Predictive modelling of film blowing: A 1-D approach

Citation for published version (APA):

Document status and date:
Published: 01/01/2013

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Predictive modelling of film blowing: A 1-D approach

H. Mercan, P. D. Anderson, G.W.M. Peters

Introduction

Film blowing is an important process for the manufacturing of thin bi-axially stretched films (Fig.1). The objective of this study is to develop a 1-D model for film blowing process and compare the response of two different linear low density polyethylene’s (Enable and Exceed) under realistic experimental conditions.

The relaxation time of Enable is 20 times larger than Exceed. In crystallization kinematics the number of spheroids of Enable is 50 times bigger than Exceed however the growth rate is 4 times slower 2.

\[\lambda_{\text{Enable}} = 20 \times \lambda_{\text{Exceed}} \]
\[N_{\max, \text{Enable}} = 50 \times N_{\max, \text{Exceed}} \]
\[G_{\max, \text{Exceed}} = 4 \times G_{\max, \text{Enable}} \]

Objectives and improvements:
1. 1-D model: assumptions from literature
2. new crystallization model 3
3. comparison of simulations for our materials

Comparison with literature

Figure 2. 1-D PTT full model with thermal and crystallinity effects are included, (a) Comparison of the bubble radius with experiments of Buttler *, (b) Comparison of the film thickness with the experiments of Buttler *.

Table 1. Realistic Experimental Process Conditions for Enable and Exceed

<table>
<thead>
<tr>
<th></th>
<th>Enable</th>
<th>Exceed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial radius, (r_0) (mm)</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Initial thickness, (h_0) (mm)</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Blow-up ratio</td>
<td>1.76</td>
<td>1.87</td>
</tr>
<tr>
<td>Draw-ratio</td>
<td>21.29</td>
<td>16.26</td>
</tr>
<tr>
<td>Freeze-line height (mm)</td>
<td>71</td>
<td>75</td>
</tr>
</tbody>
</table>

The relaxation time of Enable is 20 times larger than Exceed. In crystallization kinematics the number of spheroids of Enable is 50 times bigger than Exceed however the growth rate is 4 times slower 2.

\[\lambda_{\text{Enable}} = 20 \times \lambda_{\text{Exceed}} \]
\[N_{\max, \text{Enable}} = 50 \times N_{\max, \text{Exceed}} \]
\[G_{\max, \text{Exceed}} = 4 \times G_{\max, \text{Enable}} \]

Comparison with literature

1. 1-D model: assumptions from literature
2. new crystallization model 3
3. comparison of simulations for our materials

Comparison with literature

Figure 2. 1-D PTT full model with thermal and crystallinity effects are included, (a) Comparison of the bubble radius with experiments of Buttler *, (b) Comparison of the film thickness with the experiments of Buttler *.

Results

Figure 3. 1-D simulations for Film blowing process, comparison of Exceed and Enable, (a) Bubble radius, (b) Film velocity, (c) Space filling, (d) Temperature, (e) Normal stress in machine direction (f) Normal stress in circumferential direction.

Conclusions

Enable cools down and reaches the maximum space filling value earlier than Exceed. This is due to a low take-up velocity which is a consequence of the higher relaxation time. The maximum stress ratio of Enable is bigger than Exceed. \([\sigma_{11,\max}/\sigma_{33,\max}]_{\text{Enable}} = 8.3085 \text{ and } [\sigma_{11,\max}/\sigma_{33,\max}]_{\text{Exceed}} = 5.6239\].

References

2. M. van Drongelen, G.W.M. Peters, Unpublished experimental study