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Abstract: In Assemble-To-Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a
shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant
stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components
to end-product demand. In this article, we examine periodic-review ATO systems under linear holding and backlogging costs with
a component installation stock policy and a First-Come-First-Served (FCFS) allocation policy. We show that the FCFS allocation
policy decouples the problem of optimal component allocation over time into deterministic period-by-period optimal component
allocation problems. We denote the optimal allocation of components to end-product demand as multimatching. We solve the
multi-matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation
optimization problem with both upper and lower bounds is proposed. Numerical experiments for base-stock component replenish-
ment policies show that under optimal base-stock policies and optimal allocation, remnant stock holding costs must be taken into
account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark
against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015
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1. INTRODUCTION

Assemble-To-Order (ATO) systems are increasingly
important in contemporary manufacturing as they facilitate
mass customization without a need for high inventory cap-
ital investments, which can create a competitive advantage
with regard to customer service and profitability [3, 10]. For
example, delayed differentiation allows for assembly of final
products within the customer lead times thereby eliminat-
ing finished goods stock, that is, inventory consists only
of components. When orders arrive, components are with-
drawn from inventory and assembled into final products.
ATO systems exploit component commonality, which leads
to risk pooling among the component inventory [14]. How-
ever, in ATO systems there are also the potential of component
mismatches and component allocation issues when differ-
ent products share common components. To optimize system
performance, the decision problems of inventory replenish-
ment and component allocation must both be addressed. In
[2], it is shown that both types of decisions have similar

Correspondence to: Kai Huang (khuang@mcmaster.ca)
Additional Supporting Information may be found in the online
version of this article.

impacts on the aggregate fill rate in a periodic-review ATO
system. Therefore, in the context of ATO systems, we face
a joint optimization problem. Unfortunately, the joint opti-
mization problem is hard and the optimal policy for jointly
determining inventory replenishment and component alloca-
tion is unknown, except for specific small scale systems (cf.
[11, 16]).

The literature concerning the optimization of ATO systems
can be classified according to three aspects. First, with respect
to inventory review moments, we have single period (cf. [8]),
periodic-review (cf. [22, 1, 5, 2]) and continuous-review (cf.
[20, 12, 23]) models. Second, with respect to the objectives
of the optimization problem, the literature may be partitioned
in terms of service level (cf. [22, 1, 2, 20, 13]), or cost min-
imization (cf. [8, 5, 12]) goals. Thirdly, the decisions in the
optimization problem involve either inventory replenishment
optimization (cf. [22, 1, 5, 20, 12, 23]), or joint optimization
of inventory replenishment and component allocation (cf.
[8, 2]).

With regard to the continuous and periodic-review lit-
erature, there are very few cost minimization models that
incorporate both inventory holding and order-based backlog-
ging costs. For example, in [5], inventory costs are minimized

© 2015 Wiley Periodicals, Inc.



Huang and de Kok: Optimal FCFS Allocation Rules 159

given customer service level constraints, while in [12], an
order-based backorder cost minimization model is proposed
and compared to a classical newsvendor model with item-
based backorder costs. In [17], inventory holding costs are
incorporated into the objective, but there is no backlogging
cost, and the focus of the study is on the asymptotic behav-
ior of the system under high order volume. Dogru et al. [7]
used a two-stage stochastic program to provide an inventory
replenishment policy whose approximation results in a lower
bound on the total inventory cost. Importantly, they found
that the optimal component allocation policy obtained for a
special W system violated the FCFS principle. van Jaarsveld
and Scheller-Wolf [21] developed an algorithm for the joint
optimization of inventory replenishment and component allo-
cation, and studied the performance of this algorithm for
industrial-scale ATO systems. Nevertheless, all these stud-
ies assume continuous review ATO systems. As such, the
analysis cannot be directly applied to periodic-review ATO
systems.

The difficulty of accounting for the operational cost of
inventory holding is associated with the challenge of eval-
uating remnant stock. As first discussed in [1], remnant
stock refers to components that are allocated to certain prod-
ucts according to the First-Come-First-Served (FCFS) rule,
but can not immediately be assembled into a final product,
because complementary components are missing. In [6] the
concept of an ideal ATO system is introduced, and rem-
nant stock is explicitly analyzed and accurate approximations
for the long-run average remnant inventories are obtained.
In [2], it is shown that base-stock level optimization and
component allocation optimization have a similar impact
on increasing the order fill rate. In [17], an infinite horizon
model is proposed where a periodic-review policy is shown
to be the asymptotically optimal component rationing policy,
even though it ignores within-period order sequencing and
myopically minimizes the single period cost.

In this article, we consider an ATO system consisting of
multiple end-products that are assembled to order from mul-
tiple components. We assume that end-product demand is
stochastic and periodic, that is, at the end of each period
end-product demand for that period reveals itself (cf. [1]).
We assume that components are replenished according to
an installation stock policy. More precisely, the component
replenishment policy uses its inventory position as state vari-
able that must be controlled. The inventory position of a
component is defined as the sum of outstanding replenish-
ment orders and net stock. The net stock equals physical
inventory minus backorders. In the context of ATO systems,
we need to be careful concerning the definition of compo-
nent backorders. Each component is controlled in isolation
based on its inventory position, as if in a single-item single-
echelon system. Component backorders are defined from this
single-item single-echelon perspective. In the remainder of

this article, we use the term inventory-position-based policy
instead of installation stock policy, as the usage of the inven-
tory position as state for the component inventory replen-
ishment policy is the key to the results derived. Note that
inventory-position-based replenishment policies include (R,
S), (R, s, S), and (R, s, nQ)-policies (cf. [19]). We assume that
backlogged demand is filled on a FCFS basis. We assume lin-
ear holding costs for components and linear penalty costs for
end-products. The penalty costs for an end-product are linear
in the amount backordered of this end-product. We allow for
partial backorders and equivalently partial fulfillment of end-
product demand, that is, we allow that end-product demand in
a particular period is satisfied over multiple periods in time.
We assume that (part of) end-product demand is fulfilled as
soon as the necessary components have been allocated to it.
Under this convention the lead time of the final assembly
process is irrelevant for our analysis. This also implies that
we can assume without loss of generality that the assembly
lead time is zero. This convention is helpful when formulating
the model in Section 2.

It is important to note here that we do not make any specific
assumption regarding the demand process when exploring the
problem of optimally allocating components to end-products,
other than that demand reveals itself at the end of the period.
Assumptions on the demand process do become impor-
tant when determining the optimal inventory-position-based
replenishment policies. In our formulation of the joint opti-
mization of replenishment and allocation policies in Section
3, and in our experimental study in Section 4, we assume i.i.d.
demands from different periods and base-stock component
replenishment policies.

Our contributions to the existing literature are as follows.
First, we extend the concept of matching in [15], which refers
to the coupling of a single supply unit and a single customer.
We consider the coupling of multiple component units and
end-product (demand) units, called multimatching. The con-
cept of multimatching allows us to characterize the remnant
holding cost exactly. Second, we explore the inherent struc-
ture of the mathematical model underlying multimatching.
In particular, we show that under the FCFS rule, the compo-
nent allocation problem can be solved period by period in the
form of a Linear Program (LP) for continuous demand, and
in the form of an Integer Linear Program (ILP) for discrete
demand. In the context of ATO systems it is appropriate to
assume that end-product demand is discrete. We derive an
iterative algorithm to efficiently solve the component allo-
cation problem. Third, we investigate the joint optimization
of the base-stock levels and the component allocation policy,
modeled as a two-stage stochastic integer nonlinear program.
We propose an approximation scheme that ignores the rem-
nant stock holding cost. This formulation is much easier to
solve, and provides lower and upper bounds on the opti-
mal cost value. Fourth, in numerical experiments we show
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that the optimal FCFS allocation policy yields a significant
improvement over existing FCFS heuristics.

The remainder of the paper is organized as follows. In
Section 2, we formulate the component allocation problem
as a deterministic optimization problem. In Section 3, the
joint optimization problem is formulated as a two-stage sto-
chastic program, where simple upper and lower bounds on
the optimal objective are provided. Section 4 presents find-
ings from numerical experiments. Our conclusions and future
research ideas are presented in Section 5.

2. THE ATO MODEL

We consider a general periodic-review ATO system con-
sisting of m components and n products. We define M as
the set of all components 1, 2, · · · , m, and N as the set of
all products 1, 2, · · · , n. We have summarized further rele-
vant notation in Table 1. The Bill Of Materials (BOM) is
defined by the matrix (ai,j ), where ai,j equals the number of
components i needed to produce one unit of end-product j.
Components are ordered at the start of each period accord-
ing to an inventory-position-based policy. As stated above,
the inventory position is defined as the sum of net stock and
all outstanding replenishment orders, where the net stock is
defined as the physical stock minus backorders. The replen-
ishment lead time of component i equals Li periods, but the
production (final assembly) lead time is zero. We assume
linear holding costs for components. Demand Pj ,t for end-
product j in period t reveals itself at the end of the period;
this implies demand Di,t = ∑

j∈N ai,jPj ,t for component
i. Unless stated otherwise we do not make any assumption
regarding the demand process

{
Pj ,t

}
. End-product demand is

produced as soon as all required and allocated components are
available. In case one or more components do not have suffi-
cient availability, customer orders are backlogged and linear
backlog costs are incurred. We allow partial fulfillment of
demand Pj ,t over subsequent periods, yet component demand
must be satisfied and allocated to product demand on a FCFS
basis. This implies that, even though demand for component
i0 from demand Pj0,t for some end-product j0 could be filled
with physically available component inventory, it will only
be served after component availability over time resulting
from replenishments triggered by Di0,s , ∀s < t , has been allo-
cated to satisfy product demand before t , ∀s < t . The FCFS
assumption together with the general BOM matrix (ai,j ) leads
to the possibility of remnant stocks. Remnant stock is stock
allocated to demand that cannot yet be produced due to the
lack of availability of one or more components. The type and
amount of remnant stock and its associated holding costs, as
well as the type and amount of demand backlogged, depend
on how component availability is allocated to demands of
various products over time. Whereas in single item single

Table 1. ATO system notation

t index of periods. Period t is defined as the duration [t,t+1);
t ≥ 0.

i index of components, where i ∈ M = {1, · · · , m}.
j index of products, where j ∈ N = {1, · · · , n}.
Li : lead time of component i.
Si : base-stock level of component i.
L Maxi∈MLi , maximum lead time.
ai,j the number of component i used in each unit of end-product

j.
hi : unit inventory holding cost for component i.
bj : unit backlogging cost for end-product j.
Pj ,t demand for end-product j in period t.
Di,t demand for component i in period t; Di,t = ∑

j∈N ai,jPj ,t .
Xi,t net stock of component i at the end of period t.
Oi,t replenishment order of component i placed at the start of

period t.
Ai,t replenishment order of component i arriving at the start of

period t.
Yi,t inventory position of component i at the start of period t

(after event 1).

location systems such an allocation is trivial, this is not the
case for a general ATO system. This allocation of component
availability is denoted as multimatching as we try to match
demand for multiple products with availability of multiple
components over time.

2.1. Sequence of Events

As we consider a periodic-review system, we must care-
fully define the sequence of events during a period. At the
start of period t we have the following sequence of events:

1. Order Oi,t is placed for all i.
2. Order Ai,t = Oi,t−Li

is received for all i.

At the end of period t we have the following subsequent
events:

3. Demand Di,t reveals itself.
4. Determine order Oi,t+1 to be placed at the start of

period t + 1.
5. Allocate component availability to Pj ,s , s ≤ t .
6. Satisfy (partially) end-product demand for which all

required components are available.
7. Incur penalty and holding costs.

As stated above, we assume that the production lead time
is zero. Thus we state that end-product demand, to which
components are allocated at the end of period t in step 5, is
satisfied at time t. The costs charged in step 7 only consider
the customer demands received until the end of period t that
have not been satisfied in step 6. Furthermore, end-product
demand that uses components received in step 2 at the start

Naval Research Logistics DOI 10.1002/nav



Huang and de Kok: Optimal FCFS Allocation Rules 161

of period t + 1, is assumed to be satisfied in step 6 at the end
of period t. This is because of the fact that the replenishment
quantities received at the start of period t + 1 are known at the
end of period t. To enable the multimatching technique, we
need to specify a condition on the inventory-position-based
policies that ensures that the maximum waiting time until
demand for component i is satisfied equals Li .

CONDITION 1: The inventory-position-based compo-
nent replenishment policies satisfy

Yi,t+1 ≥ 0, ∀i ∈ M, ∀t ≥ 0.

The above condition states that after ordering a compo-
nent its inventory position is non-negative. This holds for
base-stock policies with non-negative base-stock levels and
for reorder point policies with non-negative reorder points.

2.2. Multimatching

In this section, we define the multimatching problem asso-
ciated with an arbitrary period t. Due to the FCFS assumption
and the assumption that component orders for period t + 1
are immediately determined after demands Pj ,t reveal them-
selves (event 3 and 4), we have the following component net
stock Xi,t immediately after demand revelation,

Xi,t = Yi,t−Li
− Di[t − Li , t], ∀i ∈ M,

where Yi,t−Li
is the inventory position at the start of period

t − Li (after event 1); and Di[s, t] = ∑t
u=s Di,u for s ≤ t .

Now we distinguish between two cases, viz., demand
Pj ,t , ∀j ∈ N , can be satisfied immediately, or not. The first
situation occurs when

Xi,t ≥ 0, ∀i ∈ {
k : ak,j > 0

}
. (1)

In this case, we do not incur backlog costs for end-product
j. However, in case Eq. (1) does not hold, we face an allo-
cation problem. In what follows we show that under the
FCFS assumption and inventory-position-based component
replenishment policies satisfying Condition 1, this allocation
problem can be formulated as an LP. The main idea behind
the derivation of this result is that the two assumptions men-
tioned above (Condition 1 and FCFS) separate the allocation
problems in different periods. Firstly, the allocation problem
to be solved in period t is not affected by demands in periods
s > t due to the FCFS assumption. Secondly, by Condition 1,
the demand in period t is satisfied from component replen-
ishment orders known after event 4 in period t, whereby the
allocation problem becomes a deterministic problem.

The FCFS assumption implies that we can assume without
loss of generality that Pj ,s = 0, ∀j ∈ N , ∀s > t , when solv-
ing the allocation problem at the end of period t. Let X0

i,t+s

be defined as

X0
i,t+s : = net stock of component i at the end of

period t + s, assuming no demand

occurs after time t .

Using this assumption it follows that the inventory balance
equation for periods t+s, s > 0 can be formulated as follows,

X0
i,t+s = Xi,t +

s∑
u=1

Ai,t+u, s ≥ 1.

Now note that at the start of period t + 1 the inventory-
position-based replenishment policy generates a, possibly
zero, replenishment order Oi,t+1 that arrives at the start of
period t + Li + 1. Thus we find that

Yi,t+1 = Yi,t + Oi,t+1 − Di,t

= Yi,t + Ai,t+Li+1 − Di,t

= Xi,t +
Li∑

s=1

Ai,t+s + Ai,t+Li+1

= Xi,t +
Li+1∑
s=1

Ai,t+s

= X0
i,t+Li+1.

We emphasize here that X0
i,t+Li+1 equals the cumulative

availability of component i immediately after arrival of order
Oi,t+1. This availability can be used to allocate component
i to satisfy demand at time t. From the above equality and
Condition 1 it follows that X0

i,t+Li+1 ≥ 0. Now note that
Yi,t+1 represents the inventory position of component i after
ordering at time t, which is already known after event 4 of
period t, that is, after revelation of demand Di,t . This and the
assumption that no demand occurs after time t implies that
Di,t has been satisfied at or before time t +Li . This reasoning
results into the following Theorem:

THEOREM 1: Under Condition 1 the following state-
ments hold:

1. Di,t can be satisfied before or in period t + Li for all
i ∈ M and t ≥ 0.

2. All component orders from which demand Pj ,t is
satisfied are known at time t before component
allocation, ∀t ≥ 0, ∀j ∈ N .
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3. Pj ,t can be satisfied before or at time t + L, ∀t ≥
0, ∀j ∈ N .

With respect to property 1 in Theorem 1 we note that under
Condition 1, the worst case is that component demand is sat-
isfied by the order it triggers. Indeed, since this order arrives
Li periods later, the worst case is that demand in period t for
component i is satisfied in period t + Li .

From Theorem 1, we derive the following corollary
concerning base-stock policies:

COROLLARY 1: If component inventory is controlled by
base-stock policies with Si ≥ 0, ∀i ∈ M, then

1. All component orders from which demand Pj ,t is
satisfied are known at time t before component
allocation, ∀t ≥ 0, ∀j ∈ N .

2. Pj ,t is satisfied before or at time t + L, ∀t ≥ 0, ∀j ∈
N .

With the above result, we can formulate the component
allocation problem at the end of period t, as a deterministic
problem, since all relevant information is known.

The decisions to be taken at time t to satisfy demand Pj ,t

concern allocation of component availability at the end of
periods t , t + 1, · · · , t + L. Define

xt
j ,k : = amount of end − product demand Pj ,t

satisfied at time t + k,

j ∈ N , 0 ≤ k ≤ L, t ≥ 0.

The decision variables xt
j ,k ( t ≥ 0) must satisfy the following

constraints,

L∑
k=0

xt
j ,k = Pj ,t , j ∈ N (2)

k∑
u=0

∑
j∈N

ai,j x
t
j ,u ≤ Max

{
0, Xi,t + Di,t +

k+1∑
u=1

Ai,t+u

}
,

i ∈ M, 0 ≤ k ≤ Li (3)
k∑

u=0

∑
j∈N

ai,j x
t
j ,u ≤ Max

{
0, Xi,t + Di,t +

Li+1∑
u=1

Ai,t+u

}
,

i ∈ M, Li < k ≤ L (4)

Equation (2) ensures that demand for end-product j is sat-
isfied at or before time t + L. Inequality (3) states that the
total amount of demand for component i in period t, satisfied
until period t + k ( 0 ≤ k ≤ Li), cannot exceed the cumu-
lative availability of component i at time t + k for satisfying
demand from period t. This cumulative availability may be

negative in case of backorders at time t + k due to end-product
demand before time t using component i. The imposed non-
negativity of xt

j ,k requires that we take the maximum of 0 and
component i availability at time t + k. Inequality (4) is simi-
lar to inequality (3): it expresses the fact that at time t + Li

all component i replenishment orders needed to satisfy com-
ponent i demand from end-product demand Pj ,t have been
received in stock. Note that the consumption of component i
for satisfying end-product demand in period t may take place
later than time t+Li due to lack of availability of components
with lead times longer than Li .

Given the allocation decisionxt
j ,k we can compute the hold-

ing and backorder costs associated with end-product demand
Pj ,t in period t. Let us first consider the holding costs incurred
after allocating components over time to demand. For all
components i ∈ M the free available physical stock left
for satisfying future demands (demands after period t) after
allocation at time t equals X+

i,t ,

X+
i,t = Max

⎧⎨
⎩0, Yi,t−Li

−
t∑

u=t−Li

Di,u

⎫⎬
⎭ .

We incur an immediate holding cost associated with period
t equal to

∑
i∈M hiX

+
i,t (called classical inventory holding

cost). Furthermore, some of the allocated stock of component
i may be carried additional periods, due to lack of availability
of other components. Thus additional holding costs will be
incurred in future periods that we should associate with the
decisions xt

j ,k at time t. We denote physically available stock
already allocated to demand in period t as remnant stock. Let
us define

X̃i,t (t + s) := amount of remnant stock of

component icarried at time t + s

to satisfy demand in period t , 0 ≤ s ≤ L.

Let us derive an expression for X̃i,t (t + s). Note that,
according to equality (2), the total amount of component i
allocated at time t equals to Di,t . This implies that the rem-
nant stock associated with the allocation at the end of period
t + s can never exceed Di,t , 0 ≤ s ≤ L. Furthermore, we
take into account the availability of component i at time
t , t + 1, . . . , t + Li under the assumption that no demand
occurs after time t. It follows from (3) and (4) that component i
stock availability at time t + s equals Xi,t +Di,t +∑s+1

u=1 Ai,t+u

for all 0 ≤ s ≤ Li , and equals Xi,t +Di,t +∑Li+1
u=1 Ai,t+u for

all Li + 1 < s ≤ L. As long as there is a backlog of com-
ponent i at time t + s, 0 ≤ s ≤ Li , there cannot be remnant
stock. As soon as there is positive availability, then the rem-
nant stock is the difference between this availability and the
cumulative amount of component i consumed by satisfying
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end-product demand from period t. These observations yield
the following expressions for X̃i,t (t + s).

X̃i,t (t + s) =
(

Min

{
Di,t , Xi,t + Di,t +

s+1∑
u=1

Ai,t+u

})+

−
∑
j∈N

s∑
u=0

ai,j x
t
j ,u, 0 ≤ s ≤ Li (5)

X̃i,t (t + s) =
(

Min

{
Di,t , Xi,t + Di,t +

Li+1∑
u=1

Ai,t+u

})+

−
∑
j∈N

s∑
u=0

ai,j x
t
j ,u, Li + 1 < s ≤ L (6)

Clearly, constraints (2)–(4) will guarantee the nonnegativity
of X̃i,t (t + s) for all 0 ≤ s ≤ L.

Next, we determine the amount of demand Pj ,t still
backlogged at time t + s with similar reasoning. Define

B̃j ,t (t + s) := amount of demand for end − product j

in period t that has not been

satisfied at time t + s.

Then we have

B̃j ,t (t + s) = Pj ,t −
s∑

u=0

xt
j ,u, 0 ≤ s ≤ L. (7)

Now that we have expressions for physically available
stock for future demands at time t, and remnant stocks and
backlogs associated with the allocation decisions at time t,
we can derive an expression for the total cost CP

1 (t) incurred
by the ordering decisions associated with the inventory-
position-based policy P at the start of period t − Li , i ∈ M,
yielding Yi,t−Li

, and the allocation decisions at the end of
period t.

CP
1 (t) =

∑
i∈M

hi

(
X+

i,t +
L∑

s=0

X̃i,t (t + s)

)

+
∑
j∈N

bj

L∑
s=0

B̃j ,t (t + s)

=
∑
i∈M

{
hiMax

⎧⎨
⎩0, Yi,t−Li

−
t∑

u=t−Li

Di,u

⎫⎬
⎭

+
Li∑

s=0

hi

[(
Min

{
Di,t , Xi,t + Di,t +

s+1∑
u=1

Ai,t+u

})+

−
∑
j∈N

s∑
u=0

ai,j x
t
j ,u

]

+
L∑

s=Li+1

hi

[(
Min

{
Di,t , Xi,t + Di,t +

Li+1∑
u=1

Ai,t+u

})+

−
∑
j∈N

s∑
u=0

ai,j x
t
j ,u

]}

+
∑
j∈N

bj

L∑
s=0

(
Pj ,t −

s∑
u=0

xt
j ,u

)
. (8)

Thus the component allocation problem at time t consists
of an objective function and constraints that are linear in
our decision variables xt

j ,u, while all problem-relevant exoge-
nous information has revealed itself at or before time t. This
implies that the component allocation problem is a Linear
Program. Under continuous demand the component alloca-
tion problem can be solved with standard methods. In the
context of Assemble-To-Order systems end-product demand
is typically low volume, which makes it more appropriate
to assume that end-product demand is discrete. In that case
the component allocation problem becomes an Integer Lin-
ear Program (ILP) for which we develop an efficient solution
method below.

2.3. Mathematical Programs for Component
Allocation

Let L = {0, · · · , L}. According to the analysis in Subsec-
tion 2.2, the component allocation problem at period t for the
demand in period t under inventory-position-based policy P

can be formulated as:

Min CP
1 (t)

s.t. (2), (3), (4)

xt
j ,k ∈ Z+ ∀j ∈ N , k ∈ L,

(9)

We would like to emphasize the fact that in the objective
function of (9), there are costs determined by policy P , yield-
ing the component inventory positions Yi,t−Li

, as well as costs
determined by the allocation decisions.

We can rearrange the coefficients before the decision vari-
ables and discard the terms not influenced by the decision
variables in (8) such that (9) is transformed to:

Max CP
2 (t) =

∑
j∈N

L∑
k=0

(
∑
i∈M

hiai,j + bj )(L + 1 − k)xt
j ,k

s.t. (2), (3), (4)

xt
j ,k ∈ Z+ ∀j ∈ N , k ∈ L, (10)

The explanation of CP
2 (t) is that we collect reward

(
∑

i∈M hiai,j + bj )(L + 1 − k) for each unit of end-product
j demand satisfied at time t + k. This reward depends on the
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moment the end-product demand is satisfied, which is in con-
trast with the reward for each unit satisfied at time t used in
[2].

An interesting observation of CP
2 (t) is that its value does

not depend on the specific definitions of hi’s and bj ’s. In
(10), if we let h′

i = 0 and b′
j = ∑

i∈M hiai,j + bj for all i,
j, then the same optimal FCFS component allocation will be
obtained. The equivalence of (9) and (10) implies that if the
new cost scheme of h′

i and b′
j is implied, the optimal FCFS

component allocation in (9) will be obtained as well. Using∑L
k=0 xt

j ,k = Pj ,t , we can easily show that (9) is equivalent
to:

Min CP
3 (t) =

∑
j∈N

L∑
k=0

kb′
j x

t
j ,k

s.t. (2), (3), (4)

xt
j ,k ∈ Z+ ∀j ∈ N , k ∈ L, (11)

We emphasize that the equivalence among (9), (10),
and (11) is for component allocation optimization only,
that is, under the same inventory-position-based component
replenishment policies. Thus we have proven the following
theorem.

THEOREM 2: Mathematical programs (9), (10), and (11)
are equivalent in terms of optimal solutions.

2.4. An Iterative Algorithm for Component Allocation

According to Theorem 2, we can transform (9) to an equiv-
alent mathematical program with the same feasible region
and objective CP

3 (t) = ∑
j∈N

∑L
k=0 kb′

j x
t
j ,k . In the follow-

ing we show that an iterative algorithm can be used to solve
this mathematical program.

To do so we reconsider the expressions for the remnant
stocks (5) and (6). From the non-negativity of the remnant
stocks we find

k∑
u=0

∑
j∈N

ai,j x
t
j ,u ≤

(
Min

{
Di,t , Xi,t + Di,t +

k+1∑
u=1

Ai,t+u

})+
,

i ∈ M, 0 ≤ k ≤ Li (12)

k∑
u=0

∑
j∈N

ai,j x
t
j ,u ≤

(
Min

{
Di,t , Xi,t + Di,t +

Li+1∑
u=1

Ai,t+u

})+
,

i ∈ M, Li + 1 < k ≤ L (13)

In the presence of constraint (2), which ensures that the
cumulative amount of component i allocated to demand in
period t can never exceed Di,t , we find that the feasible region
determined by constraints (2), (3), and (4) is identical to the
feasible region determined by constraints (2), (12), and (13).

Let us define the variables Ot
i,k as

Ot
i,k :=

(
Min

{
Di,t , Xi,t + Di,t +

k+1∑
u=1

Ai,t+u

})+
,

0 ≤ k ≤ Li

Ot
i,k :=

(
Min

{
Di,t , Xi,t + Di,t +

Li+1∑
u=1

Ai,t+u

})+
,

Li + 1 ≤ k ≤ L. (14)

Then we can reformulate the component allocation problem
as

Min CP
3 (t)

s.t.
L∑

k=0

xt
j ,k = Pj ,t j ∈ N

k∑
u=0

∑
j∈N

ai,j x
t
j ,u ≤ Ot

i,k i ∈ M, k ∈ L

xt
j ,k ∈ Z+ ∀j ∈ N , k ∈ L.

(15)

We can design a Benders decomposition algorithm to solve
(15). In each iteration, this algorithm solves a variant of (15)
where only a subset of the second set of constraints in the
feasible region is used. We add such a constraint only when
it is violated. As presented in Figure 1, it is clear that the algo-
rithm will stop in a finite number of steps with the optimal
solution. In Figure 1, we define

Ôt
i,k := amount of component i allocated at the end

of period t + k to satisfy

demand in period t .

As we add only binding constraints, we have that Ôt
i,k =

Ot
i,k − Ot

i,k−1 (let Ot
i,−1 = 0). Therefore, we always

have
∑k

u=1 Ôt
i,u = Ot

i,k and Ot
i,L = ∑L

k=0 Ôt
i,k =∑

j∈N ai,jPj ,t = Di .

3. BASE-STOCK LEVEL OPTIMIZATION

In the derivations above, we assumed that the inventory-
position-based component replenishment policies are given.
In this section we assume that a base-stock component replen-
ishment policy B is used. To optimize the entire system,
base-stock levels and component allocation must be jointly
determined.

Let Si denote the base-stock level for component i, i ∈
M. Under a base-stock policy B, (9) can be simpli-
fied. According to definition (14), we have Ot

i,k =
Naval Research Logistics DOI 10.1002/nav



Huang and de Kok: Optimal FCFS Allocation Rules 165

Algorithm 1

Figure 1. An iterative algorithm for ATO system component
allocation

(Min
{
Xi,t + Di,t + ∑k+1

s=1 Ai,t+s

}
, Di,t )

+ for 0 ≤ k ≤ Li ,

and Ot
i,k = (Min

{
Xi,t + Di,t + ∑Li+1

s=1 Ai,t+s

}
, Di,t )

+ for

Li < k ≤ L. Consider 0 ≤ k ≤ Li . Note that
a base-stock policy requires that Yi,t+1 = Si . Therefore
Si = Yi,t+1 = Xi,t + ∑Li+1

s=1 Ai,t+s (cf. the derivation
before Theorem 1), which implies that Xi,t + ∑k+1

s=1 Ai,t+s =
Si − ∑Li+1

s=k+2 Ai,t+s = Si − ∑t
s=t+k+1−Li

Di,s (note that
Ai,t+s = Di,t+s−Li−1 under the base-stock policy). Thus
Ot

i,k = (Min
{
(Si − ∑t

s=t+k+1−Li
Di,s) + Di,t , Di,t

}
)
+

for
0 ≤ k ≤ Li . This implies that Ot

i,Li
= Di,t . Similarly, when

k > Li , we have Ot
i,k = Di,t .

With these notations, we can express the component
allocation problem for policy B as:

Min CB
1 (S, xt )

s.t.
L∑

k=0

xt
j ,k = Pj ,t ∀j ∈ N

k∑
u=0

∑
j∈N

ai,j x
t
j ,u ≤ Ot

i,k ∀i ∈ M, k ∈ L

xt
j ,k ∈ Z+ ∀j ∈ N , k ∈ L,

(16)

where S = (Si)i∈M, xt = (xt
j ,k)j∈N ,k∈L and

CB
1 (S, xt ) :=

∑
i∈M

hi(Si − Di[t − Li , t])+

+
∑
i∈M

L∑
k=0

hi

⎛
⎝Ot

i,k −
k∑

u=0

∑
j∈N

ai,j x
t
j ,u

⎞
⎠

+
∑
j∈N

L∑
k=0

bj

(
Pj ,t −

k∑
u=0

xt
j ,u

)
. (17)

Note that by period t when (16) needs to be solved, the
random demands Pj ,s for t − Li ≤ s ≤ t have already been
realized. Thus, (16) is a deterministic optimization problem.
Moreover, the base-stock levels are determined before the
random demands are realized. To emphasize that the optimal
objective value of (16) would depend on the random demands,
we can write it as Q(S, ξ(ω)), where ξ = (Pj ,s)t−Li≤s≤t ,j∈N
is the vector of all random variables (ω represents the ran-
dom outcome). Then the joint optimization problem can be
modeled as a two-stage stochastic program (cf. [4, 18]):

Min Eξ [Q(S, ξ(ω))]
s.t. Si ∈ Z+ ∀i ∈ M.

(18)

Note that the Ot
i,k’s are piecewise linear nonconvex func-

tions of Si’s. In (16), these nonlinear terms appear in the right
hand side and in the objective function. Thus, the joint opti-
mization is a stochastic integer nonlinear program, which is
notoriously difficult to solve [4]. Here, from (17), it can be
seen that the Ot

i,k terms appear only in the expression of the
remnant stock holding cost. Therefore, as in [1], the techni-
cal difficulty in the joint optimization problem arises mainly
from the cost of remnant stock. To avoid this difficulty, we can
drop the remnant stock holding cost, that is, replace CB

1 (S, xt )

by CB
4 (S, xt ),

CB
4 (S, xt ) :=

∑
i∈M

hi(Si − Di[t − Li , t])+

+
∑
j∈N

L∑
k=0

bj

(
Pj ,t −

k∑
u=0

xt
j ,u

)

In the objective function, we can easily linearize the non-
linear term (Si − Di[t − Li , t])+ by introducing a continuous
variable. Then, as in [2], the Sample Average Approximation
algorithm (cf. [9]) can be used to solve the problem without
the remnant stock costs. The approximation scheme is not
only easier to solve, but can provide lower and upper bounds
on the optimal objective as well.

THEOREM 3: Let the objective function of the original
joint optimization problem (16) be G(S), where S = (Si)i∈M
is the vector of base-stock levels; and let the objective func-
tion of the problem without remnants stocks be G̃(S). Let
S∗ be the optimal solution of the original problem, and S̃ be
the optimal solution of the problem without remnant stocks.
Assume the percentage of the remnant stock holding cost
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associated with S̃ is ε, that is, (1 − ε)G(S̃) = G̃(S̃), then we
have

(1 − ε)G(S̃) ≤ G(S∗) ≤ 1

1 − ε
G̃(S̃). (19)

PROOF: For the first inequality, we have G(S̃)−G(S∗)
G(S∗) =

G(S̃)

G(S∗) − 1 ≤ G(S̃)

G̃(S∗)
− 1 ≤ G(S̃)

G̃(S̃)
− 1 = 1

1−ε
− 1 = ε

1−ε
. For

the second inequality, we have G(S∗)−G̃(S̃)

G(S∗) = 1− G̃(S̃)

G(S∗) = 1−
(1−ε)G(S̃)

G(S∗) ≤ 1 − (1−ε)G(S∗)
G(S∗) = ε. Therefore (19) follows. �

With similar reasoning as in Theorem 3, the same lower and
upper bounds can be derived for general inventory-position-
based policies. This implies that if we find an optimal solution
for the problem without remnant stocks having a small per-
centage remnant stock costs, then the bounds are tight. Note
that the proposed approximation scheme is still a noncon-
vex optimization problem. However, computationally, this
approximation will remove a part of the nonlinearity of the
original program, and can be solved much faster than the
original program.

4. NUMERICAL RESULTS

In this section, we report the results of the numerical exper-
iments concerning the proposed models and solutions. For all
the experiments, we assume base-stock component replenish-
ment policies. Importantly, we do not need any assumption on
the demand process for deriving the formulations in Section
2 for the multimatching problem. For our numerical study we
need further assumptions, basically for convenience regard-
ing simulating the demand process. Given the base stock
policies and the allocation policy we can evaluate the costs
using discrete event simulation, sampling from the demand
distributions assumptions. In principle we can approximate
the costs arbitrarily close by increasing the simulation run-
length. Unfortunately we have to deal with a nonconvex cost
function, and for the optimal allocation we must solve an ILP
in each period. The latter implies that evaluating the costs
for a given base stock policy can be quite time consuming.
The former implies that the search for the optimal base-stock
policies can be quite time consuming here as well. Thus we
need to compromise on run-length for each cost evaluation
for given base stock policies and allocation policy.

First, we study the behavior and impact of remnant stock.
Second, the effectiveness and efficiency of the solution strate-
gies are tested. Finally, we examine the impact of component
allocation optimization in relation to base-stock level opti-
mization, with emphasis on the role of component alloca-
tion heuristics in ATO system optimization. The algorithms
are implemented in ANSI C, by incorporating the ILOG

Table 2. Cost distribution with respect to instance size

Cost Correlation
Instance Percentage Coefficient

Size I II III I & II II & III
n4m4 78.38 6.06 15.55 −0.36 0.65
n16m8 34.40 19.86 45.73 −0.51 0.82
n32m16 2.56 35.68 61.76 −0.39 0.89
n8m16 69.25 12.72 18.03 −0.58 0.98
n16m32 26.36 31.81 41.83 −0.65 0.98

CPLEX12.4 Callable Library optimization package. A WIN-
DOWS workstation with 2.4GHz Intel Xeon processor and
24GB RAM was used for all experiments. In the following,
we report the major results of our numerical experiments. For
more details, please refer to Supporting Information.

4.1. The Behavior and Impact of Remnant Stock

In the first experiment, the component allocation schemes
are tested, with base-stock levels that are derived from
component safety stocks that have the same safety factor ν,

Si = (Li + 1)E[Di] + ν
√

Li + 1σ(Di).

For each ATO system instance, 100 realizations of random
demands are generated and the corresponding component
allocation problems are optimally solved. The three types
of costs (classical inventory holding, remnant stock holding,
and backlogging costs; Cost I, II and III, respectively) are
collected from the optimal solution. The percentages of each
cost are then calculated, as well as the correlation coeffi-
cients among them. See Table 2, where instance size refers
to the ATO system size. For example, n4m4 is indicative of
4 products and 4 components. Note that in our Supporting
Information, the findings concerning the influences of base-
stock levels and lead time dissimilarity in components, are
presented as well.

The percentage of the remnant stock holding cost ranges
from 6.06% to 35.68%. Table 2 and the experiments in Sup-
porting Information show that remnant stock holding cost
becomes a meaningful contributor to operational cost as: (a)
the size of the ATO system increases; (b) the base-stock lev-
els are low, or (c) the dissimilarity in the lead times is high.
Also, in all instances, the correlation coefficients between
classical inventory holding cost and remnant stock holding
cost are uniformly negative, while the correlation coefficients
between the remnant stock holding cost and the backlogging
cost are uniformly positive. Thus, the behavior of remnant
stock is similar to that of backorders but deviates from clas-
sical inventory. This is due to the multimatching nature of the
inventory system.
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Table 3. Comparison of optimal FCFS allocation and simple FCFS heuristic allocation rules.

In. De. OA OA Local opt. gap (%) Global opt. gap (%)
obj. gap (%) PBP FS OBCA PBP FS OBCA

M1 −0.1 245.21 9.18 9.9 14.85 18.13 19.08 24.03 27.31
−0.05 230.71 2.73 8.41 18.24 19.83 11.14 20.96 22.56

0 224.59 0 6.85 17.13 20.4 6.85 17.13 20.4
+0.05 233.37 3.91 5.03 15 21.04 8.94 18.91 24.95
+0.1 247.11 10.03 3.46 15.65 18.38 13.49 25.67 28.41

M2 −0.1 616.87 34.22 24.26 46.81 8.82 58.47 81.02 43.04
−0.05 508.28 10.59 20.26 38.44 7.74 30.85 49.03 18.33

0 459.6 0 13.35 32.14 5.94 13.35 32.14 5.94
+0.05 497.43 8.23 10 22.88 5.47 18.23 31.11 13.7
+0.1 563.28 22.56 5.71 16.8 2.29 28.27 39.36 24.85

4.2. Efficiency of the Iterative Algorithm for
Component Allocation

In Option I, the standard CPLEX Mixed-Integer-
Programming (MIP) solver is used. In Option II, Algorithm
1 in Section 2.4 is applied. Eight ATO instances with sizes
n16m32, n32m64, n64m128, n128m256, n32m16, n64m32,
n128m64, n256m128 are tested. For each instance, five
demand realizations are generated and the corresponding
component allocation problems are solved. Option II proves
faster in 38 of the 40 component allocation problems. For all
six of the larger instances ( n ≥ 32 or m ≥ 32), Option II con-
sistently takes 20% less time than Option I. Thus, Algorithm
1 is effective and improves solution efficiency.

4.3. Optimal FCFS Allocation Versus Simple FCFS
Heuristic Allocation

In our third experiment, the effects of simple-to-implement
FCFS allocation heuristics are compared to optimal FCFS
allocation. Specifically, three FCFS heuristic policies,
Product-Based-Priority (PBP, see [22]); Fair-Share (FS, see
[1]); and the Order-Based-Component-Allocation (OBCA,
see [2]) are evaluated relative to the optimal FCFS component
allocation mathematical program we propose.

Two small instances denoted as M1 ( n2m2) and M2 (
n3m2) are used. Under PBP, backlogging costs are used to
rank the products, that is the priority list reflects decreasing
backlogging costs. With the FS rule, we round the allocated
components down to the closest integer number. A greedi-
ness coefficient of 1 was used under the OBCA rule. One
hundred realizations are generated for each ATO instance.
We find the globally optimal base-stock levels first by enu-
meration. We then deviate from the optimal base-stock levels
by a uniform percentage and compare the SAA objectives of
the three FCFS heuristics to optimal FCFS allocation.

For a given set of base-stock levels, we not only compute
the optimality gaps between the heuristic and optimal alloca-
tion rules, but also obtain the optimality gaps between these

solutions and the globally optimal solution. We refer to these
as the local and global optimality gaps, respectively. Table 3
summarizes the results for the M1 and M2 instances.

Regarding Table 3, the first column (In.) shows the instance
index, followed by (De.), the percentage deviation of the base-
stock levels from the globally optimal solution. For example,
for M1, when deviation equals 0, the base-stock levels 66 and
40 are the global optimal, whereas when the deviation is 0.1,
the base-stock level of component 1 is 	66 × (1 + 0.1)
 =
72. Column (OA obj.) refers to the objective value (for the
SAA problem of 100 realizations) of the optimal FCFS allo-
cation under a given base-stock level, while OA gap (%)
reflects the percentage difference between the objective and
the globally optimal solution. Local opt. gap (%) refers to the
percentage difference between the objective of a given FCFS
heuristic allocation rule and that of the optimal FCFS allo-
cation, while Global opt. gap (%) is the difference relative to
the global optimal objective. To standardize the comparisons,
when the gap percentages are calculated, the global optimal
objective is always used as the denominator. Thus, the global
optimality gap percentage (Global opt. gap (%)) is always
the sum of the optimal allocation gap [OA gap (%)] and the
local optimality gap percentages [Local opt. gap (%)].

The experiment findings clearly demonstrate the value of
optimal allocation, especially the necessity of joint optimiza-
tion. Table 3 shows that as the base-stock levels increase,
the importance of optimal FCFS component allocation
decreases, and the simple FCFS heuristic allocation rules
perform well. However, in terms of joint optimality gap, no
matter whether the base-stock levels deviate from the optimal
solution from above or from below, larger deviations always
make the global optimality gap increase. The global optimal-
ity gap of a FCFS heuristic allocation rule can be viewed as
the optimality gap of the optimal FCFS allocation (OA gap)
plus the local optimality gap. When the base-stock levels
deviate from above the optimal solution, although the local
optimality gap tends to decrease, the optimality gap of the
optimal FCFS allocation always increases. Thus, the global
optimality gap will still increase. This is crucial because it
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shows that joint optimization with optimal FCFS component
allocation is always important. Finally, note that local opti-
mization becomes more important as the base-stock levels
decrease.

5. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

We evaluated cost minimization schemes for a periodic-
review ATO system with independent component inventory-
position-based replenishment policies and FCFS allocation.
Several contributions to the literature concerning these sys-
tems were made. First, we showed that the component alloca-
tion problem under FCFS is a period-by-period deterministic
problem. Second, the concept of multimatching was intro-
duced wherein an exact cost accounting scheme for the ATO
system under consideration was proposed. In our system,
classical inventory holding, remnant stock holding, and back-
logging costs are all determined simultaneously. Third, a new
mathematical program for component allocation was pro-
posed in which an iterative algorithm was used to improve the
solution efficiency. An approximation scheme was also pro-
posed for the joint optimization of inventory replenishment
and component allocation, which is a two-stage stochastic
integer nonlinear program. Both lower and upper bounds
are developed for the joint optimization problem. Fourth,
the importance of component allocation was evaluated rel-
ative to base-stock level optimization. This was viable due
to our exact model for component allocation. Our experi-
ments showed that although component allocation is of less
concern than base-stock level optimization in a cost min-
imization setting, it is nonetheless of general importance.
Finally, we showed that joint optimization incorporating the
optimal FCFS component allocation will always be of value.

There are several avenues for future study. First, the con-
cept of multi-matching could be extended to non-FCFS com-
ponent allocation for certain cases. Second, as Theorem 1
holds for all inventory-position-based component replenish-
ment policies under Condition 1, we should explore the
impact of component order lot-sizing on the performance
of ATO systems. Finally, our computational studies clearly
demonstrate that component allocation problems can be opti-
mally solved for small to medium size ATO systems. Since
the bottleneck is the joint optimization problem, its solution
strategy is worth further study.
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