δi,j for all pairs (i, j) ∈ P. (5)

Finally, the waiting time constraints yield

Di ≤ Ai + ωi for i = 2, . . . , 2n+ 1. (6)

The dial-a-ride instance has a feasible solution, if and only if the linear system (1)–(6)
with O(n) constraints has a feasible solution over the real numbers.

4 More linear inequalities

Our next step is to rewrite the system (1)–(6) into an equivalent but simpler system
centered around a new set of variables: For i = 1, . . . , 2n + 1 we introduce the non-
negative variable xi to measure the total waiting time between time point α1 and time
point Di (that is, the total time that the vehicle did not spent on driving before departing
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from the ith location). Furthermore, for 1 ≤ i ≤ j ≤ 2n+ 1 we introduce the constant Γi

to denote the overall riding time to move through the locations 1, 2, . . . , i.

Γi =
i−1∑
k=1

γk,k+1.

Then the arrival times A2, . . . , A2n+1 and the departure times D1, . . . , D2n+1 can be rewrit-
ten as

Ai = xi−1 + Γi and Di = xi + Γi. (7)

Each of the events E2, . . . , E2n+1 is either a pickup or a delivery that is constrained by
(2), (3), and (5). Hence it must occur between the lower bound max{Ai, αi} and the upper
bound min{Di, βi}. The resulting interval is non-empty, if and only if Ai ≤ Di and Ai ≤ βi
and αi ≤ Di hold. Thus Fourier-Motzkin elimination of Ei yields for i = 2, . . . , 2n+ 1 the
constraints

xi−1 ≤ xi and xi−1 ≤ βi − Γi and αi − Γi ≤ xi. (8)

If the ith event is a pickup, then we may delay it as much as possible by setting Ei :=
min{Di, βi}. If the jth event is a delivery, then we may schedule it as early as possible
and set Ej := max{Aj , αj}. Then (5) means for every pickup and delivery pair (i, j) ∈ P
the four conditions that Aj ≤ Di + δi,j , that Aj ≤ βi + δi,j , that αj ≤ Di + δi,j , and that
αj ≤ βi + δi,j . The last condition does not depend on any variable (and if it is violated,
then the system is trivially infeasible). The other three conditions yield the following
constraints.

xj−1 ≤ xi + δi,j + Γi − Γj for all (i, j) ∈ P (9)

xj−1 ≤ βi + δi,j − Γj for all (i, j) ∈ P (10)

αj − δi,j − Γi ≤ xi for all (i, j) ∈ P (11)

The remaining constraints (1), (4), (6) are handled as follows. Constraints (1) and (3)
yield

0 ≤ x1 ≤ β1 − α1. (12)

Constraint (4) is satisfied because of (7), and becomes vacuous. Finally the waiting time
constraints (6) translate into

xi ≤ xi−1 + ωi for i = 2, . . . , 2n+ 1. (13)

The dial-a-ride instance has a feasible solution, if and only if the linear system (8)–(13)
with O(n) constraints has a feasible solution over the real numbers.
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5 Difference constraint systems

Every inequality in (8)–(13) is either an upper bound constraint xi ≤ Ui, or a lower bound
constraint Li ≤ xi, or a difference constraint xj−xi ≤ Di,j . By applying a standard trick,
we will now transform all upper and lower bound constraints into difference constraints.

For this purpose, we introduce two new variables x0 and x2n+2. Variable x0 represents
the value 0, and hence is a lower bound on all other variables. Variable x2n+2 represents
the value K := β2n+1−α1, and hence is an upper bound for all other variables. We create
the two new constraints

x2n+2 − x0 ≤ K and x0 − x2n+2 ≤ −K, (14)

which together enforce x2n+2−x0 = K. Every upper bound constraint xi ≤ Ui in (8)–(13)
is replaced by a corresponding constraint

xi − x0 ≤ Ui. (15)

Every lower bound constraint Li ≤ xi in (8)–(13) is replaced by a corresponding constraint

x2n+2 − xi ≤ K − Li. (16)

We will refer to (14), to the new difference constraints (15) and (16), and to the old
difference constraints in (8), (9), (13) short as the difference constraint system DCS.

Lemma 1 The following four statements are pairwise equivalent.

(i) The original dial-a-ride instance has a feasible solution.

(ii) The system (8)–(13) has a feasible solution over the real numbers.

(iii) DCS has a feasible solution with x0 = 0 and x2n+2 = K.

(iv) DCS has a feasible solution.

There is a close connection between difference constraint systems and negative-weight
cycles in directed graphs; see for instance Section 24.4 of Cormen, Leiserson, Rivest &
Stein [2]. We create for every variable xi (0 ≤ i ≤ 2n + 2) a corresponding vertex i.
We create for every difference constraint xj − xi ≤ Di,j an arc from vertex i to vertex j
with weight Di,j . It is well-known and easy to see (see for instance Theorem 24.9 in [2])
that the underlying difference constraint system has a feasible solution, if and only if the
corresponding directed graph G does not contain any negative-weight cycles.

In our case, the directed graph G has O(n) vertices and O(n) arcs. Hence a straight-
forward application of the Bellman-Ford algorithm or of the Goldberg-Radzik algorithm
would yield an O(n2) time feasibility test.
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6 A linear time feasibility test

To get a linear time algorithm, we look a little bit deeper into the structure of DCS and
the corresponding directed graph G. A difference constraint xj − xi ≤ Di,j is a forward
constraint (and the corresponding arc i → j is a forward arc), if i < j holds. Otherwise
we are dealing with a backward constraint (and a corresponding backward arc). Now let
us go through all constraints in DCS.

• The difference constraints in (8) are of the form xi−1 − xi ≤ 0. They are backward
constraints, and their arc weights are always zero.

• The constraints in (9) are forward constraints. If δi,j < Γj − Γi then the system is
infeasible. Hence we may assume that all corresponding arc weights are non-negative.

• The constraints (13) are forward constraints, and the corresponding arc weights ωi

are non-negative.

• In (14) we have one forward constraint with positive arc weight, and one backward
constraint with negative arc weight.

• The difference constraints in (15) arise from upper bounds, and are forward con-
straints. We may assume that all corresponding arc weights are non-negative (since
otherwise the system would be infeasible).

• The difference constraints in (16) arise from lower bounds, and are forward con-
straints. Again, we assume that all corresponding arc weights are non-negative (as
otherwise the system would be infeasible).

Summarizing, all forward arcs have non-negative weights, and with a single exception all
backward arcs have weight zero and are of the form i→ i− 1. The only arc with negative
weight is the backward arc from vertex 2n + 2 to vertex 0 in (14). Hence every cycle of
negative weight must consist of this arc plus some directed path from vertex 0 to vertex
2n + 2. Recall that the DCS is infeasible, if and only if graph G contains a negative-
weight cycle, which is true if and only if the shortest path from vertex 0 to vertex 2n+ 2
along arcs with non-negative weights has length strictly smaller than K. This observation
in combination with fast shortest path algorithms in directed graphs [3] yields a time
complexity of O(n log n).

Our next goal is to establish a connection to interval graphs, which will yield a linear
time complexity. With every forward arc i→ j we associate the closed interval [i, j].

Lemma 2 Among all shortest paths from vertex 0 to vertex 2n + 2 (that only use arcs
with non-negative weights) let P ∗ be a path with the smallest number of forward arcs. For
k ≥ 1, let ik → jk denote the kth forward arc traversed by P ∗. Then for any pair of
consecutive forward arcs ik → jk and ik+1 → jk+1, the two associated intervals [ik, jk] and
[ik+1, jk+1] have non-empty intersection.

Proof. Since P ∗ moves from vertex jk to vertex ik+1 along backward arcs, we get ik+1 ≤ jk.
If the two associated intervals do not intersect, we must have ik+1 < jk+1 < ik < jk.
But then P ∗ could simply skip the forward arc ik → jk, and move from ik to ik+1 along
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backwards arcs at zero cost. This would yield another shortest path with a smaller number
of traversed forward arcs. �

Lemma 3 Consider a sequence of forward arcs ik → jk (k = 1, . . . , p) with overall weight
W , such that the first arc starts in i1 = 0 and the last arc ends in jp = 2n+ 2, and such
that for any two consecutive arcs in the sequence the associated intervals have non-empty
intersection. Then the directed graph contains a path from vertex 0 to vertex 2n + 2 of
weight W .

Proof. As intervals [ik, jk] and [ik+1, jk+1] intersect, we get jk ≥ ik+1. Hence we can move
from vertex jk to vertex ik+1 by a sequence of backward arcs. �

Finally we construct a vertex-weighted interval graph G∗. For every forward arc with
weight w, the interval graph G∗ contains the associated interval with weight w. Fur-
thermore G∗ contains the degenerate intervals [0, 0] and [2n+ 2, 2n+ 2] both of weight 0.
Lemmas 2 and 3 imply that the length of the shortest path from 0 to 2n+2 in the directed
graph G (measured in arc weights) equals the length of the shortest path in the interval
graph G∗ from [0, 0] to [2n + 2, 2n + 2] (measured in interval/vertex weights). Atallah,
Chen & Lee [1] show that the length of the shortest path in a vertex-weighted interval
graph can be computed in linear time:

Proposition 4 (Atallah, Chen & Lee [1])
Given a set of intervals with weights, an ordering of these intervals according to their
left endpoints, and an ordering of these intervals according to their right endpoints, the
single-source shortest path problem can be solved in linear time. �

The single-source shortest path problem consists in computing the shortest paths from a
given source-interval to all other intervals, where the length of a path is the sum of all
interval weights along the path.

Since the endpoints of all intervals are intervals in the range 0 to 2n + 2, it is easy
to sort these intervals according to their left or right endpoints in linear time O(n); this
can for instance be done by counting sort or by some variant of bucket sort (see Section
8 of Cormen, Leiserson, Rivest & Stein [2]). Altogether this yields the main result of our
paper.

Theorem 5 The feasibility test for the dial-a-ride problem of Hunsaker and Savelsbergh
under time window constraints, riding time constraints, and waiting time constraints can
be performed in O(n) time. �

7 Final remarks

Up to this point, we only discussed how to decide whether a given instance is feasible. But
if an instance is feasible, then we can also explicitly construct a corresponding schedule
in O(n) time: We extend the interval graph G∗ by adding the 2n+ 1 degenerate intervals
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[i, i] with 1 ≤ i ≤ 2n+1 to it, where interval [i, i] has weight 0 and corresponds to variable
xi in the difference constraint system DCS.

Then we use Proposition 4 to compute the shortest path lengths yi from the source
interval [0, 0] to all intervals [i, i] in linear time. It is easy to see that setting xi := yi yields
a feasible solution for the difference constraint system. Finally, by some straightforward
backwards calculations we can determine from this the corresponding feasible solutions
for the inequality systems in Sections 3 and 4.
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