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PROBABILISTIC BOUNDS FOR THE MATRIX CONDITION
NUMBER WITH EXTENDED LANCZOS BIDIAGONALIZATION

SARAH W. GAAF∗ AND MICHIEL E. HOCHSTENBACH∗

Abstract. Reliable estimates for the condition number of a large, sparse, real matrix A are impor-
tant in many applications. To get an approximation for the condition number κ(A), an approximation
for the smallest singular value is needed. Standard Krylov subspaces are usually unsuitable for finding
a good approximation to the smallest singular value. Therefore, we study extended Krylov subspaces
which turn out to be ideal for the simultaneous approximation of both the smallest and largest sin-
gular value of a matrix. First, we develop a new extended Lanczos bidiagonalization method. With
this method we obtain a lower bound for the condition number. Moreover, the method also yields
probabilistic upper bounds for κ(A). The user can select the probability with which the upper bound
holds, as well as the ratio of the probabilistic upper bound and the lower bound.

Key words. Extended Lanczos bidiagonalization, extended Krylov method, matrix condition
number, lower bound, probabilistic upper bound.

AMS subject classifications. 65F15, 65F35, 65F50, 65F10.

1. Introduction. Let A ∈ Rn×n be a large, nonsingular matrix. Let A = XΣY T

be the singular value decomposition of A, where X and Y are n × n matrices with
orthonormal columns containing the left and right singular vectors of A, respectively.
Furthermore, Σ is an n × n diagonal matrix with positive real entries containing the
singular values of A that are numbered in decreasing order: σ1 ≥ · · · ≥ σn > 0.

We are interested in the important problem of approximating the condition num-
ber of A,

κ(A) = ‖A‖ ‖A−1‖ =
σ1
σn
,

where ‖ · ‖ stands for the 2-norm. The (Golub–Kahan–)Lanczos bidiagonalization
method [5] provides an approximation, a lower bound, for the maximum singular value
σ1 of A. In addition, an upper bound for the minimum singular value is obtained,
but this is usually a rather poor bound. To approximate the condition number, good
approximations to σn are needed.

This paper has three contributions. First, we develop a new extended Lanczos
bidiagonalization method. The method generates a basis for the extended Krylov
subspace:

Kk+1,k+1(ATA,v) = span{(ATA)−kv, . . . , (ATA)−1v,v, ATAv, . . . , (ATA)kv}.

Extended Krylov subspace methods have been studied in the last 15 years by various
authors [3, 13, 14, 16, 20]. The second contribution of this paper is that we obtain
simultaneously a lower bound for σ1 and an upper bound for σn, which leads to a
lower bound of good quality for κ(A). Third, we obtain a probabilistic upper bound
for the condition number. Probabilistic techniques have become increasingly popular;
see, for instance, [2, 17, 21, 7, 11]. Whereas in [2, 17, 7] the power method is used, this

∗Version September 1, 2015. Department of Mathematics and Computer Science, TU Eindhoven,
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is supported by a Vidi research grant from the Netherlands Organisation for Scientific Research
(NWO).
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2 GAAF AND HOCHSTENBACH

paper is based on Krylov methods as are the techniques in [17, 21, 11]. An important
feature of the Lanczos bidiagonalization procedure is that the starting vector can be
(and often is) chosen randomly. Therefore, the probability that this vector has a
small component in the direction of the desired singular vector (relative to 1/

√
n) is

small. Another characteristic of the procedure is that during the bidiagonalization
process polynomials implicitly arise. These two properties are exploited in [11] to
obtain probabilistic upper bounds for σ1.

In this paper, we will expand the techniques from [11] to obtain both probabilistic
lower bounds for σn and probabilistic upper bounds for σ1, leading to probabilistic
upper bounds for κ(A). These upper bounds hold with user-chosen probability: the
user can select an ε > 0 such that the bounds hold with probability 1− 2ε, as well as
a ζ > 1 such that the ratio of the probabilistic upper bound and the lower bound is
less than ζ. The method will adaptively perform a number of steps k to accomplish
this. Probabilistic condition estimators in [2] or [17] provide a ratio between the
probabilistic upper bound and the lower bound, given a fixed k and ε. The method of
this paper does not come with an analogous relation; however, the method we propose
generally gives sharper bounds as is shown in Section 7.

We stress the fact that the method of the present paper requires an (exact)
LU decomposition. If this is unaffordable, there are alternative methods available
that need only a preconditioner such as an inexact LU decomposition. The Jacobi–
Davidson type SVD method [9, 10] is one of these methods. However, because of
the current state of both numerical methods and hardware, LU decompositions have
increasingly become an option, sometimes also for rather large matrices.

The theory discussed in this paper considers only real matrices. For general
complex matrices the theory from this paper to obtain probabilistic bounds needs to
be adapted in a nontrivial way, and will be subject to future study.

The rest of this paper is organized as follows. In Section 2 we introduce the
extended Lanczos bidiagonalization method, and the special structure of the matrices
obtained by this method are examined in Section 3. Section 4 focuses on the Laurent
polynomials arising in the procedure. In Section 5 we elaborate on the computation of
a probabilistic bound for the condition number. Section 6 discusses some comparisons
with several other (probabilistic) condition number estimators. We end with some
numerical experiments and conclusions in Sections 7 and 8.

2. Extended Lanczos bidiagonalization. The method we will develop starts
with a random vector v0 with unit norm. We express v0 as a linear combination of
the right singular vectors yi of A,

(2.1) v0 =
n∑
i=1

γi yi.

Notice that both the yi and γi are unknown. The extended Lanczos bidiagonalization
method repeatedly applies the matrices A, AT , A−T , and A−1. In every step a gener-
ated vector is orthogonalized with respect to the previously constructed vectors, and
subsequently normalized. This procedure can be visualized as a string of operations
working on vectors:

v0
A−−−→ u0

AT−−−−→ v1
A−T
−−−−−→ u−1

A−1

−−−−→ v−1
A−−−→ u1

AT−−−−→ . . . .
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Note that in this visualization the orthonormalization of the vectors is not shown.
In this scheme, applying the operation A−T after AT (and A after A−1) may seem
contradictory, but since the vectors are orthogonalized in between this truly yields
new vectors. Another way to represent this procedure is the table below:

Step Action Generated Action Generated Action Generated Action Generated

0 Av0 u0 ATu0 v1 A−Tv1 u−1 A−1u−1 v−1

1 Av−1 u1 ATu1 v2 A−Tv2 u−2 A−1u−2 v−2

...
k − 1 Av−k+1 uk−1 ATuk−1 vk A−Tvk u−k A−1u−k v−k

During the procedure, the generated vectors vj are normalized after being or-
thogonalized with respect to all previously generated vi, i.e., for k ≥ 1

vk ⊥ {v0,v1,v−1, . . . ,vk−1,v−k+1}, v−k ⊥ {v0,v1,v−1, . . . ,v−k+1,vk}.

Similarly, all generated vectors uj have unit norm and

uk−1 ⊥ {u0,u−1,u1, . . . ,uk−2,u−k+1}, u−k ⊥ {u0,u−1,u1, . . . ,u−k+1,uk−1}.

Define the matrices V1 = [v0] and U1 = [u0], and for k ≥ 1

V2k = [V2k−1,vk], U2k = [U2k−1,u−k],

V2k+1 = [V2k,v−k], U2k+1 = [U2k,uk].

The columns of these matrices are orthonormal and span the corresponding subspaces
V2k, V2k+1, U2k, and U2k+1, respectively. We assume for the moment that no break-
downs occur, so all spaces are of full dimension; how to handle a breakdown is dis-
cussed in Section 7. After k ≥ 1 steps the algorithm gives rise to the following matrix
equations:

(2.2)

AV2k−1 = U2k−1H2k−1,

ATU2k−1 = V2k(H2k−1,2k)
T = V2k−1(H2k−1)

T + βk−1 vk eT2k−1,

A−TV2k = U2k(K2k)
T ,

A−1U2k = V2k+1K2k+1,2k = V2kK2k + δk v−k eT2k.

(2.3)

AV2k = U2k+1H2k+1,2k = U2kH2k + β−k uk eT2k,

ATU2k = V2k(H2k)
T ,

A−TV2k+1 = U2k+2(K2k+1,2k+2)
T = U2k+1(K2k+1)

T + δ−k u−k−1 eT2k+1,

A−1U2k+1 = V2k+1K2k+1.

Here, and throughout this paper, Hm,p is an m × p matrix. We will use only one
subscript if the matrix is square, i.e., Hm is an m×m matrix, and we will refer to the
matrices Hm,p and Km,p as H and K if the size is not of interest. Furthermore, ei is
the ith unit vector and the coefficients βj and δj are entries of the matrices H and K,
which will be specified in Section 3. More details on the recurrence relation between
the vectors u and v will be given in (3.3) where we show that orthogonalization can
be done using three-term recurrences. In particular, the pseudocode for the algorithm
that will be introduced in Section 7 shows that only three vectors of storage are needed.
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Let θ
(2k−1)
1 ≥ · · · ≥ θ(2k−1)2k−1 be the singular values of H2k−1, and let θ

(2k)
1 ≥ · · · ≥

θ
(2k)
2k be the singular values of H2k. Similarly, let ξ

(2k−1)
1 ≥ · · · ≥ ξ(2k−1)2k−1 be the singular

values of K2k−1, and let ξ
(2k)
1 ≥ · · · ≥ ξ(2k)2k be the singular values of K2k. These values

are approximations of the singular values of A and A−1, respectively. We will avoid
the use of superscripts if this is clear from the context. Further, let cj and dj indicate
the corresponding right singular vectors of H and K, respectively. We will now study
the behavior of these values θj and ξj to obtain bounds for the extreme singular values
of A.

Proposition 2.1.
(a) For 1 ≤ j ≤ 2k− 1 the singular values of H converge monotonically to the largest

singular values of A: θ
(2k−1)
j ≤ θ(2k)j ≤ σj(A).

(b) For 1 ≤ j ≤ 2k−1 the inverse singular values of K converge monotonically to the
smallest singular values of A:

σn−j+1(A) =
(
σj(A

−1)
)−1 ≤ (ξ(2k)j

)−1 ≤ (ξ(2k−1)j

)−1
.

Proof. The matrix H2k−1 can be seen as the matrix H2k from which the 2kth
row and column have been deleted. The same holds for the matrices K2k−1 and K2k.
Now we apply [12, Cor. 3.1.3] and obtain the first inequalities of both (a) and (b).
The second inequalities hold because of [12, Lem. 3.3.1]

In the next section we will see that H−1 = K, which means that {θ−11 , . . . , θ−12k } =
{ξ1, . . . , ξ2k}. Proposition 2.1 shows in particular that the largest singular value of the
matrices H converges monotonically to σ1, and the inverse of the largest singular value
of the matrices K converges monotonically to σn. After the kth step of the procedure,

we obtain the value θ
(2k)
1 , a lower bound for σ1, and the value (ξ

(2k)
1 )−1, an upper

bound for σn.
Corollary 2.2. After the kth step of extended Lanczos bidiagonalization we

obtain a lower bound for the condition number of A:

(2.4) κlow(A) =
θ1

ξ−11

≤ σ1
σn

= κ(A).

The experiments in Section 7 show for different matrices that the lower bound
achieved by extended Lanczos bidiagonalization may often be very good.

We can reformulate the expressions in (2.2) and (2.3) to see the similarities with
the extended Lanczos method (see, e.g., [13]) with starting vector v0 and matrix ATA,
so that for k ≥ 1:

(2.5)

ATAV2k−1 = ATU2k−1H2k−1

= V2k−1(H2k−1)
TH2k−1 + βk−1 vk eT2k−1H2k−1,

(ATA)−1V2k = A−1U2k(K2k)
T

= V2kK2k(K2k)
T + α−1k δk v−k eT2k,

AATU2k = AV2k(H2k)
T

= U2kH2k(H2k)
T + αk β−k uk eT2k,

(AAT )−1U2k−1 = A−TV2k−1K2k−1

= U2k−1(K2k−1)
TK2k−1 + δ−k+1 u−k+1 eT2k−1K2k−1.
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This way of representing the procedure will be convenient in the next sections where
we will investigate the structure of the generated matrices and introduce Laurent
polynomials.

3. The special structure of the generated H and K matrices. In the
previous section we introduced the extended Lanczos bidiagonalization method. The
four leading submatrices arising in (2.2) and (2.3) are given by

H2k−1 = UT2k−1AV2k−1, K2k−1 = V T
2k−1A

−1U2k−1,

H2k = UT2kAV2k, K2k = V T
2kA

−1U2k.

These matrices H and K turn out to be tridiagonal matrices with a special structure
as we will show in the next proposition. Note that we assume for all j ∈ {−k, . . . , k}
that the entries αj , βj , and δj are nonzero.

Proposition 3.1.
(a) The matrix H is tridiagonal and of the form

(3.1)



α0 β0
α1

β−1 α−1 β1
α2

β−2 α−2 β2
α3

. . .


,

where its entries satisfy

h2j,2j = αj = ‖A−Tvj‖−1 = ‖ATu−j‖,
h2j+1,2j = β−j = uTj Avj ,

h2j+1,2j+1 = α−j = uTj Av−j ,

h2j+1,2j+2 = βj = ‖ATuj − (uTj Avj)vj − (uTj Av−j)v−j‖.

(b) The matrix K is tridiagonal and of the form

(3.2)



α−10 δ0
α−11

δ1 α−1−1 δ−1
α−12

δ2 α−1−2 δ−2
α−13

. . .


,

where its diagonal entries are defined in (a) and its off-diagonal entries satisfy

k2j+1,2j = δj = ‖A−1u−j − (vT−j+1A
−1u−j)v−j+1 − (vTj A

−1u−j)vj‖,
k2j+1,2j+2 = δ−j = vT−jA

−1u−(j+1).

Proof. We will focus first on the transposed matrix HT
2k. Note that ATU2k =

V2kH
T
2k. The (2j + 1)st column of ATU2k is ATuj , and thus the (2j + 1)st column
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of HT
2k, can be described using the step of the algorithm in which the vector vj+1 is

constructed:

βjvj+1 = ATuj −
j∑

i=−j
γi vi,

where γi = vTi A
Tuj = uTj Avi and βj is a factor such that vj+1 has unit norm. For

all i ∈ {−j + 1, . . . , j − 1} we have

Avi ∈ span{(AAT )−j+1Av0, . . . , (AAT )j−1Av0}

= span{u0,u−1,u1, . . . ,u−j+1,uj−1},

and therefore γi = 0 for all i ∈ {−j+1, . . . , j−1}. We obtain the three-term recurrence
relation

ATuj = (uTj Avj) vj + (uTj Av−j) v−j + βjvj+1,

which implies that the (2j + 1)st column of HT
2k has only three nonzero entries. This

gives us the three nonzero entries of the odd rows of H: h2j+1,2j , h2j+1,2j+1, and
h2j+1,2j+2.

For the description of the (2j)th column of HT
2k, another step of the algorithm is

used, namely

α−1j u−j = A−Tvj −
j−1∑

i=−j+1

γiui,

where γi = uTi A
−Tvj = vTj A

−1ui and α−1j is a factor such that u−j has unit norm.
For all i ∈ {−j + 1, . . . , j − 1} we have

A−1ui ∈ span{(ATA)−j+1v0, . . . , (ATA)j−1v0}

= span{v0,v1,v−1, . . . ,vj−1,v−j+1},

and therefore γi = 0 for all i ∈ {−j + 1, . . . , j − 1}. We obtain the recurrence relation

A−Tvj = α−1j u−j , and therefore ATu−j = αjvj ,

implying that the (2j)th column of HT
2k has only one nonzero entry. The entries of

the matrix K can be obtained by a similar reasoning.
This description of the matrices H and K leads to the following recurrence rela-

tions:

(3.3)

Av−k = α−kuk, k ≥ 0, ?
Avk = βk−1uk−1 + αku−k + β−kuk, k ≥ 1,
ATu−k = αkvk, k ≥ 1,
ATuk = β−kvk + α−kv−k + βkvk+1, k ≥ 1, ?

A−Tvk = α−1k u−k, k ≥ 1, ?

A−Tv−k = δku−k + α−1−kuk + δ−ku−(k+1), k ≥ 1,

A−1uk = α−1−kv−k, k ≥ 0,

A−1u−k = δ−(k−1)v−(k−1) + α−1k vk + δkv−k, k ≥ 1, ?
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and ATu0 = α0v0 + β0v1, A
−Tv0 = α−10 u0 + δ0u−1. The relations indicated by a

? correspond to the matrix vector multiplications that are done explicitly during the
procedure, while the other lines are added to give a complete representation of the
relations in (2.2) and (2.3). These relations suggest that this method requires at most
six vectors of storage, and the algorithm presented in Section 7 even shows only three
vectors have to be stored. Furthermore, having found this explicit form of the two
matrices, it can be seen that the matrices H and K are inverses.

Proposition 3.2. The leading submatrix of H of order j is the inverse of the
leading submatrix of K of the same order, i.e., for 1 ≤ j < n,

HjKj = KjHj = Ij .

Proof. If we would carry out n steps of extended Lanczos bidiagonalization, we
would obtain orthogonal matrices Vn and Un satisfying

HnKn = UTn AVnV
T
n A

−1Un = In,

KnHn = V T
n A

−1UnU
T
n AVn = In.

Due to the special tridiagonal structure, it is easy to see that the statement of the
proposition holds.

The previous proposition implies that the singular values of K are the inverses
of the singular values of H, and therefore we can adjust Corollary 2.2.

Corollary 3.3. After the kth step of extended Lanczos bidiagonalization we
obtain a lower bound for the condition number of A:

(3.4) κlow(A) =
θ1
θ2k
≤ σ1
σn

= κ(A).

The matrices in the reformulated expressions (2.5) also have a special structure, just
as the matrices formed in the extended Lanczos method in [13]. The four symmetric
matrices generated in this extended Lanczos process, for k ≥ 1, are given by

(3.5)

R2k−1 = (H2k−1)
TH2k−1 = V T

2k−1A
TAV2k−1,

R̃2k = H2kH
T
2k = UT2kAA

TU2k,

S̃2k−1 = (K2k−1)
TK2k−1 = UT2k−1(AA

T )−1U2k−1,

S2k = K2kK
T
2k = V T

2k(A
TA)−1V2k.

They are all four the product of two tridiagonal matrices with a special structure,
namely the matrices obtained from extended Lanczos bidiagonalization. The matrices
R2k−1 and R̃2k are pentadiagonal and of the form

R2k−1 =



× ×
× × × ×
× × ×
× × × × ×

× × ×
× × . . .

 , R̃2k =



× × ×
× × ×
× × × × ×

× × ×
× × × ×

× . . .

 .

The matrices S2k and S̃2k+1 have similar structures. The product of the matrices R
and S is a rank-one modification of the identity. Again, if we would carry out n steps
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of extended Lanczos bidiagonalization, we would obtain orthogonal matrices Vn and
Un with the following identities:

SnRn = V T
n (ATA)−1VnV

T
n (ATA)Vn = In = RnSn,

S̃nR̃n = UTn (AAT )−1UnU
T
n (AAT )Un = In = R̃nS̃n.

Due to the special pentadiagonal structure of the matrices, for 1 ≤ j < n the product
is a rank-one modification of the identity, where we have to distinguish between the
even and odd cases:

S2kR2k = I2k + ẘ2ke
T
2k, S2k+1R2k+1 = I2k+1 + e2k+1ẘ

T
2k+1,

R2kS2k = I2k + e2kw̌
T
2k, R2k+1S2k+1 = I2k+1 + w̌2k+1e

T
2k+1,

S̃2kR̃2k = I2k + w̃2ke
T
2k, R̃2k+1S̃2k+1 = I2k+1 + e2k+1w̃

T
2k+1,

R̃2kS̃2k = I2k + e2kŵ
T
2k, S̃2k+1R̃2k+1 = I2k+1 + ŵ2k+1e

T
2k+1.

Here, the various vectors w2k ∈ R2k and w2k+1 ∈ R2k+1 are such that only the last
two entries are (possibly) nonvanishing.

The matrices S, S̃, R, and R̃ are used in the next section to give an explicit
expression for the Laurent polynomials arising in extended Lanczos bidiagonalization.

4. Polynomials arising in extended Lanczos bidiagonalization. In every
step of the extended Lanczos bidiagonalization procedure four different vectors are
generated. Since these vectors lie in an extended Krylov subspace, they can be ex-
pressed using polynomials:

(4.1)

vk = pk(A
TA)v0 ∈ Kk,k+1(ATA,v0),

u−k = q−k(AA
T )Av0 ∈ Kk+1,k(AAT , Av0),

v−k = p−k(A
TA)v0 ∈ Kk+1,k+1(ATA,v0),

uk = qk(AA
T )Av0 ∈ Kk+1,k+1(AAT , Av0).

The polynomials pk and p−k are Laurent polynomials of the form

(4.2) pk(t) =
k∑

j=−k+1

µ
(k)
j tj , p−k(t) =

k∑
j=−k

µ
(−k)
j tj .

Similarly, q−k and qk are Laurent polynomials and are defined as

(4.3) q−k(t) =

k−1∑
j=−k

ν
(−k)
j tj , qk(t) =

k∑
j=−k

ν
(k)
j tj .

The recurrence relations in (3.3) give rise to recurrence relations connecting the poly-
nomials p and q:

p−k(t) = α−kqk(t), k ≥ 0,
pk(t) = βk−1qk−1(t) + αkq−k(t) + βkqk(t), k ≥ 1,
tq−k(t) = αkpk(t), k ≥ 1,
tqk(t) = β−kpk(t) + α−kp−k(t) + βkpk+1(t), k ≥ 1,

t−1pk(t) = α−1k q−k(t), k ≥ 1,

t−1p−k(t) = δkq−k(t) + α−1−kqk(t) + δ−kq−(k+1)(t), k ≥ 1,

qk(t) = α−1−kp−k(t), k ≥ 0,

q−k(t) = δ−(k−1)p−(k−1)(t) + α−1k pk(t) + δkp−k(t), k ≥ 1,
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and tq0(t) = α0p0(t) + β0p1(t), t
−1p0(t) = α−10 q0(t) + δ0q−1(t).

Define the following two inner products:

〈f, g〉 = vT0 f(ATA) g(ATA)v0,(4.4)

[f, g] = vT0 f(ATA)ATAg(ATA)v0.(4.5)

Lemma 4.1. Let i, j ∈ {−k, . . . , k}. The polynomials pi and pj are orthonormal
with respect to the inner product (4.4), whilst the polynomials qi and qj are orthonormal
with respect to the inner product (4.5).

Proof. By construction of the vi’s and ui’s we have

〈pi, pj〉 = vT0 pi(A
TA) pj(A

TA)v0 = vTi vj =

{
1 if i = j,
0 if i 6= j

and

[qi, qj ] = vT0 qi(A
TA)ATAqj(A

TA)v0 = uTi uj =

{
1 if i = j,
0 if i 6= j.

Recall that, for 1 < j ≤ 2k, θj is a singular value of H, ξj is a singular value
of K, and cj and dj indicate the corresponding right singular vectors of H and K,
respectively.

Proposition 4.2.

(a) The zeros of the polynomial pk are exactly θ21, . . . , θ
2
2k−1.

(b) The zeros of the polynomial p−k are exactly θ21, . . . , θ
2
2k.

(c) The zeros of the polynomial q−k are exactly θ21, . . . , θ
2
2k−1.

(d) The zeros of the polynomial qk are exactly θ21, . . . , θ
2
2k.

Proof. The proof is similar for all of the polynomials; we will only give details
for the first two. Starting with pk, let j ∈ {1, . . . , 2k− 1}. Using (2.5) it can be easily
seen that the Galerkin condition holds for the pair (θ2j , V2k−1cj):

ATAV2k−1cj − θ2j V2k−1cj ⊥ V2k−1.

Further, since V2k−1cj ∈ V2k−1 it follows that

(ATA− θ2j I)V2k−1cj ∈ span{(ATA)−k+1v0, . . . , (A
TA)kv0}.

For each j = 1, . . . , 2k − 1 we have that (ATA − θ2j I)V2k−1cj ∈ V2k but is orthogonal

to V2k−1. This means that for all j = 1, . . . , 2k − 1 the vector (ATA− θ2j I)V2k−1cj is

a nonzero multiple of vk = pk(A
TA)v0. Hence pk(t) contains all factors t− θ2j , i.e., its

zeros are exactly θ21, . . . , θ
2
2k−1.

Similarly for the polynomial p−k, let i ∈ {1, . . . , 2k}. Again, using (2.5), it can
be easily seen that the Galerkin condition holds for the pair (ξ2i , V2kdi). For each i =
1, . . . , 2k the vector ((ATA)−1−ξ2i I)V2kdi is a nonzero multiple of v−k = p−k(A

TA)v0,
since it is orthogonal to V2k but an element of V2k+1. Thus p−k contains all factors
(t−1 − ξ2j ), and thus all of the factors (t−1 − θ−2j ), since H−1 = K.

Similar proofs can be given for (c) and (d). Note that the proofs in [11, p. 467]
and [19, pp. 266–267] follow the same line of reasoning.
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We know from (4.2) that pk(t) =
∑k

j=−k+1 µ
(k)
j tj , which, using the result of

Proposition 4.2, implies that pk is of the form

(4.6) pk(t) = µ
(k)
k · t

−k+1 · (t− θ21) · · · (t− θ22k−1).

Similarly, p−k, qk, and q−k are of the form

(4.7)

p−k(t) = µ
(−k)
−k · t

k · (t−1 − θ−21 ) · · · (t−1 − θ−22k ),

q−k(t) = ν
(−k)
−k · t

k−1 · (t−1 − θ−21 ) · · · (t−1 − θ−22k−1),

qk(t) = ν
(k)
k · t

−k+1 · (t − θ21) · · · (t − θ22k).

It turns out that the coefficients µ
(k)
k , µ

(−k)
−k , ν

(−k)
−k , and ν

(k)
k can be expressed as a

product of certain entries of the matrices H and K introduced in (3.1) and (3.2),
respectively.

Lemma 4.3. The coefficients µ
(k)
k , µ

(−k)
−k , ν

(−k)
−k , and ν

(k)
k of the polynomials pk,

p−k, q−k, and qk can be expressed as the product of entries of the matrices H and K
defined in (3.1) and (3.2), respectively:

(4.8)

ν
(−k)
−k = (−1)k

k∏
i=−k+1

αi

k−1∏
i=0

β−1i

k−1∏
i=1

δ−1i and µ
(−k)
−k = δ−1k ν

(−k)
−k ,

ν
(k)
k = (−1)k

k∏
i=−k

α−1i

k−1∏
i=0

β−1i

k∏
i=1

δ−1i and µ
(k)
k = β−1k−1ν

(k−1)
k−1 .

Proof. From the equations in (2.2), the expressions in (4.1), and from the form
of the matrices H and K whose entries are described explicitly in (3.1) and (3.2),
respectively, the following recurrence relations for the polynomials can be derived:

(4.9)

q−k(t) = αkt
−1pk(t),

p−k(t) = δ−1k (q−k(t)− δ−k+1p−k+1(t)− α−1k pk(t)),

qk(t) = α−1−kp−k(t),

pk+1(t) = β−1k (tqk(t)− βkpk(t)− α−kp−k(t)).

Manipulating these relations one obtains recurrence relations for the coefficients:

(4.10)

ν
(−k)
−k = (−1)k α−k+1 αk β

−1
k−1 δ

−1
k−1 ν

(−k+1)
−k+1 ,

µ
(−k)
−k = (−1)k α−k+1 αk β

−1
k−1 δ

−1
k µ

(−k+1)
−k+1 ,

ν
(k)
k = (−1)k α−1k α−1−k β

−1
k−1 δ

−1
k ν

(k−1)
k−1 ,

µ
(k+1)
k+1 = (−1)k α−1k α−1−k β

−1
k δ−1k µ

(k)
k .

From these relations, the expressions for the coefficients follow easily.
The results of Proposition 4.2 and Lemma 4.3 lead to the following corollary.
Corollary 4.4. The polynomials pk and p−k can be expressed as

pk(t) = µ
(k)
k · t

−k+1 · det(tI2k−1 −R2k−1),

p−k(t) = µ
(−k)
−k · t

k · det(t−1I2k − S̃2k),
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where µ
(k)
k and µ

(−k)
−k are defined in (4.8), and S̃2k is the leading submatrix of order 2k

of S̃2k+1 defined in (3.5). The polynomials qk and q−k can be expressed analogously.

We recall from Proposition 2.1 that for increasing k the largest singular value of
H2k−1 converges monotonically to σ1, and the inverse of the largest singular value of
K2k converges monotonically to σn. This implies that the largest zero of polynomial
pk increases monotonically to σ21. Likewise, the smallest zero of polynomial p−k de-
creases monotonically to σ2n. These polynomials are used in the next section to obtain
probabilistic bounds for both the largest and smallest singular value of A.

5. Probabilistic bounds for the condition number. After step k, extended
Lanczos bidiagonalization implicitly provides Laurent polynomials pk and p−k. In the
previous section we have seen that the zeros of pk and p−k are closely related to the
singular values of the matrices H and K (Proposition 4.2). Moreover, the polynomials
|pk| and |p−k| are strictly increasing to the right of their largest zero and also to the
left of their smallest zero, for t→ 0. These properties will lead to the derivation of a
probabilistic upper bound for κ(A). Therefore, we first observe the two equalities

1 = ‖vk‖2 = ‖pk(ATA)v0‖2 = ‖
n∑
i=1

pk(A
TA)γiyi‖2 =

n∑
i=1

γ2i pk(σ
2
i )

2,

1 = ‖v−k‖2 = ‖p−k(ATA)v0‖2 = ‖
n∑
i=1

p−k(A
TA)γiyi‖2 =

n∑
i=1

γ2i p−k(σ
2
i )

2.

Here we used, in view of (2.1), that ATAyi = σ2i yi and the fact that the right singular
vectors yi are orthonormal. Since the obtained sums only consist of nonnegative terms,
we conclude that

(5.1) |pk(σ21)| ≤ 1

|γ1|
and |p−k(σ2n)| ≤ 1

|γn|
.

Similarly,

1 = ‖uk‖2 = ‖qk(AAT )Av0‖2 = ‖
n∑
i=1

qk(AA
T )γiσixi‖2 =

n∑
i=1

γ2i σ
2
i qk(σ

2
i ),

1 = ‖u−k‖2 = ‖q−k(AAT )Av0‖2 = ‖
n∑
i=1

q−k(AA
T )γiσixi‖2 =

n∑
i=1

γ2i σ
2
i q−k(σ

2
i ).

Here we used that AATxi = σ2i xi and the fact that the left singular vectors xi are
orthonormal. Again, the sum we obtain only contains nonnegative terms and thus
1 ≥ σ1 |γ1| |qk(σ21)|, which gives us the inequality

(5.2) σ1 |qk(σ21)| ≤ 1

|γ1|
, σn |q−k(σ2n)| ≤ 1

|γn|
.

If γ1 would be known, the first estimates in (5.1) and (5.2) would provide an upper
bound for ‖A‖2 = σ21, namely the largest zero of the functions

f1(t) = |pk(t)| −
1

|γ1|
, f2(t) = t |qk(t)| −

1

|γ1|
.
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Similarly, if γn would be known, the second estimates in (5.1) and (5.2) would both
provide a lower bound for ‖A−1‖−2 = σ2n, namely the smallest zero of the functions

g1(t) = |p−k(t)| −
1

|γn|
, g2(t) = t |q−k(t)| −

1

|γn|
.

However, both γ1 and γn are unknown. Therefore, we will compute a value δ that
will be a lower bound for |γ1| and |γn| with a user-chosen probability. Suppose that
|γ1| < δ. Then the largest zero of f δ1 (t) = |pk(t)| − δ−1 is smaller than the largest
zero of fγ11 (t) = |pk(t)| − |γ1|−1 and thus may be less then σ21. This means that δ
may not give an upper bound for σ1. We now compute the value δ such that the
probability that |γ1| < δ (or |γn| < δ) is small, namely ε. Let Sn−1 be the unit sphere
in Rn. We choose the starting vector v0 randomly from a uniform distribution on
Sn−1 (MATLAB code: v0=randn(n,1); v0=v0/norm(v0)) (see, e.g., [17, p. 1116]),
which (by an orthogonal transformation) implies that (γ1, . . . , γn) is also random with
respect to the uniform distribution on Sn−1.

Lemma 5.1. Assume that the starting vector v0 has been chosen randomly with
respect to the uniform distribution over the unit sphere Sn−1 and let δ ∈ [0, 1]. Then

P (|γ1| ≤ δ) = 2B(n−12 , 12)−1
∫ arcsin(δ)

0
cosn−2(t) dt = B(n−12 , 12)−1

∫ δ2

0
t−

1
2 (1−t)

n−3
2 dt,

where B denotes Euler’s Beta function: B(x, y) =
∫ 1
0 t

x−1(1 − t)y−1dt, and P stands
for probability.

Proof. For the first equality, see [21, Lemma 3.1], and for the second, see [15,
Theorem 7.1].

The user selects the probability ε = P (|γ1| ≤ δ), i.e., the probability that the
computed bound may not be an upper bound for the singular value σ1. Given this
user-chosen ε we have to determine the δ for which

(5.3) ε =
Binc(

n−1
2 , 12 , δ

2)

Binc(
n−1
2 , 12 , 1)

,

where the incomplete Beta function is defined as Binc(x, y, z) =
∫ z
0 t

x−1(1 − t)y−1dt.
The δ can be computed using MATLAB’s function betaincinv. With this δ we can
compute two probabilistic bounds, i.e., the square root of the largest zero of the
function f δ1 and the square root of the smallest zero of the function gδ1. Computing
these values can be done with Newton’s method or bisection. Note that one could
equally choose to use the functions f δ2 and gδ2. We thus acquire a probabilistic upper
bound for σ1 and a probabilistic lower bound for σn:

σ1 < σprobup and σn > σproblow .

Both inequalities are true with probability at least 1− ε. Since the coefficients γ1 and
γn are chosen independently, the probability that both inequalities hold is at least
1− 2ε. This proves the following theorem.

Theorem 5.2. Assume that the starting vector v0 has been chosen randomly
with respect to the uniform distribution over Sn−1. Let ε ∈ (0, 1) and let δ be given by

(5.3). Then σprobup , the square root of the largest zero of the polynomial

(5.4) f δ1 (t) = |pk(t)| − 1
δ ,
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is an upper bound for σ1 with probability at least 1− ε. Also, σproblow , the square root of
the smallest zero of the polynomial

(5.5) gδ1(t) = |p−k(t)| − 1
δ ,

is a lower bound for σn with probability at least 1− ε.
Note that the implementation of the polynomial uses the recurrence relations

in (4.9). Therefore, we approximate directly the singular values σ1 and σn, avoiding
taking squares or square roots. Combining these two bounds leads to a probabilistic
upper bound for the condition number of A.

Corollary 5.3. The inequality

(5.6) κ(A) =
σ1
σn
≤ σprobup

σproblow

= κup(A)

holds with probability at least 1− 2ε.
The probabilistic upper bounds usually decrease monotonically as a function of

k. The lemma below gives some intuition for this behavior.
Lemma 5.4. Let t1 and t2 be such that |pk(t1)| = 1

δ , |pk+1(t2)| = 1
δ , and define

M := αkα−kβkδk. If t1 ≥ θ21 +M−1(1 +
√
Mθ2), then t2 ≤ t1.

Proof. We investigate when |pk+1(t1)| ≥ 1
δ , since this implies t2 ≤ t1. Denote by

θ21 ≥ · · · ≥ θ22k+1 the zeros of the polynomial pk+1(t), and by η21 ≥ · · · ≥ η22k−1 the
zeros of pk(t). Then∣∣∣∣pk+1(t1)

pk(t1)

∣∣∣∣ =

∣∣∣∣∣µk+1 t
−k
1 (t1 − θ21) · · · (t1 − θ22k+1)

µk t
−k+1
1 (t1 − η21) · · · (t1 − η22k−1)

∣∣∣∣∣ = δ |pk+1(t1)|.

The relations in (4.10) show that |µk+1

µk
| = (αkα−kβkδk)

−1 =: M . By the interlacing
properties of singular values (η2i−1 ≥ θ2i+1 for i = 1, . . . , k) we obtain the inequality

δ |pk+1(t1)| ≥M
(t1 − θ21)(t1 − θ22)

t1
.

So we are interested in finding t1 such that M (t1 − θ21)(t1 − θ22) ≥ t1, which is

Mt21 − (M(θ21 + θ22) + 1)t1 +Mθ21θ
2
2 ≥ 0.

This holds for

t1 ≥ 1
2M

(
M(θ21 + θ22) + 1 +

√
(M(θ21 + θ22) + 1)2 − 4M2θ21θ

2
2

)
= 1

2(θ21 + θ22) + 1
2M + 1

2M

√
(M(θ21 − θ22) + 1)2 + 4Mθ22.

Therefore, δ |pk+1(t1)| ≥ 1 (and hence t2 < t1) holds for t1 ≥ θ21 +M−1(1 +
√
Mθ2).

6. Other condition estimators. In this section we will first compare probabilis-
tic results for κ2(A) obtained by Dixon [2] and Gudmundsson, Kenney, and Laub [6]
with those of our method. Subsequently, we will briefly mention some condition num-
ber estimators for κ1(A) and κF (A).

As for the method introduced in this paper, for all methods to approximate either
κ1(A), or κF (A), or κ2(A) discussed in this section, an LU decomposition is needed
and O(1) vectors of storage are required (for our method see the recurrence relations
(3.3) and the algorithm presented in Section 7). Note that of the approaches discussed
in this section only the block method by Higham and Tisseur [8] is also suitable for
complex matrices.
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6.1. Probabilistic condition estimators based on the 2-norm.
Theorem 6.1. (see Dixon [2, Thm. 1]).1 Let B be a symmetric positive definite

(SPD) matrix with eigenvalues λ1 ≥ · · · ≥ λn and ζ > 1. If v is chosen randomly on
the unit sphere, then

(6.1) vTBv ≤ λ1 ≤ ζ · vTBv

holds with probability at least 1− 0.8
√
n/ζ.

Note that the left inequality always holds; the probabilistic part only concerns
the second inequality. Dixon [2, Thm. 2] subsequently applies this result to both
Bk = (ATA)k and B−k = (ATA)−k, which gives the following theorem.

Theorem 6.2. (see Dixon [2, Thm. 2]). Let A be a real nonsingular n×n matrix
and k be a positive integer. For v, w ∈ Rn, define

ϕk(v,w) = (vT(ATA)kv · wT(ATA)−kw)1/2k.

If v and w are selected randomly and independently on Sn−1 and ζ > 1 then

ϕk(v,w) ≤ κ(A) ≤ ζ · ϕk(v,w)

holds with probability at least 1− 1.6
√
n/ζk.

Kuczyński and Woźniakowski [17] present several probabilistic bounds for quan-
tities that are better estimates of the largest eigenvalue of an SPD matrix than the
one considered by Dixon, with the same number of matrix-vector products. They ap-
propriately call the method that leads to the quantity (vTBkv)1/k studied by Dixon
the modified power method. The more common power method considers, with the
same number k of matrix-vector products, the Rayleigh quotient of Bk−1v, that is,
the quantity (Bk−1v)TBBk−1v = vTB2k−1v. This generally results in a better ap-
proximation than the quantity considered by Dixon. In [17], the following results are
given for the power method and the Lanczos method.

Theorem 6.3. (see Kuczyński and Woźniakowski [17, Thm. 4.1(a)]). With the
same notation as in Theorem 6.1, let 0 < η < 1. Let θpow be the largest Ritz value
obtained with k ≥ 2 steps of the power method. Then the probability that

(6.2) λ1 < (1− η)−1 θpow

holds is at least 1− 0.824
√
n (1− η)k−

1
2 .

Theorem 6.4. (see Kuczyński and Woźniakowski [17, Thm. 4.2(a)]). With the
same notation as in Theorem 6.3, let θLan be the largest Ritz value obtained with k
steps of Lanczos. Then the probability that

(6.3) λ1 < (1− η)−1 θLan

holds is at least 1− 1.648
√
n e−

√
η (2k−1).

The proof of Theorem 6.4 uses a Chebyshev polynomial, a well-known proof tech-
nique in the area of Krylov methods. Extended Lanczos bidiagonalization adaptively
constructs a polynomial that is optimal in some sense for the given matrix and starting
vector. Therefore, as we will see below, our probabilistic bounds are usually better
than that of Theorem 6.4.

1Note that [2, Thm. 1] contains a typo: k should be 1.
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We can now apply Theorems 6.3 and 6.4 to B = ATA and B = (ATA)−1 as above.
The following results are new, but follow directly from [17].

Corollary 6.5. Let A be a real nonsingular n×n matrix and let k be a positive
integer, and let v and w be random independent vectors on Sn−1.

(a) [Power method on ATA and (ATA)−1] Let θpowmax = vT (ATA)2k−1v
vT (ATA)2k−2v

be the

approximation to σ21 obtained with k steps of the power method applied to ATA with

starting vector v, and let θpowmin = wT (ATA)−(2k−1)w

wT (ATA)−(2k−2)w
be the approximation to σ−2n obtained

with k steps of the power method applied to (ATA)−1 with starting vector w. Then

κ(A) ≤ (1− η)−1 (θpowmax · θ
pow
min )1/2

holds with probability at least 1− 1.648
√
n (1− η)k−

1
2 .

(b) [Lanczos on ATA and (ATA)−1] Let θLanmax be the largest Ritz value obtained
with k steps of Lanczos applied to ATA with starting vector v, and let θLanmin be the
largest Ritz value obtained with k steps of Lanczos applied to (ATA)−1 with starting
vector w. Then

κ(A) ≤ (1− η)−1 (θLanmax · θLanmin)1/2

holds with probability at least 1− 3.296
√
n e−

√
η (2k−1).

Example 6.6. We now give an indicative numerical example for the diagonal ma-
trix A = diag(linspace(1,1e12,n)) of size n = 105 and κ(A) = 1012. In Table 6.1,
the probabilistic upper bounds by Dixon (the modified power method, Theorem 6.2),
Kuczyński and Woźniakowski (the power method and the Lanczos method, Corol-
lary 6.5), and the extended Lanczos bidiagonalization method are considered. We
give the ratio κup/κlow(A), where κup denotes the various probabilistic upper bounds,
where the requirement is that each holds with probability at least 98%. As expected,
the power method gives a smaller ratio than the modified power method (see also [17]
for more details). The ratio generated by a Chebyshev polynomial is even better, tak-
ing into account the subspace effect of a Krylov method. However, the ratio obtained
with the polynomial implicitly generated by the method of this paper is the best.

Table 6.1: Ratios κup(A)/κlow(A) for A = diag(linspace(1,1e12,n)) of size n = 105,
where κup denotes the probabilistic upper bound provided by Dixon [2], Kuczyński and
Woźniakowski (Corollary 6.5), and the extended Lanczos bidiagonalization method (Ext LBD).
We take k = 10, 20, and 30 steps, and require that all upper bounds κup hold with at least
98% (ε = 0.01).

k Dixon K&W (power) K&W (Lanczos) Ext LBD

10 7.60 2.92 1.49 1.16
20 2.76 1.68 1.08 1.04
30 1.97 1.41 1.04 1.02

6.2. Condition estimators based on other norms. Next, we mention the
successful block method by Higham and Tisseur [8] to estimate the 1-norm condition
number κ1(A) = ‖A‖1 ‖A−1‖1. Although κ2(A) and κ1(A) are “equivalent” norms in
Rn in the sense that 1

n κ1(A) ≤ κ2(A) ≤ nκ1(A), these bounds are much too crude
to be useful for large matrices. Therefore, we may well view κ2(A) and κ1(A) as
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independent quantities in practice; which one is preferred may depend on the user
and application.

Gudmundsson, Kenney, and Laub [6] present an estimator for the condition
number based on the Frobenius norm. They select k vectors from Sn−1, compute
an orthonormal basis Q for the span, and take

√
n/k ‖AQ‖F ‖A−1Q‖F as an esti-

mate for κF (A). Again, although κ2(A) and κF (A) are related in the sense that
κ2(A) ≤ κF (A) ≤ nκ2(A), they can be seen as independent quantities in practice.

7. Numerical experiments. We present the pseudocode for the extended Lanc-
zos bidiagonalization method including the computation of a lower bound and a prob-
abilistic upper bound for the condition number. This pseudocode shows that this
method requires only three vectors of storage. Because of the modest number of steps
needed to achieve the given ratio, it turns out that in our examples reorthogonalization
with respect to more previous vectors is not needed.

Algorithm: Extended Lanczos bidiagonalization method with lower and probabilistic upper bounds.

Input: Nonsingular (n× n) matrix A, random starting vector w = v0, probability level ε, ratio ζ,

maximum extended Krylov dimension 2k.

Output: A lower bound κlow(A) and a probabilistic upper bound κup(A) for the condition number

κ(A) such that κup/κlow ≤ ζ. The probability that κ(A) ≤ κup(A) holds is at least 1 − 2ε. In the

unlikely event of a breakdown, the algorithm aborts and may not return any estimate.

1: Determine δ from n and ε, see (5.3).
2: for j = 0, . . . , k − 1
3: u = Aw
4: α−j = ‖u‖
5: if α−j = 0, abort, end
6: u = u /α−j
7: u = ATu
8: if j > 0
9: β−j = vTu

10: u = u− β−jv
11: end
12: u = u− α−jw
13: βj = ‖u‖
14: if βj = 0, abort, end
15: v = u / βj
16: u = A−Tv
17: if ‖u‖ = 0, abort, end
18: αj+1 = ‖u‖−1

19: Create H2(j+1) using the obtained coefficients α’s and β’s (see (3.1)).
20: Determine largest and smallest singular values θ1 and θ2(j+1), respectively, of H2(j+1).
21: Compute lower bound κlow(A) = θ1/θ2(j+1) for κ(A) (see (3.4)).

22: Determine σprob
up for σ1 with probability ≥ 1− ε using fδ1 (see (5.4)).

23: Determine σprob
low for σn with probability ≥ 1− ε using gδ1 (see (5.5)).

24: Compute probabilistic upper bound κup(A) = σprob
up / σprob

low for κ(A) (see (5.6)).
25: if κup/κlow ≤ ζ, quit, end
26: u = αj+1u
27: u = A−1u
28: δ−j = wTu
29: u = u− δ−jw − α−1

j+1v

30: δj+1 = ‖u‖
31: if δj+1 = 0, abort, end
32: w = u / δj+1

33: end
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Experiment 7.1. First, we test the method on some well-known diagonal test
matrices to get an impression of the performance of the method. In Figure 7.1, we plot
the convergence of the probabilistic upper bound κup(A) and lower bound κlow(A) as
a function of k for the matrix A = diag(linspace(1,1e12,n)), for n = 105 (a) and
for an “exponential diagonal” matrix of the form A = diag(ρ.^(0:1e5-1)) where ρ is
such that κ(A) = 1012 (b). The plots suggest that the spectrum of the latter matrix
is harder.
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Fig. 7.1: The relative errors κup(A)/κ(A)−1 (dash) and 1−κlow(A)/κ(A) (solid) as function
of k, for A = diag(linspace(1,1e12,n)), n = 105 (a), and a matrix of the form A =
diag(ρ.^(0:1e5-1)) with κ(A) = 1012 (b). Here, κlow(A) is a lower bound and κup(A) is an
upper bound with probability at least 98%.
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Fig. 7.2: For A = diag(linspace(1,1e12,n)), n = 105, after k = 5 steps of the method:
(a) the ratio κup(A)/κlow(A) where κup(A) is an upper bound with probability at least 1−2ε,
as function of ε; (b) the iteration k needed to ensure that κup(A) ≤ 1.1 ·κlow(A), where κup(A)
is an upper bound with probability at least 1− 2ε, as a function of ε.

Next, for Figure 7.2(a), we carry out k = 5 steps of the method for A =
diag(linspace(1,1e12,n)), n = 105, and investigate the behavior of the ratio
κup(A)/κlow(A), where κup(A) is an upper bound with probability at least 1 − 2ε,
as a function of ε. In Figure 7.2(b) we plot the iteration k that is needed to ensure
that κup(A) ≤ 1.1 · κlow(A), as a function of ε.

Experiment 7.2. Next, we test the method to estimate the condition number
for some large matrices. The matrices we choose are real and nonsymmetric. Most
of these matrices can be found in the Matrix Market [18] or the University of Florida
Sparse Matrix Collection [1, 4]. The starting vector v0 is randomly chosen from a
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uniform distribution on Sn−1 as explained in Section 5. For these experiments we
choose ε = 0.01 which corresponds to a reliability of at least 98% for the bounds for
the condition number to be true (see Section 5). Also we choose ζ = 2 and ζ = 1.1
such that the ratio of the probabilistic upper bound and the lower bound is ≤ ζ. To
accomplish this, the method adaptively chooses the a number of steps k. Note that k
steps correspond to k operations with ATA and k operations with (ATA)−1. We use
Matlab’s betaincinv to compute δ and bisection to compute the largest and smallest
zero of f δ1 and gδ1, respectively (see (5.4) and (5.5)).

In Table 7.1 the results for ζ = 2 are presented. The reason of the choice of
ζ = 2 is a comparison of our method to the block method by Higham and Tisseur [8]
to estimate the 1-norm condition number κ1(A), which is reported to give almost
always an estimate correct to within a factor 2. Although κ1 and κ2 are independent
quantities (see Section 6.2 for comments), the methods have both a storage of O(1)
vectors and for both methods (only) one LU-factorization is computed which is needed
for the inverse operations A−1 and A−T . The comparison is made to indicate that the
running time of the two methods usually does not differ much (see Table 7.1). As is
shown in Table 7.1, especially for the larger matrices, a large part of the computational
time is spent on the computation of the LU-factorization. Therefore, for such matrices
extended Lanczos bidiagonalization may be seen as a relatively cheap add-on. For
ζ = 2, usually only a modest number of steps k are sufficient. Of course, choosing a
larger ζ will decrease this number of steps even more. While decreasing ζ will make the
method computationally more expensive, for many matrices this will be a relatively
small increase in view of the costs of the LU decomposition. In Table 7.2 the results
for ζ = 1.1, giving very sharp bounds, show that even for this small ζ the number of
steps k and the running time remain modest.

Table 7.1: The approximations of the condition number κ of different matrices using extended
Lanczos bidiagonalization. The method gives a lower bound κlow for κ and also a probabilistic
upper bound κup that holds with probability at least 98% (ε = 0.01). The method continues
until the ratio κup(A)/κlow(A) is below the indicated level of ζ = 2. The number of steps k
needed to obtain this ratio and the CPU-time in seconds are shown. Also the percentage of
the time taken by the LU-decomposition is displayed. Lastly we give CPU1 of condest(A).
The symbol ? is used when the value is too expensive to compute.

Matrix A Dim. κ κlow κup k CPU LU CPU1

utm5940 5940 4.35 · 108 3.98 · 108 7.21 · 108 4 0.17 55 0.12
dw8192 8192 3.81 · 106 3.81 · 106 5.07 · 106 6 0.10 49 0.08
grcar10000 10000 3.63 · 100 3.59 · 100 5.80 · 100 6 0.07 30 0.05
memplus 17758 1.29 · 105 1.29 · 105 2.47 · 105 6 0.17 57 0.13
af23560 23560 1.99 · 104 1.93 · 104 2.82 · 104 6 0.93 73 0.88
rajat16 96294 ? 5.63 · 1012 5.69 · 1012 5 9.29 97 9.19
torso1 116158 ? 1.41 · 1010 1.42 · 1010 3 26.8 94 28.5
dc1 116835 ? 2.39 · 108 4.59 · 108 5 5.87 94 5.57
twotone 120750 ? 1.75 · 109 2.91 · 109 4 1.37 75 1.33
FEM-3D-thermal2 147900 ? 3.05 · 103 5.15 · 103 7 13.1 80 12.7
xenon2 157464 ? 4.29 · 104 8.14 · 104 7 19.4 83 19.6
crashbasis 160000 ? 6.30 · 102 1.21 · 103 7 3.35 64 2.59
scircuit 170998 ? 2.40 · 109 4.69 · 109 7 2.11 58 1.39
transient 178866 ? 1.02 · 1011 2.00 · 1011 8 7.76 87 7.12
stomach 213360 ? 4.62 · 101 9.02 · 101 6 13.7 80 13.7
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Table 7.2: The approximations of the condition number κ of different matrices using extended
Lanczos bidiagonalization. The method gives a lower bound κlow for κ and also a probabilistic
upper bound κup that holds with probability at least 98% (ε = 0.01). The method continues
until the ratio κup(A)/κlow(A) is below the indicated level of ζ = 1.1. The number of steps k
needed to obtain this ratio and the CPU-time in seconds are shown. Also the percentage of
the time taken by the LU-decomposition is displayed. The symbol ? is used when the value is
too expensive to compute.

Matrix A Dim. κ κlow κup k CPU LU

utm5940 5940 4.35 · 108 4.35 · 108 4.71 · 108 10 0.36 60
dw8192 8192 3.81 · 106 3.81 · 106 4.06 · 106 9 0.13 35
grcar10000 10000 3.63 · 100 3.62 · 100 3.97 · 100 13 0.13 20
memplus 17758 1.29 · 105 1.29 · 105 1.41 · 105 15 0.28 31
af23560 23560 1.99 · 104 1.99 · 104 2.12 · 104 9 1.10 63
rajat16 96294 ? 5.63 · 1012 5.69 · 1012 5 9.39 97
torso1 116158 ? 1.41 · 1010 1.42 · 1010 3 26.9 94
dc1 116835 ? 2.39 · 108 2.45 · 108 8 6.01 92
twotone 120750 ? 1.75 · 109 1.91 · 109 7 1.69 64
FEM-3D-thermal2 147900 ? 3.15 · 103 3.43 · 103 12 15.1 70
xenon2 157464 ? 4.32 · 104 4.67 · 104 14 22.5 71
crashbasis 160000 ? 6.40 · 102 7.01 · 102 18 5.21 40
scircuit 170998 ? 2.45 · 109 2.67 · 109 16 3.29 37
transient 178866 ? 1.03 · 1011 1.11 · 1011 21 9.24 73
stomach 213360 ? 4.82 · 101 5.24 · 101 14 17.3 64

Experiment 7.3. We compare the new method with the following alternative
method to derive a lower bound for κ2(A). First, one applies k Lanczos iterations
with ATA to a starting vector v, providing an approximation to σ1(A) from the stan-
dard Krylov subspace Kk+1(A

TA,v) = K1,k+1(ATA,v). Subsequently, one applies k
Lanczos iterations with (ATA)−1 to the same starting vector v, giving an approxima-
tion to σn(A) from the subspace Kk+1((A

TA)−1,v) = Kk+1,1(ATA,v). Together these
two values form a lower bound for κ(A) as in (3.4). The lower bound of extended
Lanczos bidiagonalization is always at least as good as the lower bound obtained by
the alternative approach, as the former approach considers subspaces of the extended
space Kk+1,k+1(ATA,v). Furthermore, since in the extended Lanczos bidiagonaliza-
tion procedure we can control the ratio ζ, a natural stopping criterion arises for this
method, as well as a good measure of the quality of both upper and lower bound. For
the other approach these features are both missing.

As an example, the lower bound of κ(A) for the matrix A = af23560 using ex-
tended Lanczos bidiagonalization (k = 6) is 1.93 · 104 in 0.93 seconds. Using twice
a Lanczos procedure (k = 6) gives the lower bound 1.87 · 104 in 0.99 seconds. For
the same number of steps, the matrix stomach gives 4.62 · 101 for extended Lanczos
bidiagonalization (13.7 seconds) and 4.54 · 101 for the alternative approach (14.5 sec-
onds). Besides a better lower bound, an important advantage of extended Lanczos
bidiagonalization is that, almost for free, a probabilistic upper bound is provided as
well. Note that in this example the CPU time for extended Lanczos bidiagonalization
includes the time for the computation of the probabilistic upper bounds.

Experiment 7.4. Another alternative to approximate the condition number ofA
is to use the svds command in Matlab. We compared our method, with the parameters
ζ = 1.1 and ε = 0.01, to the outcome of the command svds(A,1,’L’)/svds(A,1,0).



20 GAAF AND HOCHSTENBACH

The results in Table 7.3 show that our method significantly outperforms the svds

approach concerning the running time (in these examples our method is 8 to 13 times
faster), giving the same lower bound for κ(A). Again, as stated in the previous exper-
iment, our method gives also a probabilistic upper bound for the condition number
almost for free.

Table 7.3: For three matrices the lower bound given by the extended Lanczos bidiagonaliza-
tion (Ext LBD), with the parameters ζ = 1.1 and ε = 0.01, and the corresponding CPU time
in seconds. Also the bound given by the procedure using svds and the corresponding CPU
time in seconds is shown.

Matrix Ext LBD CPU svds CPU

memplus 1.294 · 105 0.28 1.294 · 105 2.30
af23560 1.988 · 104 1.10 1.989 · 104 15.1
rajat16 5.629 · 1012 9.39 5.629 · 1012 100.9

Finally some words on a breakdown. A breakdown takes place when the method
has found an invariant subspace. This is a rare event; in exact arithmetic the proba-
bility that this happens for a k � n is zero since we have selected a random vector. A
breakdown has not been encountered in our numerical experiments. However, it might
happen in rare cases that in the algorithm α−j (Step 5), βj (Step 13), ‖u‖ (Step 15)
or δj+1 (Step 28) are zero or very small. In such a case, we can just stop the method,
and return the lower and probabilistic bounds obtained before the breakdown. If these
do not yet satisfy the requirements of the user, we can restart the method with a new
random vector. An extra run of the extended Lanczos bidiagonalization method will
not increase the overall costs by much. With this adaptation we trust that the method
can result in a robust implementation for the use in libraries.

8. Discussion and conclusions. We have proposed a new extended Lanczos
bidiagonalization method. This method leads to tridiagonal matrices with a spe-
cial structure. The method provides a lower bound for κ(A) of good quality and a
probabilistic upper bound for κ(A) that holds with a user-chosen probability 1 − 2ε.
Although we have not encountered any breakdown in the experiments, the algorithm
may abort and not return any estimate. When choosing k adaptively, given a user-
selected ε and desired ratio κup(A)/κlow(A) < ζ, the results show that generally this k
is fairly small, even for ζ = 1.1. Only 3 vectors of storage are required. This method
can be used whenever an LU-factorization is computable in a reasonable amount of
time. (When this is not an option, methods such as the one in [9, 10] can be used.)
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