
 

Extremum-seeking control for the adaptive design of variable
gain controllers
Citation for published version (APA):
Hunnekens, B. G. B., Di Dino, A., Wouw, van de, N., Dijk, van, N. J. M., & Nijmeijer, H. (2015). Extremum-
seeking control for the adaptive design of variable gain controllers. IEEE Transactions on Control Systems
Technology, 23(3), 1041-1051. https://doi.org/10.1109/TCST.2014.2360913

Document license:
TAVERNE

DOI:
10.1109/TCST.2014.2360913

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Jun. 2025

https://doi.org/10.1109/TCST.2014.2360913
https://doi.org/10.1109/TCST.2014.2360913
https://research.tue.nl/en/publications/782c92b6-0850-4c2a-8c64-e57eab49084d


IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 23, NO. 3, MAY 2015 1041

Extremum-Seeking Control for the Adaptive Design
of Variable Gain Controllers

Bram Hunnekens, Antonio Di Dino, Nathan van de Wouw, Member, IEEE, Niels van Dijk,
and Henk Nijmeijer, Fellow, IEEE

Abstract— In this paper, we experimentally demonstrate an
extremum-seeking control strategy for nonlinear systems with
periodic steady-state outputs, for the adaptive design of variable-
gain controllers. Variable-gain control can balance the tradeoff
between low-frequency disturbance suppression and sensitivity
to high-frequency noise in a more desirable manner than linear
controllers can. However, the optimal performance-based tuning
of the variable-gain controller parameters is far from trivial, and
depends on the unknown disturbances acting on the system. The
extremum-seeking controller only utilizes output measurements
of the plant, and can therefore be used to optimally design
the parameters of the variable gain controller, without using
direct information on the disturbances acting on the system.
Experimental results are presented for the performance-optimal
tuning of a variable-gain controller applied to a magnetically
levitated industrial motion control setup performing tracking
motions. The influence of the different parameter choices on the
performance of the extremum-seeking controller is illustrated
through experiments.

Index Terms— Extremum-seeking control, motion control,
periodic steady-state performance, variable-gain control.

I. INTRODUCTION

EXTREMUM seeking control is an adaptive control
approach that optimizes a certain performance mea-

sure in terms of the steady-state output of a system in
real time, by automated and continuous adaptation of the
system parameters. In general, extremum-seeking control is
typically used to optimize system performance in terms of
constant steady-state outputs [2], [16], [24], [25]. Recently,
an extremum-seeking control method has been proposed for
steady-state performance optimization of general nonlinear
plants with arbitrary periodic steady-state outputs of the
plant [7]. Other works on the extremum-seeking control
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for systems with periodic steady-state outputs can be found
in [6], [12], and [15]. We also note that besides the adap-
tive extremum-seeking approach we consider in this paper,
which continuously adapts system parameters, extremum-
seeking methods also exist, which iteratively update the system
parameters in a periodic sampled-data fashion, in combination
with a numerical optimization scheme [15], [27].

The application of extremum-seeking control for periodic
steady-state outputs is generically relevant in the scope of
periodic tracking problems and is particularly relevant in
the context of motion control applications, such as industrial
robotics, wafer scanners, and pick-and-place machines. In the
latter application areas, periodic reference trajectories are often
tracked to perform specific motion tasks. In this context,
extremum-seeking control, in which neither a plant model
nor disturbance models are required, is especially suitable
for adaptive tuning controller parameters to obtain an optimal
time-varying steady-state response, tuned for the (unknown)
disturbances at hand.

In this paper, we will experimentally demonstrate the
extremum-seeking control approach for periodic steady-states
introduced in [7]. In particular, we will use the approach for
the performance-optimal design of variable-gain controllers
and will address an industrial motion control application.
In industry, linear motion systems are still often controlled
by linear controllers, mostly of the proportional–integral–
differential type [1]. However, it is well known that linear
controllers suffer from inherent performance limitations such
as the waterbed effect [5]. This waterbed effect describes the
well-known tradeoff between, on the one hand, low-frequency
tracking and, on the other hand, sensitivity to high-frequency
disturbances and measurement noise. If only low-
frequency disturbances are present, a high-gain controller is
preferred to obtain good low-frequency tracking properties.
Contrarily, if only high-frequency disturbances and noise are
present, a low-gain controller is preferred as not to amplify the
effect of the high-frequency disturbances. Typically, a linear
controller needs to balance between these two conflicting
objectives with the waterbed effect as a constraint due to the
Bode sensitivity integral.

To overcome such a performance limitation to a certain
extent, a nonlinear variable-gain control strategy has been
employed in [3], [10], [11], [28], [29], and [31]. In these
references, it has been shown that variable-gain controllers
have the capability of outperforming linear controllers in
the scope of the tradeoff mentioned above, especially in
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Fig. 1. Closed-loop variable-gain control scheme.

the scope of nonstationary or nonlinear disturbance and/or
performance specifications. Although these controller designs
are intuitive in nature, an optimal performance-based tuning
of such variable-gain controllers is far from trivial, especially
as it depends on the particular disturbance situation at hand.
As a consequence, suboptimal tuning is typically done in a
heuristic fashion.

In this paper, we therefore propose to employ extremum-
seeking to optimally tune the variable-gain controller parame-
ters, without using knowledge on the disturbances acting on
the system. The benefits of the adaptive tuning of variable-gain
controller parameters have been shown in an iterative feedback
tuning context in [8] and [9]. Here, we will not employ
such an iterative approach, but we will use an alternative
adaptive approach based on the extremum-seeking technique
for periodic steady-states, which does not use any plant model,
unlike the approach in [8] and [9], and does not use explicit
knowledge on the disturbances, as in [19].

The main contributions of the paper can be summarized as
follows.

1) First, we present the experimental validation of the
extremum-seeking strategy for periodic steady-states
presented in [7] in the context of optimizing variable-
gain controllers for repetitive motion tasks.

2) Second, we show that the tracking performance of
industrial motion control systems can be significantly
improved (compared to linear controllers) using variable
gain controllers optimally tuned by extremum-seeking.

This paper extends the preliminary results in [13], in particular
by experimentally validating the extremum-seeking approach
for periodic steady states, by application to an industrial
motion control setup, and by giving more specific tuning
guidelines for the extremum-seeking controller.

The remainder of the paper is organized as follows.
In Section II, we discuss the problem formulation considered
in this paper. In Section III, we discuss the extremum-
seeking control strategy for systems with periodic steady-
states in the scope of the adaptive optimization of
variable-gain controllers. The industrial motion control setup
and nominal variable-gain controller design for this system
will be discussed in Section IV. In Section V, the experimen-
tal results of the extremum-seeking control strategy for the
performance-optimal tuning of the variable-gain controller will
be presented. The conclusion will be presented in Section VI.

II. PROBLEM FORMULATION

Consider the closed-loop variable-gain control scheme
shown in Fig. 1, with the underlying linear control structure
consisting of the linear plant dynamics and the nominal linear
controller with transfer functions P(s) and C(s), s ∈ C,

Fig. 2. Nonlinearity ϕ(e, δ) discriminating between small errors and large
errors.

respectively, reference signal r , force disturbance d , and
tracking error signal e. To enhance the performance of the
closed-loop system with respect to that achievable by the linear
controller C(s), we introduce a nonlinear element ϕ(e, δ) and
shaping filter F(s). The design of F(s) will relate to shaping
the positive-real properties of the closed-loop system, as we
will illustrate in Section V. The choice of the shape of the
nonlinearity ϕ(e, δ) is given by a dead-zone characteristic

ϕ(e, δ) =
⎧
⎨

⎩

α(e + δ),
0,
α(e − δ),

if e < −δ
if |e| ≤ δ
if e > δ

(1)

with dead-zone length δ ≥ 0 and additional gain α ≥ 0
(Fig. 2). The particular tuning of the nonlinearity ϕ is key
to optimizing performance, as we will show later. Let us now
explicate the rationale behind the choice for the dead-zone
characteristic. Typically, in motion systems, errors induced by
low-frequency disturbances are larger in amplitude than those
induced by high-frequency disturbances [29]. Therefore, if the
error signal e(t) exceeds the dead-zone level δ, an additional
controller gain α is induced, yielding superior low-frequency
tracking and disturbance suppression properties. If, however,
the error signal does not exceed the dead-zone length δ, no
additional gain is induced as to avoid the deterioration of the
sensitivity to high-frequency disturbances.

Remark 1: In addition to the particular dead-zone charac-
teristic in (1), also other choices for the shape of the nonlin-
earity ϕ(e, δ) are possible, and can as well give performance
benefits. However, for the sake of clarity of presentation
of the variable-gain control strategy, and because we will
use the dead-zone nonlinearity for the experimental setup in
Section V, we will limit the analysis here to the specific dead-
zone characteristic in (1).

Due to the choice of the variable-gain control structure
in Fig. 1, the closed-loop dynamics can be modeled as a
Lur’e-type system [14] of the form

ẋ = Ax + Bu + Bww(t) (2a)

e = Cx + Dww(t) (2b)

u = −ϕ(e, δ) (2c)

with state x ∈ Rn , where w(t) ∈ Rm contains all external
inputs, such as the reference r(t) and force disturbance d(t).
The transfer function Geu(s) denotes the transfer from input
u ∈ R to output e ∈ R (Fig. 1), and can be expressed as

Geu(s) = C(s I − A)−1 B = P(s)C(s)F(s)

1 + P(s)C(s)
. (3)

In motion control applications, performance relates to the
size of the tracking error e. A key performance parameter
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Fig. 3. Extremum-seeking scheme for the optimal tuning of the dead-zone
length δ.

in the variable gain control scheme in Fig. 1 is the dead-
zone length δ, which discriminates between small and large
errors (Fig. 2). The optimal value for δ that minimizes
tracking errors, depends strongly on the external disturbances
acting on the system. Because accurate disturbance models are
difficult to obtain, and because the disturbances signature may
change over time, a (fixed) heuristic choice of the dead-zone
length δ as in [10] and [11] will likely be suboptimal. This
makes the search for the performance-optimal δ a challenging
task. The problem we consider in this paper is therefore the
online and adaptive performance-optimal tuning of the dead-
zone length δ, without using knowledge on the disturbance
situation at hand.

We will approach this problem using the extremum-seeking
control strategy for nonlinear systems with periodic steady-
state outputs. This extremum-seeking strategy will be dis-
cussed in Section III. Subsequently, the approach will be
applied to a variable-gain controlled experimental motion stage
in Sections IV and V.

III. EXTREMUM-SEEKING FOR PERIODIC STEADY-STATES

Extremum-seeking control is commonly used to optimize
the performance of plants with constant steady-state outputs
(i.e., in an equilibrium setting) [2], [16], [24], [25]. Compared
with this extremum-seeking work for constant steady-states,
extremum-seeking control for plants with time-varying outputs
has received relatively little attention [6], [7], [12]. We will
employ an extremum-seeking scheme for the performance
optimization of nonlinear plants with periodic steady-state
outputs, which is particularly relevant in the scope of tracking
and disturbance rejection problems for motion systems, as we
will show in Section V.

Consider the extremum-seeking scheme shown in Fig. 3,
which, in the spirit of [18], consists of a stabilized plant (2),
a performance output that is the tracking error y = e, a
performance measure J that depends on the performance
output y = e (for example, typically of the integral squared
error form J = ∫

y2 = ∫
e2), a gradient estimator, and an

optimizer. In addition, the stabilized plant in the extremum-
seeking scheme in Fig. 3 is subject to a bounded Tw-periodic
input w(t), which will give rise to time-varying outputs y of
the stabilized plant.

Let us elaborate on the different elements in this extremum-
seeking scheme in the scope of the variable-gain motion

Fig. 4. Schematic representation of extremum-seeking procedure: the
essential time-scales are also indicated.

control setting specified in the previous section; for more
details, we refer to [7].

1) Stabilized Plant: The stabilized plant can be a nonlinear
system, which in this paper is the closed-loop variable-gain
control system (2)

f (x, δ,w) = Ax − Bϕ(e, δ) + Bww (4)

in Fig. 3. Note that the extremum-seeking controller only
uses output measurements of the stabilized plant, which can
therefore be unknown. In the motion control context, the
important performance output variable y is the tracking error,
i.e., y = e.

2) Performance Measure: We aim to find the value of the
dead-zone length δ that optimizes a performance measure J
that depends on the Tw-periodic1 steady-state performance
output ȳw(t, δ) of the stabilized plant (2) [where we write
ȳw to emphasize that we consider the steady-state output that
depends on the external Tw-periodic input w(t)]. To do so, the
performance of the variable-gain controller is characterized by
the performance measure

J (t, δ) =
∫ t

t−Tw

h(s(τ ), y(τ, δ))dτ. (5)

Herein, h is a performance-related function to be chosen by the
user and the Tw-periodic function s(t) is a selection function
allowing to weigh the error only in an important performance
window (see Section IV for more details). Note that the output
of the performance measure J as in (5) is constant if y(t, δ)
is Tw-periodic in t for fixed δ.

As an example of a typical performance measure for a
motion control application, consider the integral squared error
performance measure

J (t, δ) =
∫ t

t−Tw

e2(τ, δ)dτ (6)

which relates to the tracking error e (Fig. 1) during the
last Tw s.

3) Gradient Estimator: The gradient estimator uses dither,
Figs. 3 and 4, to obtain an estimate ∂̃ J/∂δ of the true gradient
∂ Jsta/∂δ of the unknown static performance map

Jsta(δ) =
∫ Tw

0
h(s(τ ), ȳw(τ, δ))dτ (7)

1Later we will show under which conditions the steady-state output to
Tw-periodic disturbances w(t) is indeed Tw-periodic.
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i.e., the performance map (5) for fixed δ and steady-state error
ȳw(t, δ) = ēw(t, δ) (Fig. 4). The moving average filter in
the gradient estimator (Fig. 3) is beneficial to filter out the
oscillations with dither frequency ω in the performance J ,
thereby resulting in an improved gradient estimate ∂̃ J/∂δ
[7, Remark 7]. Note that the moving average filter serves a
similar purpose as the low-pass and/or high-pass filters as
applied in [25].

Optimizer: The extremum-seeking controller aims to find
the minimum of the unknown steady-state performance map
Jsta(δ), which we assume to be attained at δ∗ (Fig. 4). The
estimated gradient ∂̃ J/∂δ is used by the optimizer

˙̂δ = −c
∂̃ J

∂δ
(8)

to steer the nominal value δ̂ of the dead-zone length δ toward
the performance optimizing value δ∗, with adaptation gain c,
where

δ = δ̂ + a sin(ωt) (9)

with a the dither amplitude, and ω = 2π/T the dither
frequency (with dither period T ).

A. Time Scale Separation

As in all classical extremum-seeking approaches
[16], [24], [25], the principle of time-scale separation is
essential to the successful operation of the extremum-seeking
loop (Fig. 4). If the dither amplitude a, the dither frequency
ω, and the adaptation gain c are chosen small enough to
enable time-scale separation of the plant, gradient estimator,
and optimizer, the performance J (δ) will remain close to the
steady-state performance map Jsta(δ) (Fig. 4). In that case,
the dither signal sin(ω(t)) will be in-phase (out-phase) with
the measured performance J (t, δ) in case δ lies to the right
(to the left) of the optimum θ∗ (Fig. 4). This forms the basis
for the gradient estimate ∂̃ J/∂δ since the product of sin(ωt)
and J (t, δ) (Fig. 4) will be proportional to the true gradient
∂ Jsta/∂δ. Hence, for sufficiently small c, a, and ω, it holds that
∂̃ J/∂δ will be a good estimate of the true gradient ∂ Jsta/∂δ
[24, Sec. 3.3] or [7, Remark 7] for the mathematical
details.

The fact that we are optimizing performance in terms of
Tw-periodic outputs (rather than equilibrium points) introduces
an additional time scale. This time scale relates to the time
period Tw of the periodic disturbances w(t) and, although
present in [7], this time scale was not explicitly discussed
in that work. In the absence of such external inputs, i.e.,
in the extremum-seeking setting for constant steady-state
outputs (the equilibrium setting) [2], [16], [24], [25], it is
important that the dither frequency ω is chosen sufficiently
low (T sufficiently high) compared with the time-scale of
the plant dynamics. This guarantees that the plant operates
close to its steady-state behavior, and hence, the performance
J is close to its steady-state performance Jsta(δ) (Fig. 4)
[25]. In the extremum-seeking setting for periodic steady-
states as considered here, the performance J (t, δ) in (5) relates
to the output response over the last Tw s. Additional to the

requirement in the equilibrium case, it is therefore important
that the dither period T is chosen sufficiently high compared
with the period Tw of the inputs. This guarantees that δ is
perceived as constant over one period Tw, such that the perfor-
mance J (t, δ) is close to the steady-state performance Jsta(δ).
On summarizing, the following essential time-scales are
present in the extremum-seeking approach for periodic steady-
states from fastest to slowest: 1) plant-dynamics; 2) period Tw

of external disturbance; 3) dither period T ; and 4) time scale
of the optimizer related to the adaptation gain c.

Remark 2: Note that the inclusion of the selection function
s(t) in the definition of the performance measure (5) was not
included in [7]. However, since the selection function s(t) is
also periodic with period time Tw, the function h(s(t), y(t, δ))
in (5) is also periodic with period time Tw and is, moreover,
bounded for bounded x and w(t). Therefore, the output of
the performance measure J (t, δ) will still be constant if the
steady-state output ȳw(t) = ēw(t) is Tw periodic such that the
results in [7] can be employed.

B. Stability Conditions

The following essential assumptions are made in [7, Th. 8]
to guarantee the stability of the extremum-seeking scheme
presented above.
A1: The external inputs w(t) are generated by an exo-

system ẇ = g(w) that generates uniformly bounded,
Tw-periodic disturbances with a known constant
period Tw.

A2: For all fixed parameters δ ∈ R, the nonlinear system (2)
exhibits a unique globally asymptotically stable steady-
state solution x̄w(t, δ), with the same period time Tw.

A3: The sufficiently smooth steady-state performance map
Jsta(δ) has a unique global minimum at δ∗.

A4: The vector field f (x, δ,w) of the stabilized plant in (4)
is twice continuously differentiable in x and δ, and
continuously in w(t).

Under these assumptions, the stability result in [7] guar-
antees that the closed-loop system is semiglobally practically
asymptotically stable (SGPAS) in the following sense. For any
ρx,i , νx,i ∈ R > 0, i ∈ {1, . . . , n}, ρδ , νδ ∈ R > 0 and
initial conditions satisfying maxs∈[−Tw,0] |x̃i (s)| ≤ ρx,i ∀i ∈
{1, . . . , n}, maxs∈[−Tw,0] |δ̃(s)| ≤ ρδ , there exist sufficiently
small values for the dither amplitude a, dither frequency ω(a),
and adaptation gain c(a, ω), such that the solutions x(t) and
δ(t) of the closed-loop extremum-seeking scheme are well
defined for all t ≥ 0 and satisfy the following properties:

1) uniform boundedness: supt≥0 |x̃i(t)| ≤ Cx,i ∀i ∈
{1, . . . , n} and supt≥0 |δ̃(t)| ≤ Cδ;

2) ultimate boundedness: lim supt→∞ |x̃i (t)| ≤ νx,i ∀i ∈
{1, . . . , n} and lim supt→∞ |δ̃(t)| ≤ νδ

for some constants Cx,i(ρx,i , ρδ, a, c, ω), Cδ(ρx,i , ρδ, a,
c, ω) ∈ R > 0, i ∈ {1, . . . , n}, and where x̃(t) :=
x(t) − x̄w(t, δ) and δ̃(t) = δ̂(t) − δ∗. Note that the above
codependence of the parameters a, ω, and c, indicate an order
of tuning for the extremum-seeking parameters.

Remark 3: Under the assumptions stated above, [7, Th. 8]
guarantees that the extremum-seeking scheme is SGPAS
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Fig. 5. Experimental setup: a magnetically levitated industrial motion
platform with 6 degrees of freedom.

according to [7, Def. 1], which differs slightly from definitions
of SGPAS in [25], which also considers the decay rate of the
solutions.

IV. EXPERIMENTAL SETUP AND NOMINAL

CONTROLLER DESIGN

In this section, we will discuss the experimental setup that
we will use to illustrate the practical feasibility of the control
strategy proposed in the previous section. The magnetically
levitated industrial motion platform itself will be discussed in
Section IV-A. The nominal variable gain controller design will
be discussed in Section IV-B, after which we will discuss the
set-point and disturbance characterization in Section IV-C, and
the performance specification in Section IV-D.

A. Magnetically Levitated Motion Platform

The plant P(s) is represented by the experimental setup
in Fig. 5. The motion platform involves a magnetically lev-
itated and magnetically actuated inertia, which can be con-
trolled in all of its six degrees of freedom. Such a motion
platform is suitable for application in, for example, pick-and-
place machines or wafer scanners. The permanent magnets are
attached to the fixed world, and the coils are attached to the
actuated inertia. The main degree of freedom, the one that
has the longest possible stroke (80 mm), is the x-direction
(Fig. 5), which is also the direction that we will focus on. The
remaining degrees of freedom are stabilized; this enables to
position the actuated inertia accurately in all six degrees of
freedom (which would not be possible using a fixed guide rail
for example). All six degrees of freedom can be measured with
an interferometer system which has a resolution of 0.625 nm.
The whole setup, including the measurement system, is placed
on a vibration isolation table.

B. Nominal Variable-Gain Controller Design

From frequency response measurements at different
x-positions, it is observed that the plant can very well be

Fig. 6. Measured open-loop frequency response function P(iω)C(iω) for
the linear low-gain controller C(s) (δ = ∞) and linear high-gain controller
C(s)(1 + αF(s)) (δ = 0).

considered linear. A stabilizing nominal (low-gain) linear
controller C(s) (Fig. 1) has been designed using loop-shaping
arguments [23], based on these frequency response measure-
ments. It is stressed once more that the frequency response
data of the plant P(iω) is only used to design this stabilizing
controller C(s) and to verify the conditions of Theorem 1, and
that no model of the plant is used explicitly by the extremum-
seeking controller. The nominal linear controller consists of a
lead-filter, a notch-filter, an integral action, and a second-order
low-pass filter. The resulting measured open-loop frequency
response function P(iω)C(iω) is shown in Fig. 6. The open-
loop bandwidth of the system is 52 Hz for the low-gain
controller.

A linear controller with a higher loop-gain, and hence a
higher bandwidth (of 86 Hz), has also been designed to achieve
a higher level of low-frequency disturbance suppression.
However, due to the waterbed effect [22], this low-frequency
(below the bandwidth) performance improvement will lead
to a deterioration of high-frequency (above the bandwidth)
disturbance sensitivity. To balance this tradeoff in a more desir-
able manner, we therefore design a variable gain controller
(Section II).

The following theorem provides sufficient conditions under
which system (2), excited by a Tw-periodic input w(t), has
a uniquely defined Tw-periodic globally exponentially stable
steady-state solution.

Theorem 1 [29], [30]: Consider system (2). Suppose:
B1: the matrix A is Hurwitz;
B2: the continuous nonlinearity ϕ(e, δ) satisfies

0 ≤ ϕ(e2, δ) − ϕ(e1, δ)

e2 − e1
≤ α (10)

for all e1, e2 ∈ R, e1 	= e2 and all δ ≥ 0;
B3: the transfer function Geu(s) given by (3) satisfies

Re (Geu(iω)) > − 1

α
∀ω ∈ R. (11)

Then for any bounded Tw-periodic piecewise continuous input
w(t), system (2) has a unique Tw-periodic solution x̄w(t),
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Fig. 7. Frequency-domain condition (11) illustrating that Re(G(iω)) > −1/α
∀ω ∈ R, on the basis of measured frequency response data.

which is globally exponentially stable and bounded for all
t ∈ R.

Systems with such a uniquely defined globally expo-
nentially stable steady-state solution [for arbitrary bounded
inputs w(t)] are called exponentially convergent [4], [20].
Note that the satisfaction of the conditions of Theorem 1
implies that Assumption A2 is satisfied. Indeed, the stabilized
plant will then have a unique, Tw-periodic globally expo-
nentially stable steady-state solution x̄w(t, δ) for fixed δ and
Tw-periodic inputs w(t). Note that this property guarantees
the existence and uniqueness of the steady-state performance
map Jsta(δ) [21], which relates to Assumption A3. Of course,
the existence of a unique global minimum δ∗ depends on the
specific problem (and performance specifications) considered.

Tuning of the shaping filter F(s) (Fig. 1) aims at adding
a significant amount of allowable additional gain α, while
satisfying the frequency-domain circle-criterion stability con-
dition (11). Consider Fig. 7, where Geu(iω) (3) is shown for
the case without shaping filter F(s) (i.e., F(s) = 1). If no
shaping filter F(s) is used, the maximum additional gain is
α = −1/−0.63 = 1.6 (Fig. 7). Using a notch filter and low-
pass filter, we constitute the shaping filter as follows:

F(s) = ω2
p

ω2
z

s2 + 2βzωzs + ω2
z

s2 + 2βpωps + ω2
p

ω2
lp

s2 + 2βlpωlps + ω2
lp

(12)

where ωp = 40 · 2π rad/s, ωz = 60 · 2π rad/s, βp = 1, and
βz = 0.5, ωlp = 2π300, and βlp = 0.7, a higher addi-
tional gain α = −1/−0.26 = 3.8 is allowed. We choose
α = 3 to have some guaranteed robustness, as indicated by
the dashed vertical line in the circle criterion plot in Fig. 7.
The loop-gain P(s)C(s) is depicted for the linear controller
limits of the variable-gain controllers, i.e., the linear low-gain
(δ = ∞) controller C(s) and high-gain (δ = 0) controller
C(s)(1 + αF(s)), are depicted (by means of the open-loop
frequency response functions) in Fig. 6.

By design of the stabilizing controller C(s), condition B1
of Theorem 1 is satisfied. Because we consider nonlinearities
of the dead-zone type (1), condition B2 of Theorem 1 is also
satisfied. Moreover, from Fig. 7, we conclude that condition
B3 of Theorem 1 is also satisfied. Hence, system (2) has

Fig. 8. Illustration of the Tw-periodic reference input r(t), force-disturbance
d(t), and mask function s(t) in (14).

a unique, bounded, Tw-periodic, globally exponentially sta-
ble steady-state solution x̄w(t) for Tw-periodic inputs. From
this fact, we conclude that Assumption A2 needed for the
extremum-seeking strategy is also satisfied.

Note that from Theorem 1, it follows that the dead-
zone length δ of the nonlinearity is completely stability-
invariant. This freedom is used in Section V to tune δ
in a performance-optimal way using the extremum-seeking
strategy from Section III.

C. Input Specification

To represent a realistic industrial application, the experimen-
tal setup considered will be tested in a tracking experiment
where typical high-frequency disturbances are present. The
reference r(t) to be tracked by the magnetically levitated
inertia [in the x-direction (Fig. 5)] consists of a third-order
motion profile (Fig. 8). As a possible application, we consider
a typical pick-and-place operation. Namely, on the reference,
the inertia is moved from a zero-position to a 1 cm position
(Fig. 8). Here, a component could be placed, for example,
after which the movement is made back to the zero-position,
resulting in a Tw = 2 second trajectory. In a typical industrial
motion setting, also high-frequency (above the bandwidth)
force disturbances will also be present (such as acoustic
disturbances, or cross-talk from other parts of the machine,
or measurement noise). To emulate such disturbances, we
inject a high-frequency (colored, above the bandwidth) force
disturbance to d(t) (Fig. 8). Since the colored disturbance
d(t) has its main frequency content above 100 Hz (above
the bandwidth), this is well separated from the frequency of
0.5 Hz of the reference signal r(t) such that d(t) can easily
be approximated as being periodic with period time Tw = 2 s
(Fig. 8). In addition, the configuration of the magnets and
coils in the setup give rise to position-dependent cogging dis-
turbances, which can also be considered to be approximately
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periodic due to the periodic motion profile (and small tracking
errors, such that y ≈ r ). The Tw-periodic reference r(t) and
force disturbance d(t), with resulting (bounded) Tw-periodic
external input w(t) = [r(t), d(t)]T , could in principle be
generated by an exo-system as stated in Assumption A1.
From this, we conclude that Assumption A1 needed for the
extremum-seeking strategy is satisfied.

D. Performance Specification

The inputs r and d as considered in Fig. 8 result in a
measured closed-loop error response, as shown in the lower-
plot in Fig. 8, for the nominal low-gain controller C(s). The
performance objective relates to the important time at which
the set point reaches the constant position phase (as an exam-
ple, in a pick and place operation, high accuracy is needed
here to place a component on a printed circuit board) (Fig. 8).
Our goal will be to improve the low-frequency response
(due to the acceleration phases, with unavoidable non-perfect
feed-forward compensation) while not deteriorating the high-
frequency error response during the constant position part
(Fig. 8). To quantify both these effects in one performance
measure, we define, in accordance with (5)

J (t, δ) =
∫ t

t−Tw

s(τ )e2(τ, δ)dτ (13)

with the mask-function

s(t) =

⎧
⎪⎨

⎪⎩

1, if t ∈ [0.38, 0.6] + kTw

4, if t ∈ [0.6, 1.5] + kTw

0, otherwise

(14)

with k ∈ {0, 1, ...}, and Tw = 2 s (Fig. 8). A weight of
s(t) = 4 is used during t ∈ [0.6, 1.5] s to make the effect of
the high-frequency amplification in the performance measure
of comparable magnitude as the low-frequency effect (due
to the acceleration part) during t ∈ [0.38, 0.6] s. This way,
both effects will be reflected in the performance measure
in (13). Of course, depending on the application at hand, other
performance measures may be defined, resulting in a different
quantification of performance. As we will see in Section V,
the performance measure in (13) and (14) will indeed capture
the tradeoff between low-frequency disturbance suppression
and sensitivity to high-frequency disturbances. The extremum-
seeking approach from Section III will be used to optimally
balance this tradeoff in a more desirable manner by adaptively
tuning a variable gain controller.

V. EXPERIMENTAL EXTREMUM-SEEKING RESULTS

In this section, the extremum-seeking control approach
(Fig. 3), is used to optimally design the dead-zone length
δ of the variable-gain controller (Fig. 1). Assumptions A1
and A2 from Section III-B have been satisfied in Sections IV-B
and IV-C, respectively. Moreover, as we will see from the
experimental results in this section, condition A3 is also
satisfied for the range of values δ that we are interested in.
Regarding condition A4, the following remark is in place.

Remark 4: As stated in Assumption A4, in [7], it is actually
assumed that the dynamics f (x, δ,w) in (4) (Fig. 3) is

TABLE I

DEFAULT EXTREMUM-SEEKING PARAMETER SET

Fig. 9. Extremum-seeking result showing convergence to the dead-zone
length δ∗, verified by the measured steady-state performance curve Jsta(δ)
with 3σ confidence interval.

twice continuously differentiable with respect to δ. However,
the use of the dead-zone nonlinearity ϕ(e, δ), as shown
in Fig. 2, violates this smoothness assumption. Alternatively,
it would be possible to define a sufficiently smooth variant
of ϕ(e, δ) which can arbitrarily closely approximate the dead-
zone nonlinearity. However, for reasons related to the ease
of implementation of a nonsmooth piecewise linear dead-
zone characteristic, we prefer the usage of the dead-zone
nonlinearity, as shown in Fig. 2. Although Assumption A4
is strictly not satisfied, it does still lead to the successful
convergence of the extremum-seeking scheme, which will be
illustrated by the experimental results in this section.

The set of extremum-seeking parameters as in Table I is
used, unless stated otherwise. To give a motivation for the
selected parameters and to give some guidelines for select-
ing parameters in other applications, consider the following
essential aspects.

1) The dither amplitude a directly relates to the size of
the set to which the extremum-seeking controller will
converge (Figs. 9 and 10). In the variable-gain control
application considered, the dead-zone length δ is known
to be positive to make sense (Fig. 2). Moreover, based
on the default linear low-gain and high-gain controller
response (as we will see later in Fig. 11), we know that
the maximum error max(|e|) ≤ 1.75 μm such that for
δ ≥ 1.75 μm, the linear low-gain controller will be
effective. The interesting range for δ is thus given by
0 ≤ δ ≤ 1.75 μm. A dither amplitude of 0.05 μm
(≈ 3% of the interested range of 1.75 μm) is therefore
selected as an initial choice for the dither amplitude a.

2) The dither frequency ω should be selected sufficiently
low to guarantee that the performance J (t, δ) is close to
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Fig. 10. Convergence of the dead-zone length δ and performance J (t, δ).

Fig. 11. Measured tracking error for the low-gain, high-gain, and optimized
variable-gain controller.

the steady-state performance map Jsta(δ) (Fig. 4). Note
that to guarantee this time-scale separation, first of all,
the stabilized plant ẋ = f (x, δ,w(t)) (Fig. 3) should be
sufficiently fast compared with the dither signal, which
is standard in the extremum-seeking literature. Second of
all, we should choose T sufficiently larger than Tw, such
that δ is perceived as constant over one period Tw (see
the discussion on time-scale separation in Section III-A).
Therefore, we choose T = 2π/ω = 10 s, a factor 5
larger than the period Tw = 2 s of the input w(t).

3) The adaptation gain c should be chosen small enough,
again to guarantee the time-scale separation (Fig. 4).
Over one period of the dither T , the nominal value for
δ̂ (Fig. 3) should not change too much compared with
the dither to obtain an accurate gradient estimate. Since˙̂
δ = −c∂̃ J/∂δ, the choice for c relates to the gradient of

the performance map, which is in general unknown. For
an initial experiment, it is therefore sensible to start with
a very small c (such that the δ̂ changes very slowly) and
increase it gradually to achieve a desirable convergence
rate, which resulted in c = 0.3 s−1, for the settings of
a and ω in Table I.

Consider the experimental extremum-seeking results
in Fig. 9. To validate the results of the extremum-seeking
controller, the steady-state performance curve Jsta(δ), which
is in general unknown, has been experimentally identified.
The static performance curve Jsta was obtained by measuring
the steady-state response for 100 linearly distributed δs in
the range [0, 2.5] μm. Since there is some variation between
subsequent experiments, due to slightly changing operating
conditions, the curve has been measured 10 different times,
such that we are able to plot the averaged curve and the 3σ
confidence interval in Fig. 9. Note that this (slow) variation
in performance can be perfectly compensated for by the
extremum-seeking controller (if it is on a slower time-scale
than the adaptation mechanism of the extremum seeker,
which is the case here), since it will continuously adapt to
find the minimum of the performance curve.

In Fig. 10, the performance J and dead-zone length δ are
shown in time. As an initial dead-zone length, we chose
δ = 1.4 μm. Initially, we set c = 0 and wait ∼30 s
(3 dither periods of T = 10 s) before enabling the adaptation
(Fig. 10). This guarantees that the plant has enough time to
converge to its steady-state values and moreover, due to the
moving average filter with T = 2π/ω = 2 s of history and
the performance measure J (t, δ) with Tw = 10 s of history, it
takes at least T + Tw = 12 s to build up information on the
steady-state performance. Clearly, Figs. 9 and 10 show that
the extremum-seeking controller converges to a region around
the performance-optimal dead-zone length of δ∗ ≈ 0.25 μm,
with corresponding optimal performance Jsta(δ) = 0.038 μm2

(where δ∗ and Jsta(δ
∗) correspond to the minimum of the

measured steady-state performance curve in Fig. 9; the same
optimal values are plotted in Fig. 10). It takes approximately
200 s for the extremum-seeking controller to converge to this
optimum. The oscillations in the performance measure J (t, δ)
relate to the period T = 10 s of the dither signal. Note that
the period of the external inputs Tw = 2 s is visible from the
zoom-plot in the upper plot in Fig. 10. The constant parts in
the zoom-plot are a result of the 0-segments in the selection
function s(t) in Fig. 8. After the 0-segments, new relevant
error-data is used in the performance measure (5), resulting in
the change of the performance J (t, δ).

In terms of the performance measure J (t, δ), the opti-
mized variable-gain controller outperforms the linear low-gain
(δ ≥ 1.75 μm) and high-gain (δ = 0) controllers by 55% and
70%, respectively, as we can conclude from Fig. 9. However,
the true performance improvement should of course also be
reflected in the measured tracking error e(t), which is shown
in Fig. 11. The goal of the variable-gain controller was to
improve the low-frequency response (due to the acceleration
phases with nonperfect feed-forward compensation) while not
deteriorating the high-frequency error response during the
constant position part of the set point r(t) (Fig. 8). Indeed,
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the variable gain controller achieves this goal, as can be
concluded from Fig. 11 that the noise response of the optimal
variable gain controller during t ∈ [0.6, 1.5] s is similar to
the low-gain controller, because the error e(t) stays within
the optimized dead-zone length δ∗. In addition, it improves
the low-frequency error response during the acceleration part
for t ∈ [0.38, 0.6] s because additional gain is applied for
the large low-frequency errors outside the dead-zone band.
Note that the performance measure as defined in (13) and (14)
was therefore a good performance measure that captures the
tradeoff between low-frequency disturbance suppression and
sensitivity to high-frequency disturbances.

Remark 5: The experimental implementation of the
extremum-seeking loop (Fig. 3) is performed on a digital
computational platform. In the experiments conducted here,
the variable-gain control loop was implemented at a sampling
frequency of 5 kHz, and the extremum-seeking controller and
computation of the performance J (t, δ) was implemented at
a reduced sampling frequency of 50 Hz. We have chosen for
such a dual-rate implementation for two reasons. First, due to
limited computational recourses or limited memory, it may in
practice be impossible to carry out all the extremum-seeking
computations at the same sampling rate as the variable-gain
control loop. Second, due to the time-scale separation between
the motion control dynamics and the extremum-seeking loop
(including the computation of the performance measure), it
is both reasonable and justified to run the latter at a much
lower sampling rate than the motion controller.

A. Supporting Experiments

The default parameter selection as in Table I will be changed
here to investigate the effect of the tuning of the parameters
of the extremum seeking controller on the performance of the
extremum-seeking loop for periodic steady states. In particular,
we investigate the role of the time-scale separation between
the input period Tw and the dither period T , which is specific
for the extremum-seeking in terms of periodic steady-states.
Based on these experimental results, we will formulate some
tuning guidelines for the selection of the dither period T .

1) Choice of Dither Amplitude a and Adaptation Gain c:
Increasing the adaptation gain c will speed up the convergence
of the extremum-seeking controller (Fig. 12). Of course,
it cannot be chosen too large because then the time-scale
separation brakes down, i.e., the performance J (t, δ) will
not remain close to the steady-state performance map Jsta(δ)
(Fig. 4). Increasing the dither amplitude a allows the adap-
tation gain c to be chosen larger, but this also results in a
larger neighborhood around the optimum δ∗ to which the
extremum-seeking controller converges (Fig. 12). This tradeoff
between speed of adaptation and neighborhood of convergence
is well known, also in the extremum-seeking setting for
equilibria [17], [25], [26].

2) Choice of Dither Frequency ω = 2π/T : The dither
frequency ω = 2π/T should be chosen sufficiently small,
compared with the time-scale of the plant and the exter-
nal Tw-periodic inputs (see the discussion on time-scales
in Section III-A). In the variable-gain control application,

Fig. 12. Influence of dither amplitude a and adaptation gain c on extremum-
seeking experiments.

Fig. 13. Influence of dither frequency ω = 2π/T on extremum-seeking
experiments.

the period Tw of the input is typically larger than the time-
scale of the plant, since the references that are to be tracked
have frequency content that lies well below the bandwidth
of the system. Hence, the dither period T should be chosen
sufficiently larger than the period Tw of the external reference.
The results in Fig. 13 show the influence of the choice of dither
period T for a fixed value of Tw = 2 s. The dither periods
T ∈ {2Tw, 3Tw, 4Tw, 5Tw} are used in Fig. 13. Clearly, if
T is chosen too small, the extremum-seeking controller does
not converge anymore to the performance optimal δ∗. For the
choice T = 3Tw, the extremum-seeking controller still con-
verges (Fig. 13), but the gradient ∂ Jsta/∂δ is underestimated,
resulting in a slightly slower convergence than for T = 4Tw

and T = 5Tw. Note that if T is chosen sufficiently larger
than Tw, for each Tw s, the δ is perceived as constant such
that J (t, δ) is close to the steady-state performance and, hence,
giving an accurate estimate of the gradient of the steady-state
performance map J (δ). We therefore recommend to choose
at least T ≥ 4Tw. A too large value for the dither period T
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(or, equivalently, too small value for the dither frequency ω)
should, however, be avoided since this may require a smaller
value for the optimizer gain c, which slows down the conver-
gence rate.

VI. CONCLUSION

In this paper, we have experimentally demonstrated an
extremum-seeking control strategy for time-varying peri-
odic steady-states for the adaptive design of variable-gain
controllers. A performance-relevant parameter, the dead-zone
length of a nonlinear variable-gain controller, has been tuned
successfully using the extremum-seeking control strategy,
without using explicit knowledge on the disturbances acting on
the system. The optimized variable gain controller outperforms
the linear motion controllers by balancing the tradeoff between
low-frequency disturbance rejection and sensitivity to high-
frequency disturbances in a more desirable manner. This paper
evidences the importance and practical applicability of the
extremum-seeking control scheme for nonlinear systems with
time-varying periodic steady-state outputs.

In addition to the adaptive tuning of the variable-gain
feedback controller, we foresee an interesting combination
with the adaptive tuning of feed forward to further enhance
the performance of variable-gain controlled motion systems.
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[16] M. Krstić and H.-H. Wang, “Stability of extremum seeking feedback
for general nonlinear dynamic systems,” Automatica, vol. 36, no. 4,
pp. 595–601, 2000.

[17] D. Nešić, “Extremum seeking control: Convergence analysis,” Eur. J.
Control, vol. 15, nos. 3–4, pp. 331–347, 2009.
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