
 

On a class of reflected AR(1) processes

Citation for published version (APA):
Boxma, O. J., Mandjes, M. R. H., & Reed, J. (2015). On a class of reflected AR(1) processes. (Report
Eurandom; Vol. 2015012). Eurandom.

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Oct. 2020

https://research.tue.nl/en/publications/on-a-class-of-reflected-ar1-processes(59025da9-5f4d-4443-8e45-15d30258ff6d).html


EURANDOM PREPRINT SERIES

2015-012

June 30, 2015

On a class of reflected AR(1) processes

O. Boxma, M. Mandjes, Josh Reed
ISSN 1389-2355

1



On a class of reflected AR(1) processes

Onno Boxma◦ , Michel Mandjes•,? , Josh Reed†

June 30, 2015

Abstract

In this paper, we study a reflected AR(1) process, i.e., a process (Zn)n obeying the recur-
sion Zn+1 = max{aZn + Xn, 0}, with (Xn)n a sequence of i.i.d. random variables. We
find explicit results for the distribution of Zn (in terms of transforms) in case Xn can be
written as Yn − Bn, with (Bn)n being a sequence of independent random variables which
are all exp(λ) distributed, and (Yn)n i.i.d.; when |a| < 1 we can also perform the corre-
sponding stationary analysis. Extensions are possible to the case that (Bn)n are of phase-
type. Under a heavy-traffic scaling, it is shown that the process converges to a reflected
Ornstein-Uhlenbeck process; the corresponding steady-state distribution converges to the
distribution of a Normal random variable conditioned on being positive.
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1 Introduction

The analysis of stochastic recursions forms an important area of study within applied proba-
bility. In particular, due to the fact that their underlying recursions are of an extremely simple
form, together with their wide applicability in fields such as economics, engineering, and bi-
ology [6, 11], models of the autoregressive type have been studied extensively in the literature,
with a special focus on the simple subclass of first order autoregressive models or, more simply,
AR(1) models. In such models, the update rule

Zn+1 = aZn +Xn, n = 0, 1, . . . ,

is considered, for a sequence of i.i.d. generally distributed random variables (Xn)n=0,1,... and
a scalar a ∈ R, with Z0 = z being given.

In many practical situations, however, the quantities Zn can attain non-negative values only,
thus providing motivation for studying the alternative recursion

Zn+1 = max{aZn +Xn, 0}, n = 0, 1, . . . . (1)

We refer to (1) as a reflected AR(1) process and the main objective of this paper is to identify the
distribution of Zn in (1) and (assuming |a| < 1) of its stationary counterpart Z∞. To the best of
our knowledge, this paper is the first to successfully study these quantities. We also note that
the specific case of a = 1 corresponds to the well-studied sequence of customer waiting times
in a GI/G/1 queue [1, 8], while the case of a = −1 was investigated extensively by Vlasiou [14]
in the context of carousel models. Related literature on iterated random functions includes e.g.
[5, 9, 10, 16].

In this paper, we specialize the setup above to the case in which Xn may be written as Yn −
Bn, with (Bn)n being a sequence of independent random variables which are all exp(λ) dis-
tributed, and (Yn)n i.i.d. (and in addition independent of (Bn)n) with distribution function
FY (·) and Laplace-Stieltjes transform (LST) ϕY (·). Our contributions are the following. First, in
Section 2 we determine the distribution of Zn for each n = 0, 1, . . . in terms of a ‘double trans-
form’ (corresponding to the Laplace-Stieltjes transform of Zn at a geometrically distributed
time epoch). Second, in Section 3.1 we show that under a particular scaling of the model pa-
rameters, the reflected AR(1) process converges to a reflected Ornstein-Uhlenbeck process; which
has been studied in considerable detail [12, 15]. Third, in Section 3.2 we prove that under the
same scaling, Z∞ converges to a random variable having a truncated Normal distribution (i.e.,
a Normal distribution conditioned on being non-negative). This requires a separate argument
from the process level convergence as the scaling limit and the steady-state limit do not nec-
essarily commute. Finally, in Section 4 we complete the paper by highlighting a connection
between the distribution at each time epoch of the reflected AR(1) process (Zn)n and the first
passage time distribution of a corresponding unreflected AR(1) process.
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2 Transform of transient and stationary distribution

The main goal of this section concerns the identification of the distribution of Zn and its sta-
tionary counterpart Z∞, in terms of transforms. We do this primarily relying on Wiener-Hopf
theory, providing us with a relation between the transform evaluated in s and in as, which
can then be iterated to yield an expression for the transform under consideration in terms of
infinite sums and products. Various ramifications are included as well, covering e.g. the case
that the (Bn)n=0,1,... are from more general classes of distributions.

2.1 Transient distribution

Starting point of our analysis is an expression involving the transforms

Zz(r, s) :=

∞∑
n=0

rnE[e−sZn |Z0 = z], Uz(r, s) :=

∞∑
n=0

rnE[e−smin{aZn+Xn,0}|Z0 = z].

Observe that, with x− := min{0, x} and x+ := max{0, x}, we have 1 + ex = ex
+

+ ex
−

, and
hence, for n ∈ N, with Wn := −min{aZn +Xn, 0},

e−sZn+1 = e−s(aZn+Xn) + 1− esWn .

Taking expectations and realizing that Zn and Xn are independent, this leads us to

E[e−sZn+1 |Z0 = z] = E[e−sX ]E[e−saZn |Z0 = z] + 1− E[esWn |Z0 = z],

which trivially leads to the identity

Zz(r, s)− rϕY (s)
λ

λ− s
Zz(r, as) = e−sz +

r

1− r
− rUz(r, s), Re s = 0. (2)

Multiplying both sides of (2) by λ− s, one obtains

(λ− s)
(
Zz(r, s)− e−sz

)
− rλϕY (s)Zz(r, as) = (λ− s)

(
r

1− r
− r Uz(r, s)

)
, Re s = 0. (3)

The primary objective now is to determine bothZz(r, s) andUz(r, s). We do this by formulating
and solving a Wiener-Hopf boundary value problem, cf. Cohen [7].

To this end we first make the following observations:

◦ The left hand side of (3) is analytic in Re s > 0, and continuous in Re s ≥ 0.

◦ The right hand side of (3) is analytic in Re s < 0, and continuous in Re s ≤ 0.

◦ Zz(r, s) is for Re s ≥ 0 bounded by
∑∞

n=0 r
n = (1 − r)−1, and hence the left hand side

of (3) behaves at most as a linear function in s for large s, Re s > 0.

◦ Uz(r, s) is for Re s ≤ 0 bounded by
∑∞

n=0 r
n = (1 − r)−1, and hence the right hand side

of (3) behaves at most as a linear function in s for large s, Re s < 0.
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Liouville’s theorem [13] now implies that both sides of (3), in their respective half-planes, are
equal to the same linear function in s, i.e.,

(λ− s)
(
Zz(r, s)− e−sz

)
− rλϕY (s)Zz(r, as) = C0,z(r) + sC1,z(r), Re s ≥ 0, (4)

and

(λ− s)
(

r

1− r
− rUz(r, s)

)
= C0,z(r) + sC1,z(r), Re s ≤ 0, (5)

with C0,z(r) and C1,z(r) two functions of r which still have to be determined.
Taking s = 0 in either (4) or (5) immediately yields that C0,z(r) = 0. Determining C1,z(r)

is considerably more complicated. Before we determine C1,z(r), we first further explore its
relation to the distribution of the Zn. In the first place, one sees from the definition of Zz(r, s)
that

Zz(r, s)− e−sz →
∞∑
n=1

rnP(Zn = 0|Z0 = z), s→∞.

Combined with (4), this implies that

C1,z(r) = −
∞∑
n=1

rnP(Zn = 0|Z0 = z). (6)

In the second place, one sees from the definition of Uz(r, s) that

Uz(r, s)→
∞∑
n=0

rnP(min{aZn +Xn, 0} = 0|Z0 = z), s→ −∞.

Notice that P(min{aZn + Xn, 0} = 0|Z0 = z) = 1 − P(Zn+1 = 0|Z0 = z). Hence, upon
combining this with (5) we obtain that, in agreement with (6),

C1,z(r) = − r

1− r
+ r

∞∑
n=0

rn(1− P(Zn+1 = 0|Z0 = z)) = −
∞∑
n=1

rnP(Zn = 0|Z0 = z). (7)

Thirdly, by substituting s = λ in (4), we obtain

C1,z(r) = −rϕY (λ)Zz(r, aλ). (8)

In the sequel we use the identity (8), in combination with another relation, to determineC1,z(r);
at this moment we only confirm that (8) is in agreement with (6), by showing that the coeffi-
cients of rn in both expressions agree for each n. To do this, observe that, for n = 1, 2, . . . ,

P(Zn = 0|Z0 = z) = P(aZn−1 +Xn−1 < 0|Z0 = z) = P(aZn−1 + Yn−1 < Bn−1|Z0 = z)

= ϕY (λ)E[e−aλZn−1 |Z0 = z], (9)

where the last equality is a consequence of the fact that Bn−1 is exponential and hence memo-
ryless.
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Remark 2.1 By differentiating (4) with respect to s and subsequently taking s = 0, one may
derive yet another expression for C1,z(r):

C1,z(r) =
r

1− r
(λEY − 1) + (rλa− λ)

∞∑
n=0

rnE[Zn|Z0 = z]. (10)

The above indicates that knowledge of C1,z(r) immediately gives specific information about
the distribution of the Zn. We shall next determine C1,z(r), and hence Zz(r, s) and Uz(r, s). To
this end, we decompose (4) as

Zz(r, s) = K(r, s)Zz(r, as) + Lz(r, s), Re s ≥ 0,

introducing the two functions

K(r, s) := r
λ

λ− s
ϕY (s), Lz(r, s) :=

sC1,z(r)

λ− s
+ e−sz. (11)

Iteration of this equation yields

Zz(r, s) = Lz(r, s) +K(r, s)[Lz(r, as) +K(r, as)Zz(r, a
2s)]

= Lz(r, s) +K(r, s)Lz(r, as) +K(r, s)K(r, as)Zz(r, a
2s)

= . . .

=

∞∑
n=0

Lz(r, a
ns)

n−1∏
j=0

K(r, ajs), (12)

following the convention that an empty product is defined to be one. Notice that, for fixed r

with |r| < 1, the d’Alembert test (or: ratio test) shows that the infinite series converges, as the
ratio of two successive terms tends to r.
Inserting the definitions given in (11), we thus obtain from (12)

Zz(r, s) =

∞∑
n=0

(
ansC1,z(r)

λ− ans
+ e−a

nsz

)
rn

n−1∏
j=0

λ

λ− ajs
ϕY (ajs). (13)

Since we now focus on determining C1,z(r), we rewrite (13) as follows:

Zz(r, s) =

∞∑
n=0

e−a
nszrn

n−1∏
j=0

λϕY (ajs)

λ− ajs
+ C1,z(r)

∞∑
n=0

ans

λ− ans
rn

n−1∏
j=0

λϕY (ajs)

λ− ajs
. (14)

Plugging in s = aλ leads to

Zz(r, aλ) =

∞∑
n=0

e−a
n+1λzrn

n−1∏
j=0

ϕY (aj+1λ)

1− aj+1
+ C1,z(r)

∞∑
n=0

an+1

1− an+1
rn

n−1∏
j=0

ϕY (aj+1λ)

1− aj+1
. (15)

Combining this relation with (8) facilitates the identification of C1,z(r). Introducing

g(a, n) :=
n−1∏
j=0

ϕY (aj+1λ)

1− aj+1
,
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we find

C1,z(r)

(
1 + ϕY (λ)

∞∑
n=0

(ar)n+1

1− an+1
g(a, n)

)
= −ϕY (λ)

∞∑
n=0

e−a
n+1λzrn+1g(a, n), (16)

and hence

C1,z(r) = −
ϕY (λ)

∞∑
n=0

e−a
n+1λzrn+1g(a, n)

1 + ϕY (λ)

∞∑
n=0

(ar)n+1

1− an+1
g(a, n)

. (17)

Substitution in (14) finally gives the following result.

Theorem 2.2 With C1,z(r) given by (17),

Zz(r, s) =
∞∑
n=0

(
e−a

nszrn + C1,z(r)
ans

λ− ans
rn
) n−1∏
j=0

λ

λ− ajs
ϕY (ajs). (18)

Remark 2.3 In the special case a = 0 one obtains from (17) that

C1,z(r) = − r

1− r
ϕY (λ).

This is seen to be in agreement with (7) since, for a = 0 and n = 1, 2, . . . ,

P(Zn = 0|Z0 = z) = P(Yn−1 < Bn−1) = ϕY (λ).

Remark 2.4 In the classical case M/G/1 case, a = 1 that is, the identity (4) reduces to

[λ− s− rλϕY (s)]Zz(r, s)− (λ− s)e−sz = sC1,z(r). (19)

C1,z(r) now is obtained by observing that λ − s − rλϕY (s) has a unique zero s = s(r) in the
right half plane, which should also be a zero of (λ− s)e−sz − sC1,z(r).

Remark 2.5 It follows from (14), by taking the coefficient of rn, that, for n = 0, 1, . . . :

E[e−sZn |Z0 = z] = e−a
nsz

n−1∏
j=0

λϕY (ajs)

λ− ajs
−

n−1∑
m=0

P(Zn−m = 0|Z0 = z)
ams

λ− ams

m−1∏
j=0

λϕY (ajs)

λ− ajs
.

(20)

Remark 2.6 In (18), it looks as if Zz(r, s) has singularities in s = λ/aj , j = 0, 1, . . ., but it can
be seen that these are removable singularities. Let us show this for s = λ. First of all, we had
already observed in (4) that substitution of s = λ gives (8), and the correctness of (8) was also
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verified in a direct probabilistic manner. Secondly, we can rewrite (13) as follows, to isolate the
singularity for s = λ:

Zz(r, s) =

(
sC1,z(r)

λ− s
+ e−sz

)
+
∞∑
n=1

(
ansC1(r)

λ− ans
+ e−a

nsz

)
rn
(

λ

λ− s
ϕY (s)

) n−1∏
j=1

λϕY (ajs)

λ− ajs

= e−sz +
1

λ− s

sC1,z(r) + λϕY (s)
∞∑
n=1

(
ansC1(r)

λ− ans
+ e−a

nsz

)
rn

n−1∏
j=1

λϕY (ajs)

λ− ajs


= e−sz +

1

λ− s
[sC1,z(r) + rλϕY (s)Zz(r, as)] . (21)

The term between square brackets in the last line indeed becomes zero for s = λ (cf. (8)),
confirming that s = λ is not a pole of Zz(r, s). Hence the same holds for the expression for
Zz(r, s) in (18). One may subsequently use (4) to show that Zz(r, s) has no singularity in s =

λ/a, and hence also not in s = λ/a2, etc.

We now briefly consider an extension in which Xn = Yn − Bn, with B1, B2, . . . still i.i.d. but
not necessarily exponentially distributed; we now allow the Bi to be a sum of k independent,
exponentially distributed random variables, with rates λ1, . . . , λk (this is the so-called hypo-
exponential distribution). As is readily verified, (3) now changes into

k∏
i=1

(λi − s)Zz(r, s)− r
k∏
i=1

λiϕY (s)Zz(r, as) =

k∏
i=1

(λi − s)
(

1

1− r
− r U(r, s)

)
, Re s = 0. (22)

Liouville’s theorem now yields (cf. (4)):

k∏
i=1

(λi − s)Zz(r, s)− r
k∏
i=1

λiϕY (s)Zz(r, as) =

k∑
i=0

siCi(r), Re s ≥ 0. (23)

Substitution of s = 0 readily gives C0(r) =
∏k
i=1 λi. Formula (12) still holds, but with an

obvious adaptation of the functions K(r, s) and Lz(r, s) as they were defined in (11). The
remaining k unknown functions C1(r), . . . , Ck(r) are obtained by performing the following
three steps:

◦ Substitute s = aλi for i = 1, . . . , k into the new version of (12), thus linearly expressing
Zz(r, aλi) into C1(r), . . . , Ck(r) for i = 1, . . . , k.

◦ Substitute s = λi for i = 1, . . . , k into (23), thus linearly expressing Zz(r, aλi) into
C1(r), . . . , Ck(r) in another way.

◦ Finally eliminate all Zz(r, aλi) from the former k equations using the latter k equations,
and then solve the resulting set of k linear equations in C1(r), . . . , Ck(r).

If some of the λi coincide, the usual adaptation should be made: one should also differentiate
(23) with respect to s and substitute s = λi (more precisely: if the multiplicity of λi is d, one
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has to differentiate (23) d − 1 times, substitute s = λi in each of them, and solve the resulting
equations).
If the distribution of B1, B2, . . . is hyperexponential (i.e., with probability pi sampled from an
exponential distribution with rate λi, where the pi sum to 1), then one can set up a procedure
very similar to the one we developed for the hypo-exponential distribution.

2.2 Stationary distribution

Our next goal is to identify the Laplace transform of the steady-state counterpart Z∞. There
are at least two ways of obtaining this.

◦ Consider the relation Z∞
d
= max{aZ∞ +X, 0)}, leading to

E[e−sZ∞ ]− ϕY (s)
λ

λ− s
E[e−asZ∞ ] = 1− E[e−smin(aZ∞+X,0)]. (24)

Again use Wiener-Hopf factorization and Liouville’s theorem, to arrive at an equation
in which E[e−sZ∞ ] is expressed into E[e−asZ∞ ]. As before, that equation is subsequently
solved by iteration.

◦ Apply an Abel theorem to Theorem 2.2, to obtain E[e−sZ∞ ] = limr→1(1− r)Zz(r, s). Such
an Abel theorem states that

lim
r→1

(1− r)
∞∑
n=0

gnr
n = g∞,

if gn → g∞. The first sum in the right hand side of (18) can indeed be seen as a quantity
of the form

∑
gnr

n, and those gn converge to

∞∏
j=0

λϕY (ajs)

λ− ajs
.

The second sum in the right hand side of (18) has the structure
∑∞

n=0 bnr
n
∑∞

n=0 cnr
n,

where bn → b∞ 6= 0 and cn → 0 while
∑∞

n=0 cn converges. It is clear from (7) that
limr→1(1− r)C1,z(r) = −P(Z∞ = 0) (which is then our b∞), and thus the second sum in
the right hand side of (18) becomes

−P(Z∞ = 0)
∞∑
m=0

ams

λ− ams

m−1∏
j=0

λϕY (ajs)

λ− ajs
.

With ϕX(·) denoting the LST of X = Y −B, i.e.,

ϕX(s) := ϕY (s)
λ

λ− s
,

we thus find the following result.
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Theorem 2.7 The stationary LST is given by

ϕZ(s) := Ee−sZ∞ =
∞∏
j=0

λϕY (ajs)

λ− ajs
− P(Z∞ = 0)

∞∑
m=0

ams

λ− ams

m−1∏
j=0

λϕY (ajs)

λ− ajs

=
∞∏
j=0

ϕX(ajs)− ϕY (λ)ϕZ(aλ)

λ

∞∑
m=0

ams

ϕY (ams)

m∏
j=0

ϕX(ajs),

where

ϕZ(aλ) =
∞∏
j=0

ϕX(aj+1λ)

/1 +
ϕY (λ)

λ

∞∑
m=0

am+1λ

ϕY (am+1λ)

m∏
j=0

ϕX(aj+1λ)

 .

Remark 2.8 We can extend the above analysis to the case in which successive Xn still are i.i.d.,
but Yn andBn are dependent in a specific way, viz., (Yn, Bn) has a bivariate matrix-exponential
distribution, as introduced in [4]. Badila et al. [2] present an exact analysis of the waiting
time process in an ordinary single server queue (i.e., a = 1) in which the n-th service time
and subsequent interarrival time have such a bivariate matrix-exponential distribution. One
can combine their Wiener-Hopf factorization approach with the iteration approach followed
above.

3 Heavy-traffic scaling limit

In this section we impose a heavy-traffic scaling on the reflected AR(1) process and prove that
the resulting heavy-traffic approximation is a reflected Ornstein-Uhlenbeck (OU) process. In
addition, we show that the corresponding stationary distribution is truncated Normal.

3.1 Transient convergence

For each N ∈ {1, 2, . . .}, let Z(N) ≡ (Z
(N)
n )n be a reflected AR(1) process, as introduced in the

introduction. We impose a heavy-traffic scaling in which the increments (X
(N)
n )n of Z(N) are

such that
EX(N)

n =
γ√
N
, VarX(N)

n =
v

N
,

where γ ∈ R and v > 0. We also set aN := 1− α/N for α ∈ R.

Now let D([0,∞),R) denote the space of càdlàg functions on [0,∞) taking values in R. For
each x ∈ D([0,∞),R) with x(0) ≥ 0 and b ∈ R, let z ∈ D([0,∞),R) satisfy the integral equation

z(t) = x(t)− b
∫ t

0
z(s)ds+ `(t), t ≥ 0,

where ` ≡ {`(t), t ≥ 0} ∈ D([0,∞),R) is a non-decreasing function such that `(0) = 0 and∫ ∞
0

1{z(s) > 0}d`(s) = 0.
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It then follows by [12, Prop. 2] that there exists a unique such z, denoted by Φ(x) and, more-
over, the map Φ : D([0,∞),R) 7→ D([0,∞),R) is Lipschitz continuous with respect to the
Skorokhod-J1 topology [3].

Our main result of this section is the following weak convergence.

Proposition 3.1 If Z(N)
0 ⇒ Z

(∞)
0 as N →∞, then

Z
(N)
bN ·c ⇒ Φ(Z

(∞)
0 +

√
vB)

as N →∞, where B is a standard Brownian motion, independent of Z(∞)
0 .

Remark 3.2 The process Φ(Z
(∞)
0 +

√
vB) is commonly referred to in the literature as a reflected

Ornstein-Uhlenbeck (OU) process. Characteristics of its transient and stationary distribution
are well known. In Section 3.2 below we address the issue of approximating the steady-state
behavior of reflected AR(1) processes by that of reflected OUs.

Proof (of Prop. 3.1). Our proof of Proposition 3.1 is as follows. By (1), in combination with the
definition Wn = −min(aZn +Xn, 0) for n = 0, 1, . . . in Section 2, we may write

Zn+1 = aZn +Xn +Wn, n = 0, 1, ...

As a consequence, Zn+1 − Zn = (a − 1)Zn + Xn + Wn for n = 0, 1, . . . and so summing over
both sides of this equality we obtain that

Zn = Z0 + Sn−1 + (a− 1)
n−1∑
k=0

Zk + Ln−1, n = 0, 1, . . . ,

where Sn :=
∑n

k=0Xk and Ln :=
∑n

k=0Wk for n = 0, 1, . . ., adopting the convention that an
empty sum is equal to 0 (i.e., S−1 = L−1 = 0).
Now parameterizing the above by N = 1, 2, . . ., and reindexing by bNtc, t ≥ 0, it follows after
elementary algebra that

Z
(N)
bNtc = Z

(N)
0 + S

(N)
bNtc−1 + ε

(N)
bNtc − α

∫ t

0
Z

(N)
bNscds+ L

(N)
bNtc−1, t ≥ 0,

where

ε
(N)
bNtc := α

∫ t

0
Z

(N)
bNscds−

1

N

bNtc−1∑
k=0

Z
(N)
k

 , t ≥ 0.

Now note that
L(N) ≡ {L(N)

bNtc − 1, t ≥ 0}

is non-decreasing, with L
(N)
0 = 0. Moreover, since 1{W (N)

n > 0}1{Z(N)
n+1 > 0} = 0 for any

n ∈ N, it follows that ∫ ∞
0

1{Z(N)
bNsc > 0}dL(N)

bNsc−1 = 0.

10



Hence, since clearly Z(N)
bNtc ≥ 0 for t ≥ 0, it follows by (1) and [12, Prop. 2] that we may write

Z
(N)
bN ·c = Φ

(
Z

(N)
0 + S

(N)
bN ·c−1 + ε

(N)
bN ·c

)
,

where the map Φ : D([0,∞),R) 7→ D([0,∞),R) is Lipschitz continuous with respect to the
Skorokhod-J1 topology. Hence, by the continuous mapping theorem [3], in order to complete
the proof it suffices to show that

Z
(N)
0 + S

(N)
bN ·c−1 + ε

(N)
bN ·c ⇒ Z

(∞)
0 +

√
vB

as N →∞, where B is a standard Brownian motion, independent of Z(∞)
0 .

By the assumed independence of Z(N)
0 and the sequence {X(N)

n , n ≥ 0} it follows by the func-
tional central limit theorem [3] that

Z
(N)
0 + S

(N)
bN ·c−1 ⇒ Z

(∞)
0 +

√
vB

as N →∞. It therefore remains to show that ε(N)
bN ·c ⇒ 0 as N →∞.

To this end, first note that, for t ≥ 0∫ t

0
Z

(N)
bNscds−

1

N

bNtc−1∑
k=0

Z
(N)
k =

1

N

(
(nt− bntc)Z(N)

bNtc + (dnte − nt)Z(N)
bNtc−1

)
,

where we set Z(N)
−1 = 0. Thus for fixed T ≥ 0, we obtain that

sup
0≤t≤T

∣∣∣ε(N)
bNtc

∣∣∣ ≤ 2α

N
sup

0≤k≤bNtc
Z

(N)
k .

However, note that by (1) we have the bound

Z
(N)
n+1 ≤ aNZ

(N)
n +

∣∣∣X(N)
n

∣∣∣ , n = 0, 1, . . . ,

from which we obtain that

Z
(N)
n+1 ≤

n∑
k=0

akN

∣∣∣X(N)
n−k

∣∣∣+ an+1
N Z

(N)
0 .

However, as abNtcN → e−αt as N →∞, it follows that for sufficiently large N ,

2α

N
sup

0≤k≤bNT c
Z

(N)
k ≤ emin(γ,0)T 2α

N

bNT c∑
k=0

∣∣∣X(N)
k

∣∣∣+ Z
(N)
0

⇒ 0

as N →∞, since EX(N)
k = γ/

√
N . We conclude that

sup
0≤t≤T

|ε(N)
bNtc| ⇒ 0

as N →∞, which implies that ε(N)
bN ·c ⇒ 0 as N →∞, which completes the proof. �
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3.2 Stationary convergence

In this section we consider the steady-state workload Z∞ under the heavy-traffic scaling; to
stress the dependence on N , we write Z(N)

∞ . As before, the increments X(N)
n , are such that

EX(N)
n = γ/

√
N for some γ ∈ R, and VarX

(N)
n = v/N > 0; here X(N)

n := Y
(N)
n − Bn, with

as before Bn being i.i.d. exponentially distributed with mean λ−1. To ensure the existence of a
stationary distribution, we assume α > 0.
The main claim of this section is the following.

Proposition 3.3 As N →∞, Z(N)
∞ /
√
N converges in distribution to a Normal random variable with

mean γ/α and variance v/(2α), conditioned on being positive.

Proof. We establish this result by considering, under the scaling introduced above, the behavior
of the Laplace transform ϕZ(s/

√
N) as N → ∞, as identified in Theorem 2.7. We here write

ϕZ(s/
√
N) := T1(s)− T1(s)T2(s), with

T1(s) ≡ T (N)
1 (s) :=

∞∏
k=0

ϕX(N)

(
sakN√
N

)
, T2(s) ≡ T (N)

2 (s) := ξ(N)

∞∑
`=0

ηN,`(s)

ϕY (ηN,`(s))
∆N,`(s),

where

∆N,`(s) :=

∞∏
k=`+1

ζN (ηN,k(s)) , ηN,`(s) :=
sa`N√
N
, ζN (s) =

1

ϕX(N) (s)
;

in addition, with ϕZ(λaN ) following by normalization,

ξ(N) :=
ϕY (λ)ϕZ(λaN )

λ
.

The proof of the asymptotic Normality consists of three steps.

STEP 1. We first study the asymptotic behavior of T (N)
1 (s), i.e.,

∞∏
k=0

ϕX(N)

(
s√
N

(
1− α

N

)k)
=

∞∏
k=0

E exp

(
− s√

N

(
1− α

N

)k
X

(N)
k

)

as N grows large. To this end, we first write X(N)
k := X̄

(N)
k + γ/

√
N , where EX̄(N)

k = 0, so that
the expression in the previous display reads

∞∏
k=0

E exp

(
− s√

N

(
1− α

N

)k
X̄

(N)
k

)
exp

(
−
∞∑
k=0

s√
N

(
1− α

N

)k γ√
N

)
.

It is immediate that
∞∑
k=0

s√
N

(
1− α

N

)k γ√
N
→ sγ

α
,

12



as N →∞. In addition,

log

∞∏
k=0

E exp

(
− s√

N

(
1− α

N

)k
X̄

(N)
k

)

=

∞∑
k=0

log

(
1 +

s2

2N

(
1− α

N

)2k
v − s3

6N
√
N

(
1− α

N

)3k
w + · · ·

)
,

with v as defined above, and w some constant. Observe that, as N →∞,

∞∑
k=0

s2

2N

(
1− α

N

)2k
v → s2v

4α
,

∞∑
k=0

s3

6N
√
N

(
1− α

N

)3k
w → 0.

We conclude that, as N →∞,

∞∏
k=0

ϕX(N)

(
s√
N

(
1− α

N

)k)
→ exp

(
−sγ
α

+
s2v

4α

)
=: Γ(s),

corresponding to the Laplace transform of a Normal density with mean γ/α and variance
v/(2α).

STEP 2. Our aim is to prove convergence to the Laplace transform of a Normal random variable
with mean γ/α and variance v/(2α), conditioned on being positive. The numerator of this
expression can be written as

ψ(s) :=

∫ ∞
0

e−sx
1√
πv/α

exp

(
−(x− γ/α)2

v/α

)
dx,

whereas the denominator equals ψ(0). It is a matter of a direct computation to verify that

ψ(s) = Γ(s)

∫ ∞
0

1√
πv/α

exp

(
−

(x− (γ − 1
2sv)/α)2

v/α

)
dx.

With self-evident notation, we can conclude that this limiting Laplace transform can be inter-
preted as

ψ(s) = Γ(s)P

(
N

(
γ − 1

2sv

α
,
v

2α

)
> 0

)
.

In the first step we have already established that T (N)
1 (s) converges to Γ(s) as N → ∞. Re-

calling the definitions of T (N)
1 (s) and T

(N)
2 (s), it is now directly seen that it is left to show

that

T
(N)
2 (s) = ξ(N)

∞∑
`=0

ηN,`(s)

ϕY (ηN,`(s))
∆N (s)→

P

(
N
(

0,
v

2α

)
∈

[
−γ
α
,−

γ − 1
2sv

α

])
P
(
N
(

0,
v

2α

)
> −γ

α

) . (25)
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STEP 3. We prove (25) by first showing that, for a function ξ̄(N), as n→∞,

ξ̄(N) · d

ds

( ∞∑
`=0

ηN,`(s)

ϕY (ηN,`(s))
∆N,`(s)

)
→ fN (0,v/α)

(
−γ − sv

α

)
, (26)

with fN (µ,σ2)(·) denoting the density of a Normal random variable with mean µ and variance
σ2. To this end, we observe that

d

ds

ηN,`(s)

ϕY (ηN,`(s))
∆N,`(s) =

η′N,`(s)

ϕY (ηN,`(s))
∆n,`(s)−

ηN,`(s)

ϕ2
Y (ηN,`(s))

ϕ′Y (ηN,`(s))η
′
N,`(s)∆N,`(s)

+
ηN,`(s)

ϕY (ηN,`(s))
∆′N,`(s). (27)

Let us consider the three terms in the right hand side separately. Observe that, relying on
computations similar to the ones used when proving T (N)

1 (s)→ Γ(s),

∆N,`(s) ∼ exp

(
sγ

α

(
1− α

N

)`+1
− s2v

4α

(
1− α

N

)2(`+1)
)
→ ∆(s) := exp

(
sγ

α
− s2v

4α

)
.

Furthermore,

∆′N,`(s) =

( ∞∑
k=`+1

d

ds
ζN (ηN,k(s))

/
ζN (ηN,k(s))

)
∆n,`(s).

Based on the above, it is now readily verified that the first term in (27) is proportional to 1/
√
N ,

while the others behave like 1/N. As a consequence,

d

ds

( ∞∑
`=0

ηN,`(s)

ϕY (ηN,`(s))
∆N,`(s)

)
∼
∞∑
`=0

1√
N

(
1− α

N

)`
∆(s) ∼

√
N

α
∆(s).

Observe that we have established (26), as ∆(s) is proportional to the desired density. Due
to Scheffé’s lemma [17], it now follows that, for some function ξ̄(N) and some constant κ, as
N →∞,

T
(N)
2 (s) ∼ 1

ξ̄(N)

(
P

(
N
(

0,
v

2α

)
< −

γ − 1
2sv

α

)
− κ

)
.

Now realize that
T
(N)
1 (s)− E e−sZ

(N)
∞ /

√
N

T
(N)
1 (s)

= T
(N)
2 (s). (28)

◦ As E exp(−sZ(N)
∞ /
√
N) is the Laplace transform of a nonnegative random variable, it

tends to 0 as s → ∞. Because of the fact that T (N)
1 (s) → Γ(s), in combination with

Γ(s)→∞ as s→∞, it follows from (28) that ξ̄(N)→ 1− κ as N →∞.

◦ Due to T (N)
1 (0) = 1, the left hand side of (28) equals 0 when s = 0, and hence

κ = P
(
N
(

0,
v

2α

)
< −γ

α

)
.

Conclude that (25) follows. �
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4 Connection with first passage times of AR(1) processes

In this section we show that the transient distribution of the reflected AR(1) process can be
translated into distributional properties of first passage times across a geometric barrier of an
associated non-reflected AR(1) process. More precisely, we show that the probability that Zn
exceeds some constant (given that Z0 = 0) coincides with the probability that an associated
non-reflected AR(1) process exceeds a geometric barrier.
The stated connection may be obtained as follows. First note that recursively applying (1) we
arrive at (an empty sum being zero)

Zn+1 = max

an+1Z0 +
n∑
j=0

an−jXj , max
1≤k≤n+1

n∑
j=k

an−jXj

 , n = 0, 1, . . .

However, observe that the above implies the equality in distribution

Zn+1
d
= max

an+1Z0 +
n∑
j=0

ajXj , max
−1≤k≤n−1

k∑
j=0

ajXj

 , n = 0, 1, . . .

Now reindexing time, the above also yields

Zn
d
= max

anZ0 + a−1
n∑
j=1

ajXj , max
0≤k≤n−1

a−1
k∑
j=1

ajXj

 , n = 1, 2, . . .

From now on suppose that Z0 = 0, in which case the above reduces to, for n = 1, 2, . . . ,

Zn
d
= max

0≤k≤n
a−1

k∑
j=1

ajXj
d
= max

0≤k≤n
ak−1

k∑
j=1

(
1

a

)k−j
Xj .

However, for any v ≥ 0, we clearly have that the following two events are equivalent: max
0≤k≤n

ak−1
k∑
j=1

(
1

a

)k−j
Xj ≥ v

 =

inf

k ≥ 1 :
k∑
j=1

(
1

a

)k−j
Xj ≥

(
1

a

)k−1
v

 ≤ n


and as a consequence

P(Zn ≥ v|Z0 = 0) = P

inf

k ≥ 1 :
k∑
j=1

(
1

a

)k−j
Xj ≥

(
1

a

)k−1
v

 ≤ n
 .

Note that the process  k∑
j=1

(
1

a

)k−j
Xj


k
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corresponds to the unreflected AR(1) process Vn+1 = (1/a)Vn + Xn with V0 = 0. We have
thus found an interpretation of the distribution of Zn in terms of the first passage time of an
unreflected AR(1) process across a geometric barrier. For a = 1 we recover a well-known
distributional identity: the waiting time of the n-th customer in a GI/G/1 queue (given it
starts empty at time 0) has the same law as the running maximum (after n increments) of the
unreflected process.
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