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a b s t r a c t

In this work, we present 2D numerical simulations on the migration of a particle suspended in a visco-
elastic fluid under Poiseuille flow at finite Reynolds numbers, in order to clarify the simultaneous effects
of viscoelasticity and inertia on the lateral particle motion.

The governing equations are solved through the finite element method by adopting an Arbitrary
Lagrangian–Eulerian (ALE) formulation to handle the particle motion. The high accuracy provided by such
a method even for very small particle–wall distances, combined with proper stabilization techniques for
viscoelastic fluids, allows obtaining convergent solutions at relatively large flow rates, as compared to
previous works. As a result, the detailed non-linear dynamics of the migration phenomenon in a signif-
icant range of Reynolds and Deborah numbers is presented.

The simulations show that, in agreement with the previous literature, a mastercurve relating the
migration velocity of the particle to its ‘vertical’ position completely describes the phenomenon. Remark-
ably, we found that, for comparable values of the Deborah and Reynolds numbers, inertial effects are neg-
ligible: migration is in practice driven by fluid viscoelasticity only. At moderate Reynolds numbers
(20 < Re < 200) and by lowering De, the transition from viscoelasticity-driven to inertia-driven regimes
occurs through two intermediate regimes characterized by multiple stable solutions, i.e. attractors of par-
ticle trajectories at different vertical positions across the gap. At low but non-zero Reynolds numbers,
only two stable solutions are found for any non-zero Deborah number in the investigated range. In par-
ticular, the wall is always an attractor for the migrating particle.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cross-streamline particle migration is a well-known and widely
studied phenomenon occurring in flowing suspensions [1–3]. It
consists of a motion of the suspended particles transversally to
the main flow direction, which can be induced by several factors,
e.g. through inertia [1,4,2,5] or viscoelasticity [3,6,7].

This problem received great interest over the last fifty years as
particle migration can determine unexpected inhomogeneities in
the suspension concentration thus affecting those processes/mate-
rials that require uniform distributions of particles (e.g. fluid–solid

reactions, filler-loaded materials). Furthermore, with the recent
development of microfluidic chips, the need of controlling particle
trajectories has directed the scientific interest in designing novel
devices able to induce the lateral motion [8].

The first accurate experimental studies on the migration phe-
nomenon have been reported by Segré and Silberberg [1,4]. They
found that non-interacting, neutrally buoyant spheres suspended
in a Newtonian fluid flowing in a tube move away from both the
wall and the channel centerline, and are attracted towards an ‘equi-
librium’ radial position of about 0.6 times the tube radius. This rel-
evant phenomenology has been confirmed in several experimental
[9,2,5], theoretical [10–12] and numerical [13–15] works. The lat-
eral motion has been explained as an inertial effect [10,12].

Migration can also occur, at vanishing Reynolds numbers, in vis-
coelastic fluids [3,16,6,7]. The experimental results show that a
particle suspended in a viscoelastic medium subjected to a
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Poiseuille flow migrate towards the minimum shear-rate direction
(i.e. the centerline) [3,6,7], whereas shear-thinning promotes
migration towards the walls [17].

Migration towards the minimum shear-rate region has been
analytically deduced by Ho and Leal [16] through a perturbative
method by considering a Second Order Fluid as suspending med-
ium, and is ascribable to the existence of normal stresses.

Recently, Villone et al. [18,19], by means of 2D and 3D numer-
ical simulations, have extensively studied the effects of both visco-
elasticity and shear thinning on particle migration under
inertialess conditions. They found that the sole shear thinning does
not determine transversal motion; on the other hand, if coupled
with viscoelasticity, it determines a multistability condition, where
the particles migrate towards the axis of the channel or the walls
depending on their initial positions. In other words, looking for
simplicity to the 2D case, three equilibrium positions in each half
gap are identified along the gradient direction: the centerline and
the wall (stable), and a ‘separatrix’ (unstable) at some vertical posi-
tion in the gap. These points are nodes of a mastercurve where the
particle trajectories for different initial positions are shown to col-
lapse on, and which completely describes the migration dynamics.
In addition, it is found that large Deborah numbers lead to a faster
migration, and shear thinning promotes the displacement of the
separatrix towards the centerline, thus increasing the fraction of
particles that approach the walls.

In summary, both inertia and viscoelasticity promote particle
migration in Poiseuille flow, but they work in opposite directions:
the former drives the particles towards an equilibrium position
between the channel centerline and the walls (‘Segré–Silberberg
effect’), whereas the latter induces a lateral motion away from an
unstable equilibrium position and towards the centerline or the
walls (‘inversion’ of the Segré–Silberberg effect).

Few works have addressed the simultaneous effects of inertia
and viscoelasticity on particle migration [20–22]. 2D direct numer-
ical simulations have been performed by modeling the fluid with
the Oldroyd-B constitutive equation with a Bird-Carreau shear rate
viscosity dependence. The main focus of the simulations was on the
effect of the buoyancy on the particle dynamics, resulting in empir-
ical correlations for the particle lift-off to equilibrium. However,
due to numerical problems [20], the computations were limited
to low Deborah numbers (in most of the cases De < 0:1, with some
spot results at De ¼ 0:25, according to the definition of De used in
this work and given in the next section), thus inertial effects prevail
over the elastic ones. In general, the results show that the migration
direction depends in a complex way on the interplay among inertia,
blockage ratio, elasticity and shear thinning of the fluid. In particu-
lar, in Poiseuille flow, the elasticity of the fluid drives the particles
towards the axis of the channel, whereas shear thinning and con-
finement make them to migrate towards the closest wall. Interest-
ingly, the simulation results show the existence of multiple
equilibrium positions through the channel [22].

Therefore, a study on the detailed dynamics of particle migra-
tion in Poiseuille flow induced by inertia and viscoelasticity, in a
significant range of Reynolds and Deborah numbers, is missing.
Understanding the effect of those two driving forces on the particle
lateral motion would be useful in optimizing novel microfluidic
technologies where exploitation of the competition between iner-
tia and elasticity effects has been suggested as a method to per-
form 3D particle focusing and separation [23,24].

In this work, we present 2D numerical simulations on the
migration of a neutrally buoyant particle suspended in a viscoelas-
tic fluid under Poiseuille flow, with inertia effects included. The
explored ranges of the Reynolds and Deborah numbers are
Re 2 ½0� 200� and De 2 ½0� 1�. As compared to previous studies,
the upper limit of the Deborah number is one order of magnitude
higher, so that the detailed dynamics from the inertia- to the

viscoelasticity-driven regime is addressed. The achievement of
convergent solutions at finite De-values is assured by implement-
ing proper stabilization techniques in the momentum balance
and constitutive equations. An Arbitrary Lagrangian–Eulerian
(ALE) method is employed for the particle motion that allows to
accurately solve the flow fields around the particle, even at rela-
tively small particle–wall distances. Results are presented in terms
of particle trajectories and migration velocities in the whole chan-
nel gap, highlighting the complex non-linear dynamics arising
when both inertia and viscoelasticity are relevant.

2. Governing equations

In Fig. 1 a schematic diagram of the problem is presented: a sin-
gle, rigid, non-Brownian, circular particle (2D problem) moves in a
channel filled by a viscoelastic fluid in Poiseuille flow. The particle
with diameter dp, denoted by PðtÞ and boundary @PðtÞ, moves in a
rectangular domain X with dimensions L and H along the x- and
> y-axis, respectively, and external boundaries denoted by Ci

ði ¼ 1; . . . ;4Þ. The Cartesian x and y coordinates are selected with
the origin at the center of the domain. The fluid flows along the
x-direction with a flow rate Q imposed on the left boundary, and
the upper and lower boundaries are walls.

The vector xp ¼ ðxp; ypÞ gives the position of the center of the
particle, whereas the particle angular rotation is denoted by hp.
The particle moves according to the imposed flow and its rigid-
body motion is completely defined by the translational and angular
velocities, denoted by up ¼ ðup;vpÞ ¼ dxp=dt and
xp ¼ xpk ¼ dhp=dt k, respectively, where k is the unit vector in
the direction normal to the x� y plane.

The governing equations for the fluid domain, X� PðtÞ, read as
follows:

r � u ¼ 0 ð1Þ

qf
@u
@t
þ u � ru

� �
¼ r � r ð2Þ

r ¼ �pI þ 2gsDþ s ð3Þ

Eqs. (1)–(3) are respectively the mass balance (continuity), the
momentum balance and the expression for the total stress. In these
equations r; u; p; I; qf ; gs, D, are the stress tensor, the velocity
vector, the pressure, the 2� 2 unity tensor, the fluid density, a
Newtonian viscosity, and the rate-of-deformation tensor
D ¼ ðruþ ðruÞTÞ=2. The viscoelastic stress tensor, s, is written in
terms of the ‘conformation tensor’ c as:

s ¼
gp

k
ðc � IÞ ð4Þ

where gp is a viscosity constant (polymer viscosity), and k is the
relaxation time.

The viscoelastic fluid is modeled by the Giesekus constitutive
equation (for c) [25]:

k c
r
þc � I þ aðc � IÞ2 ¼ 0 ð5Þ

Fig. 1. Sketch of the flow cell and of the adopted coordinate system.
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where a is the so-called mobility parameter that modulates the
shear thinning behavior. The symbol (r) denotes the upper-con-
vected time derivative, defined as:

c
r
� @c

@t
þ u � rc � ðruÞT � c � c � ru ð6Þ

No-slip conditions are imposed on the walls and on the particle
boundary:

u ¼ 0 on C1 and C3 ð7Þ

u ¼ up þxp � ðx� xpÞ on @PðtÞ ð8Þ

where the latter equation expresses the rigid-body motion. Periodic
boundary conditions are imposed on the left (inflow) and right (out-
flow) boundaries, along with a flow rate Q in inflow:

ujC4
¼ ujC2

ð9Þ

rjC4
¼ rjC2

� Dp ii ð10Þ

�
Z

C4

u � ndy ¼ Q ð11Þ

In Eq. (10) Dp is the pressure drop along the channel in between
C4 and C2 and i is the unit vector in the x direction; in Eq. (11) n is
the outwardly directed unit normal vector. The flow rate in Eq. (11)
is imposed through a constraint where the associated Lagrange
multiplier is identified as the unknown pressure difference
Dp ¼ pjC4

� pjC2
[26].

To close the set of equations, the hydrodynamic force and tor-
que acting on the particle needs to be specified. Under the assump-
tions of no ‘external’ forces and torques, such balance equations are
given by:

mp
dup

dt
¼ F ¼

Z
@PðtÞ

r � nds ð12Þ

Ip
dxp

dt
k ¼ T ¼

Z
@PðtÞ
ðx� xpÞ � ðr � nÞds ð13Þ

where F ¼ ðFx; FyÞ and T ¼ Tk are the total force and torque on the
particle boundary, mp and Ip are the particle mass and moment of
inertia (relative to the z-axis; it is Ip ¼ mpd2

p=8), and n is the out-
wardly directed unit normal vector on @P.

Finally, initial conditions for the fluid velocity and the confor-
mation tensor as well as for the translational and angular velocities
of the particle need to be specified:

cjt¼0 ¼ I ð14Þ

ujt¼0 ¼ upjt¼0 ¼ 0; xpjt¼0 ¼ 0 ð15Þ

Eq. (14) defines a stress-free state in the whole fluid domain
whereas Eq. (15) denote fluid and particle at rest.

Once the fluid velocity, pressure and stress fields are calculated
along with the particle kinematic quantities, the particle position
and rotation are updated by integrating the following equations:

dxp

dt
¼ up; xpjt¼0 ¼ xp;0 ð16Þ

dhp

dt
¼ xp; hpjt¼0 ¼ hp;0 ð17Þ

The equations are made dimensionless by choosing the follow-
ing characteristic quantities: H for length, Q=H for velocity, H2=Q

for time and gpQ=H2 for stress. Then, the following dimensionless
parameters appear in the governing equations: the fluid Reynolds
number Re ¼ qf Q=gp, the Deborah number De ¼ kQ=H2, the den-
sity ratio qp=qf , and the viscosity ratio gs=gp. By specifying the
blockage ratio b ¼ dp=H and the mobility parameter of the consti-

tutive equation a the problem is completely defined. In what fol-
lows, all the symbols refer to dimensionless quantities.

3. Weak form, implementation and code validation

3.1. Weak form

The system of Eqs. (1)–(6) with boundary conditions (7)–(11),
initial conditions (14) and (15) and the force and torque balances
(12) and (13) are solved by the finite element method. Each time
step the flow fields are evaluated along with the rigid-body
unknowns. Then, the kinematic Eqs. (16) and (17) are integrated
to update the particle position and rotation.

Proper stabilization techniques which, in respect to previous
works, allow obtaining convergent solutions even at relatively high
Deborah and Reynolds numbers are used. The momentum balance
is discretized through the DEVSS-G mixed finite element method
[27,28] that is one of the most robust formulations currently avail-
able. The viscoelastic constitutive equation is stabilized by imple-
menting the SUPG technique, with a log-representation for the
conformation tensor [29,30]. The original equation for the confor-
mation tensor c, Eq. (5), is transformed to an equivalent equation
for s ¼ logðcÞ:

_s ¼ @s
@t
þ u � rs ¼ gðruT ; sÞ ð18Þ

An expression for the function g for a Giesekus fluid can be found in
[30]. Solving the equation for s instead of the equation for c leads to
a substantial improvement of stability for high Deborah numbers.
Finally, an Arbitrary Lagrangian–Eulerian (ALE) formulation is
adopted to manage the particle motion [31].

With these premises, the weak formulation of the equation sys-
tem for the fluid domain Xf � X n PðtÞ reads as follows: For t > 0,
find u 2 U; p 2 P; s 2 S; G 2 G; up 2 R2; xp 2 R; k 2 L2ð@PðtÞÞ
such that:Z

Xf

v � qf
du
dt
þ ðu� umÞ � ru

� �
dAþ

Z
Xf

2gsDðvÞ : DðuÞdA

�
Z

Xf

r � v pdAþ
Z

Xf

aðrvÞT : rudA�
Z

Xf

aðrvÞT : GT dA

þ
Z
@PðtÞ

v � ðV þ v� ðx� xpÞÞ
� �

� kdsþ V �mp
dup

dt
þ v � Ip

dxp

dt

¼ �
Z

Xf

DðvÞ : sdA; ð19Þ

Z
Xf

qr � udA ¼ 0; ð20Þ

Z
Xf

H : G dA�
Z

Xf

H : ðruÞT dA ¼ 0; ð21Þ

Z
Xf

ðS þ sðu� umÞ � rSÞ :
ds
dt
þ ðu� umÞ � rs� gðG; sÞ

� �
dA ¼ 0;

ð22Þ

Z
@PðtÞ

l � ½u� ðup þxp � ðx� xpÞÞ�ds ¼ 0; ð23Þ

s ¼ s0 at t ¼ 0 ð24Þ

for all v 2 U; q 2 P; S 2 S; H 2 G; V 2 R2, v 2 R and l 2 L2ð@PðtÞÞ,
where U; P; S; G are suitable functional spaces. Eq. (21) is the com-
bined fluid-particle momentum equation [31]. In Eqs. (19) and (22),
um is the velocity of the mesh nodes and d=dt denotes the grid deriv-
ative, both coming from the ALE formulation [31].
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The s parameter in Eq. (22) is given by s ¼ Bh=2Ue, where B is a
dimensionless constant, h is a typical size of the element and Ue is a
characteristic velocity for the element. In our simulations, we have
chosen B ¼ 1 and for Ue we take the average of the magnitude of
the velocities in all integration points. In addition, the parameter
a in Eq. (19) is chosen as a ¼ gp. Finally, we take the initial value
s0 ¼ 0, corresponding to zero initial stress.

The rigid-body motion on the particle boundary is imposed
through Lagrange multipliers k. Thus, the particle kinematic quan-
tities are considered as additional unknowns that are directly
obtained by solving the full system of equations.

The y-component of the mesh velocity um;y is obtained by solv-
ing a Laplace equation:

r � ð�rum;yÞ ¼ 0 ð25Þ

with boundary conditions:

um;y ¼ up;y on @PðtÞ ð26Þ

um;y ¼ 0 on Ci; ði ¼ 1; . . . ;4Þ ð27Þ

that guarantees a smooth mesh motion [31]. In Eq. (25), the
parameter � is taken equal to the inverse of the local element area
in order to let the largest elements adsorb the most part of defor-
mation. Following [32], the mesh grid is moved along the flow at
the same x-velocity of the particle, in order to limit particle
motion only in the gradient direction and substantially reduce
mesh distortion. Therefore, the x-component of the mesh velocity
is given by the x-component of the particle translational velocity
um;x ¼ up;x. The weak form for Eq. (25) can be derived in a standard
way.

3.2. Implementation

For the discretization of the weak form, we use triangular ele-
ments with continuous quadratic interpolation ðP2Þ for the velocity
u and linear continuous interpolation ðP1Þ for the pressure p, veloc-
ity gradient G and log-conformation tensor s.

Following D’Avino et al. [32], the mass and momentum balances
are decoupled from the constitutive equation. Initially, the visco-
elastic stress is set to zero in the whole domain. The following
procedure is adopted at each time step:

Step 1. The particle position is updated by integrating the kine-
matic Eq. (16) by an explicit second-order Adams–
Bashforth method:

xnþ1
p ¼ xn

p þ Mt
3
2

un
p �

1
2

un�1
p

� �
ð28Þ

with Dt the time step size.
Step 2. The mesh nodes, xm, are updated according to:

xnþ1
m ¼ xn

m þ Mt
3
2

un
m �

1
2

un�1
m

� �
ð29Þ

Step 3. The log-conformation tensor is computed by integrating
the constitutive Eq. (22). A second-order semi-implicit
Gear scheme is used:

Z
Xnþ1

f

ðSþsûnþ1 �rSÞ : 3
2

snþ1

Dt
þ ûnþ1 �rsnþ1

� �
dA

¼
Z

Xnþ1
f

ðSþsûnþ1 �rSÞ

:
2sn� 1

2sn�1

Dt
þ2gðGn;snÞ�gðGn�1;sn�1Þ

� �
dA;

ð30Þ

where ûnþ1 ¼ 2ðun � un
mÞ � ðun�1 � un�1

m Þ. Notice that in Eq.
(30) (and in Eq. (31) below) many fields are evaluated at
times tn and tn�1, although the integration domain is at
time tnþ1. In the ALE method adopted in the present work,
all the fields are convected with the mesh (see the grid
derivatives in Eqs. (19) and (22)). Hence, a field labeled n
(and n� 1) in a point Pnþ1 (of the domain Xnþ1

f ) is simply
that same field in the point Pn (Pn�1), which was the point
of the domain Xn

f (Xn�1
f ) that has moved to Pnþ1 according

to the mesh velocity. In other words, values at previous
times should be evaluated in the previous domains, but
at the same grid points.

Step 4. After computing cnþ1 ¼ expðsnþ1Þ, the remaining unknowns
ðu; p;G;up;xp; kÞnþ1 are calculated by solving Eqs. (19)–
(21) and (23). The following scheme is adopted:
Z

Xnþ1
f

v � qf
3
2

unþ1

Dt
dAþ

Z
Xnþ1

f

2gsDðvÞ : Dðunþ1ÞdA

�
Z

Xnþ1
f

r � v pnþ1 dAþ
Z

Xnþ1
f

aðrvÞT : runþ1 dA

�
Z

Xnþ1
f

aðrvÞT : ðGnþ1ÞT dA

þ
Z
@Pðtnþ1Þ

v � ðV þ v� ðx� xnþ1
p ÞÞ

h i
� knþ1 ds

þ V �mp
3
2

unþ1
p

Dt
þ v � Ip

3
2

xnþ1
p

Dt

¼
Z

Xnþ1
f

v � qf

2un � 1
2 un�1

Dt
� 2ðun � un

mÞ � run

�

þðun�1 � un�1
m Þ � run�1�dAþ V �mp

2un
p � 1

2 un�1
p

Dt

þ v � Ip
2xn

p � 1
2 xn�1

p

Dt
�
Z

Xnþ1
f

DðvÞ : sðcnþ1ÞdA; ð31Þ

Z
Xnþ1

f

qr � unþ1 dA ¼ 0; ð32Þ

Z
Xnþ1

f

H : Gnþ1 dA�
Z

Xnþ1
f

H : ðrunþ1ÞT dA ¼ 0; ð33Þ

Z
@Pðtnþ1Þ

l � unþ1 � ðunþ1
p þxnþ1

p � ðx� xnþ1
p ÞÞ

h i
ds ¼ 0;

ð34Þ

Notice that the momentum balance is discretized
through a mixed explicit–implicit scheme [33]. Although
it might be less stable than a fully implicit treatment of
the convective term, it requires the solution of a linear
system each time step. As shown in the validation tests
below, the required Dt to get convergent results is
acceptable, thus this scheme is preferred over implicit
ones. Finally, the time derivative of the particle transla-
tional and angular velocities is discretized through a sec-
ond-order backward differencing scheme.

Step 5. Finally, the Laplace equation is solved:

r � ð�runþ1
m;y Þ ¼ 0 ð35Þ

with boundary conditions:

um;y ¼ unþ1
p;y on @Pðtnþ1Þ ð36Þ

um;y ¼ 0 on Ci; ði ¼ 1; . . . ;4Þ ð37Þ

and the mesh velocity unþ1
m ¼ ðunþ1

p;x ;u
nþ1
m;y Þ are obtained.
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All the second-order schemes in the equations above are
replaced by the corresponding first-order schemes at the first time
step.

3.3. Code validation

Preliminary simulations have been performed to properly select
the length L of the domain. Indeed, because of the imposed periodic
boundary conditions, Eqs. (9) and (10), the domain length needs to
be chosen sufficiently larger than the particle size to avoid hydro-
dynamic interactions of the particle with its periodic images. We
found that L=dp ¼ 40 is sufficient to satisfy such a condition.

Mesh and time convergence are checked for all the results
reported in this work (a typical mesh is shown in Fig. 2). As an
example, the migration velocity vp and position yp of the particle
as function of time t for different mesh resolutions (see Table 1)
and time step sizes are reported in Fig. 3a and b, respectively.
The fair superposition of the data indicates that, for the chosen
parameters, both mesh and time convergence are satisfied.

In general, it is found that a mesh with 80 elements on the par-
ticle boundary is sufficient to achieve convergence, although an
extra refinement between the particle and the upper boundary is
needed when the particle starts quite close to the wall. For this rea-
son, the total element number varies from about 15,000 to 30,000.
Notice that the meshes used in our computation are much more
refined than those required for convergence in both the inertialess
viscoelastic and inertial inelastic cases. As an example, in the iner-
tial inelastic case, an appropriate mesh is typically composed of
around 4000 elements.

Regarding the time convergence, we found that a smaller step
size is required as the particle starts close to the wall, due to fast
dynamics involved, or for low Deborah numbers (De < 0:1) to
assure code stability. Specifically, all the simulations to be pre-
sented are performed by choosing a constant time step size
Dt ¼ 0:005 when the particle is far from the wall and Dt ¼ 0:001
when the particle is close to it (with a distance less than one par-
ticle diameter).

To verify the ability of our numerical code to predict the pure
inertial and viscoelastic behavior, we carried out some simulations
under the same operative conditions used in previous studies
[13,34,35,18]. The results for the inertial (inelastic) case in terms
of position of the particle along the gap yp as a function of the posi-
tion along the flow direction xp are shown in Fig. 4a. In Fig. 4b, the
particle y-velocity vp as a function of position yp is reported for the
viscoelastic (inertialess) case. In both figures, our data are in good

agreement with those obtained from previous studies, with the
remaining small differences likely ascribable to differences in the
numerical approaches.

4. Results

Aim of this paper is to investigate on the simultaneous effect of
inertia and viscoelasticity on particle migration in Poiseuille flow.
Therefore, we present simulations by systematically varying the
Reynolds and Deborah numbers and keeping the other parameters
fixed to the following values: b ¼ 0:1; a ¼ 0:2; qp=qf ¼ 1; gs=gp ¼
0:1. The chosen value for the confinement ratio is generally met in
microfluidic experiments [23,24]. The non-zero constitutive
parameter a denotes a shear-thinning fluid. Finally, the unitary
density ratio indicates a neutrally-buoyant particle. The choice
for those parameter values is consistent with our previous work

Fig. 2. Typical mesh used in the simulations. In the inset, a close view of the mesh
around the particle is shown.

Table 1
Mesh parameters.

Mesh label M1 M2 M1 M2

Particle y-position 0.30 0.30 0.44 0.44
#el. on the particle boundary 80 100 120 180
#el. in the mesh 13,864 20,472 28,182 48,736

Fig. 3. Migration velocity vp (a) and position yp (b) of the particle as function of
time t for different mesh resolutions (see Table 1) and time step sizes, for the case
yp;0 ¼ 0:3, De ¼ 1:0, Re ¼ 40.
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[18], and allows for a direct comparison with results obtained in
the inertialess viscoelastic case.

We start our analysis by setting the same value for the Reynolds
and Deborah numbers, that is Re ¼ De ¼ 1. In Fig. 5a, the temporal
trends of the migration velocities vpðtÞ for different particle initial
positions yp;0 are reported, whereas in Fig. 5b the trajectories ypðtÞ
corresponding to those same initial positions are shown. Because
of symmetry, from now on, we only report the curves which refer
to the upper half of the channel (from y ¼ 0 to y ¼ 0:5). The shaded
area in these and the following figures represents the portion of the
channel that cannot be accessed by the center of the particle, due
to its finite dimension.

As in the inertialess viscoelastic case [18], a ‘critical’ unstable
equilibrium position yN is found (see Fig. 5b) that identifies two
basins of attraction, corresponding to the stable equilibrium posi-
tions y ¼ 0 (axis) and y ¼ 0:5� b=2 (wall). For 0 < yp;0 < yN, the
particles migrate towards the axis (blue curves in Fig. 5b). On the
contrary, for yp;0 > yN, the particles move to the wall (red curves
in Fig. 5b). Notice that both those behaviors occur after an early
time transient, where an inversion of the sign of the migration
velocity can also be present (see Fig. 5a). The initial velocity oscil-
lations are due to the stress build-up around the particle in the
start-up of the process, as well as to inertial effects. The duration

of this transient phase has indeed been shown to grow with
increasing the fluid inertia and relaxation time (not reported). Such
initial transients are very short, however, and the particles experi-
ence for the most part of their motion a negative/positive y-veloc-
ity, for 0 < yp;0 < yN and yp;0 > yN, respectively. At long times, all
the velocity trends approach zero, although the dynamics is much
faster as the particles tend to the wall. More specifically, as the par-
ticle is close to the solid boundary, vp achieves a maximum before
steeply decreasing to zero, whereas the migration velocity
smoothly changes in time as the particles move to the channel cen-
ter. Finally, it seems worth mentioning that, by shifting in time the
trajectories of Fig. 5b, a fair superposition of all curves is obtained
(not shown). Two ‘master trajectories’ ypðtÞ are then found to fully
describe the migration phenomenon in the whole channel, one
leading the particle to the channel axis, and the other to the wall.

Following previous works [32,18,19], we can combine the infor-
mation on velocities and trajectories supplied in Fig. 5a and b. This
is done by running several simulations with different initial parti-
cle positions yp;0 and by taking the values of vpðtÞ, together with yp

at the same time, where the curves coming from different initial
position overlap, that is, after the (fast) initial transients. As a mat-
ter of fact, this overlapping identifies the mastercurve. By plotting
the pairs (ypðtÞ;vpðtÞ) and by interpolating the data around yN, we
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[13,35]: position of the particle along the gap yp as a function of the position along
the flow direction xp. The ‘geometric’ parameters are: b ¼ 0:25, L=dp ¼ 4. (b)
Inertialess viscoelastic case (Re ¼ 0) [18]: migration velocity of the particle vp as
function of its position yp after the transient extinguished (mastercurve). The
shaded area represents the region where the center of the particle cannot access.

t
0.1 1 10 100

v p

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015
yp0 = 0.1
yp0 = 0.2
yp0 = 0.3
yp0 = 0.35
yp0 = 0.37
yp0 = 0.4

t
0.1 1 10 100

y p

0.0

0.1

0.2

0.3

0.4

0.5

yN

Fig. 5. Migration velocity vp (a) and position yp (b) of the particle as function of
time t for six different values of its initial position yp;0 in the case De ¼ 1:0 and
Re ¼ 1:0. The red dash-dotted lines represent particles migrating towards the wall,
whereas the others correspond to the migration towards the channel centerline. yN

identifies the separatrix, i.e. the unstable equilibrium position of the particle. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

M. Trofa et al. / Computers & Fluids 107 (2015) 214–223 219



get then a unique curve of vp as a function of yp, reported as a
dashed green line in Fig. 6. Such a curve crosses the axis vp ¼ 0
at three points: the channel axis (yp ¼ 0), the point corresponding
to the particle that touches the wall (yp ¼ 0:5� b=2), and the point
yN defining the separatrix (yN � 0:36). As it can be deduced from
the sign of the migration velocities around those three points,
the first two are stable whereas the third one is unstable. Finally,
notice that the maximum velocity is achieved very close to the
wall, with a steep trend to a zero velocity as the particle further
approaches the boundary.

The just described vp vs yp behavior is quite similar to the one
previously found in the inertialess viscoelastic case [18]. In Fig. 6,
we added with a blue solid line the vp vs yp mastercurve at
De ¼ 1 (and Re ¼ 0) taken from that work: matching between the
green and blue curves is quantitative. Hence, we conclude that,
for the case Re ¼ De ¼ 1, inertia does not in fact have any influence
on migration dynamics.

The issue we want to address now is how large should the Rey-
nolds number be so that, for a given De, inertia effects start to
affect particle migration. To this aim, we perform simulations at
increasing values of Re, keeping fixed De ¼ 1. In what follows, we
will present the results in terms of mastercurves vpðypÞ.

As it can be seen in Fig. 6, by increasing the Reynolds number up
to Re ¼ 40, the separatrix moves towards the wall and the positive
migration velocity peak decreases. In addition, at Re ¼ 10, a mini-
mum in vp appears that is more and more pronounced as Re is
higher. However, the overall phenomenology stays qualitatively
similar to that described above, i.e. the particles are driven towards
the axis or the wall, although the ‘attraction region’ around the
wall becomes quite limited for high Reynolds numbers.

Since for De ¼ 1 and up to Re ¼ 40 inertia does not produce any
qualitative change in the dynamics, we investigate now in the
‘reverse’ direction, i.e. how the purely inertial case is essentially
recovered by progressively reducing the Deborah number at a
given Reynolds number (Re ¼ 40). As reported in Fig. 7, the situa-
tion at De ¼ 0:5 is still similar to that at De ¼ 1. In contrast, at
De ¼ 0:25 (red short dashed curve), one additional intersection
with the horizontal line vp ¼ 0 appears, at about yp � 0:18. Notice
that the migration velocity around the channel axis has now
become positive, i.e. the particle moves away from the axis. Thus,
two stable equilibrium points still coexist, but they are no more
the axis and the wall, as it was for higher De values. Rather, the axis

now becomes an unstable position for the particle, and a novel
equilibrium height appears in between the axis and the wall. By
further reducing the Deborah number to 0.1 (green long dashed
curve), the intersection with the horizontal line vp ¼ 0 near the
wall moves very close to it but not disappears, thus the wall is still
stable. For this reason, this case does not precisely correspond to
the purely inertial case De ¼ 0 (blue solid curve), for which the wall
is unstable. However, such near-wall intersection at small De is so
close to the wall that, from a practical point of view, the migration
dynamics can be assumed to be actually the one observed for the
purely inertial case. We did not investigate further how the afore-
mentioned near-wall intersection disappears, i.e. whether the
purely inertial case is exactly recovered only for De ¼ 0 or at some
small but finite De-value.

The transition observed at around De ¼ 0:25 is studied in details
by reducing De from 0.28 to 0.25 (for values De > 0:28, the scenario
is, indeed, qualitatively similar to the case at De ¼ 0:5). The corre-
sponding curves are reported in Fig. 8. For sake of clarity, only the
region around the channel axis is shown. Passing from De ¼ 0:28 to
De ¼ 0:27, the mastercurve crosses the zero in two points and
becomes positive in an small interval, leading to the appearance
of one new equilibrium point. The intersection closer to the axis
channel is unstable and the other is stable. Therefore, for this set
of parameters, five fixed points are present in each half gap, three
are stable (axis, wall and one between them) and two are unstable,
the latter separating the basins of attraction of the stable equilib-
rium points. A similar situation is also observed for De ¼ 0:26
(dashed-dotted purple curve in Fig. 8), where the interval of posi-
tive migration velocity is wider. At De ¼ 0:25, the curve goes up
and the unstable equilibrium point close to the axis disappears,
with the simultaneous stability change of the channel axis, as
described above.

To summarize, for Re ¼ 40, by decreasing the Deborah number
from 1 to 0.1, four different scenarios are observed: (i) for
De J 0:28, the purely viscoelastic behavior is found with two
attractors (axis and wall) and one intermediate unstable separa-
trix; (ii) for 0:26 K De K 0:28, five equilibrium points appear,
three are stable (axis, intermediate height, wall) and two are unsta-
ble (that separate the three stable regions); (iii) for De K 0:26, the
equilibrium points become four, two stable (intermediate height
and wall) and two unstable (axis and one in between the two sta-
ble points); (iv) finally, for a very small (or even zero) Deborah
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number, the purely inertial behavior is found with one attractor (in
between the axis and the wall) and two unstable points (axis and
wall).

The trajectories (in terms of mastercurves) corresponding to the
two intermediate scenarios are reported in Fig. 9. The data in
Fig. 9a, corresponding to De ¼ 0:27, clearly show the three attrac-
tors separated by two unstable heights at yN1 � 0:09 and
yN2 � 0:43. In Fig. 9b, obtained for De ¼ 0:25, the axis becomes
an unstable separatrix and only two attractors are found.

The complex non-linear dynamic behavior just discussed can be
conveniently represented in a solution diagram where the equilib-
rium points (stable and unstable) are reported as a function of the
Deborah number. Such solution diagrams, parametric in the
Reynolds numbers, are shown in Fig. 10. Stable/unstable equilib-
rium points are reported as blue filled symbols and solid lines,
and as open red symbols and dashed lines, respectively. For sake
of clarity, the stability of the axis is not explicitly reported in this
figure (see below Fig. 11, for Re ¼ 10 and Re ¼ 40). The cases at
higher Re are qualitatively similar to that for Re ¼ 40.

Let us analyze first the case at Re ¼ 40 (square symbols) corre-
sponding to Figs. 7–9. Two bifurcations are now evident: one sad-
dle-node bifurcation where the intermediate stable and unstable
branches near the axis collapse (at De � 0:28) and one subcritical
pitchfork where the intermediate unstable branch near the axis
collapses onto the stable one at yp ¼ 0 (at De � 0:26), see Fig. 11.
For Deborah numbers higher than the saddle-node, the purely vis-
coelastic case is found (axis and wall attraction). In the narrow
range between the saddle-node and the pitchfork bifurcations,
there are three stable solutions, whereas between the pitchfork
and some Deborah number value very close (or equal) to zero
the stable solutions are two. Finally, in a narrow interval close to
De ¼ 0 (or just for De ¼ 0), the purely inertial regime is recovered
(one stable solution in between the axis and the wall).

A similar scenario around the centerline is also observed for
Re ¼ 100 and Re ¼ 200. In general, by increasing Re, both bifurca-
tions shift at higher De. In addition, the range of De where the axis
and the intermediate height are stable is wider. However, in con-
trast with the Re ¼ 40 case, the wall is now an unstable equilib-
rium point so that the particle can migrate towards the axis or
towards the intermediate height.

Finally, by reducing the Reynolds number to Re ¼ 10, the pitch-
fork bifurcation passes from subcritical to supercritical, as reported
in Fig. 11. Indeed, the two symmetric unstable branches starting
from the pitchfork point at Re ¼ 40 (red dashed lines in the right
panel of Fig. 11) disappear and are replaced by two stable

(symmetric) branches (blue solid lines in the left panel of
Fig. 11). In addition to those stable branches, the wall is an attrac-
tor as for the Re ¼ 40 case, as shown by the upper blue curve in
Fig. 10. In conclusion, in each half-gap, two stable equilibrium
solutions coexist for any De-value in the explored range. More spe-
cifically, beyond the pitchfork bifurcation, the particle can migrate
towards the axis or the wall, whereas, for Deborah numbers lower
than the bifurcation value, the stable position moves from the axis
to an intermediate height that approaches the middle of the half-
gap for decreasing De-values.

As final remark, the coexistence of the subcritical pitchfork and
the saddle-node bifurcations at Re ¼ 40, shown in the right panel
of Fig. 11, leads to a hysteresis loop. Indeed, by varying the bifurca-
tion parameter De, the regime achieved by the particle evolves in a
different way depending on the starting point. When crossing one
of the two bifurcations, a ‘jump’ occurs in the equilibrium position
(that is, however, reached by a transient with a characteristic time
depending on Reynolds and Deborah numbers). This is not the case
at Re ¼ 10, where slow changes in the Deborah number lead to
smooth variations in the neutral height.

We conclude this section by emphasizing that our 2D simula-
tions can only give qualitative results on the inertio-elastic particle
migration phenomenon. For instance, the present simulations can-
not account for secondary flows that may arise in viscoelastic fluids
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with a non-zero second normal stress difference flowing in non-
circular channels (see, e.g., Refs. [36,37]).

5. Conclusions

In this work, the effects of inertia and viscoelasticity on the
cross-streamline migration of a single solid particle in a viscoelas-
tic shear thinning fluid under Poiseuille flow have been investi-
gated through 2D direct numerical simulations.

The model equations have been solved through the finite ele-
ment method. A DEVSS-G/SUPG formulation with a log-representa-
tion of the conformation tensor is used to guarantee numerical
convergence at relatively large Reynolds numbers, and for Deborah
numbers up to unity. The ALE method is adopted to manage the par-
ticle motion, assuring high accuracy around the particle surface. The
code has been validated by comparison with previous numerical

results (also obtained by other groups), demonstrating the ability
to correctly predict the purely inertial and purely viscoelastic
behaviors, which represent our limiting situations.

The migration dynamics has been found to depend on the com-
petition between inertia, that drives the particles towards a certain
position along the gap, and viscoelasticity, that promotes migra-
tion to the wall and the centerline, depending on the initial posi-
tion of the particle. For comparable values of Deborah and
Reynolds numbers, the migration is dominated by fluid viscoelas-
ticity. Our simulations show that inertial effects start to become
relevant as the Reynolds number is at least two order of magni-
tudes higher than the Deborah number.

For moderate and high Reynolds numbers, the transition from
the viscoelasticity-driven to the inertia-driven regimes occurs
through two intermediate regimes, characterized by multiple sta-
ble equilibrium positions. The solution diagram shows the exis-
tence of two bifurcations, a saddle-node and a pitchfork, that
determine the establishment of a hysteresis loop.

In contrast, at low Reynolds numbers, the saddle-node bifurca-
tion disappears and, by reducing the Deborah number, the stable
equilibrium point moves from the axis towards intermediate posi-
tions in the midgap.

The results presented in this work point out the complex
dynamic behavior of a particle migrating in a fluid under Poiseuille
flow as both inertia and viscoelasticity are relevant. The simula-
tions carried out require highly refined meshes and small time
steps to assure spatial and time independence, especially at high
Reynolds and Deborah numbers. Hence, a similar detailed analysis
through 3D simulations would require huge computational
resources (e.g. high performance computing environment) and
code parallelization. Although limited to 2D, the analysis qualita-
tively highlights the appearance of new regimes that are not possi-
ble when only one of the two effects is present. Therefore, care
must be taken when dealing with technological applications
exploiting particle migration in an inertio-elastic regime. On the
other hand, the increasing number of stable positions might sug-
gest novel technologies for particle manipulation.
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