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Abstract

Content fingerprinting and digital watermarking are techniques that are used
for content protection and distribution monitoring. Over the past few years, both
techniques have been well studied and their shortcomings understood. Recently,
a new content fingerprinting scheme called active content fingerprinting was in-
troduced to overcome these shortcomings. Active content fingerprinting aims to
modify a content to extract robuster fingerprints than the conventional content
fingerprinting. Moreover, contrary to digital watermarking, active content fin-
gerprinting does not embed any message independent of contents thus does not
face host interference.

The main goal of this paper is to analyze fundamental limits of active content
fingerprinting in an information theoretical framework.

1 Introduction

Generally, identification systems [1] are facing numerous requirements related to iden-
tification rate, complexity, privacy, security as well as memory storage. To address the
trade-off between these conflicting requirements, content fingerprints are used [2], [3].
A content fingerprint is a short, robust and distinctive content description.

In conventional content fingerprinting, the fingerprint is extracted directly from
an original content and does not require any content modification that preserves the
original content quality. In this sense, it can be considered as a passive content fin-
gerprinting (PCFP). The extracted fingerprints resemble random codes, for which no
efficient decoding algorithm is known as for structured codes. Moreover, the perfor-
mance of PCFP in terms of identification rate is not satisfactory due to acquisition
device imperfections.

For these reasons, active content fingerprinting (ACFP) was proposed in [4], [5],
where the basic idea was introduced and a feasibility study revealed higher perfor-
mance w.r.t. PCFP and digital watermarking. ACFP by modifying digital contents
takes the best from two worlds of content fingerprinting and digital watermarking to
overcome some of fundamental restrictions of these techniques in terms of performance
and complexity. In the proposed fingerprinting scheme, contents are modified in a way
to increase the identification rate and reduce the decoding complexity with respect to
conventional content fingerprinting.

The main goal of this sequel is to analyze ACFP in an information theoretical frame-
work to investigate its fundamental limits in identification systems. In this paper, we
investigate the identification capacity based on ACFP in which a modified content can
be modelled as an output of a discrete memoryless channel with an original content as
its input. Moreover, we investigate the optimal encoding scheme under the assump-
tions that content sequences can be modeled as a Gaussian memoryless source and
the observation channel as an additive white Gaussian. And, we introduce an optimal
scheme that can achieve the identification capacity based on ACFP.
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The rest of this paper is organized as follows. Section 2 presents the identifica-
tion system based on active content fingerprinting and we will state our main result.
Section 3 contains the proof of this result. Concluding remarks follow in Section 4.

Notations: Throughout this paper, we adopt the convention that a scalar random
variable is denoted by a capital letter X, a specific value it may take is denoted by
the lower case letter x, and its alphabet is designated by the script letter X . As
for vectors, a capital letter XN with a corresponding superscript will denote an N -
dimensional random vector XN = (X1, . . . , XN). A lower case letter xN will represent
its particular realization xN = (x1, . . . , xN). The expectation operator is designated
by E[·].

2 Model Description

Qs(x)
XN(1)

Y N = e(XN)
Y N(1)

Qs(x)
XN(2)

Y N = e(XN)
Y N(2)

Qs(x)
XN(M)

Y N = e(XN)
Y N(M)

...
...

W
Y N = s(W )

Y N(W )
Qc(z | y)

ZN

Ŵ = d(ZN)
Ŵ

Y N(1) Y N(M)
· · ·

Y N(1) Y N(M)
· · ·

Figure 1: Model of an identification system using modified content-sequences.

In an identification system, see Fig. 1, there are M items indexed w ∈ {1, 2, · · · , M}
to be identified. A randomly generated content-sequence (vector) of length N corre-
sponds to each item. This sequence has symbols xn, n = 1, 2, · · · , N taking values in the
discrete alphabet X , and the probability that content-sequence xN = (x1, x2, · · · , xN)
occurs for item w is

Pr{XN(w) = xN} =
N∏

n=1

Qs(xn), (1)

hence the components X1, X2, · · · , XN are independent and identically distributed ac-
cording to {Qs(x), x ∈ X}. Note that this probability does not depend on the index
w.

An encoder e(·) transforms each content-sequence xN into a modified content-
sequence yN = (y1, y2, · · · , yN), where yn, n = 1, 2, · · · , N taking values in the discrete
alphabet Y . The distortion between modified content sequence and content-sequence
cannot be too large. The modification distortion Dxy is defined as

Dxy =
1

N
E

[
N∑

n=1

Dxy(Xn, Yn)

]
, (2)
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where {Dxy(x, y), x ∈ X , y ∈ Y} is the distortion matrix specifying the distortion per
component. We assume that the distortion matrix has only finite non-negative entries.
Moreover, we assume that all modified content-sequences are generated prior to the
identification procedure. These modified sequences form a codebook that we call the
“database” here. This database C consists of the list of entries, hence

C =
(
yN(1), yN(2), · · · , yN(M)

)
. (3)

In the identification process the probabilities for the items to be presented for
identification are all equal, hence

Pr{W = w} = 1/M for w ∈ {1, 2, · · · , M}. (4)

When item w is presented for identification, its corresponding modified content-sequence
yN(w) is “selected” from the database C and presented to the system, hence

yN = s(w). (5)

The system observes yN via a memoryless observation channel {Qc(z|y), y ∈ Y , z ∈
Z}, with discrete alphabet Z, and the resulting channel output sequence is zN =
(z1, z2, · · · , zN), where zn ∈ Z for n = 1, 2, · · · , N . Now

Pr{ZN = zN |Y N(w) = yN} = ΠN
n=1Qc(zn|yn). (6)

After observing ZN , the decoder decides that ZN is related to which modified content-

sequence. If this is Y N(w), the decoder outputs Ŵ = w. The reliability of our identi-
fication system is measured by the error probability

PE = Pr{Ŵ �= W}. (7)

2.1 Statement of Result

An identification rate-distortion pair (R, Δ) is said to be achievable if for all ε > 0
there exist for all N large enough an encoder and a decoder such that

Dxy ≤ Δ + ε,

log2(M) ≥ N(R − ε), and

Pr{Ŵ �= W} ≤ ε. (8)

We are now ready to state the main result of this submission, the proof follows in
section III.

Theorem 1. The region of achievable rate-distortion pair (R, Δ) for the identification
system based on modifies content-sequence is given by{

(R, Δ) : R ≤ I(Y ; Z),

Δ ≥
∑
x,y

Qs(x)Pt(y | x)Dxy(x, y),

for P (x, y, z) = Qs(x)Pt(y | x)Qc(z | y)

}
. (9)

The “capacity” of identification based on ACFP, the maximum of possible identi-
fication rate, for a given distortion Δ is given by

CACFP(Δ) = max
Pt(y|x):

∑
x,y Qs(x)Pt(y|x)Dxy(x,y)≤Δ

I(Y ; Z). (10)
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3 Proof

The proof consists of the achievability part and a converse. We start with the converse.

3.0.1 Converse Part

First, we define the random variable I that takes values in {1, 2, · · · , N} with proba-

bility 1/N . Then the random triple (X, Y, Z) is defined as (X, Y, Z)
Δ
= (Xi, Yi, Zi) if

I = i. Hence, the joint distribution of (X, Y, Z) is given by

P (x, y, z) =
1

N

N∑
i=1

Pr{Xi = x, Yi = y, Zi = z}

=
1

N

N∑
i=1

Qs(xi)Pt(yi | xi)Qc(zi | yi)

= Qs(x)Pt(y | x)Qc(z | y) (11)

Consider the M number of modified contents. Using Fano’s inequality H(Ŵ | W ) ≤
F where F = 1 + Pr{Ŵ �= W} log2(M), we have the following series of (in)equalities:

log2(M) = H(W )

≤ I(W ; ZN , Y N(1), · · · , Y N(M)) + F

= I(W ; Y N(1), · · · , Y N(M)) + I(W ; ZN | Y N(1), · · · , Y N(M)) + F

(a)

≤ H(ZN) − H(ZN | Y N(1), · · · , Y N(M), W ) + F

= H(ZN) − H(ZN | Y N(W )) + F

≤
N∑

i=1

H(Zi) −
N∑

i=1

H(Zi | Yi(W )) + F

=
N∑

i=1

I(Yi(W ); Zi) + F

= NH(Z | I) − NH(Z | Y, I) + F

(b)

≤ NI(Y ; Z) + F, (12)

where (a) and (b) follow from the facts that conditioning reduces entropy and the
channel is memoryless.

Now for the distortion part we have

Dxy =
1

N
E

[
N∑

n=1

Dx,y(Xn, Yn)

]

=
1

N

N∑
n=1

∑
xn,yn

Qs(xn)Pt(yn | xn)Dx,y(xn, yn)

=
∑
x,y

Qs(x)Pt(y | x)Dx,y(x, y)
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= Dxy(X, Y ). (13)

Now, assume that (R, Δ) is achievable. Then F ≤ 1 + ε log2(M) and Δ ≥ Dxy − ε.
For all blocklengths N and small enough ε > 0, we obtain from (12) that

N(R − ε) ≤ log2(M) ≤ 1

1 − ε
(NI(Y ; Z) + 1), (14)

for some P (x, y, z) = Qs(x)Pt(y | x)Qc(z | y). If we now let ε ↓ 0 and N → ∞, then
we obtain the converse of Theorem 1 from (13) and (14).

3.0.2 Achievability

We can only give an outline of the achievability proof here. For each content-sequence
XN(w), a modified content-sequence Y N(w) is generated using conditional distribution
Pt(y | x). These modified sequences are codewords in a random codebook that guaran-
tee a rate that can be as large as I(Y ; Z). The distortion is as expected (i.e.Dxy(X, Y ))
because of the law of large numbers.

3.1 Gaussian Source

Let’s assume the content-sequences are distributed i.i.d. according to a Gaussian dis-
tribution with variance VX and mean zero. Moreover, the observation channel Qc(z | y)
can be modelled as an additive white Gaussian noise (AWGN) with variance VN .

Theorem 2. Considering distortion as the mean-squared error, the capacity of iden-
tification based on ACFP is given by

CACFP(Δ) =
1

2
log2

(
1 +

(
√

VX +
√

Δ)2

VN

)
, (15)

that can be achieved by scaling the content by a factor f , i.e. Y N = fXN , such that
(f − 1)2VX = Δ.

Proof. We can upper bound the identification rate as follows

I(Y ; Z) = h(Z) − h(Z | Y )

= h(Z) − 1

2
log2 2πeVN

≤ 1

2
log2 2πe(VY + VN) − 1

2
log2 2πeVN

(a)

≤ 1

2
log2

(
1 +

(
√

Δ +
√

VX)2

VN

)
, (16)

where VY = E[Y 2] and (a) follows from the fact that

E[(X − Y )2] = VY + VX − 2E[XY ] ≤ Δ.

VY attains the maximum if the equality holds in the above equation and Y is aligned
with X, i.e. Y N = fXN , such that (f − 1)2VX = Δ. Note that by setting Y N = fXN

equalities in (16) hold.

Figure 2 shows the capacity of identification systems using PCFP versus ACFP for
different values of distortion Δ.
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Figure 2: (a) the capacity of identification based on ACFP versus PCFP for a Gaussian
source and AWGN with SNR=10 dB.

4 Conclusions

In this paper, we evaluated the capacity of identification systems based on active con-
tent fingerprinting. In active content fingerprinting, the main goal is to modify a digital
content to improve the performance in terms of identification rate. We assumed that
the modification can be modeled by a memoryless channel. Then, we investigated the
optimal encoding scheme under Gaussian assumptions that can achieve the identifica-
tion capacity based on ACFP.
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