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DEGREE DISTRIBUTION OF SHORTEST PATH TREES AND BIAS OF

NETWORK SAMPLING ALGORITHMS

SHANKAR BHAMIDI1, JESSE GOODMAN2, REMCO VAN DER HOFSTAD3,

AND JÚLIA KOMJÁTHY3

Abstract. In this article, we explicitly derive the limiting distribution of the degree

distribution of the shortest path tree from a single source on various random network

models with edge weights. We determine the power-law exponent of the degree distribution
of this tree and compare it to the degree distribution of the original graph. We perform

this analysis for the complete graph with edge weights that are powers of exponential

random variables (weak disorder in the stochastic mean-field model of distance) as well
as on the configuration model with edge-weights drawn according to any continuous
distribution. In the latter, the focus is on settings where the degrees obey a power law,
and we show that the shortest path tree again obeys a power law with the same degree

power-law exponent. We also consider random r-regular graphs for large r, and show
that the degree distribution of the shortest path tree is closely related to the shortest
path tree for the stochastic mean field model of distance. We use our results to explain

an empirically observed bias in network sampling methods. This is part of a general
program initiated in previous works by Bhamidi, van der Hofstad and Hooghiemstra
[7, 8, 6] of analyzing the effect of attaching random edge lengths on the geometry of

random network models.

1. Introduction

In the last few years, there has been an enormous amount of empirical work in under-
standing properties of real-world networks, especially data transmission networks such as
the Internet. One functional which has witnessed intense study and motivated an enormous
amount of literature is the degree distribution of the network. Many real-world networks are
observed to have a heavy-tailed degree distribution. More precisely, empirical data suggest
that if we look at the empirical proportion p̂k of nodes with degree k, then

p̂k ≈ 1/kτ , k →∞. (1.1)

The quantity τ is called the degree exponent of the network and plays an important role in
predicting a wide variety of properties, ranging from the typical distance between different
nodes, robustness and fragility of the network, to diffusion properties of viruses and epidemics,
see [24, 18, 16, 31, 17, 32] and the references therein.
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In practice, such network properties often cannot be directly measured and are estimated
via indirect observations. The degree of a given node, or whether two given nodes are linked
by an edge, may not be directly observable. One method to overcome this issue is to send
probes from a single source node to every other node in the network, tracking the paths that
these probes follow. This procedure, known as multicast, gives partial information about
the underlying network, from which the true structure of the network must be inferred, see
[21, 15, 22, 33, 29, 1].

Probes sent between nodes to explore the structure of such networks are assumed to follow
shortest paths in the following sense. These networks are described not only by their graph
structure but also by costs or weights across edges, representing congestion across the edge
or economic costs for using the edge. The total weight of any given path is the sum of edge
weights along the path. Given a source node and a destination node, a shortest path is a
(potentially non-unique) path joining these nodes with smallest total weight. It is generally
believed that the path that data actually takes is not the shortest path, but that the shortest
path is an acceptable approximation of the actual path. For our models, the shortest paths
between vertices will always be unique.

For a given source node, the union of the shortest paths to all other nodes of the network
defines a subgraph of the underlying network, representing the part of the network that can
be inferred from the multicast procedure. When all shortest paths are unique, which we
assume henceforth, this subgraph is a tree, called the shortest path tree. This will be the
main object of study in this paper.

Given the shortest path tree and its degree distribution, one can then attempt to infer
the degree distribution of the whole network. Empirical studies such as [1, 29] show that
this may create a bias, in the sense that the observed degree distribution of the tree might
differ significantly from the degree distribution of the underlying network. Thus a theoretical
understanding of the shortest path tree, including its degree distribution and the lengths of
paths between typical nodes, is of paramount interest.

By definition, the unique path in the shortest path tree from the source vs to any given
target vertex vt is the shortest path in the weighted network between vs and vt. Thus, the
shortest path tree minimizes path lengths, not the total weight of a spanning tree. Hence it
is different from the minimal spanning tree, the tree for which the total weight over all edges
is the tree is minimal. The last few years have seen a lot of interest in the statistical physics
community for the study of disordered random systems which bridge these two regimes, with
models proposed to interpolate between the shortest weight regime (first passage percolation
or weak disorder) and the minimal spanning tree regime (strong disorder), see [14]. Consider
a connected graph Gn = (Vn, En) on n vertices with edge lengths Ln := {le : e ∈ En}. Now fix
disorder parameter s ∈ R+, change the edge weights to Ln(s) := {lse : e ∈ Gn}, and consider
the shortest paths corresponding to the weights Ln(s). For finite s, this is called the weak
disorder regime. As s → ∞, it is easy to check that the optimal path between any two
vertices converges to the path in the between these two vertices minimal spanning tree where
one uses the original edge weights L(n) to construct the minimal spanning tree. This is
called the strong disorder regime. The parameter s allows one to interpolate between
these two regimes. Understanding properties of the shortest path tree and its dependence on
the parameter s is then of relevance.

The aim of this paper is to study the degree distribution of shortest path trees, motivated
by these questions from network sampling and statistical physics.

1.1. Mathematical model. In order to gain insight into these properties, we need to model
(a) the underlying networks and (b) the edge weights. We shall study two main settings in
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this paper, the first motivated by network sampling issues and the second to understand
weak disorder models.

(a) Configuration model with arbitrary edge weights: An array of models have
been proposed to capture the structure of empirical networks, including preferential
attachment-type models [5, 12, 13] and, what is relevant to this study, the configuration
model CMn(d) ([11, 30]) on n vertices given a degree sequence dn = (d1, . . . , dn) which
is constructed as follows. Let [n] := {1, 2, . . . n} denote the vertex set of the graph. To
vertex i ∈ [n], attach di half-edges and write `n =

∑
i∈[n] di for the total degree, assumed

to be even. (For di drawn independently from a common degree distribution D, `n may
be odd; if so, select one of the di uniformly at random and increase it by 1). Number the
half-edges in any arbitrary order from 1 to `n, and sequentially pair them uniformly at
random to form complete edges. More precisely, at each stage pick an arbitrary unpaired
half-edge and pair it to another uniformly chosen unpaired half-edge to form an edge.
Once paired, remove the two half-edges from the set of unpaired half-edges and continue
the procedure until all half-edges are paired. Call the resulting multi-graph CMn(d).
Although self-loops and multiple edges may occur, under mild conditions on the degree
sequence d, these become rare as n→∞ (see for example [28] or [11] for more precise
results in this direction). For the edge weight distribution, we will assume any continuous
distribution with a density. In the case of infinite-variance degrees, we need to make
stronger assumptions and only work with exponential edge weights and independent and
identically distributed (i.i.d.) degrees having a power-law distribution.

(b) Weak disorder and the stochastic mean-field model: The complete graph can
serve as an easy mean-field model for data transmission, and for many observables, it
gives a reasonably good approximation to the empirical data, see [36]. The complete
graph with random exponential mean one edge weights is often refered to as the stochastic
mean-field model of distance and has been one of the standard workhorses of probabilistic
combinatorial optimization, see [27, 2, 3, 37] and the references therein. In this context,
we consider the weak disorder model where, with s > 0 fixed, the edge lengths are
i.i.d. copies of Es, where E has an exponential distribution with mean one. In [27], the
optimal paths were analyzed when s = 1, and in [10] the case of general s was studied
as a mathematically tractable model of weak disorder.

1.2. Our contribution. We rigorously analyze the asymptotic degree distribution of the
shortest path tree in the two settings described above. We give an explicit probabilistic
description of the limiting degree distribution that is intimately connected to the random
fluctuations of the length of the optimal path. These in turn are intimately connected
to Bellman-Harris-Jagers continuous-time branching processes (CTBP) describing local
neighborhoods in these graphs. By analyzing these random fluctuations, we prove that the
limiting degree distribution has markedly different behaviour depending on the underlying
graph:

(i) Configuration model: The shortest path tree has the same degree exponent τ as
the underlying graph for any continuous edge weight distribution when τ > 3, and for
exponential mean one edge weights when τ ∈ (2, 3). This reflects the fact that, for a
vertex of unusually high degree in the underlying graph, almost all of its adjoining
edges (if τ > 3) or a positive fraction of its adjoining edges (if 2 < τ < 3) are likely to
belong to the shortest path tree. See Figure 1.

(ii) Weak disorder: Here the limiting degree distribution of the shortest path tree has an
exponential or stretched exponential tail depending on the temperature s. Furthermore,
this limiting degree distribution arises as the limit r → ∞ of the limiting degree
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Figure 1. Empirical distributions of underlying degrees (“truth”) in the
full graph and observed degrees (“tree”) in the shortest path tree, shown in
log-log scale. The vertical axis measures the tail proportion qk =

∑
j≥k p̂

(n)

j

of vertices having degree at least k. The underlying graphs are realizations
of the configuration model on n vertices with power-law degree distributions
having exponent τ (and minimal degree 5 so as to ensure connectivity).
Edge weights are i.i.d. exponential variables.

distribution for the r-regular graph when the edge weights are exponential variables
raised to the power s; see Figure 2 for the case s = 1.

1.3. Notation. In stating our results, we shall write vs and vt for two vertices (the ‘source’
and the ‘target’) chosen uniformly and independently from a graph Gn on vertex set [n] =
{1, . . . , n}, which will either be the complete graph or a realization of the configuration
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Figure 2. Empirical distributions of observed degrees in the shortest path
tree. At left, both the degree k and the tail proportion qk =

∑
j≥k p̂

(n)

j of
vertices having degree at least k are shown in logarithmic scale; at right,
only qk is shown in logarithmic scale. The underlying graph is a random
r-regular graph, r = 100, on n = 100000 vertices. The blue line in the
right-hand graph is the curve q = 2−k, corresponding to the Geometric(1/2)
distribution. Edge weights are i.i.d. exponential variables.

model. For the configuration model, we write dv for the degree of vertex v ∈ [n]. On the
edges of Gn we place i.i.d. positive edge weights Ye drawn from a continuous distribution.
We denote by Tn the shortest path tree from vertex vs, i.e., the union over all vertices v 6= vs
of the (a.s. unique) optimal path from vs to v. We write degTn(v) for the degree of vertex

v in the shortest path tree and p̂(n)

k for the proportion of vertices having degree k in the
shortest path tree.

We write E for an exponential variable of mean 1 and Λ
d
= log(1/E) for a standard

Gumbel variable, i.e., P(Λ ≤ x) = exp(−e−x).

1.4. Organization of the paper. We describe our results in Section 2 and set up the
necessary mathematical constructs for the proof in Section 3. Theorems about convergence
of the degree distribution have three parts:

� part (a) describes the limiting degree distribution of a uniformly chosen vertex in the
shortest path tree; this is proved in Section 4,

� part (b) states the convergence of the empirical degree distribution in the shortest
path tree to the asserted limit from part (a); this is proved in Section 5,

� part (c) identifies the limiting expected degree in the shortest path tree; this is proved
in Section 6.

Section 2 also contains results about the tail behaviour of the degrees in the shortest path
tree, proved in Section 7, and a link between the limiting degree distributions and those for
breadth-first tree setting, proved in Section 8.

2. Main results and discussion

We now set out our main results.
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2.1. Weak disorder in the stochastic mean-field model. Let Gn(s) denote the complete
graph with each edge e equipped with an i.i.d. edge weight le = Es where E ∼ exp(1) and
s > 0. Here we describe our results for the shortest path tree Tn := Tn(s) from a randomly
selected vertex. Let Ei, i = 1, 2, . . . , denote independent copies of E. Define X1 < X2 < · · ·
by

Xi = (E1 + · · ·+ Ei)
s; (2.1)

equivalently, (Xi)i≥1 are the ordered points of a Poisson point process with intensity measure

dµs(x) = 1
sx

1/s−1dx. (2.2)

Let Γ(·) be the Gamma function and set

λs = Γ(1 + 1/s)s; (2.3)

a short calculation verifies that
∫∞

0
e−λsxdµs(x) = 1. Then there is a unique random variable

W with W > 0 and E(W ) = 1 whose law satisfies the recursive distributional equation

W
d
=
∑
i≥1

e−λsXiWi, (2.4)

where W1,W2, . . . are i.i.d. copies of W .
Our first theorem describes the degrees in the shortest path tree for the weak-disorder

regime from Section 1:

Theorem 2.1. Let s > 0 and place i.i.d. positive edge weights with distribution Es on the
edges of the complete graph Kn. Let (Xi)i≥1 be as in (2.1), let (Λi)i≥1 be i.i.d. standard
Gumbel variables, and let (Wi)i≥1 be an i.i.d. sequence of copies of W . Then:

(a) The degree degTn(Vn) of a uniformly chosen vertex in the shortest path tree converges

in distribution to the random variable D̂ defined by

D̂ = 1 +
∑
i≥1

1{Λi+logWi+λsXi<M}, with M = max
i∈N

(Λi + logWi − λsXi). (2.5)

(b) The empirical degree distribution in the shortest path tree converges in probability as
n→∞,

p̂(n)

k =
1

n

∑
v∈[n]

1{degTn (v)=k}
P−→ P(D̂ = k). (2.6)

(c) The expected degree E[degTn(Vn)] of a uniformly chosen vertex in the shortest path
tree tends to 2, i.e., as n→∞,

E[degTn(Vn)]→ E[D̂] = 2. (2.7)

The following theorem describes the tail of the degree distribution in the tree in terms of
the exponent s on the exponential weights.

Theorem 2.2. Let s > 0 and place i.i.d. positive edge weights with distribution Es on the
edges of the complete graph Kn.

(a) For s = 1, the variable D̂ defined by (2.5) is a Geometric random variable with
parameter 1

2 . Then:
(b) For s < 1 and k →∞,

logP
(
D̂ = k

)
∼ −λsks.

(c) For s > 1 and k →∞,

logP
(
D̂ = k

)
∼ −(1− 1/s)k log k.
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Theorem 2.2 shows that the tail asymptotics of D̂ decay less rapidly when s becomes
small. Note that the boundary case s = 0 corresponds to constant edge weights. However,
λs → ∞ as s → 0, and Theorem 2.2 is not uniform over s. Indeed, the limit s → 0 is
surprisingly subtle, see [19].

2.2. The configuration model with finite-variance degrees. We next consider the
configuration model for rather general degree sequences dn, which may be either deterministic
or random, subject to the following convergence and integrability conditions. To formulate
these, we think of dn as fixed and choose a vertex Vn uniformly from [n]. We write dv for
the degree of v in the original graph. Then the distribution of dVn is the distribution of the
degree of a uniformly chosen vertex Vn, conditional on the degree sequence dn. We assume
throughout that dv ≥ 2 for each v ∈ [n].

Condition 2.3 (Degree regularity). The degrees dVn satisfy dVn ≥ 2 a.s. and, for some
random variable D with P(D > 2) > 0 and E(D2) <∞,

dVn
d−→ D, E(d2

Vn)→ E(D2). (2.8)

Furthermore, for any sequence an →∞,

lim sup
n→∞

E(d2
Vn log+(dVn/an)) = 0. (2.9)

In the case where dn is itself random, we require that the convergences in Condition 2.3
hold in probability. In particular, Condition 2.3 is satisfied when d1, . . . , dn are i.i.d. copies
of D and E(D2 logD) <∞.

Define the size-biased random variable D? of D by

P(D? = k) =
(k + 1)P(D = k + 1)

E(D)
. (2.10)

We define ν = E(D?); it is easily checked that ν = E[D(D − 1)]/E[D]. The assumptions
dVn ≥ 2 and P(D > 2) > 0 imply that ν > 1.

We take the edge weights to be i.i.d. copies of a random variable Y > 0 with a continuous
distribution. Since ν > 1, we may define the Malthusian parameter λ ∈ (0,∞) by the
requirement that

νE(e−λY ) = 1. (2.11)

Then there is a random variable W whose law is uniquely defined by the requirements that
W > 0, E(W ) = 1, and

W
d
=

D?∑
i=1

e−λYiWi, (2.12)

where W1,W2, . . . are i.i.d. copies of W .
The next theorem, the counterpart of Theorem 2.1, is about the degrees in the shortest

path tree in the configuration model:

Theorem 2.4. On the edges of the configuration model where the degree sequences dn satisfy
Condition 2.3 with limiting degree distribution D, place as edge weights i.i.d. copies of a
random variable Y > 0 with a continuous distribution. Let (Λi)i≥1, (Wi)i≥1, and (Yi)i≥1 be
i.i.d. copies of Λ, W , and Y , respectively. Then:

(a) The degree degTn(Vn) of a uniformly chosen vertex in the shortest path tree converges

in distribution to the random variable D̂ defined by

D̂ = 1 +

D∑
i=1

1{Λi+logWi+λYi<M}, with M = max
1≤i≤D

(Λi + logWi − λYi) . (2.13)
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(b) The empirical degree distribution in the shortest path tree converges in probability:

p̂(n)

k =
1

n

∑
v∈[n]

1{degTn (v)=k}
P−→ P(D̂ = k), as n→∞. (2.14)

(c) The expected degree E[degTn(Vn)] of a uniformly chosen vertex in the shortest path
tree tends to 2, i.e.,

E[degTn(Vn)]→ E[D̂] = 2. (2.15)

In (2.13), the behaviour of D̂ depends strongly on the value of D, and in particular D̂ ≤ D
a.s. (This bound is clear in the original degree problem; to see it from (2.13), note that the
summand for which M = Λi + logWi − λYi must vanish.) Thus very large observed degrees

D̂ must arise from even larger original degrees D. To understand this relationship, we define

a family of random variables (D̂k)∞k=1 by

D̂k = 1 +
k∑
i=1

1{Λi+logWi+λYi<Mk}, with Mk = max
1≤i≤k

(Λi + logWi − λYi) . (2.16)

The distribution of D̂k corresponds to the limiting distribution of degTn(Vn) when, instead

of being selected uniformly, Vn is conditioned to have degree k. The limiting distribution D̂
from (2.13) is then the composition

D̂
d
= D̂D, (2.17)

where D has the asymptotic degree distribution from Condition 2.3.

As well as depending on k, the distribution of D̂k depends on λ > 0 and on the distributions
of (Λi)i≥1, (Wi)i≥1 and (Yi)i≥1, which we always assume to be i.i.d. copies of Λ, W and Y ,
respectively. We omit this dependence from the notation.

The asymptotic behaviour of D̂ is established by large values of D, hence we study D̂k in
the limit k →∞. The following theorem shows that the form of (2.13) and (2.16) determines
the asymptotic behaviour under very general conditions.

Theorem 2.5. Define D̂k according to (2.16), where the variables (Λi)i≥1, (Wi)i≥1 and
(Yi)i≥1 are i.i.d. copies of arbitrary random variables Λ,W, Y , independently for each i ∈ N,
with Y > 0 a.s. If P(Λ > x) > 0 for each x ∈ R, or if P(W > x) > 0 for each x ∈ R, then

D̂k = k(1− oP(1)) as k →∞.

Theorem 2.5 shows that the proportion of summands in (2.16) that do not contribute to

D̂k tends to 0. In words, if the vertex has large degree in the original graph, then it is likely
that almost all of the outgoing edges will be revealed by the shortest path tree.

On the contrary, the next result shows that under certain circumstances the order of
magnitude of the error is not necessarily small, i.e., finite behaviour might modify the
empirical data significantly compared to the true limit behaviour. We pay particular
attention to the case when the edge weights (Yi)i≥1 are i.i.d. exponential or uniform variables.
In these cases we can determine the precise asymptotic order of magnitude of the difference
between the degrees in the original graph and in the shortest path tree.

Theorem 2.6. Define D̂k,Mk according to (2.16), where the variables (Λi)i≥1, (Wi)i≥1

and (Yi)i≥1 are i.i.d. copies of a Gumbel variable Λ, a positive random variable W with
E(W ) <∞, and a positive random variable Y . Then:

(a) Mk = log k +OP(1) as k →∞.

(b) If E(eλY ) <∞, then k − D̂k is tight.
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(c) If Y is a standard exponential variable and the Malthusian parameter λ satisfies
λ > 1, then

k − D̂k = ΘP(k1−1/λ). (2.18)

(d) If Y is a standard exponential variable and λ = 1, then

k − D̂k = ΘP(log k). (2.19)

Theorem 2.6(b) applies to the setting where Y is a standard exponential variable and
0 < λ < 1. Interestingly, for the CM with exponential edge weights, one has λ = ν−1, where
we recall that ν = E[D(D − 1)]/E[D] denotes the expected forward degree. Thus, λ ∈ (0, 1)
precisely when ν ∈ (1, 2). The other cases are treated in Theorem 2.6(c) and 2.6(d), where
the behaviour is really different. Further, Theorem 2.6(b) applies to the setting where Y is a
uniform random variable, regardless of the value of λ.

An immediate consequence is the following corollary, handling the case of i.i.d. degrees
with power-law exponent τ > 3. Here we shall assume that the distribution function
F (x) = P(D ≤ x) of the underlying degrees satisfies

1− F (x) = x1−τL(x), (2.20)

where x 7→ L(x) is a slowly varying function as x→∞.

Corollary 2.7. Suppose that the configuration model degrees are i.i.d. copies of a random
variable D whose distribution function satisfies (2.20) with τ > 3. Then

(a) conditional on {D = k}, we have D̂ = D(1− oP(1)) in the limit k →∞; and

(b) the distribution function of D̂ satisfies (2.20) also, for the same τ .

If in addition ν > 2 and the edge weights are exponentially distributed, then

(c) conditional on {D = k}, we have D − D̂ = ΘP(k1−1/(ν−1)) in the limit k →∞.

Corollary 2.7 (a) and (b) show that large degrees are asymptotically fully detected in the

shortest path tree. Corollary 2.7 (c) provides a counterpoint by showing that D̂, though
asymptotically of the same order as D, may nevertheless be substantially smaller when D is
of moderate size. Furthermore, this effect is accentuated when ν is large.

Note that Theorems 2.5–2.6 and thus Corollary 2.7 rely heavily on the fact that the
underlying degree distribution and the Malthusian parameter λ stay fixed whereas k is
large. In other words, these results pertain to a single vertex of unusually large degree.
In particular, Theorems 2.5–2.6 do not hold for the random k-regular graph in the limit
k →∞. In that case every vertex – not just the target vertex – has degree k and hence the
Malthusian parameter λ = k − 1 tends to infinity together with the degree k. In the context
of an r-regular graph, Theorems 2.5–2.6 apply instead to the asymptotic degree behaviour of
a vertex of degree k added artificially to the random r-regular graph on n vertices, with r
fixed, k � r and n→∞.

2.3. The configuration model with infinite-variance degrees. Section 2.2 treats the
configuration model with degree distribution having a finite limiting variance. However,
in many real-life networks, this is not the case. Quite often, the available empirical work
suggests that the degrees in the network follow a power-law distribution with exponent
τ ∈ (2, 3).

Thus, throughout this section we shall have in mind that the degrees d1, . . . , dn of the
configuration model are i.i.d. copies of D, where D ≥ 2 a.s. and the distribution function
F (x) = P(D ≤ x) satisfies (2.20) for 2 < τ < 3 and x 7→ L(x) a slowly varying function
as x → ∞. We further assume that the edge weights are standard exponential random
variables.
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In the parameter range 2 < τ < 3, the degree distribution has finite mean but infinite
variance. Hence the size-biased distribution in (2.10) is well defined, but has infinite mean,
and the Malthusian parameter in (2.11) does not exist. Instead, let V be the positive random
variable uniquely characterized by the requirement that

V
d
= min

i=1,...,D?
(Ei + Vi), (2.21)

where Ei and Vi are i.i.d. copies of E and V , respectively.
Our next theorem describes the behaviour of degrees in the shortest path tree on the

configuration model with i.i.d. infinite-variance degrees, and exponential edge weights:

Theorem 2.8. On the edges of the configuration model whose degree sequence dn is given by
independent copies of D, where the distribution function of D satisfies (2.20) with τ ∈ (2, 3),
place i.i.d. edge weights distributed as E, an exponential random variable of mean 1. Let
(Vi)i≥1 and (Ei)i≥1 be i.i.d. copies of V and E, respectively. Then:

(a) The degree degTn(Vn) of a uniformly chosen vertex in the shortest path tree converges

in distribution to the random variable D̂ defined by

D̂ = 1 +

D∑
i=1

1{Vi−Ei>ξ}, with ξ = min
1≤i≤D

(Vi + Ei). (2.22)

(b) The empirical degree distribution in the shortest path tree converges in probability:

p̂(n)

k =
1

n

∑
v∈[n]

1{degTn (v)=k}
P−→ P(D̂ = k). (2.23)

(c) The expected degree E[degTn(Vn)] of a uniformly chosen vertex in the shortest path
tree tends to 2, i.e.,

E[degTn(Vn)]→ E[D̂] = 2. (2.24)

As in Section 2.2, we wish to understand the asymptotic behaviour of the degrees by
looking at vertices with large original degree. Thus, we define a family of random variables

(D̂k)∞k=1 by

D̂k = 1 +

k∑
i=1

1{Vi−Ei>ξk}, with ξk = min
1≤i≤k

(Vi + Ei). (2.25)

Then the following theorem describes the degree in the shortest path tree of a vertex
conditioned to have a large original degree:

Theorem 2.9. Define D̂k according to (2.25), where the variables (Vi)i≥1 and (Ei)i≥1 are
i.i.d. copies of arbitrary continuous positive random variables V and E, respectively. If
P(V < x) and P(E < x) are positive for each x > 0, then p = P(V > E) satisfies 0 < p < 1
and, as k →∞,

D̂k = p·k ·(1 + oP(1)). (2.26)

Theorem 2.9 asserts that an asymptotic fraction p (neither 0 nor 1) of the summands in

(2.25) contribute to D̂k. Compared to Theorem 2.5, where p = 1, the difference stems from
the fact that V is supported on (0,∞) whereas Λ + logW is supported on (−∞,∞).

Corollary 2.10. If the distribution function of the configuration model degrees D satisfies
(2.20) with τ ∈ (2, 3), then

(a) conditional on {D = k}, we have D̂ = p·D·(1 + oP(1)) in the limit k →∞; and

(b) the distribution function of D̂ satisfies (2.20) also, for the same τ .
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2.4. Discussion. In this section, we discuss our results and compare them to existing
literature.

2.4.1. Convergence to the limiting degree distribution. Part (a) of Theorems 2.1, 2.4
and 2.8 states that the degree distribution of a single uniformly selected vertex converges to

the distribution of D̂. Part (b) strengthens this to state that the empirical degree distribution
converges in probability, i.e., the (random) proportion of vertices of degree k in the shortest

path tree Tn is with high probability close to the limiting value P(D̂ = k), for all k. Finally,
part (c) states that the convergence of the degree distribution from part (a) also happens in
expectation.

Note that these convergences are not uniform over the choice of original degree distribution
or edge weight distribution: see the remarks following Theorem 2.2 and Corollary 2.7.

2.4.2. Degree exponents, bias and the effect of randomness. If the initial graph is
the configuration model whose original degrees obey a power law with exponent τ , then
Theorems 2.5 and 2.9 show that in both cases the power-law exponent τ is preserved via
the shortest path tree sampling procedure.1 In particular, if the degrees from a shortest
path tree are used to infer the power-law exponent τ , then asymptotically they will do so
correctly.

In the literature, several papers consider the question of bias. Namely, do the observed
degrees arising from network algorithms accurately reflect the true underlying degree distri-
bution, or can they exhibit power law behaviour with a modified or spurious exponent τ̃?
This question has drawn particular attention in the setting of the breadth-first search tree
(BFST), where paths are explored in breadth-first order according to their number of edges,
instead of according to their total edge weight. Exact analysis [1] and numerical simulations
[29] have shown that the BFST can produce an apparent bias, in the sense that observed
degree distributions appear to follow a power law, for a relatively wide range of degrees, when
the true distribution does not. Surprisingly, this phenomenon occurs even in the random
r-regular graph, where all vertices have degree r: defining

a(r)

k =
Γ(r)Γ(k − 1 + 1/(r − 2))

(r − 2)Γ(r + 1/(r − 2))Γ(k)
, (2.27)

the limiting degree distribution D̂BFST satisfies

P(D̂BFST = k) = a(r)

k if 1 ≤ k ≤ r, and a(r)

k ≈
1

r · k1−1/(r−2)
as k →∞. (2.28)

(See [1, Section 6.1]; note that the requirement k ≤ r is not mentioned in their discussion.)
In this case, since the underlying degrees are bounded, the power law in (2.28) is of course
truncated, and is therefore not a power law in the sense of (1.1) or (2.20).

The breadth-first search tree corresponds in our setup to the non-random case where all
edge weights are 1. Although our proof of Theorem 2.4 relies on a continuous edge weight

distribution, we may nevertheless set Y = 1 in the definition (2.13) of D̂. In this case, we
recover the limiting degree distribution arising from the breadth-first search tree:

Theorem 2.11. Let D be any degree distribution with D ≥ 3 a.s. and E(D2 logD) < ∞,

and set Y = 1. Then with λ and W as in Section 2.2, the limiting degree distribution D̂ from
(2.13) is equal to the limiting degree distribution for the breadth-first search tree identified in
[1, Theorem 2].

1To be precise, this is proved only for τ > 3, for certain parts of the regime τ = 3, and for 2 < τ < 3 with
exponential edge weights.
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In particular, Theorem 2.6 (which makes no assumptions on the edge weights except
positivity) applies to the breadth-first search tree degrees. Consequently, Theorem 2.6 and
Corollary 2.7 must be understood with the caveat that they pertain to true power laws, but
not truncated power laws such as (2.28).

For the truncated power law in (2.28) to look convincingly like a true power law, r must
be relatively large. It is worth noting, however, that the limiting degree distribution is
ill-behaved in the limit r →∞: we have a(r)

1 → 1 and a(r)

k → 0 for k ≥ 2, so that the degree
of a typical vertex converges to 1 and most vertices are leaves. In particular, the truncated
power law in (2.28) disappears in this limit, and the expected degree (which continues to be
2 for each finite r) is reduced to 1 in the limiting distribution.

By way of comparison, the limiting degree distribution for the random r-regular graph
with i.i.d. exponential edge weights (perhaps raised to some power s > 0) is well-behaved in
the limit r →∞, and indeed converges2 to the limiting degree distributions for the complete
graph defined in Section 2.1. By Theorem 2.2, the tails of this distribution decay faster than
a power law, for any s > 0.

Figure 2 shows a simulation of the case r = 100, s = 1, with n = 10000. The observed
degree distribution does not resemble a power law at all, and in fact it agrees very closely
with the Geometric(1/2) distribution which, by Theorem 2.2 (a) and the preceding discussion,
corresponds to the case r →∞. While not a proof, this strongly suggests that the truncated
power laws found in [29, 1] are anomalous and reflect specific choices in the breadth-first
search model. It would be of great interest to understand under what conditions truncated
power laws can be expected to appear in general. It is tempting to conjecture that spurious
power laws do not arise whenever the edge weights are random with support reaching all the
way to 0.

2.4.3. Special cases. The statement of Theorem 2.2 for s = 1 is well-known, since in this
case the shortest path tree is the uniform recursive tree, and the degrees in the uniform
recursive tree can be understood via martingale methods: see for instance [24, Exercise 8.15,
Theorem 8.2]. The proof we give here is different, with the main advantage that it is easier to

generalize to the case s 6= 1. It is based on the representation (2.5) for D̂ together with the
observation that the martingale limit W is a standard exponential variable: see for instance
[24] or [27], or verify directly that E satisfies (2.4).

The r-regular graph on n vertices corresponds to the choice D = r in Theorem 2.4. If
in addition the edge weights are exponential, the martingale limit W can be identified as
a Gamma( r−1

r−2 ,
r−2
r−1 ) random variable, i.e., the variable with Laplace transform φW (u) =

(1 + r−2
r−1u)−(r−1)/(r−2). Even though we can characterize W , however, obtaining an explicit

description of the law of D̂ (for example, through its generating function) appears difficult.

2.4.4. Branching processes: limit random variables W and V . In analyzing the
shortest path tree Tn, it is natural to consider the exploration process, or first passage
percolation, that discovers Tn gradually according to the distance from the source vertex
vs. Starting from the subgraph consisting of vs alone, reveal the original degree dvs . Reveal
whether any of the dvs half-edges associated to vs form self-loops; if any do, remove them from
consideration. (This step is unnecessary in the complete graph case.) For each remaining
half-edge, there is an i.i.d. copy of the edge weight Y . Set t0 = 0. Iteratively, having

2This follows from the convergence of the collection
{
r−sYi

}r

i=1
of rescaled edge weights towards the

Poisson point process (Xi)
∞
i=1, cf. (4.14) and the surrounding material, and the consequent convergence

of the corresponding martingale limits W . Problems related to the unbounded number of terms in (2.5)

and (2.13) can be handled by the observation that the collection
{
r−sYi

}r

i=1
is stochastically dominated by

{Xi}∞i=1 for each r.
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constructed the subgraph with i vertices and i− 1 edges, wait until the first time ti > ti−1

when some new vertex vi can be reached from vs by a path of length ti. (Thus t1 will be
equal to the smallest edge weight incident to vs, apart from self-loops.) Reveal the degree dvi
and add the unique new edge in the path between vi and vs, using one of the dvi half-edges
associated to vi. For the remaining dvi − 1 half-edges, remove any that form self-loops or
that connect to already explored vertices, and iterate this procedure as long as possible. The
subgraph so constructed will be Tn.

When n→∞, no half-edge will form a self-loop or connect to a previously explored vertex
by any fixed stage i of the exploration, for any fixed i. It follows that the exploration process
is well approximated (at least initially) by a continuous-time branching process (CTBP) that
we now describe.

Consider first the configuration model. The vertex vs is uniformly chosen by assumption.
The vertex v1, however, is generally not uniformly chosen. Conditional on vs we have,

P (v1 = v | vs) =
dv1{v 6=vs}∑
w 6=vs dw

. (2.29)

(Note for instance that dv1 can never be 0). Owing to the finite mean assumption on the
CM degrees, it follows that

∑
w 6=vs dw ∼ nE(D) and P (dv1 = k | vs) ≈ kP(D = k)/E(D)

in the limit n → ∞. This size-biasing effect means that the number dvi − 1 of new half-
edges will asymptotically have the size-biased distribution D? defined in (2.10). The CTBP
approximation for the CM is therefore the following: An individual v born at time Tv has a
random finite number Nv of offspring, born at times Tv + Yv,1, . . . , Tv + Yv,Nv . The Yv,i are
i.i.d. copies of Y ; the initial individual vs has family size Nvs = dvs ; and all other individuals

have family size Nv
d
= D?.

For the complete graph, the degrees are deterministic but large, and it is necessary to
rescale the edge weights: the collection of edge weights incident to a vertex, multiplied by ns,
converges towards the Poisson point process (X1, X2, . . . ) defined in (2.1), for a formal version
of this statement, see (4.14) below. The corresponding CTBP is as follows: Every individual
v born at time Tv has an infinite number of offspring, born at times Tv +Xv,1, Tv +Xv,2, . . . ,
where (Xv,1, Xv,2, . . . ) are i.i.d. copies of the Poisson point process defined in (2.1).

The random variables W and V from Sections 2.1–2.3 arise naturally from these CTBPs.
In the complete graph context from Section 2.1–2.2, the CTBPs grow exponentially in time,
with asymptotic population size cW eλt for λ = λs defined by (2.3) and c > 0 a constant, and
indeed W arises as a suitable martingale limit; see [4]. For the CM contexts from Sections
2.2–2.3, we must take the initial individual vs to have degree distribution D? in order to

obtain the variables W and V (instead of Ŵ and V̂ from Section 3 below). When the family
sizes D? have finite mean, as in Section 2.2, the population size again grows asymptotically
as cW eλt for λ given by (2.11). In the setting of Section 2.3, the CTBP explodes in finite
time, i.e., there is an a.s. finite time V = limk→∞ tk at which the population size diverges;
see [23]. The recursive relations (2.4), (2.12) and (2.21) result from conditioning on the size
and birth times of the first generation in the CTBP. In the case of exponential edge weights,
as in Theorem 2.8, there is a different representation of V as

V
d
=
∑
i≥1

Ei

1 +
∑i
j=1(D?

j − 1)
. (2.30)

We note that in all cases, the value of W or V is determined from the initial growth of
the branching process approximations: we can obtain an arbitrarily accurate guess, with
probability arbitrarily close to 1, by examining the CTBP until it reaches a sufficiently large
but finite size. In terms of the exploration process, it is sufficient to examine a large but finite
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neighbourhood of the initial vertex. Large values of W , and small values of V , correspond to
faster than usual growth during this initial period, and thereafter the growth is essentially
deterministic.

In Theorems 2.1 and 2.4, a large value of M might be expected to correspond to one large

value of Wi, and a large value of D̂ might be expected to arise from having many vertices j
with small values of Wj . As we shall see in the proofs, however, this intuition is incorrect,
and it is the variables Λi, and secondarily the edge weights Yi, whose deviations are most

relevant to the sizes of M and D̂.

2.4.5. Shortest path trees and giant components. In Theorems 2.4 and 2.8, the hy-
pothesis D ≥ 2 implies that vs and vt are connected with high probability. If degrees 1
or 0 are possible, we must impose the additional assumption that ν > 1 in Theorem 2.4.
Having made this assumption, the CM will have a giant component, i.e., asymptotically,
the largest component will contain a fixed positive fraction of all vertices, and the next
largest component will contain o(n) vertices. The variable W from Section 2.2 has a positive
probability of being 0, in which case we set logW = −∞, and the variable V from Section
2.3 has a positive probability of being∞. Furthermore, there is a positive probability that Tn
contains only a fixed finite number of vertices, corresponding to the case where the branching
process approximations from Section 2.4.4 go extinct. (This possibility will be reflected

mathematically in the possibilities that Ŵs = 0 in Proposition 3.2 or V̂s =∞ in Proposition
3.3.)

If we condition vs to lie in the giant component (corresponding to non-extinction of the
branching process started from vs) then in the resulting shortest path tree, the outdegree of

vt has the same limiting conditional distribution as D̂ − 1 in Theorems 2.4 and 2.8. The
variable M (respectively, ξ) equals −∞ (respectively, ∞) whenever Wi = 0 (respectively,
Vi =∞) for each i = 1, . . . , D, corresponding to the case that vt does not belong to the giant
component, and in this case the outdegree and the degree of vt are both 0.

2.4.6. Open problems. There are several interesting questions that serve as extensions
of our results. First, as discussed in Section 2.4.2, our results reveal the existence or non-
existence of true power laws, but not truncated power laws. A precise characterization of
situations causing truncated power laws would be of great interest.

Second, many real-life networks have power law behaviour with degree exponent τ ∈ (2, 3).
In this regime where the degrees have infinite variance (as well as part of the regime
τ = 3 when Condition 2.3 is not satisfied), it is natural to extend beyond the exponential
edge weights that we consider. We expect that Theorems 2.8 and 2.9 remain valid with
slight modification if the corresponding CTBP is explosive, i.e., if the CTBP reaches an
infinite population in finite time. When the corresponding CTBP is not explosive, even the

probabilistic form of the limiting distribution D̂ is unknown. Such a representation would in
particular be expected to give rise to the limiting BFST degree distribution, as in Theorem
2.11.

Finally, real-world traceroute sampling typically uses more than just a single source. It is
natural to extend our model to several shortest path trees from different sources. In this
setup, the resulting behaviour might depend on whether we observe, for a given target vertex,
either the degree in each shortest path tree; or the degree in the union of all shortest path
trees; or the entire collection of incident edges in each shortest path tree. In any of these
formulations, we may ask how accurately the observed degree reflects the true degree when
the number of sources is large, and whether this accuracy varies when both the true degree
and the number of sources are large.
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3. Limit theorems for shortest paths

The proofs of Theorems 2.1, 2.4 and 2.8 are based on Propositions 3.1, 3.2 and 3.3
respectively which in turn follow from [10, Theorem 1.1], [9, Theorems 1.2–1.3] and [7,
Theorem 3.2] respectively. These theorems determine the distribution of the shortest paths
between two uniformly chosen vertices in the complete graph, and in the configuration model.
Since we need the results about shortest paths in these theorems jointly across a collection of
several target points, we state only these versions here. These results easily follow from the
results mentioned earlier, together with [35] who proved this for the particular case of the
random r-regular graph with exponential mean one edge lengths, to extend them to several
vertices, however easily extend to the more general situation. We give an idea of how these
results were proven in Section 3.1 but omit full proofs. Our first proposition is about the
joint convergence of shortest weight paths on the complete graph. Recall the notation for W
from Section 2.1.

Proposition 3.1. Consider the complete graph with edge weights distributed as Es, s > 0.
Let v1, . . . , vk be distinct vertices, all distinct from vs, and denote the length of the shortest
path between vs, vi by Cn(vs, vi). Then

(λsn
sCn(vs, vi)− log n)

k
i=1

d−→ (−Λi − logWs − logWi)
k
i=1 , (3.1)

where Λ1, . . . ,Λk are i.i.d. copies of Λ and Ws,W1, . . . ,Wk are i.i.d. copies of the random
variable W from Section 2.1.

Note that, due to the presence of the term logWs, the limiting variables in Proposition
3.1 are exchangeable but not independent for different i. When k = 1, the case s = 1 is due
to [27] and the case s 6= 1 is due to [10].

For the configuration model with finite-variance degrees, we will need to apply a similar
result to the neighbours of the uniformly chosen vertex vt. Since each time we connect a half
edge of vt to another vertex, the probability of picking a vertex of degree k is proportional
to k · P(D = k), these neighbours have degrees converging to the size-biased distribution D?

defined in (2.10), see Section 2.4.4.

Proposition 3.2. Consider the configuration model with degrees satisfying Condition 2.3.
Let v1, . . . , vk be distinct vertices, all distinct from vs, which may be randomly chosen but
whose choice is independent of the configuration model and of the edge weights. If the
degrees (dv1 , . . . , dvk) converge jointly in distribution to independent copies of the size-biased
distribution D?, then there is a constant λ > 0 and a sequence λn → λ such that

(λnCn(vs, vi)− log n)
k
i=1

d−→
(
−Λi − log Ŵs − logWi + c

)k
i=1

, (3.2)

jointly in i = 1, . . . , k, where c is a constant, Λi are i.i.d. copies of Λ, W1, . . . ,Wk are

i.i.d. copies of the variable W from Section 2.2, and Ŵs is a positive random variable, all
independent of one another.

Here the constant c arises as a function of the stable age-distribution of the associated
branching process [9]. Since it does not play a role in the proof, we omit a full description of
this constant.

Finally, we state the corresponding result for the infinite-variance case.

Proposition 3.3. Consider the configuration model with i.i.d. degrees satisfying (2.20) with
τ ∈ (2, 3). Let v1, . . . , vk be distinct vertices, all distinct from vs, which may be randomly
chosen but whose choice is independent of the configuration model and of the edge weights.
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If the degrees (dv1 , . . . , dvk) converge jointly in distribution to independent copies of the
size-biased distribution D?, then

(Cn(vs, vi))
k
i=1

d−→
(
V̂s + Vi

)k
i=1

,

where (Vi)i≥1 are i.i.d. copies of the random variable V from Section 2.3 and V̂s is a random
variable independent of V1, . . . , Vk.

3.1. Idea of the proof. We give the idea behind the proof of Proposition 3.2. The proofs of
the other propositions are similar, using the corresponding branching process approximations
of local neighborhoods as described in Section 2.4.4.

Let {dn : n ≥ 1} be a degree sequence satisfying Condition 2.3 and fix a continuous
positive random variable Y . Let Gn = ([n], En) be the configuration model constructed from
this degree sequence, with En denoting the edge set of the graph, and let the edge weights
{Ye : e ∈ En} be i.i.d. copies of Y .

As in (2.10)–(2.11), we define P(D?
n = k) = (k+1)P(dVn = k+1)/E(dVn) (the size-biasing

of dVn) and the corresponding size-biased expectations νn = E(D?
n), Malthusian parameters

λn satisfying νnE(e−λnY ) = 1, and martingale limitW (n) satisfyingW (n) d
=
∑dVn
i=1 e−λnYiW (n)

i .
Assuming Condition 2.3, we have νn → ν (so that νn > 1 and λn, W (n) are well-defined for

n sufficiently large), λn → λ and W (n) d−→W .

3.1.1. One target vertex: the case k = 1. Let us first summarize the ideas behind [9,
Theorems 1.2–1.3], which derive the asymptotics for the length of the optimal path between
two selected vertices v0, v1 ∈ Gn. To understand this optimal path, think of a fluid flowing
at rate one through the network using the edge lengths, started simultaneously from the two
vertices v0, v1 at time t = 0. When the two flows collide, say at time some time Ξ(1)

n , there
exists one vertex in both flow clusters. This implies that the optimal path is created and the
length of the optimal path is essentially 2Ξ(1)

n .
Write {Fi(t) : t ≥ 0} for the flow process emanating from vertex vi. As described in Section

2.4.4 these flow processes can be approximated by independent Bellman-Harris processes
where each vertex has the size-biased offspring distribution D?

n and lifetime distribution Y .

By [26], the size of both flow processes grow like |Fi(t)| ∼ W̃ (n)

i exp(λnt) as t→∞, where

λn is the Malthusian rate of growth of the branching process and W̃ (n)

i > 0 (owing to the
fact that by assumption our branching processes survive with probability 1) are associated
martingale limits. Furthermore, an analysis of the two exploration processes suggests that
for t > 0, the rate at which one flow cluster picks a vertex from the other flow cluster (thus
creating a collision in a small time interval [t, t+ dt)) is approximately

γn(t) ≈ κ1|F0(t)||F1(t)|
n

≈ κ1
κW̃ (n)

0 W̃ (n)

1 exp(2λnt)

n
t ≥ 0, (3.3)

where the constant κ arises due to a subtle interaction of the stable age distribution of the
associated continuous time branching process with the exploration processes. This suggests
that times of creation of collision edge scales like (2λ)−1 log n, and further the time of birth
of the first collision edge, re-centered by (2λ)−1 log n, converges to the first point Ξ∞ of a
Cox process with rate

γ∞(x) := κW̃0W̃1 exp(2λx), x ∈ R.

It is easy to check that

Ξ∞
d
=

1

2λ

(
−Λ− log W̃0 − log W̃1 + c

)
(3.4)
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where c is a constant depending on λ and κ and Λ has Gumbel distribution independent of

W̃0, W̃1.
In [9], both v0 and v1 are chosen uniformly and therefore have a degree different from

the size-biased degree distribution D?
n associated to the rest of the branching process.

Consequently, W̃ (n)

0 and W̃ (n)

1 are not distributed as the martingale limit W (n) but as a

certain sum Ŵ (n)
s of such variables (with Ŵ (n)

s → Ŵs as n→∞). By contrast, in the setting
of Proposition 3.2 for k = 1, the vertex v1 has the size-biased distribution by assumption,

so that this replacement is not necessary and W̃ (n)

1
d
= W (n) d−→W . Since the length of the

optimal path scales like 2Ξ(1)
n , rearranging (3.4) gives Proposition 3.2 with k = 1.

The actual rigorous proof in [9] is a lot more subtle albeit following the above underlying
idea. The optimal path is formed not quite at time 2Ξn, one has to be keep track of “residual
life-times” of alive vertices, whose asymptotics follow from the stable age-distribution theory
of Jagers and Nerman [25], and so on, leading to the analysis of a much more complicated
Cox process. In the end distributional identities for the Poisson process yield the result
above.

3.1.2. Extension to multiple target vertices: the case k ≥ 2. Let us now describe how one
extends the above result for k = 1 to more general k. For ease of notation, assume k = 2;
the general case follows in an identical fashion. Consider flow emanating from three vertices
vs and v1, v2 simultaneously at t = 0. Arguing as above, one finds that there exist paths P1

and P2 (not necessarily optimal) between vs and v1, v2 such that the respective lengths of

the paths C̃n(vs, v1) and C̃n(vs, v2) satisfy(
λnC̃n(vs, v1)− log n

)2

i=1

d−→ (−Λi − log Ŵs − logWi + c)2
i=1 := W(2) (3.5)

Obviously the length of the optimal paths satisfy Cn(vs, vi) ≤ C̃n(vs, v1) and thus the limit
W(2) above serves as a limiting upper bound (in the distributional sense) to the vector of
lengths of optimal costs properly re-centered.

Cn(2) := (λnCn(vs, v1)− log n)
2
i=1

However, the result holds for k = 2 by the argument in the previous section, thus the
marginals of Cn(2) must converge to the marginals of W(2). This implies that Cn(2)
converges to W(2). See [35] for more details.

4. Convergence of the degree distribution

In this section we prove part (a) of Theorems 2.4, 2.8 and 2.1, since the proof share
similarities. Part (b) and part (c) of these theorems are deferred to Sections 5 and 6. For
the rest of the paper we write

φW (u) := E(exp(−uW )), u ≥ 0, (4.1)

for the Laplace transform of the random variable W which arise as martingale limits of
branching processes and satisfy the recursive distributional equations (2.4) or (2.12).

All three proofs are based on an analysis of optimal path lengths, using the following
characterization of the out-degree of vt:

The out-degree of vt in Tn is the number of immediate neighbours of vt for
which the shortest path from vs passes through vertex vt.

To formalize this, write N for the collection of neighbours of vt in Gn, and let C ′n(vs, v),
v ∈ N , denote the shortest path between vertices vs and v in the modified graph G′n where
the vertex vt, and all edges incident to vt, are excised. Write Yv, v ∈ N , for the weight of
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the edge between v and vt; by construction, the Yv are independent copies of Y , independent
of everything else. Then,

Cn(vs, vt) = min
v∈N

(C ′n(vs, v) + Yv) , (4.2)

and the unique path in Tn from vs to vt passes through the unique vertex U ∈ N for which
Cn(vs, vt) = C ′n(vs, U) + YU . Moreover, the edge between vt and a vertex v ∈ N \ {U}
belongs to Tn if and only if the path from vs to v via vt is shorter than the optimal path
excluding vt. That is,

edge {vt, v} ∈ Tn ⇐⇒ v = U or C ′n(vs, U) + YU + Yv < C ′n(vs, v). (4.3)

Because the alternatives in the right-hand side of (4.3) are mutually exclusive, we can
therefore express the degree of vt as

degTn(Vn) = 1 +
∑
v∈N

1{C′n(vs,U)+YU+Yv<C′n(vs,v)}. (4.4)

First we start with the configuration model. The proofs of part (a) of Theorems 2.4 and
2.8 rely on the asymptotics for optimal path lengths stated in Propositions 3.2 and 3.3.

Proof of Theorem 2.4 (a). Since the original degree dvt converges in distribution to D as
n → ∞, it suffices to condition on {dvt = k} and then show that degTn(Vn) converges in

distribution to D̂k, for each finite value k ∈ N. Having made this conditioning, the event

An,k = {dvt = k, vt 6= vs, |N | = k,N ∩ {vs, vt} = ∅} (4.5)

(i.e., the event that the vertex paired to each of the k stubs from vt, the vertex vs, and the
vertex vt itself are all distinct) occurs with high probability.

It is easy to see that, conditional on the occurence of An,k and the values vt and N , the
graph G′n is equivalent to a configuration model on the n− 1 vertices [n] \ {vt}, where the
degree d′v of vertex v is given by

d′v =

{
dv − 1, v ∈ N ,
dv, v /∈ N .

(4.6)

Conditional on {dvt = k}, let v1, . . . , vk denote the vertices paired to stubs from vt. As
discussed earlier, the vertices (v1, . . . , vk) are chosen with probabilities asymptotically pro-
portional to dv1 · · · dvk . From (4.6) it follows that, conditional on An,k, the modified degrees
(d′v1 , . . . , d

′
vk

) converge jointly in distribution to k independent variables with the size-biased
distribution D? from (2.10). By Proposition 3.2, conditional on An,k, the recentered short-
est paths λn−1C

′
n(vs, vi) − log(n − 1), i = 1, . . . , k, converge jointly in distribution to

− log Ŵs − logWi − Λi + c, i = 1, . . . , k, while the edge weights Yvi are independent copies
of Y . Recall the notation Mk from (2.16). Then (4.2) implies that

λn−1Cn(vs, vt)− log(n− 1)
d−→ min

i=1,...,k

(
− log Ŵs − logWi − Λi + c+ λYi

)
=−Mk − log Ŵs + c,

(4.7)

also jointly with the previous convergences.
On the other hand, if we rescale and recenter the shortest paths in (4.4), then we get

degTn(Vn) = 1 +

k∑
i=1

1{(λn−1Cn(vs,vt)−log(n−1))+λn−1Yvi<(λn−1C′n(vs,vi)−log(n−1))}. (4.8)

The mapping (λn−1C
′
n(vs, vi) − log(n − 1), Yvi)

k
i=1 7→ degTn(Vn) defined by (4.8) is not

continuous. However, the limiting variables (−Λi− log Ŵs− logWi+ c, Yi)
k
i=1 are continuous,
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so the simple discontinuities of the mapping play no role. By combining (4.7) with (4.8), as
well as the fact that λn → λ, we conclude that, conditional on An,k,

degTn(Vn)
d−→ 1 +

k∑
i=1

1{−Mk−log Ŵs+c+λYi<−Λi−log Ŵs−logWi+c}, (4.9)

which simplifies to (2.16). Since dvt
d−→ D, this completes the proof of part (a). �

Now we move to show the corresponding characterization of the degrees in the shortest
path tree in the infinite variance case. The proof is very similar, using Proposition 3.3 in
place of Proposition 3.2.

Proof of Theorem 2.8 (a). For the infinite-variance case, no rescaling or recentering is needed
in (4.4). Define An,k and the modified shortest path lengths C ′n(vs, vi) as in the proof of

Theorem 2.4. Conditional on An,k, Proposition 3.3 gives (C ′n(vs, vi))
k
i=1

d−→ V̂s + Vi and

Cn(vs, vt)
d−→ min

i=1,...,k

(
V̂s + Vi + Ei

)
= V̂s + ξk, (4.10)

so that combining this with (4.4) gives that, conditional on An,k,

degTn(Vn)
d−→ 1 +

∑
i6=U,1≤i≤k

1{V̂s+ξk+Ei<V̂s+Vi}, (4.11)

which reduces to (2.25) and completes the proof. �

Now we aim to prove the similar characterization of the degrees for the complete graph,
i.e., Theorem 2.1 (a). The difficulty in this case is that the degree of vt is not tight, and an
additional argument is needed to show that only neighbours joined to vt by short edges are
likely to contribute to degTn(Vn).

For the purposes of the following lemma, it is convenient to think of Tn as directed away
from the source vertex vs, so that the children of vt are precisely those vertices v for which
vt is the last vertex before v on the shortest path from vs to v. In this formulation, the
out-degree of vt is equal to the number of children of vt in Tn.

Lemma 4.1. Consider the complete graph with the edge cost distribution Es, as in Theorem
2.1. Then, given ε > 0, there exists R <∞ such that, with probability at least 1− ε, every
edge between vt and a child of vt in the shortest-path tree Tn has edge weight at most Rn−s.

Proof. Let ε > 0 be given. By Proposition 3.1 applied for k = 1, we may choose R′ < ∞
such that log n− R′ ≤ λsn

sCn(vs, vt) with probability at least 1− 1
2ε. Assume this event

occurs and suppose in addition that vt has at least one child V in Tn joined to vt by an edge
of weights at least Rn−s. Then

λsn
sCn(vs, V ) ≥ λsns

(
Cn(vs, vt) +Rn−s

)
≥ log n−R′ + λsR, (4.12)

and furthermore vt is the last vertex before V on the optimal path from vs to V . Write N
for the number of vertices v ∈ [n] with these two properties. Since vt is chosen uniformly,
independently of everything else,

P(N > 0) ≤ E(N) ≤
∑
v∈[n]

1

n
P(λsn

sCn(vs, v)− log n ≥ λsR−R′), (4.13)

and the right-hand side is the probability that a uniformly chosen vertex v has λsn
sCn(vs, v)−

log n ≥ λsR−R′. By Proposition 3.1 for k = 1, this probability can be made smaller than
1
2ε by taking R large enough. �



20 BHAMIDI, GOODMAN, VAN DER HOFSTAD, AND KOMJÁTHY

Proof of Theorem 2.1 (a). For the collection of edges incident to vt, write the edge weights
in increasing order as Es1 < · · · < Esn−1, and let v1, . . . , vn−1 denote the corresponding
ordering of the vertices [n] \ {vt}. It is easy to see that the rescaled order statistics
(n− 1)sEs1 , . . . , (n− 1)sEsn−1 converge to the Poisson point process X1, X2, . . . from (2.1),
in the sense that for any k ∈ N, jointly in k and as n→∞,(

(n− 1)sEs1 , . . . , (n− 1)sEsk
) d−→ (X1, . . . , Xk). (4.14)

This follows from the usual convergence of the rescaled order statistics (n− 1)E1 < · · · <
(n− 1)En−1 towards a Poisson point process of unit intensity, together with the fact that
the map x 7→ xs is increasing and continuous.

If vt had only a fixed number k of neighbours, we could complete the proof in the same
way as for Theorems 2.4 and 2.8. We must therefore control the possibilities that (a) some
vertex not belonging to {v1, . . . , vk} (for some k) contributes to the out-degree of vt; and
(b) the last vertex before vt on the shortest path from vs to vt does not belong to {v1, . . . , vk}
for some k.

Let Bn,k denote the event that every child of vt in Tn is one of the vertices {v1, . . . , vk}.
We claim that

lim
k→∞

lim inf
n→∞

P(Bn,k) = 1. (4.15)

Indeed, by a union bound we have that if Bcn,k occurs then either the kth edge weight is too
small or if it is not, then vt has a neighbour in Tn with too large edge-weight:

P(Bcn,k) ≤ P(nsEsk ≤ R) + P(vt has a child v with Yv ≥ Rn−s) (4.16)

But from (4.14) we know that nsEsk
d−→ Xk as n→∞ (the distinction between n and n− 1

being irrelevant in this limit). Since Xk
P−→∞ as k →∞, we can choose R = R(k) in such

a way that

lim
k→∞

lim sup
n→∞

P(nsEsk ≤ R(k)) = 0, (4.17)

and then Lemma 4.1 shows that the second term in (4.16) is also negligible, hence we get
(4.15).

On Bn,k, only the vertices v1, . . . , vk contribute to the out-degree of vt, and (4.4) becomes

degTn(Vn) = 1 +

k∑
i=1

1{Cn(vs,vt)+Esi<C
′
n(vs,vi)} on Bn,k. (4.18)

Since the original graph is the complete graph, the modified graph G′n with vt excluded is
a complete graph on the n − 1 vertices [n] \ {vt}. Since the labeling of v1, . . . , vk depend
only on the excluded edge weights, Proposition 3.1 applies, and we conclude that

(λs(n−1)sC ′n(vs, vi)−log(n−1), (n−1)sEsi )ki=1
d−→ (−Λi−logWs−logWi+c,Xi)

k
i=1 (4.19)

We wish to conclude also that

λs(n− 1)sCn(vs, vt)− log(n− 1)
d−→ −M − logWs + c, (4.20)

jointly with the convergence in (4.19). However, (4.20) does not follow from (4.2) and (4.19);
rather, we obtain only that

λs(n− 1)s min
i=1,...,k

(C ′n(vs, vi) + Esi )
d−→ − max

i=1,...,k
(Λi + logWi − λsXi)− logWs + c, (4.21)

i.e., the maximum is taken only on the first k elements. We will therefore give a separate
argument to show (4.20).
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Set M ′k = maxi=1,...,k (Λi + logWi − λsXi), so that M = supkM
′
k. Further, let (Z, (−Λi−

logWs − logWi + c,Xi)i≥1) denote any subsequential limit of the rescaled shortest paths(
λs(n− 1)sCn(vs, vt)− log(n− 1),

(
λs(n− 1)sC ′n(vs, vi)− log(n− 1), (n− 1)sEsi

)
i=1,...,n−1

)
(4.22)

By (4.21), Z ≤ −M ′k− logWs+c for each k, and therefore Z ≤ −M− logWs+c. It therefore
suffices to show that the marginal distribution of Z is the same as that of −M − logWs + c.
The event that M < m is the event that the number of points (Xi,Λi + logWi) lying in
the region {(x, y) : y − λsx ≥ m} should be 0. Since (Λi)i≥1, (Wi)i≥1 are i.i.d., the collection
(Xi,Λi + logWi)i≥1 forms a Poisson point process on (0,∞)2 with intensity measure dµs ×
P(Λ + logW ∈ ·), and we compute

P(M < m) = exp

(
−
∫ ∞

0

P(Λ + logW ≥ λsx+m)dµs(x)

)
= exp

(
−
∫ ∞

0

P(logE ≤ −λsx−m+ logW )dµs(x)

)
= exp

(
−
∫ ∞

0

E
(
1− exp

(
−W e−λsx−m

))
dµs(x)

)
= exp

(
−
∫ ∞

0

(
1− φW

(
e−λsx−m

))
dµs(x)

)
,

(4.23)

where φW (u) = E(e−uW ) is the Laplace transform of W . The recursive definition (2.4) of W
implies the identity

φW (u) = exp

(
−
∫ ∞

0

(
1− φW (ue−λsx)

)
dµs(x)

)
, (4.24)

so that (4.23) reduces to

P(M < m) = φW (e−m). (4.25)

In particular, we have P(−M − logWs + c ≥ z) = E (φW (Wse
z−c)).

On the other hand, since Z is the limit in distribution of λs(n − 1)sCn(vs, vt) − log n,

Proposition 3.1 implies that Z
d
= −Λ− logWs − logWt + c (the distinction between n and

n− 1 again being irrelevant) and we compute

P(Z > z) = E (P ( logE − logWs − logW ≥ z − c |Ws,W ))

= E
(
exp

(
−WsW ez−c

))
= E

(
φW (Wse

z−c)
)
. (4.26)

This proves (4.20).
We can now complete the proof of Theorem 2.1 (a). Rescale and recenter the edge weights

and apply (4.19)–(4.20) to the right-hand side of (4.18) to conclude that, on Bn,k, degTn(Vn)
is equal to a random variable that converges in distribution to

D̃k = 1 +

k∑
i=1

1{Λi+logWi+λsXi<M}. (4.27)

Since D̂ is finite a.s., it follows that P(D̃k 6= D̂)→ 0 as k →∞. Together with (4.15), this
completes the proof. �

In the course of proving (4.20) (compare (4.25) with the calculation in (4.26)), we have
proved an equality in law between M and Λ + logW , which we record for future reference:
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Lemma 4.2. The random variables M and W from Section 2.1 are related by

M
d
= Λ + logW. (4.28)

Observe that the result of Lemma 4.2 does not apply in the CM setting from Section 2.2
because of size-biasing and depletion-of-points effects.

5. Convergence of the empirical degree distribution

In this section we sketch the proofs of part (b) of Theorems 2.1, 2.4 and 2.8. Since vt
is a uniformly chosen vertex, E(p̂(n)

k ) = P(degTn(Vn) = k)→ P(D̂ = k) by part (a). By an
application of Chebychev’s inequality, it suffices to prove that

P(degTn(vt) = k, degTn(wt) = k)→ P(D̂ = k)2, (5.1)

where wt is another uniformly chosen vertex independent of vt.

Proof of Theorem 2.4 (b). As in the proof of part (a), it suffices to condition on the original
degrees. Fix i, j ∈ N. Conditional on {dvt = i, dwt = j}, the event

An,i,j = {dvt = i, dwt = j, vt, wt, vs,N (vt),N (wt) all distinct}

occurs with high probability. Moreover, Proposition 3.2 holds for the i+ j neighbours of vt
and wt, saying that the re-centered edge weights tend to exchangeable random variables. As
in (4.7) and (4.8), we get that, conditionally on An,i,j ,

degTn(vt)
d−→ 1 +

i∑
l=1

1{
−M(vt)

i −log Ŵs+c+λnYl<−Λl−logWl−log Ŵs+c
},

degTn(wt)
d−→ 1 +

i+j∑
l=i+1

1{
−M(wt)

j −log Ŵs+c+λnYl<−Λl−logWl−log Ŵs+c
},

(5.2)

where M
(vt)
i = maxl=1,...,i(Λl+logWl−λYl) and M

(wt)
j = maxl=i+1,...,i+j(Λl+logWl−λYl).

The terms log Ŵs cancel in (5.2), and it follows that degTn(Vn) and degTn(wt) converge to
independent limits conditional on {dvt = i, dwt = j}. By Condition 2.3, and since vt and wt
are both independent uniform draws from [n], the random variables dvt and dwt converge
jointly to independent copies of D. Thus, it follows that degTn(vt) and degTn(wt) converge

(unconditionally) to independent copies of D̂. In particular, (5.1) holds. �

The proof of Theorem 2.8 (b) is identical, using Proposition 3.3 instead of Proposition 3.2
as in the proof of part (a).

Proof of Theorem 2.1 (b). The idea here is again similar to the proof of Theorem 2.1 (a).
First, arrange the outgoing edge weights from vt and wt separately in increasing order
and multiply by (n − 2)s. Since the weight of the edge between vt and wt diverges un-
der this rescaling, we see that these rescaled edge weights converge to two independent

Poisson processes (X
(vt)
1 , X

(vt)
2 , . . . ) and (X

(wt)
1 , X

(wt)
2 , . . . ). Denote the corresponding two

orderings of vertices by (v1, v2, . . . ) and (w1, w2, . . . ). For any fixed k ∈ N, the vertices
vs, vt, wt, v1, . . . , vk, w1, . . . , wk are all distinct with high probability, and conditional on this
event we can apply Proposition 3.1 to the 2k vertices v1, . . . , vk, w1, . . . , wk. A modification
of the argument from the proof of part (a), as in the discussion following (4.20), shows that
λs(n− 2)sCn(vs, vt)− log(n− 2) and λs(n− 2)sCn(vs, wt)− log(n− 2) converge jointly to
−M (vt) − logWs + c and −M (wt) − logWs + c, where M (vt) and M (wt) are independent; we

leave the details to the reader. With B
(wt)
n,k denoting the analogue of Bn,k with vt replaced
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by wt, we conclude from (4.18) that, on Bn,k ∩B(wt)
n,k , degTn(Vn) and degTn(wt) are equal to

random variables that converge in distribution to independent copies of D̃k. Since Bn,k and

B
(wt)
n,k both satisfy (4.15), we conclude that degTn(Vn), degTn(wt) have independent limits

and (5.1) holds. �

6. Average degrees

In this section we prove part (c) of Theorem 2.1, 2.4 and 2.8. Here we show that the
average of the limiting degree in all the three cases is 2, as one would expect.

Proof of Theorem 2.1 (c). Recall that µs stands for the intensity measure for the ordered

points Xi, as in Section 2.1, and recall the characterization of the degree D̂ in part (a) of
Theorem 2.1. Since Λi+logWi, i ∈ N, are i.i.d. random variables, the points (Xi,Λi+logWi)
form a Poisson point process (PPP) P on R+ × R with the product intensity measure
µs(dx) · P(Λ + logW ∈ dy) (see for instance [34, Proposition 2.2]).

The event that {M ≥ m} is the event that the number of points (Xi,Λi + logWi) lying in
the region {(x′, y′) : y′ − λsx′ ≥ m} is at least 1. Hence, {M ≥ m} is measurable with respect
to the σ-field generated by the restriction of the Poisson point process (Xi,Λi + logWi) to
the infinite upward-facing triangle {(x′, y′) ∈ R+×R : y′ − λsx′ > m}. On the other hand,

a point (x, y) contributes to D̂ if M ≥ y + λsx, and clearly the point (x, y) does not lie in
the infinite upward-facing triangle {(x′, y′) ∈ R+×R : y′ − λsx′ > m = y + λsx}.

Hence, by the independence of PPP points in disjoint sets, conditional on finding a point
(X,Λ + logW ) with value (x, y), the conditional probability of the event {M ≥ y + λsx} is
equal to the unconditional probability, which is 1 − φW (e−y−λsx) by Lemma 4.2. On the
other hand, P(Λ + logW ≤ y) = φW (e−y) implies that the intensity measure for the points
(X,Λ + logW ) is dµs(x)× (−φ′W (e−y))e−ydy. Hence

E(D̂ − 1) = E
( ∑

(x,y)∈{(Xi,Λi+logWi),i∈N}

P(M ≥ y + λsx)

)

=

∫ ∞
0

∫ ∞
−∞

(1− φW (e−y−λsx))(−φ′W (e−y))e−ydy dµs(x)

=

∫ ∞
0

∫ ∞
0

(1− φW (ue−λsx))(−φ′W (u))dudµs(x) (6.1)

by the substitution u = e−y. By the relation (4.24), we obtain

E(D̂ − 1) =

∫ ∞
0

(− log(φW (u)))(−φ′W (u))du =

∫ 1

0

(− log x)dx = 1. �

Next we give a direct proof of the average degree in shortest path tree for the configuration
model with finite-variance degrees.

Proof of Theorem 2.4 (c). Let f(z) = E(zD) denote the probability generating function of
D. Then the probability generating function of D? is f ′(z)/f ′(1), and from (2.12) it follows
that

φW (u) =
f ′
(
E(φW (ue−λY ))

)
f ′(1)

. (6.2)
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In (2.13), partition according to the value of D and use symmetry to see that

E(D̂ − 1) =

∞∑
k=1

P(D = k)kP(Λ1 + logW1 + λY1 < Mk)

=

∞∑
k=1

P(D = k)k (1− P(Λi − logWi − λYi ≤ Λ1 + logW1 + λY1, i = 2, . . . , k))

=

∞∑
k=1

P(D = k)kE
(

1− P (Λ + logW − λY ≤ Λ1 + logW1 + λY1 |Λ1,W1, Y1)
k−1
)

= E
(
f ′(1)− f ′

(
E
(
φW (e−λY−Λ1−logW1−λY1)

∣∣Λ1,W1, Y1

)))
= f ′(1)E

(
1− φW (e−Λ1−logW1−λY1)

)
, (6.3)

by (6.2) with u = e−Λ1−logW1−λY1 . Integrating first over Y1 and using P(Λ + logW ≤ x) =
φW (e−x),

E(D̂ − 1) = f ′(1)

∫ ∞
−∞

(
1− E

(
φW (e−x−λY )

))
(−φ′W (e−x)e−x)dx

= f ′(1)

∫ ∞
0

(
1− E

(
φW (ue−λY )

))
(−φ′W (u))du

= f ′(1)

∫ ∞
0

(
1−

(
f ′
)−1

(f ′(1)φW (u))
)

(−φ′W (u))du

=

∫ 1

0

(1− z)f ′′(z)dz = [(1− z)f ′(z)]10 +

∫ 1

0

f ′(z) = 1, (6.4)

where we used the substitution f ′(z) = f ′(1)φW (u). Here we used f ′(0) = f(0) = 0, which
follows from the assumption that D ≥ 2 a.s. �

Next we give a direct proof for the average degree in the shortest path tree for the
configuration model with infinite-variance degrees.

Proof of Theorem 2.8 (c). In the setting of Theorem 2.8 it is relevant to consider the distri-
bution function FV (x) = P(V ≤ x) instead of the Laplace transform. Then from (2.21) we
obtain

1− FV (x) =
f ′(P(V + E > x))

f ′(1)
. (6.5)

Partition (2.22) according to the value of D and use the continuity of the distibutions to
obtain

E(D̂ − 1) =

∞∑
k=1

P(D = k)kP(V1 − E1 ≥ ξk)

=

∞∑
k=1

P(D = k)kE
(

1− P (Vi + Ei < V1 − E1 |V1, E1)
k−1
)

= E
(
f ′(1)− f ′

(
P (V + E < V1 − E1 |V1, E1)

))
= f ′(1)E

(
FV
(
V1 − E1

))
, (6.6)
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where we applied (6.5) with x = V1 − E1. That is,

E(D̂ − 1) = f ′(1)P(V ≤ V1 − E1) = f ′(1)P(V + E1 ≤ V1)

= f ′(1)

∫ ∞
0

P(V + E ≤ x)F ′V (x)dx

= f ′(1)

∫ ∞
0

[
(f ′)

−1
(f ′(1)(1− FV (x)))

]
F ′V (x)dx

=

∫ 1

0

(1− z)f ′′(z)dz = 1 (6.7)

as before, where we used the substitution f ′(z) = f ′(1)(1− FV (x)). �

Remark 6.1. An alternative proof of part (c) of Theorems 2.4 and 2.8 is the following:
Because vt is a uniformly chosen vertex, we have

En(degTn(Vn)) = E

 1

n

∑
v∈[n]

degTn(v)

 .

The sum of the degrees is twice the number of edges, namely 2(n − 1) since Tn is a tree

on n vertices. Therefore E(degTn(Vn))→ 2. On the other hand, we have degTn(Vn)
d−→ D̂

and degTn(Vn) ≤ dvt
d−→ D. Under the hypotheses of Theorem 2.4 or Theorem 2.8, D

has finite expectation and we can make a dominated convergence argument to show that

E(degTn(Vn)) → E(D̂). Note that this reasoning is not available on the complete graph,
where the original degree dvt diverges.

7. Degree asymptotics

In this section we prove the theorems investigating the asymptotic behaviour of the degrees
in the shortest path tree.

7.1. Degree asymptotics: CM with finite-variance degrees. Now we prove Theorems
2.5 and 2.6. The first theorem tells that almost all the edges of a large degree vertex are
revealed by the shortest path tree. The second one shows that the finite order correction term,
i.e., the number of ‘hidden’ edges, still can be quite large in some edge-weight-distributions.
The main advantage is that in both cases we can use the representation of the degrees in
Theorem 2.4 (a).

Proof of Theorem 2.5. We have P(Λ + logW > x) > 0 for each x ∈ R, by either of the

hypotheses on Λ or W . It follows that Mk
P−→∞ as k →∞. Let ε > 0 be given and choose

x <∞ such that q = P(Λ + logW + λY < x) satisfies q ≥ 1− ε. Then

D̂k ≥
k∑
i=1

1{Λi+logWi+λYi<x} on {Mk > x} , (7.1)

and the right-hand side of the inequality (7.1) is Binomial(k, q). Since P(Mk > x) → 1,

it follows that P(D̂k ≥ k(1 − 2ε)) → 1, and since ε > 0 was arbitrary this shows that

D̂k = k(1− oP(1)). �

Proof of Theorem 2.6. For part (a), recall that Mk is the maximum of k i.i.d. random
variables Λi + logWi − λYi, so, by classic extreme value theory [20], Mk = log k +OP(1) will
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follow if P(Λ + logW − λY > x) � e−x for x sufficiently large. For the upper bound, write
Λ = − logE and use P(E < x) ≤ x for x > 0 to obtain

P(Λ + logW − λY > x) = E
(
P
(
E < W e−λY e−x

∣∣W,Y ))
≤ E

(
W e−λY e−x

)
= O(e−x).

(7.2)

The lower bound follows from P(E < y) ≥ cy for some c > 0, uniformly over y < 1:

P(Λ + logW − λY > x) ≥ E
(
1{W<K}cW e−λY e−x

)
≥ c′e−x (7.3)

for K large enough and x large enough that Ke−x ≤ 1. This finishes the proof of part (a).
For part (b), let ε > 0 be given and choose K < ∞ large enough that P(Mk < log k −

K) < ε. Apply (7.1) with x = log k −K to conclude that, apart from an event of small

probability, D̂k is stochastically larger than a Binomial(k, pk) random variable with pk =

P(Λ + logW + λY < log k − K). To show tightness for k − D̂k, it is therefore sufficient
to show that 1 − pk = O(1/k). (To see the sufficiency, note that we need only show that
the Binomial(k, 1 − pk) distributions are tight, and 1 − pk = O(1/k) implies that these
distributions have a uniformly bounded mean. Alternatively, note that the Binomial(k,C/k)
distribution converges to the Poisson(C) distribution as k →∞.) We compute

1− pk = E (P (−Λ ≤ logW + λY − log k +K |W,Y ))

= E
(
P
(
E ≤ 1

kW eλY eK
∣∣W,Y ))

≤ O(k−1)E
(
W eλY

)
= O(k−1),

(7.4)

since E(W eλY ) <∞ by assumption.
For part (c), suppose λ > 1. For the upper bound, we estimate

1− pk = E (P (λY ≥ log k −K − Λ− logW |Λ,W ))

= P(log k −K − Λ− logW < 0)

+ E
(
1{log k−K−Λ−logW≥0}e

− 1
λ (log k−K−Λ−logW )

)
≤ E

(
P
(
E < eK

k W
∣∣∣W))+ E

(
e−

1
λ (log k−K−Λ−logW )

)
≤ O(1/k)E(W ) +O(k−1/λ)E

(
E−1/λW 1/λ

)
= O(k−1/λ), (7.5)

and it follows that k − D̂k = OP(k
1−1/λ) as in the previous case.

To show the corresponding lower bound, let ε > 0 be given and choose K < ∞ large
enough that P(Mk > log k +K) < ε. Similar to (7.1),

k − D̂k ≥ −1 +

k∑
i=1

1{Λi+logWi+λYi≥log k+K} on {M ≤ log k +K} . (7.6)

We estimate

P(Λ + logW + λY ≥ log k +K)

≥ P(Λ ≤ 0)P(W ≥ δ)P (λY ≥ log k +K + log(1/δ)) ≥ ck−1/λ (7.7)

provided δ > 0 is small enough that P(W ≥ δ) > 0. Therefore, apart from an event of small

probability, k − D̂k + 1 is stochastically larger than a Binomial(k, ck−1/λ) random variable,
and such a variable is itself ΘP(k1−1/λ).

The proof of part (d) is similar. For the upper bound, it suffices to show that 1− pk =
O(k−1 log k). Recall that Λ = − logE and write the standard exponential variable Y as



DEGREE DISTRIBUTION OF SHORTEST PATH TREES 27

Y = − logU , where U is Uniform[0, 1]. Then

1− pk = P(− logE + logW − logU ≥ log k −K) = P(EU ≤W eK/k). (7.8)

Splitting according to the value of U , we can then estimate

P(EU ≤ z) ≤ z + P(U ≥ z, E ≤ z/U) ≤ z +

∫ 1

z

(z/u)du = z(1 + log(1/z)), (7.9)

so that 1 − pk ≤ E
(
(W eK/k)(1 + log k − logW −K)

)
. Note that the term −W logW is

bounded above, so we conclude that 1−pk ≤ O(k−1 log k), as required. Similarly, for the lower

bound, we use P(E ≤ y) ≥ cy for y ≤ 1 to estimate P(EU ≤ z) ≥
∫ 1

z
(cz/u)du = cz log(1/z)

for any z < 1, and we conclude that

P(Λ + logW + Y ≥ log k +K) ≥ P(W ≥ δ)P(EU ≤ δeK/k) ≥ ck−1 log k (7.10)

provided that P(W ≥ δ) > 0 and that k is large enough. �

7.2. Degree asymptotics: CM with infinite-variance degrees. Now we prove that if
the degrees in the configuration model have infinite variance, then the shortest path tree
reveals an asymptotic proportion p of the original degree. The proof of Theorem 2.9 is
similar to the proof of Theorem 2.5, except that here the asymptotic proportion of revealed
edges is p < 1 and we need both upper and lower bounds.

Proof of Theorem 2.9. Recall the notation ξk = mini=1,...,k(Vi +Ei). The hypotheses on V

and E imply that ξk
P−→ 0 as k →∞. Let ε > 0 be given. Since V and E have continuous

distributions, we may choose x > 0 such that p− ε ≤ P(V − E > x) ≤ P(V − E > 0) = p.
Then

k∑
i=1

1{Vi−Ei>x} ≤ D̂k ≤ 1 +

k∑
i=1

1{Vi−Ei>0} on {ξk < x} , (7.11)

and each sum on the left hand side of in (7.11) is Binomial(k, q) for some parameter
q ∈ [p − ε, p]. Since P(ξk < x) → 1, it follows from the concentration of the Binomial

distribution that P(k(p − 2ε) ≤ D̂k ≤ k(p + ε)) → 1, and since ε > 0 was arbitrary this

shows that D̂k = p·k ·(1 + oP(1)).
�

7.3. Degree asymptotics: the complete graph. In this section we prove Theorem 2.2.
This theorem shows that the degree distribution on the shortest path tree Tn behaves very
differently for the complete graph Kn compared to the configuration model CMn(d).

We use the representation of the limiting degree distribution from Theorem 2.1 (a).

Recall that the points
(
Xi

)k
i=1

form a Poisson point process (PPP) with intensity measure

µs(dx) = 1
sx

1/s−1dx on R+. Since Λi + logWi, i ∈ N, are i.i.d. random variables, the points
(Xi,Λi + logWi) form a PPP P on R+ × R (see for instance [34, Proposition 2.2]) with the
product intensity measure µ̃s

µ̃s(dxdy) = µs(dx) · P(Λ + logW ∈ dy) . (7.12)

Let P(S) stand for the number of points (Xi,Λi + logWi) in this Poisson point process
for any measurable set S ⊂ R+ × R. We introduce infinite upward- and downward-facing
triangles (see Figure 3) with y-intercept m:

∆↑(m) =
{

(x, y) ∈ R+×R : y ≥ m+ λsx
}
,

∆↓(m) =
{

(x, y) ∈ R+×R : y ≤ m− λsx
}
.

(7.13)
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a

a

logW + Λ

X

∆↑(M)

∆↓(M)

M
m6

m2

m7

Figure 3. The Poisson point process P. Crosses denote the points
(Xi, logWi + Λi), and the coloured areas indicate the upward- and
downward-facing infinite triangles ∆↑(M) and ∆↓(M). The maximum
M of Λ + logW +λsX is taken at the thick red cross. By (7.15), the degree
in this configuration is 1+P(∆↓(M)) = 1+6 = 7. The dashed lines indicate
the values m2,m6,m7 introduced in the proof of Theorem 2.2 (b) and (c).

With this notation in mind, we can rewrite M = max
i∈N

(Λi + logWi − λsXi) from (2.5) as

M = sup
{
m ∈ R : P(∆↑(m)) ≥ 1

}
= inf

{
m ∈ R : P(∆↑(m)) = 0

}
, and

P (M ≥ m) = P(P(∆↑(m)) ≥ 1) = 1− exp{−µ̃s(∆↑(m))}. (7.14)

Thus, (2.5) implies that

D̂ − 1 =
∑
i∈N

1{λsXi+logWi+Λi<M} = P(∆↓(M)). (7.15)

Moreover, by the Poisson property, conditional on M , the number P(∆↓(M)) is Poisson
with parameter µ̃s(∆

↓(M)) (since {M ≥ m} is measurable with respect to the restriction of
P to ∆↑(m), whereas ∆↑(m) ∩∆↓(m) = ∅). Hence, by the Law of Total Probability,

P
(
D̂ − 1 = k

)
=

∫ ∞
−∞

P
(
Poi(µ̃s(∆

↓(m))) = k
)
P (M ∈ dm) . (7.16)

Thus, in order to understand D̂ − 1, we need to investigate the behaviour of µ̃s(∆
↓(m)) and

µ̃s(∆
↑(m)) as functions of m. We start with s = 1, in which case (7.16) leads to analytically

tractable integrals.

Proof of Theorem 2.2 (a). In this case, the weights are exponential, and the evolution of the

shortest path tree is the same as that of the Yule process, and W
d
= E. Thus − logW − Λ

d
=

Λ′ − Λ, with Λ′,Λ i.i.d. Gumbel random variables. The distribution of Λ′ − Λ is called the
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logistic distribution and is clearly symmetric about 0. We compute

P(Λ′ − Λ ≥ x) = E [P (Λ ≤ −x+ Λ′ |Λ′)] = E
[
exp{−ex−Λ′}

]
= E [exp{−exE}] =

1

1 + ex
.

(7.17)

We have λs = λ1 = 1 and µ1(dx) = dx, so

µ̃1

(
∆↑(m)

)
=

∫ ∞
0

P(Λ′ − Λ ≥ x+m)dx =

∫ ∞
0

e−(m+x)

1 + e−(m+x)
dx (7.18)

= log
(
1 + e−m

)
.

Thus the distribution of M is the same as that of Λ′ − Λ:

P(M ≥ m) = P[P(∆↑(m)) ≥ 1] = 1− e−µ̃1(∆↑(m)) =
1

1 + em
. (7.19)

(In general, recall from Lemma 4.2 that M
d
= Λ + logW ; thus (7.19) is an expression of the

symmetry of Λ′ − Λ that is particular to the case s = 1.) Similarly,

µ̃1

(
∆↓(m)

)
=

∫ ∞
0

P(Λ′ − Λ ≤ m− x)dx =

∫ ∞
0

em−x

1 + em−x
dx = log(1 + em). (7.20)

Combining (7.16), (7.19) and (7.20),

P(D̂ − 1 = k) =

∫ ∞
−∞

P (Poi(log(1 + em)) = k) dP(M ≤ m)

=

∫ ∞
−∞

1

1 + em
(log(1 + em))k

k!

em

(1 + em)2
dm

=

∫ ∞
0

tk

k!
e−2tdt =

1

2k+1
,

where in the last line we used the change of variables t = log(1 + em). This finishes the proof
of Theorem 2.2 (a). �

When s 6= 1, we do not have a closed form for the distribution of W , so we need to
estimate the parameters of the Poisson variables in (7.16). The following lemma summarizes
the asymptotic properties of µ̃s(∆

↓(m)), µ̃s(∆
↑(m)) and M that we will need. To state it,

we define g to be the inverse of the function m 7→ µ̃s(∆
↓(m)) and set δ = µ̃s(∆

↓(1)) > 0.

Lemma 7.1. Fix s > 0. Then:

(a) Uniformly over m ≥ 1 and u ≥ δ,

µ̃s(∆
↓(m)) = (m/λs)

1/s(1 +O(1/m)), (7.21)

g(u) = λsu
s +O(1). (7.22)

(b) There is a constant c (depending on s) such that, for any m ≥ 0,

c e−m ≤ µ̃s(∆↑(m)) ≤ e−m. (7.23)

Furthermore the random variable M has a density P(M∈dm)
dm with respect to Lebesgue

measure, and

e−mE(W e−W ) ≤ P(M ∈ dm)

dm
≤ e−m, m ≥ 0. (7.24)
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(c) There is a constant C (depending on s) such that, for any m ≥ 1,

d

dm
µ̃s(∆

↓(m)) ≤ Cm1/s. (7.25)

Proof. By the definition of µ̃s,

µ̃s(∆
↓(m)) =

∫ ∞
0

P(Λ + logW < m− λsx)dµs(x) (7.26)

=

∫ ∞
0

E
(
exp

(
−e−m+λsxW

))
dµs(x) =

∫ ∞
0

φW (e−m+λsx)dµs(x),

where φW (u) = E(e−uW ). We split the integral into two terms and use the trivial bound
φW (u) ≤ 1 in the first term to get

µ̃s(∆
↓(m)) ≤

∫ m/λs

0

1 · dµs(x) +

∫ ∞
m/λs

φW (eλsx−m)dµs(x). (7.27)

The first term equals (m/λs)
1/s, so we continue by showing that the second term in (7.27) is

of smaller order. Recall that φW satisfies the recursive relation (4.24). By the monotonicity
property of φW , we have φW (ue−λsx) ≤ φW (1) as long as x ≤ (log u)/λs. Hence, for u ≥ 1,

φW (u) ≤ exp

{
−
∫ (log u)/λs

0

(1− φW (1))dµs(x)

}
= exp

{
− (1− φW (1))(log u)1/s

λ
1/s
s

}
. (7.28)

Recalling the definition (2.2) of µs and making the subsitution t = x−m/λs, we conclude
that the second term of (7.27) is at most∫ ∞

0

exp
(
−(1− φW (1))t1/s

) 1

s

(
t+

m

λs

)1/s−1

dt. (7.29)

For s > 1, the estimate (t+m/λs)
1/s−1 ≤ (m/λs)

1/s−1 shows that the second term of (7.27)
is O(m1/s−1). For s < 1, the bound (t+m/λs)

1/s−1 ≤ (2t)1/s−1 + (2m/λs)
1/s−1 shows that

the second term of (7.27) is O(1) +O(m1/s−1), which is O(m1/s−1) uniformly over m ≥ 1.
In either case we have verified (7.21). By the definition of δ, (7.22) follows from (7.21), and
this proves part (a).

For part (b), the upper bound in (7.23) follows from the bounds P(Λ ≥ x) = 1− e−e−x ≤
e−x:

µ̃s(∆
↑(m)) =

∫ ∞
0

P(Λ + logW ≥ m+ λsx)dµs(x) (7.30)

≤
∫ ∞

0

E(e−m−λsx+logW )dµs(x) = e−m

since E(W ) = 1 =
∫∞

0
e−λsxdµs(x). For the lower bound, note that P(W ≥ 1) > 0 (since

E(W ) = 1), so the bound P(Λ ≥ x) ≥ c′e−x gives

µ̃s(∆
↑(m)) ≥

∫ 1

0

P(W ≥ 1)P(Λ ≥ m+ λs)dµs(x) ≥ c e−m. (7.31)

For (7.24), use Lemma 4.2 to express the density of M in terms of the density e−e−xe−xdx
of a Gumbel random variable:

P(M ∈ dm) = E (P (Λ + logW ∈ dm |W ))

= E
(

e−e−m+logW

e−m+logW
)

dm = E
(
W e−W e−m

)
e−mdm. (7.32)
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We may then bound E(W e−W e−m) above and below by E(W ) = 1 and E(W e−W ), respectively,
completing the proof of (7.24) and part (b).

Finally, for part (c), note from (7.26) that

d

dm
µ̃s(∆

↓(m)) =

∫ ∞
0

eλsx−m(−φ′W (eλsx−m))dµs(x). (7.33)

Recalling (4.24) and using the trivial bound −φ′W (u) ≤ −φ′W (0) = E(W ) = 1,

φ′W (u)

φW (u)
=

∫ ∞
0

e−λsx(−φ′W (ue−λsx))dµs(x) ≤
∫ ∞

0

e−λsxdµs(x) = 1, (7.34)

and using (7.28) we conclude that

d

dm
µ̃s(∆

↓(m)) ≤
∫ ∞

0

eλsx−mφW (eλsx−m)dµs(x)

≤ µs[0,m/λs] +

∫ ∞
m/λs

eλsx−m exp(−c(λsx−m)1/s)dµs(x)

= (m/λs)
1/s +

∫ ∞
0

ez−cz
1/s (z +m)1/s−1

sλ
1/s−1
s

dz, (7.35)

where z = λsx − m. As before, we either bound (z + m)1/s−1 ≤ m1/s−1 (if s > 1) or
(z + m)1/s−1 ≤ (2z)1/s−1 + (2m)1/s−1 (if s < 1) to conclude that the last term in (7.35)
is O(m1/s−1) + O(1). Hence the upper bound in (7.35) is O(m1/s) uniformly over m ≥ 1,
which completes the proof. �

With Lemma 7.1 in hand, we can now prove Theorem 2.2 (b) and (c).

Proof of Theorem 2.2 (b) and (c). From (7.16), we see that the unlikely event
{
D̂ − 1 = k

}
is acheived when the variables M or Poi(µ̃s(∆

↓(m))), or both, are unusually large. As a
heuristic to evaluate the costs of these alternatives, we can use Lemma 7.1 (a) and (b) to
approximate µ̃s(∆

↑(m)) ≈ e−m, µ̃s(∆
↓(m)) ≈ (m/λs)

1/s
1{m≥0}, leading to

P(D̂ − 1 = k) ≈
∫ ∞

0

e−(m/λs)
1/s

(m/λs)
k/s

k!
(e−mdm)

=

∫ ∞
0

sλsu
s−1

k!
exp (−u− λsus + k log u) du (7.36)

after the substitution u = (m/λs)
1/s. The exponential in (7.36) is maximized when u = u∗,

where u∗ is the unique solution of

u∗ + sλsu
s
∗ = k. (7.37)

For s < 1, we have u∗ ≈ k, corresponding to m∗ ≈ λsk
s, whereas for s > 1 we have

u∗ ≈ (k/sλs)
1/s, corresponding to m∗ ≈ k/s.

We now formalize this heuristic argument. For k ∈ N, define the random variables

mk = inf
{
m ∈ R : P(∆↓(m)) ≥ k

}
. (7.38)

(See Figure 3: mk is the value on the vertical axes where the k-th point enters the downward-
facing triangle). Note that each mk is a stopping time with respect to the filtration
(σ(P|∆↓(m)))m∈R generated by the restrictions of P to ∆↓(m), m ∈ R. In terms of mk, we
have {

D̂ − 1 ≥ k
}

= {M ≥ mk} . (7.39)
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Since ∆↑(m) is disjoint from ∆↓(m), it follows that

P (M ≥ mk |mk = m) = P(M ≥ m) = P(P(∆↑(m)) > 0)

= 1− e−µ̃s(∆
↑(m)) ≤ µ̃s(∆↑(m)).

(7.40)

Since the function m 7→ µ̃s(∆
↓(m)) is continuous, the sequence (µ̃s(∆

↓(mk)))∞k=1 forms a
Poisson point process on (0,∞) of intensity 1. (This fact, which is elementary to verify, is
the analogue of the statement that applying a continuous distribution function to a variable
having that distribution gives a Uniform(0, 1) random variable.) In particular, µ̃s(∆

↓(mk))
has the Gamma(k, 1) distribution with density Γ(k)−1uk−1e−udu.

For the upper bound, it suffices to estimate P(D̂ − 1 ≥ k). By (7.39), this amounts to
bounding P(M ≥ mk). We begin with s < 1, in which case the above heuristics suggest

that the dominant contribution to P(D̂ − 1 ≥ k) comes when µ̃s(∆
↓(mk)) ≈ k. Partitioning

according to the value u = µ̃s(∆
↓(mk)) and combining with the fact that µ̃s(∆

↓(mk)) has
the Gamma distribution, we obtain

P(D̂ − 1 ≥ k) ≤ P(µ̃s(∆
↓(mk)) /∈ [ 1

2k,
3
2k])

+ P(µ̃s(∆
↓(mk)) ∈ [ 1

2k,
3
2k],M ≥ g(µ̃s(∆

↓(mk))))

= P(Gamma(k, 1) /∈ [ 1
2k,

3
2k]) +

∫ 3k/2

k/2

uk−1e−u

(k − 1)!
P(M ≥ g(u))du (7.41)

where we used that g is the inverse function of m 7→ µ̃s(∆
↓(m)). We can continue estimating

the right hand side as

P(D̂ − 1 ≥ k) ≤ e−ck +

∫ 3k/2

k/2

uk−1e−u

(k − 1)!
µ̃s(∆

↑(g(u)))du

≤ e−ck +

∫ 3k/2

k/2

exp ((k − 1) log u− u− λsus +O(1))

(k − 1)!
du, (7.42)

where we used that µ̃s(∆
↑(g(u))) ≤ e−g(u) by (7.23) and then the bound on g(u) in (7.22).

Uniformly over the range of integration, Stirling’s approximation and a Taylor expansion
give

(k − 1) log u− u− log((k − 1)!) ≤ − 1
8k (k − 1− u)2 +O(log k),

whereas λsu
s = λs(k − 1)s +O((ks−1)(k − 1− u)). Hence

P(D̂ − 1 ≥ k) ≤ e−ck

+ e−λs(k−1)s+O(log k)

∫ 3k/2

k/2

exp

(
− (k − 1− u)2

8k
+O(ks−1) |k − 1− u|

)
du. (7.43)

The integral in (7.43) is exp(O(k2s−1)) (this can be seen by maximising the integrand),
which is negligible compared to exp(−λsks) since s < 1, and this proves the upper bound.

For s > 1, the dominant contribution to P(D̂ − 1 = k) is expected to come when
u = µ̃s(∆

↓(mk)) satisfies u ≈ (k/sλs)
1/s � k. We partition into the events {u ≥ k} (in

which case we must have M ≥ mk = g(u) ≥ g(k)),
{
u ≤ δ = µ̃s(∆

↓(1))
}

(in which case we
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must have mk ≤ 1 and P(∆↓(1)) ≥ k), and {δ ≤ u ≤ k}. As in (7.42)–(7.43),

P(D̂ − 1 ≥ k) ≤ P(M ≥ g(k)) + P(P(∆↓(1)) ≥ k)

+

∫ k

δ

exp {(k − 1) log u− u− λsus +O(1)}
(k − 1)!

du

≤ µ̃s(∆↑(g(k))) + P(Poi(δ) ≥ k) +O(k)
exp {maxδ≤u≤k(k log u− λsus)}

(k − 1)!

≤ e−λsk
s+O(1) + e−k log k+O(k) +O(k2)

exp{ks log( k
sλs

)− k
s }

k!
, (7.44)

where we used (7.40) first and then (7.22) to bound g(k). The desired bound follows by
Stirling’s approximation.

For the lower bound, let ε > 0 be given. We begin with s > 1. By Lemma 7.1 (a),
uniformly over m ∈ [k, k1+ε], we have µ̃s(∆

↓(m)) = k1/s+O(ε). Therefore, using (7.16) and
Stirling’s approximation,

P
(
D̂ − 1 = k

∣∣∣M = m
)

= exp
{
k log µ̃s(∆

↓(m))− µ̃s(∆↓(m))
}
/k!

= exp{(1/s− 1 +O(ε))k log k}.
(7.45)

On the other hand, to estimate P(M ∈ [k, k1+ε]) write{
k ≤M ≤ k1+ε

}
=
{
P(∆↑(k1+ε)) = 0

}
∩
{
P(∆↑(k) \∆↑(k1+ε)) > 0

}
. (7.46)

By Lemma 7.1 (b), µ̃s(∆
↑(k1+ε)) ≤ e−k

1+ε → 0, so the first event on the right hand side
occurs with high probability as k →∞. Since in addition µ̃s(∆

↑(k)) ≥ ce−k � µ̃s(∆
↑(k1+ε)),

it follows that the second event occurs with probability at least c′e−k. Combining all of
these estimates gives the result.

Similarly, for s < 1, let m ∈ [g(k), g(k + 1)] and set u = µ̃s(∆
↓(m)), so that u ∈ [k, k + 1].

Uniformly over this range, we have log u = log k + o(ks), and it follows using Stirling’s
approximation that

P
(
D̂ − 1 = k

∣∣∣M = m
)

= exp {−u+ k log u} /k! = exp {o(ks)} .

By Lemma 7.1 (b), we have

P(g(k) ≤M ≤ g(k + 1)) ≥ c e−g(k+1)(g(k + 1)− g(k)).

We have g(k + 1) ∼ g(k) ∼ λsks by Lemma 7.1 (a). To bound g(k + 1)− g(k), note that the
definition of g implies(

g(k + 1)− g(k)
)
· max
g(k)≤m≤g(k+1)

d

dm
µ̃s(∆

↓(m)) ≥ 1. (7.47)

We apply Lemma 7.1 (c) with m ∼ λsk
s, so that (7.47) gives g(k + 1) − g(k) ≥ c/k.

Consequently P(g(k) ≤M ≤ g(k + 1)) ≥ e−λsk
s+o(ks), and this completes the proof. �

8. Deterministic edge weights

In this section we prove Theorem 2.11. The proof has some similarity to the proofs in
Section 6.

Proof of Theorem 2.11. Write f(z) = E(zD) for the generating function of the degree distri-

bution D. It suffices to show that the generating function for D̂ matches with the expression
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in [1, equation (1)]:

E
(
zD̂
)

= z

∫ 1

0

f ′

(
t− (1− z)

f ′
( f ′(t)
f ′(1)

)
f ′(1)

)
dt. (8.1)

Since Y = 1, we have e−λY = 1/ν and the recursive equation (6.2) becomes

φW (u) =
f ′(φW (u/ν))

f ′(1)
. (8.2)

Using symmetry, writing Λ1 = − logE1 and recalling that P(Λ + logW < x) = φW (e−x),

E
(
zD̂
)

=

∞∑
i=2

P(D = i)

i∑
k=1

zki

(
i− 1

k − 1

)
P

M = Λ1 + logW1 − log ν;

Λj + logWj + log ν < M for j = 2, . . . , k; and

Λj + logWj − log ν > M for j = k + 1, . . . , i


=

∞∑
i=2

iP(D = i)

i∑
k=1

zk
(
i− 1

k − 1

)
E
(
P (Λj + logWj < Λ1 + logW1 − 2 log ν |Λ1,W1)

k−1

P (Λ1 + logW1 − 2 log ν < Λj + logWj < Λ1 + logW1 |Λ1,W1)
i−k
)

= zE

( ∞∑
i=2

iP(D = i)
(
zφW (ν2E1/W1) +

(
φW (E1/W1)− φW (ν2E1/W1)

))i−1

)
= zE

(
f ′
(
φW (E1/W1)− (1− z)φW (ν2E1/W1)

))
. (8.3)

Applying (8.2) twice, we obtain

E
(
zD̂
)

= zE

f ′(φW (E1/W1)− (1− z)
f ′
(
f ′(φW (E1/W1))

f ′(1)

)
f ′(1)

) . (8.4)

Finally, since W is positive and finite-valued, φ−1
W (t) is defined for each t ∈ (0, 1), and we

can compute

P(φW (E1/W1) < t) = P(E1 > W1φ
−1
W (t)) = E

(
e−W1φ

−1
W (t)

)
= φW (φ−1

W (t)) = t, (8.5)

so that φW (E1/W1) has the Uniform(0, 1) distribution. Thus the expectation over the value
of φW (E1/W1) in (8.4) is equivalent to the integration in (8.1). �
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[28] S. Janson. The probability that a random multigraph is simple. Comb. Probab. Comput., 18(1-2):205–225,

March 2009.

[29] A. Lakhina, J. Byers, M. Crovella, and P. Xie. Sampling biases in ip topology measurements. In
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications.

IEEE Societies, volume 1, pages 332–341. IEEE, 2003.
[30] M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence. Random

Struct. Algorithms, 6(2/3):161–179, March 1995.

[31] M. E. J. Newman. The Structure and Function of Complex Networks. SIAM Review, 45(2):167–256,
2003.

[32] M.E.J. Newman, A.L. Barabási, and D.J. Watts. The structure and dynamics of networks. Princeton

University Press, 2006.
[33] J.J. Pansiot and D. Grad. On routes and multicast trees in the internet. ACM SIGCOMM Computer

Communication Review, 28(1):41–50, 1998.

[34] S. Resnick. Point processes, regular variation and weak convergence. Advances in Applied Probability,
18(1):pp. 66–138, 1986.

[35] J. Salez. Joint distribution of distances in large random regular networks. To appear in Advances in
Applied Probability. Avaliable at http://www.proba.jussieu.fr/∼salez/draft.pdf, Preprint (2012).

[36] P. Van Mieghem. Performance Analysis of Communications Networks and Systems. Cambridge Univer-

sity Press, Cambridge, 2009.
[37] Johan Wästlund. Random assignment and shortest path problems. In Fourth Colloquium on Mathematics

and Computer Science Algorithms, Trees, Combinatorics and Probabilities, Discrete Math. Theor.
Comput. Sci. Proc., AG, pages 31–38. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006.


	028-cover
	028-report

