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Abstract 

We consider the problem of how firms can take into account the dynamics of supply chain 

interactions when “greenifying” their operations. We introduce a framework which firms can use in 

defining the right optimization problem and system boundaries when they want to exert abatement 

effort by considering the supply chain wide effect of abatement options. Our framework, which is 

applied at a chemical company, can help firms in determining which impact certain decisions have on 

other firms’ emissions in the supply chain and the resulting total footprint of the product.  

Keywords: Carbon emission; Carbon footprint; Sustainable operations; Value chain; Operations 

management 

1 Introduction 

The widespread concern over global warming puts pressure on companies to reduce carbon 

emissions and become green. It is imminent that the global pressure will increase in an increasing 

manner and that sustainability will -and should- increasingly drive Supply Chain Management 

Decisions. The external pressure on the companies is basically three-fold: 

1. Customers: Individual consumers in B2C environments (especially in developed countries), as well 

as customers in B2B environments apply increasing pressure to improve sustainability. 

2. Regulations: There are legal requirements of the European Union and some national governments 

in the area of carbon dioxide and also other greenhouse gas (GHG) emissions, which enforce the 

companies to become greener. Governments have also changed the laws to reflect a cradle-to-grave 

perspective, which makes it essential to consider the problem whole supply chain-wide. A very 

important regulation is the EU Emission Trading Scheme (ETS), which is the largest multinational, 

multi-sector greenhouse gas emissions trading scheme worldwide. The ETS is currently restricted in 

scope, but it already covers approximately half of the EU’s carbon emissions and is expected to be 

expanded (sector wise, scope wise, and country wise). 

mailto:t.tan@tue.nl


3. Environmental groups: Initiatives such as the Carbon Disclosure Project (CDP) gain more attention 

and support globally. In particular, CDP reports indicate that 82% of Global 500 companies disclosed 

their emissions in 2012 (Carbon Disclosure Project, 2012). Europe has been leading in both disclosing 

its emission and introducing ETS, but there are also other initiatives and developments making a 

global emission trading scheme visible in the horizon. Currently, the carbon market in the United 

States is largely a voluntary market dominated by financial players and companies that want to 

hedge their exposure to potential future emission-reduction rules. Nevertheless, the northeastern 

states have started the ‘Regional Greenhouse Gas Initiative’ in 20091, which is the first mandatory, 

market-based cap-and-trade program to cut carbon emissions in the United States. Similarly, the 

California Air Resources Board (CARB) adopted a Cap and Trade Regulation on October 20, 20112. 

Furthermore, there are initiatives such as Western Climate Initiative (WCI)3 and Chicago Climate 

Exchange (CCX)4, where the former is an initiative started by states and provinces along the western 

rim of North America to combat climate change caused by global warming, independent of their 

national governments, and the latter is a voluntary, legally binding greenhouse gas reduction and 

trading system for emission sources and offset projects in North America and Brazil. 

Companies increasingly realize that often a large part of their carbon footprint is outside of their 

control, i.e. Scope 3 emissions, following the terminology of the GHG protocol. Nevertheless, many 

companies that are not even bound to regulatory enforcements measure, report, and offset their 

emissions, including their Scope 3 emissions, as a part of their corporate responsibility policy. For 

example, Natura Cosmeticos has the policy of offsetting more than its declared emissions -to cover 

for uncertainties in the measurement process-, resulting in “carbon negative” products, even though 

only 3% of their emissions are of Scope 1 and 1% of their emissions are of Scope 2, resulting in 96% 

of their declared emissions being accounted for in Scope 35.  

Other than the external pressure on companies to become green, there also exist economic reasons 

for companies to “green” their supply chains, which coincide with the reasons for them to green 

their operations: Partly because of the correlation between cost and energy use, i.e. carbon hot spots 

are good places to look for potential cost savings; and partly for marketing reasons, where a green 

image might help them gain competitive advantage. Whether it is a regulation or own initiative, 

1 http://www.rggi.org, last accessed June 4, 2013 
2 http://www.c2es.org, last accessed May 28, 2013 
3 http://www.wci-inc.org, last accessed May 28, 2013 
4 http://www.chicagoclimatex.com, last accessed June 4, 2013 
5 Natura Cosméticos. 2009. Carbon Neutral 2009. 
http://www2.natura.net/Web/Br/Inst/CarbonoNeutro2009/src/EN/_PDF/NaturaCarbonNeutral2009.pdf, last 
accessed June 11, 2013 
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companies that compensate for their emissions have direct economic consequences of their 

emission declarations which are mostly verified by independent bodies. Nevertheless, one critical 

question prevails: which company in the supply chain can be accounted for emissions of a final 

product or service? Each company in a supply chain contributes to the total carbon footprint of a 

product or service and also each company can exert effort in minimizing its contribution to this 

carbon footprint. However, such an approach overlooks the dynamics of supply chain interactions 

and neglects the operations in the upstream or downstream supply chain that are affected by these 

decisions. It can be therefore also useful for a company to exert effort in lowering the emissions of 

operations more upstream or downstream in the supply chain. This can for example be accomplished 

by changing the dimensions of a product, the required storage conditions, the durability, etc., 

resulting in less energy-intensive process requirements. For example, manufacturers of products that 

have a high water content and of which the water needs to be mixed with the product under special 

circumstances (e.g. under pressure, at a specific temperature etc.) can try to produce and sell 

concentrates (i.e. semi-finished product). The customer can finalize the product by adding the water 

itself under these special circumstances. Selling semi-finished products in this way and collaborating 

with the customer in order to finalize the product can reduce packaging waste because the volume of 

the product will be less and it would also decrease transport related carbon-emissions. Another 

example is a product of Eastman Chemical Company that can be sold to customers in a solid state or 

in a molten state. These different states have not only an impact on Eastman’s carbon emissions but 

also on its customer emissions. The storage conditions of the solid state is different than that of the 

molten state: the solid state can be stored as pastilles in bags and the molten state needs to be 

stored in tanks that keep the product on a specific temperature 24/7 to assure that it will remain 

molten. Keeping a product on a specific temperature requires more energy than just storing it in a 

warehouse. The impact on carbon emission of the two different states will be discussed in more 

detail in Section 4 of this paper. Lowering the carbon emissions can also be accomplished by 

collaboration, coordination, economic power or information sharing. For example a manufacturer of 

fried potatoes can reward farmers who produce potatoes with low water content. In this way, the 

fried potato manufacturer decreases his emissions because potatoes which have low water content 

require less frying time and thus require less energy (The Carbon Trust, 2006). 

Note that the improvements at a certain actor and his suppliers would not only result in a decrease 

in Scope 1, 2, and 3 emissions of that actor, but it could also abate the emissions of other parties in 

the supply chain for the reasons stated above -among others-, which goes beyond the scope 

classification and defined responsibilities in the GHG protocol (say, “Scope 3+” emissions). Those 

emissions also need to be taken into account if a complete supply chain perspective is to be 



considered instead of a myopic approach. In this article we introduce a simple but effective 

framework for addressing the problem of GHG emissions in a general supply chain with any number 

of firms, decomposing the total footprint into separate footprint components, each of which can be 

influenced by any combination of any number of firms in the supply chain. With that structure, we 

are able to represent the total footprint as a function of the decisions made in the supply chain. This 

framework enables firms to define the right optimization problem and also the right system 

boundaries. 

For the parties collaborating and coordinating their abatement efforts, the parties involved in the 

supply chain exert effort to abate their emissions, which might be internally bound to offsetting all 

emissions that are attributed to a company, even if this concerns Scope 3 emissions and beyond -

which we have referred to as Scope 3+ above-. A company that participates in the offsetting 

approach would be likely to do so with the motivation of social responsibility, competitive advantage, 

or customer requirements, as Scope 3 emissions are not regulated (yet). In any case, such a company 

has a natural additional motivation to abate its emissions: offsetting costs. Note that the carbon price 

at a cap-and-trade scheme serves a similar purpose, where the emissions above the cap are “offset” 

in the sense that the sellers of these emission rights have emitted less than what they are allowed to. 

Furthermore, it is most likely that a powerful leading company is involved in such a collaboration and 

coordination process, encouraging or even “forcing” her supply chain partners to abate their 

emissions. For example, WalMart conducts detailed carbon footprint analyses and sets improvement 

targets for her suppliers6. In that case, while WalMart’s motivation is in terms of social responsibility 

and competitive advantage, it becomes an absolute necessity for the suppliers of WalMart to abate 

their emissions in order to be able to continue business with WalMart, as long as it is profitable to do 

so. A participating company’s objective is then to maximize his value added less all carbon related 

costs. One could argue that coordination is not necessarily a result of companies not being willing to 

pay for offsetting, but an effort to actually cut down the emissions rather than “paying off” for them. 

Those who oppose offsetting also refer to non-verified offsetting options that actually do not have a 

significant or even positive impact on carbon emissions. 

The major complicating factor in conducting such an analysis is that many emissions result from 

activities that multiple parties in the supply chain (can) influence. We depart from existing supply 

chain literature on carbon footprints, which assumes that emissions are uniquely and unambiguously 

linked to specific actors in the supply chain, and introduce a more general framework where carbon 

6 Cremmins, B. 2013. CDP and Walmart: A partnership to reduce suppliers’ greenhouse gas emissions. Walmart 
February 13, 2013. http://www.walmartgreenroom.com/2013/02/cdp-and-walmart-a-partnership-to-reduce-
suppliers-greenhouse-gas-emissions/, last accessed June 11, 2013  
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footprints consist of multiple components, each of which can be influenced by one or more supply 

chain parties.  

Our contribution in this paper is twofold: First, we propose a modelling framework to determine 

which impact certain decisions made by firms in a supply chain have on the total footprint of a 

product in the supply chain. Second, we introduce a case study where we apply our proposed 

framework and provide insights based on this case. The case study that was performed at Eastman 

Chemical Company, which has the ability to change the property of one of their products, in which 

case the buyer firm needs different production processes or keeping conditions. By using the 

proposed framework, the right boundaries were defined and the supply chain impact of the decision 

to change the property of the product was analysed, leading to a different conclusion then the one 

when the boundaries are myopically defined and the supply chain impact is ignored.  

Section 5 describes the case study performed at Eastman Chemical Company.  Eastman is a global 

specialty chemicals company that manufactures chemicals, fibers and plastic materials that are found 

in products people use every day. The case study treated in this report was initiated by Eastman. 

Particularly due to the fact that natural resources are becoming scarcer Eastman is committed to 

embed sustainability in their product development and innovation process, which does not only 

make sense for their business, but also makes sense for the world.  

2 Literature 

In this paper we focus on and aim to further develop two areas: sustainable supply chains and supply 

chain collaboration (or environmental collaboration). Accordingly, we first review the literature in 

which abatement options to reduce GHG emissions in supply chains are treated, and then the 

literature on supply chain collaboration. Seuring and Muller (2008) define sustainable supply chain as 

“the management of material, information and capital flows as well as cooperation among 

companies along the supply chain while taking goals from all three dimensions of sustainable 

development, i.e. economic, environmental and social, into account which are derived from 

customers and stakeholders’ requirements”.  Literature reviews of Kleindorfer et al. (2005), Corbett 

and Klassen (2006), Srivastava (2007) show that research tends to be highly focused on abatement 

options like recycling or reuse. In addition, more and more articles are focused on reducing GHG 

emissions by optimizing operational decisions across the supply chain. For example, Benjaafar et al. 

(2013) introduce various variants of traditional lot sizing models which minimize costs and 

incorporate carbon dioxide emissions considerations. Hua et al. (2011) developed a modified EOQ 

model with which they examine how carbon emission trading mechanisms influence inventory 

management decisions. Hoen et al. (2014) analyze the problem of transport mode choice and focus 



on the impact of regulations and carbon costs. A situation is considered in which a company has the 

option to choose between different modes of transport to receive goods from its supplier. 

Companies can use this analysis to decide which transport mode to select when considering the 

environment.  In our paper we also consider what kind of effects this kind of decision making has on 

other operations more up and/or downstream in the supply chain.  

The carbon footprint of an entire supply chain is typically determined by using life cycle analysis 

(LCA). LCA can be used to assess and evaluate the environmental burden of products or services 

through all phases of its life. All types of impact upon the environment are covered in the term 

environmental burden, including emissions of greenhouse gases (GHG), different types of land use 

and extraction of different types of resources. An LCA limited to GHG emissions is often called carbon 

footprinting. Sundarakani et al. (2010) developed an analytical model that can be used to determine 

the carbon footprint of an entire supply chain. With the model of Sundarakani et al. (2010) 

companies can analyse which stage of a supply chain accumulates waste and can use this information 

to implement abatement options to reduce carbon emissions. Our study complements LCA by 

focusing on supply chain impact of abatement activities on processes that directly or indirectly 

influences carbon emissions of other parties in the supply chain. 

Activities regarding green supply chain management also require collaboration with both suppliers 

and customers. Despite all efforts in the area of green supply chain management, literature is scarce 

with respect to environmental supply chain collaboration. Supply chain collaboration is defined as 

two or more companies within a supply chain sharing the responsibilities of exchanging common 

planning, management, execution, and performance information (Anthony, 2000; Vachon & Klassen, 

2008). Vachon and Klassen (2006) split the inter-organizational activities in green supply chain 

management into environmental supply chain collaboration and environmental monitoring. Supply 

chain collaboration can be defined as ‘activities comprising a direct involvement of the buying 

organization with its suppliers to jointly develop environmental solutions’ (Vachon & Klassen, 2006). 

While this definition only focuses on the organization-supplier relationship we would like to stress 

that collaboration is not only a relationship between the organization and parties more upstream in 

the supply chain but also between the organization and parties more downstream in the supply 

chain. Vachon & Klassen (2008) examined the impact of environmental supply chain collaboration on 

manufacturing performance. Their study showed that environmental collaboration with suppliers 

was linked to improving processed based-performance and collaboration with customers was linked 

to improving product based-performance. In our paper we stress the fact that it is also important to 

know what kind of impact environmental collaboration with a supplier has on activities more 



downstream in the supply chain. For example, in the ink industry there is a measurement called 

volatile organic compound (VOC) which is a measurement of how many organic material in an ink will 

evaporate. Manufacturers in the ink industry reacted to customers’ needs to reduce VOC by 

developing hybrid inks. During a print run, hybrid inks produce less VOC than petroleum-based 

printing inks (Vachon & Klassen, Environmental management and manufacturing performance: The 

role of collaboration in the supply chain, 2008). This however does not mean that the production of 

hybrid inks is cleaner than that of petroleum-based printing inks.  

 

Caro et al. (2013) introduced a joint production model where carbon emissions of a whole supply 

chain are incorporated. Their paper answers the question: ‘how should responsibility for the total 

supply chain emissions be allocated to the various firms in order to encourage jointly optimal 

emissions abatement effort?’. In the model that is used to tackle this question, the total footprint is 

decomposed into multiple processes and the emissions of each process can be affected by any 

company in the whole supply chain. It turns out that over-allocating emissions is required to achieve 

a “carbon-optimal” supply chain. While Caro et al. (2013) focus on the emission allocation problem 

for joint processes, our framework considers the supply chain wide effect of abatement options with 

the purpose of defining the right optimization problem and system boundaries. 

3 Modeling Framework 

In this section we introduce a realistic framework where a firm does not only cause emissions due to 

its own operations, but its emissions might also depend on the operations upstream and/or 

downstream in the supply chain due to joint processes. Similarly, the firm’s operations might also 

affect the emissions upstream and/or downstream in the supply chain. We define joint processes in 

the general sense, such that a number of firms can affect total emissions of a process even through 

simple collaborative activities like information sharing or the lack of it. Such a framework enables 

representing the total footprint as a function of the decisions made in the supply chain. With this 

framework firms can define the right optimization problem and system boundaries. We focus on 

carbon dioxide emissions in this article, but it is also possible to use the same framework for other 

GHG emissions. We also consider a single product setting for simplicity of exposition.  

 

The carbon accounting standard of the GHG protocol is used as a baseline in this framework. In this 

standard, three types of emissions are defined: Scope 1 (direct emissions, e.g. due to production 

processes), scope 2 (indirect emissions from energy usage) and scope 3 (other indirect emissions, e.g. 

due to transport). The total carbon footprint (F) of a product is the sum of its scope 1, 2, and 3 

emissions, which might emanate from multiple components that are possibly carried out at different 



firms. Hence, multiple firms within a supply chain can influence the carbon footprint F. If firms 

collaborate as in the examples provided in Section 1, this would change their processes and impact 

their emissions in different scopes. 

 

From this example we can see that a firm’s decisions might affect its own emissions, as well as the 

other firms’ emissions. We model this in our framework by separately defining the internal and 

external efforts (resulting in emission abatement) associated with each possible action n out of the 

set of all possible actions N of the focal firm. The reduction efforts that the firm would exert 

associated with each possible action n is given by ei = ei
n ∀ n ∈ N for all internal efforts and ee = ee

n 

∀ n ∈ N for all external efforts. Internal efforts are the actions of the firm that influence its internal 

footprint Fi regarding the product (e.g. changing a production process), and external efforts are those 

that influence the external footprint Fe originating from the other firms in the same supply chain (e.g. 

changing the properties of the product, which will require operational changes at the buyer firm; or 

simply sharing advance demand information). We note that an internal (external) effort could 

require corresponding external (internal) effort, together which they constitute action n. Therefore, 

e𝑛𝑖𝑖  and e𝑛𝑒𝑒  may assume any value, including zero, for action n. Accordingly, we define the total carbon 

footprint of the focal firm as 𝐹𝐹�𝐞𝑖𝑖 ,𝐞𝑒𝑒�.  

 

The decision as to how much effort a firm is going to exert in the abatement options must be aligned 

with the firm’s sustainability strategy. We present four possibilities in Table A. Option 1 aims to 

minimize the total footprint subject to a total abatement budget. Option 2 is similar to option 1, 

except there is no overall budget to freely allocate, but separate budgets are assigned for some of 

the (pre-approved) actions in N. However, many firms operate under cost minimization (or profit 

maximization) objective and set a total footprint reduction target, as stated in options 3 and 4, where 

option 3 constrains the footprint with a target total footprint, and option 4 aims for a percent 

reduction of the current footprint with no additional efforts, denoted by F(0,0). Such reduction 

targets are commonly observed as in practice. To name a few examples, Tesco has committed to 

reduce the carbon footprint of the products they sell by 30% by 20207 and Unilever committed to 

halve the greenhouse gas impact of their products across the lifecycles by 20208. This option might 

be seen as the most environmental friendly one as long as the reduction target is ambitious enough, 

because it would then mean that also costly effort needs to be exerted if the ``low hanging fruit” will 

7 Tesco. 2012. Corporate Responsibility Review 2012. 
http://www.tescoplc.com/files/pdf/reports/tesco_cr_review_2012.pdf, last accessed June 4, 2013 
8 Unilever Sustainability Living Plan, Available at http://www.unilever.com/sustainable-living/uslp/, last 
accessed June 4, 2013 
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not be sufficient. On the other extreme, if there is abundant number of cost-efficient actions for 

abatement, options 1 and 2 might be better for the environment, as abatement will not stop when 

easy targets are reached. It is of course possible to define other optimization strategies than the ones 

in table 1. 

Table 1 optimization strategies 

Option Minimization problem 
1 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝐹�𝐞𝑖𝑖 ,𝐞𝑒𝑒�  

𝑠. 𝑡.  𝑇𝐶𝐶�𝐞𝑖𝑖 ,𝐞𝑒𝑒� ≤ 𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑑𝑔𝑒𝑡  
2 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝐹�𝐞𝑖𝑖 ,𝐞𝑒𝑒�  

𝑠. 𝑡.  𝐶𝐶�𝐞𝑛𝑖𝑖 , 𝐞𝑛𝑒𝑒� ≤ 𝐵𝑢𝑑𝑔𝑒𝑡(𝐞𝑛𝑖𝑖 , 𝐞𝑛𝑒𝑒 )   ∀ n ∈ N 
3 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐶𝐶�𝐞𝑖𝑖 ,𝐞𝑒𝑒�  

𝑠. 𝑡.  𝐹𝐹�𝐞𝑖𝑖 ,𝐞𝑒𝑒� ≤ 𝑇𝑎𝑟𝑔𝑒𝑡 𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡  
4 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐶𝐶�𝐞𝑖𝑖 ,𝐞𝑒𝑒�  

𝑠. 𝑡.  𝐹𝐹�𝐞𝑖𝑖 ,𝐞𝑒𝑒� ≤ 𝐹𝐹(0,0) ∗ % 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑎𝑟𝑔𝑒𝑡 
 

Since the execution of a reduction action might also influence the emissions elsewhere, a crucial 

point for a firm in making carbon abatement effort decisions is how to define the boundaries of the 

problem. The left-hand side of figure 1 depicts a top-down emission framework that specifies 

different levels of boundary choice from a supply chain perspective, and the right-hand side depicts 

the corresponding costs. Level 1, which is the highest level in figure 1 represents the ideal boundary; 

the total carbon footprint within the whole supply chain, F = Fi + Fe. If supply chain collaboration is 

not possible for political, economic, or any other reason, or abatement efforts are considered to be 

an “internal issue” of the focal firm, then the second best alternative is to consider the total internal 

footprint Fi, which consists of three elements that can directly be influenced by the decision maker: 

Fi
p, the footprint originating from internal production processes that contribute to the production of 

the final usable product; Fi
f, the footprint due to process steps that come after production of the 

usable product and before transportation (e.g. packaging); and Ft, the transport footprint originating 

from outbound logistics, which might be internal, external, or joint, depending on the agreement 

made on terms of delivery. The corresponding external footprint components, Fe
f (external 

emissions from process steps after transportation and before production) and Fe
p (emissions due to 

the production processes of the customer) are then labelled as “out of scope” by the focal company.  

 

When decision making cannot be bound even to level 2, then a myopic level 3 decision making is the 

next choice. Although we stop our framework at level 3, many practices address particular 



production process (say, level 4), ignoring even the interaction with other production processes. A 

boundary definition that is too narrow is clearly prone to result in poor decision making: The 

decisions made with level 2 scope could be suboptimal for the supply chain wide footprint of the 

product, and the decisions made with level 3 scope could be suboptimal for company wide footprint 

of the product. For example, if the decision is based solely on transport emissions, then the product 

needs to be made as small and light as possible and in such a way that it can be transported without 

particular air conditioning requirements, where the additional emissions in transforming the product 

this way might surpass the savings. On the other hand,  that will not change as a function of the 

internal and external efforts associated with the available reduction options. 

 

 

 
Figure 1 Top down framework 

4 Case study 

The framework described in the previous section was applied to the process of one of the products 

of the chemical company Eastman. Eastman is a global specialty chemicals company that 

manufactures chemicals, fibers and plastic materials that are found in products people use every day. 

Sustainability has become an essential component of Eastman’s business, they define sustainability 

as 'the ability in creating value to all three aspect of the triple bottom line: environmental 

responsibility and stewardship, social responsibility, company's economic growth'9. This section 

describes a case study performed within Eastman.  

For Eastman it is possible two sell one of its products in different states: in a solid state and in a 

molten state. Figure 4 in Appendix I gives an overview of the two different flows that are needed 

9 Eastman Chemical Company 2013. Science and Sustainability: Positive progress. 
http://www.eastman.com/Literature_Center/Misc/2013ProgressReport.pdf, p. 22, last accessed June 20, 2013 
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when selling this product in these two states. The process steps before the intermediate tank are 

similar for both states. After the intermediate tank the process is split into two different processes, 

where the upper flow refers to the solid state and the lower one refers to the molten state.  

If sold at solid state to a customer, the product goes from the intermediate tank to the packout. At 

the packout the product is first pastillated then filled into bags, stored on pallets and finally the 

pallets are wrapped into shrink cover. After this the packaged product is loaded onto a regular truck 

and shipped to the customer. At the customers’ site the product must be heated again in order to 

use it in the remaining processes.  

If a customer orders molten, the product goes from the intermediate tank to a bulk tank where it is 

stored. When the tank truck arrives the product is loaded into a heated bulk container and shipped 

to the customer. During the trip from the firm to the customer the container of the truck is kept on a 

high temperature. At the customers’ site the product is loaded into a bulk tank again and can 

immediately be used in the remaining processes. Note that packout, packaging, and re-heating 

processes are eliminated in this case, at the expense of keeping the product hot at all times, 

including transport. 

 

For this product it is not possible for Eastman to make a decision only based on its own processes; 

the different states require not only different process steps at Eastman but also at the customer. Due 

to involvement of the customer Eastman not only has to exert effort internally but also externally. 

The internal efforts are actions that are taken related to the packaging process. A decision must be 

made whether to make pastilles (solid) of the product and fill bags with these pastilles or store it in a 

bulk tank. In addition, effort needs to be put in transport: the solid product can be shipped with a 

normal truck and the molten requires a dedicated truck that is heated. This can be internal effort or 

external effort, depending on the agreement made on terms of delivery. For Eastman, it is internal. 

The external effort is the effort that is related to actions that need to be taken in order to store the 

product at the customer. The product can be stored in a warehouse when the product is in solid state 

and must be stored in a heated bulk tank when the product is in molten state. Only emissions and 

costs from the point in time where the processes are different until the point in time where they are 

similar again must be taken into account. This means that Fi
f, Ft and Fe

f  are within the boundary of 

this case study.  

In this case, Eastman determined a specific budget for each action performed, i.e. the firm is willing 

to abate emissions as long as the corresponding costs do not exceed the budget. This means that the 

following minimization problem can be used: 



 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝐹𝑓𝑓𝑖𝑖 + 𝐹𝐹𝑡𝑡 + 𝐹𝐹𝑓𝑓𝑒𝑒         (1) 

𝑠. 𝑡.  

𝐶𝐶𝑓𝑓𝑖𝑖 + 𝐶𝐶𝑡𝑡 + 𝐶𝐶𝑓𝑓𝑒𝑒 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡(𝐞𝑛𝑖𝑖 , 𝐞𝑛𝑒𝑒 )     ∀ n ∈ N      (2) 

 

A more detailed overview of the model can be found in Appendix II. Figure 2 and 3 depict the carbon 

dioxide emissions and costs for the different processes described earlier. The percentage molten bulk 

(of the total sales of that product to the customer base) represents the “effort” level in the supply 

chain for greenification. In this case, both parties -Eastman and the customer(s)- need to exert effort. 

For example, both Eastman and its customer need to buy a bulk tank in order to store the molten 

product. Another effort of Eastman is to transport the molten product not in a regular tank but in a 

truck which has a dedicated tank that can be heated. 

 

 
Figure 2 CO2 emissions of different processes 
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Figure 3 Total costs of different processes 

Figures 2 and 3 show that the emissions and costs might be non-linear in effort level. This non-

linearity has several causes. Increasing the molten volume means that a customer is added who 

originally bought the solid state and will buy the molten state instead. A first cause of the non-

linearity is that the customers of Eastman are located in different European countries which means 

that for transport there are various distances that must be taken into account while calculating the 

transport emissions. In addition, the function to calculate the carbon dioxide emissions of the 

customer process is also non-linear. The explanation for this is twofold. First of all, the electricity 

generation in each country is different. For example, in France the primary source of electric power is 

nuclear power. Nuclear power is “cleaner” in terms of carbon emissions than electricity generation 

from fossil fuels - which is the primary source in the Netherlands. A second cause for the non-

linearity is the size of the customers. Customers who have a large demand need larger tanks than 

customer with a small demand. This means that steam usage (and thus carbon dioxide emissions) per 

customer differs because the throughput time of the molten product in a tank (during which the 

product has to be kept hot) depends on the demand of the customer and is thus not the same for all 

customers. 

This case study shows that it is important to define the right boundaries. When a firm defines myopic 

boundaries in an effort to abate carbon emissions, the decisions made might change when compared 

to a situation in which the impact of the supply chain is taken into account. For example, if Eastman 

is only considering the transport emissions Ft and costs Ct it will clearly prefer to sell solid material to 

its customer instead of selling molten, because carbon emissions are increasing when the percentage 

molten bulk increases. Shipping molten to a customer requires a special truck which can keep the 

0% 10% 20% 30% 40% 50% 60% 70%

To
ta

l c
os

ts
  

Percentage molten bulk 

 Total costs of different processes 

Transport

Process Eastman

Process customers

Transport & process
Eastman

All processes



molten product on high temperature and because the heated truck consumes more fuel than a 

regular truck the emissions increase. Total costs also increase when more molten is sold because the 

heated truck is more expensive. Eastman could also have defined the system boundary to be the 

emissions emanating from the production process. When only process steps after production and 

before transportation are considered (Fi
f) it is better to sell more molten to customers in terms of 

carbon dioxide emissions and costs (Figures 2 and 3). This is due to the fact that the packaging steps 

and the packout result in more emissions and higher costs than keeping the product stored in the 

heated tank. Nevertheless, if Eastman considers the emissions emanating from all of its own 

processes (Fi
f + Ft), it can be seen in Figure 2 that there is a cut-off point. After 49% it is not beneficial 

in terms of CO2 emissions to sell molten to customers, as the increase of transport emissions is more 

than the saving on process emissions. Finally, if all processes within the supply chain that are 

influenced by the molten versus solid product decision are taken into account, the product should be 

sold and transported at molten form.  From a cost perspective it is never beneficial to sell molten to 

customers.  

5 Conclusion 

In this paper we have focused on answering the following question: How can firms take into account 

the dynamics of supply chain interactions when “greenifying” their operations? To answer this 

question a framework is introduced which firms can use in defining the right optimization problem 

and boundaries when they want to exert effort in decreasing their carbon footprint. We stress that a 

firm’s decision to greenify its operations might not only affect its own emissions but also other firms’ 

emissions. Our framework can help firms in determining which impact certain decisions have on the 

footprint of a product. The case study that we have considered illustrates that the decision making 

process highly depends on which boundaries a firm takes into account and therefore we conclude 

that defining the right boundaries is essential for making sustainability decisions in supply chains. 

 

Our framework can be extended to a multi-product case, where the highest level scope definition 

would include all emissions from all products, and Level 2 scope definition would include only the 

footprint due to a particular product. We also note that our methodology can be applied to other 

GHG emissions, water footprint, and the like.  

Acknowledgments 

The authors thank Eastman Chemical Company for their collaboration and data sharing. 

  



Bibliography 
Benjaafar, S., Li, Y., & Daskin, M. (2013). Carbon Footprint and the Management of Supply Chains: 

Insights from Simple Models. Automation Science and Engineering, 10(1), 99-116. 

Carbon Disclosure Project. (2012). CDP Global 500 Climate Change Report. CDP. 

Caro, F., Corbett, C. J., Tan, T., & Zuidwijk, R. (2013). Double-Counting of Emissions in Carbon-Neutral 

and Carbon-Optimal Supply Chains. Manufacturing & Service Operations Management, 15, 

545–558. 

Corbett, C. J., & Klassen, R. D. (2006). Extending the Horizons: Environmental Excellence as Key to 

Improving Operations. Manufacturing & Service Operations Management, 8(1), 5-22. 

den Boer, L. C., Brouwer, F. P., & van Essen, H. P. (2008). STREAM, Studie naar Transport Emissies van 

Alle Modaliteiten. CE Delft. 

Hoen, K., Tan, T., Fransoo, J., & van Houtum, G. (2014). Effect of carbon emission regulations on 

transport mode selection under stochastic demand. Flexible Services and Manufacturing, 26, 

170–195. 

Hua, G., Cheng, T., & Wang, S. (2011). Managing carbon footprints in inventory management. 

International Journal of Production Economics, 132(2), 178-185. 

Kleindorfer, P. R., Singhal, K., & van Wassenhove, L. N. (2005). Sustainable operations management. 

Production and Operations Management, 14(4), 248-492. 

NTM Air. (2008). Environmental data for international cargo and passenger air transport. NTM. 

NTM Road. (2008). Environmental data for international cargo transport road transport. NTM. 

Seuring, S., & Müller, M. (2008). From a literature review to a conceptual frame work for sustainable 

supply chain management. Journal of Cleaner Production, 16, 1699-1710. 

Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. 

International Journal of Management Reviews, 9(1), 53-80. 

The Carbon Trust. (2006). Carbon footprints in the supply chain: the next step for business. The 

Carbon Trust. 

Vachon, S., & Klassen, R. (2006). Extending green practices across the supply chain: the impact of 

upstream and downstream integration. International journal of operations & production 

management, 26(7), 795-821. 

Vachon, S., & Klassen, R. (2008). Environmental management and manufacturing performance: The 

role of collaboration in the supply chain. International journal of production economics, 299-

315. 



van den Akker, I., te Loo, R., Ozsalih, H., & Schers, R. (2009). CRSC-Carbon regulated supply chains: 

carbon dioxide calculation method and insights based on three case studies. Eindhoven 

University of Technology. 

 

 

Appendix I 

 
Figure 4 Process flow 

  



Appendix II  

The minimization problem of Section 3 can be rewritten as:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐹𝐹𝑓𝑓𝑖𝑖 + 𝐹𝐹𝑡𝑡 + 𝐹𝐹𝑓𝑓𝑒𝑒 =  𝐹𝐹𝑝𝑝𝑜𝑖𝑖 + 𝐹𝐹𝑝𝑝𝑚𝑖𝑖 + 𝐹𝐹ℎ𝑒𝑒 + 𝐹𝐹𝑚𝑡𝑡
𝑖𝑖 + 𝐹𝐹𝑚𝑡𝑡

𝑒𝑒 + 𝐹𝐹𝑒𝑒𝑖𝑖 + 𝐹𝐹𝑒𝑒𝑒𝑒 + 𝐹𝐹𝑡𝑡      (3) 

𝑠. 𝑡.  

𝐶𝐶𝑝𝑝𝑜𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑚𝑖𝑖 + 𝐶𝐶𝑚𝑡𝑡
𝑖𝑖 + 𝐶𝐶𝑚𝑡𝑡

𝑒𝑒 + 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑒𝑒 + 𝐶𝐶ℎ𝑒𝑒 + 𝐶𝐶𝑙𝑒𝑒 + 𝐶𝐶𝑡𝑡 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡(𝐞𝑛𝑖𝑖 , 𝐞𝑛𝑒𝑒 )    ∀ n ∈ N (4) 

 

Equation 3 

In the equation above Fi
po represents the emissions from the packout. At the packout the product is 

first pastillated, then filled into bags, stored on pallets and finally the pallets are wrapped into shrink 

cover. The electricity usage of the packout was calculated in order to calculate the carbon dioxide 

emissions of the packout. For each engine in the packout the actual used capacity (in kW) was 

determined by the capacity (in kW), the efficiency of the engine and the allocation factor. This 

allocation factor was needed because some engines are also used in other processes. Finally, the 

amount of carbon dioxide emitted by the packout was calculated by multiplying the total energy 

usage with the electricity emission factor of country where the packout is located. 

When selling the solid state, Eastman must also use packing material. Fi
pm represents the carbon 

dioxide emissions that are emitted due to the packaging material that Eastman uses. A Life Cycle 

Assessment (LCA) is conducted for the packaging material. In this case study, the emission factors 

until the gate of the packaging material suppliers were sourced from the database of the LCA 

software tool GaBi. The total CO2 emissions until the gate of the suppliers are obtained when these 

emission factors are multiplied with the total packaging material used. The transport CO2 emissions 

were calculated from the gate of the suppliers till Eastman’s gate by using the NTM methodology 

(see next section for further explanation). Also the end-of-life was taken into account within the LCA. 

It is assumed that the materials will not be recycled and from the database of Eurostat10 it is 

obtained that in Europe on average 34.69% of industrial waste is incinerated and 65.31% will end up 

in a landfill. The carbon dioxide emitted due to the end of life of a product was calculated by 

multiplying the total demand in kg with the emissions factor of the disposal treatment used.  

The emissions from the heating process at the customer are Fe
h. The amount of energy required to 

raise one kilogram of product by 1 degree must be calculated in order to calculate the total energy 

usage and total carbon dioxide emissions of this process. The required energy for the heating process 

(in kJ/kg) can be calculated with Qh= m * c * Δt, where m = total mass of products (in kg), c = specific 

10 Eurostat database. http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home, last accessed June 
26, 2013 
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heat capacity (in kJ/kg/°C)=2.1 kJ/kg/°C and ∆t = change in temperature (in °C). The carbon dioxide 

emissions were obtained when multiplying the total required energy with the right electricity 

emissions factor. 

In order to sell the molten state to customers, both Eastman and its customers must have a molten 

bulk tank in which they can store the product and keep it on a high temperature. These bulk tanks 

are kept on temperature by steam. In equation (3), Fi
mt and Fe

mt represent the CO2 emissions from 

steam use of a bulk tank at Eastman and its customer. 

In addition, the molten bulk tanks also use electricity to mix the molten product with a stirring device 

and to load and unload the bulk tanks. The emissions from electricity use of the bulk tank are 

represented by Fi
e and Fe

e. These emissions were obtained by calculating the energy usage of the 

stirring device and the pump that is used for (un)loading and multiplying these with the right 

electricity emission factors.  

Ft represents the emissions resulting from transport. There are several methodologies available to 

calculate transport emissions. Examples of methodologies are: Greenhouse Gas (GHG) protocol 

Artemis, EcoTransIT, NTM and STREAM. An overview of the characteristics per methodology is given 

in table 2. In this case study the carbon dioxide emissions resulting from transport are calculated with 

the NTM methodology. This method was chosen because it is focused on Europe, it has a high level 

of detail, it can calculate the emissions at various levels of detail, it offers the possibility of modifying 

or adding parameters and NTM is cooperating with the European Committee for Standardization to 

set a standard for calculating emissions resulting from transport, NTM (2011).  

 

Table 2 Overview transport emissions calculation methodologies (obtained from van den Akker et al. (2009)) 

Method Background Scope Level of Detail 

Artemis11 Well defined Europe Very high 

EcoTransIT12 Well defined Europe (excluding some countries Medium 

GHG Protocol13 Well defined World, focus on US Low 

NTM14 Well defined Europe High 

STREAM (den Boer 

et al. (2008)) 

Well defined The Netherlands Medium 

 

11 ARTEMIS. http://www.trl.co.uk/artemis, last accessed June 26, 2013 
12 ECOTransIT. 2011. http://www.ecotransit.org, last accessed June 26, 2013 
13 Greenhouse Gas Protocol. 2011. http://www.ghgprotocol.org, last accessed June 26, 2013 
14 NTM. 2011. NTM Calc. http://www.ntmcalc.se/index.html, last accessed June 26, 2013 
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In this case study the carbon dioxide emissions from two types of road transport was calculated; road 

transport with a regular container and road transport with a heated container. All details to calculate 

the carbon dioxide emissions from road transport are taken from NTM Road (2008) and van den 

Akker (2009). For road transport the carbon dioxide emissions depend on the fuel consumption 

(FCLF). The fuel consumption for a truck that has a regular container can be calculated as follows: 

 

𝐹𝐹𝐶𝐶𝐿𝐹 = 𝐹𝐹𝐶𝐶𝑒𝑒𝑚𝑝𝑝𝑡𝑡𝑦 + �𝐹𝐹𝐶𝐶𝑓𝑓𝑢𝑙𝑙 − 𝐹𝐹𝐶𝐶𝑒𝑒𝑚𝑝𝑝𝑡𝑡𝑦� ∗ 𝐿𝐹𝐹  
 
Where FCLF = Fuel consumption at the specified load factor (liters per kilometre), FCempty= Fuel 
consumption of the empty vehicle (liters per kilometre), FCfull= Fuel consumption of the fully loaded 
vehicle (liters per kilometre), LF= Specified load factor.  

For the molten product a truck with a heated container is used. This heated container uses more fuel 
which changes the previous formula into: 
 

𝐹𝐹𝐶𝐶𝐿𝐹 = 𝐹𝐹𝐶𝐶𝑒𝑒𝑚𝑝𝑝𝑡𝑡𝑦 + ��𝐹𝐹𝐶𝐶𝑓𝑓𝑢𝑙𝑙 ∗ (1 + 𝑥� − 𝐹𝐹𝐶𝐶𝑒𝑒𝑚𝑝𝑝𝑡𝑡𝑦� ∗ 𝐿𝐹𝐹 , 

 
where x represents the increase in fuel consumption when the container is heating the full container. 
Finally, the total carbon dioxide emitted can be calculated by 
 
𝑇𝐸 = 𝐹𝐹𝐶𝐶𝐿𝐹 ∗ 𝐷 ∗ 𝐹𝐹𝐶𝐶𝑐𝑜2   

 

where 𝑇𝐸 =Total carbon dioxide emission, 𝐷 = distance in km, 𝐹𝐹𝐶𝐶𝑐𝑜2 = Emission factor for fuel 

 

Equation 4 

In equation (4) the costs regarding the electricity cost for the packout are Ci
po, and Ci

pm represents the 

packaging material costs. The costs to keep a molten bulk tank up and running are Ci
mt and Ce

mt. The 

inventory holding costs of internal and external location are Ci
i and Ce

i, respectively. Ce
h represents 

the electricity costs of the heating process and Ce
l are the labour costs when bags need to be cut at 

the customer. The costs regarding transport are depicted by Ct.  
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