Robust forecasting with exponential and holt-winters smoothing

Citation for published version (APA):

DOI:
10.1002/for.1125

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Robust Forecasting with Exponential and Holt–Winters Smoothing

SARAH GELPER,¹* ROLAND FRIED² AND CHRISTOPHE CROUX³†
¹ Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
² Department of Statistics, University of Dortmund, Dortmund, Germany
³ Faculty of Business and Economics, Katholieke Universiteit Leuven, Leuven, Belgium

ABSTRACT
Robust versions of the exponential and Holt–Winters smoothing method for forecasting are presented. They are suitable for forecasting univariate time series in the presence of outliers. The robust exponential and Holt–Winters smoothing methods are presented as recursive updating schemes that apply the standard technique to pre-cleaned data. Both the update equation and the selection of the smoothing parameters are robustified. A simulation study compares the robust and classical forecasts. The presented method is found to have good forecast performance for time series with and without outliers, as well as for fat-tailed time series and under model misspecification. The method is illustrated using real data incorporating trend and seasonal effects. Copyright © 2009 John Wiley & Sons, Ltd.

KEY WORDS forecasting; Holt–Winters smoothing; robust methods; time series

INTRODUCTION

Exponential smoothing is a simple technique used to smooth and forecast a time series without the necessity of fitting a parametric model. It is based on a recursive computing scheme, where the forecasts are updated for each new incoming observation. Exponential smoothing is sometimes considered as a naive prediction method. Yet it is often used in practice where it shows good performance, as illustrated, for example, in Makridakis et al. (1998, Ch. 4) and in Kotsialos et al. (2005). The Holt–Winters method, also referred to as double exponential smoothing, is an extension of exponential smoothing designed for trended and seasonal time series. Holt–Winters smoothing is a widely used tool for forecasting business data that contain seasonality, changing trends and seasonal correlation.

The exponential and Holt–Winters techniques are sensitive to unusual events or outliers. Outliers affect the forecasting methods in two ways. First, the smoothed values are affected since the update...
equations involve current and past values of the series including the outliers. The second effect of outliers is on the selection of the parameters used in the recursive updating scheme. These parameters regulate the degree of smoothing and are chosen to minimize the sum of squared forecast errors. This approach is non-robust and may result in less accurate forecasts in the presence of outliers. We propose robust versions of the exponential and Holt–Winters smoothing techniques which make both the smoothing and the parameter selection robust to outliers. The robustification of the smoothing algorithm is based on a pre-cleaning mechanism that identifies and downweights outlying values. The robust recursive scheme applies the standard smoothing techniques to the pre-cleaned data and is thus very easy to implement. Data pre-cleaning, in particular for non-stationary time series, is in practice rarely done, yet it significantly improves forecast performance, as is shown below (‘Comparison of the forecast performance’). There we also show that our proposed cleaning method outperforms a more standard approach based on a 2-sigma rule.

Although methodology for robust time series analysis has been developed (e.g. Maronna et al., 2006, Ch. 8, for a review), surprisingly little attention has been given to robust alternatives to exponential and Holt–Winters smoothing and forecasting. A first attempt was made by Cipra (1992), who presents the Holt–Winters method as a weighted regression problem, and then replaces the traditional least squares fit by a robust regression fit. This yields a reasonable method, but it can be improved upon. Another proposal was made by Taylor (2007), who uses quantile regression to obtain robust forecasts. Kirkendall (2006) proposes a method that classifies each observation as being either regular, an outlier, or initiating a level shift. However, no recursive formulae were obtained in these approaches. The recursive formulation of the Holt–Winters method is very important, though, as it is one of the reasons why it is so attractive and easy to use.

The approach we recommend applies a particular robust version of the Kalman filter to the state-space model associated with exponential and Holt–Winters smoothing. Robust Kalman filtering has already been considered in the literature, e.g. Masreliez and Martin (1977), Martin and Thomson (1982), Romera and Cipra (1995), Ruckdeschel (2001), and Cipra and Romera (1997). The latter authors briefly mention the possibility of using their robust Kalman filter for Holt–Winters smoothing. This Kalman filter yields a simple recursive updating scheme and results in more robust forecasts. However, several crucial issues have not yet been addressed, like the robust selection of the smoothing parameters and the appropriate choice of the auxiliary robust scale estimator.

The classical exponential and Holt–Winters methods are briefly reviewed in the next section. Furthermore, the next section presents robust exponential and Holt–Winters smoothing. The method we propose boils down to applying a robust data pre-cleaning procedure, after which the traditional method is applied. We provide guidelines for the choice of smoothing parameters, starting values and scale estimation procedures. The third section presents a simulation study comparing the forecast performance of the classical and the robust smoothing methods. An illustration using seasonal real data can be found in the fourth section. The fifth section summarizes and gives concluding remarks.

EXPONENTIAL AND HOLT–WINTERS SMOOTHING

Suppose we have a time series y_t, which is observed at $t = 1, \ldots, T$. The exponential smoothing method computes the smoothed series \tilde{y}_t according to the following recursive scheme:

$$\tilde{y}_t = \lambda y_t + (1 - \lambda) \tilde{y}_{t-1}$$

(1)
where λ is a smoothing parameter taking values between zero and one and regulating the degree of smoothing. A starting value \tilde{y}_m for equation (1) is obtained by averaging over the first m observed values y_1, \ldots, y_m, where m is the length of the startup period. An h-step-ahead prediction at time t is denoted by $\hat{y}_{t+h|t}$, and given by the most recent smoothed value: $\hat{y}_{t+h|t} = \tilde{y}_t$.

For trended time series, Holt (1959) proposed to include a local trend variable F_t:

$$
\tilde{y}_t = \lambda_1 y_t + (1 - \lambda_1)(\tilde{y}_{t-1} + F_{t-1})
$$

$$
F_t = \lambda_2 (\tilde{y}_t - \tilde{y}_{t-1}) + (1 - \lambda_2) F_{t-1}
$$

As for exponential smoothing, the smoothing parameters λ_1 and λ_2 take values between zero and one. Guidelines on how to select the smoothing parameters are presented below. For Holt’s method (2), an h-step-ahead forecast of y_t is obtained as

$$
\hat{y}_{t+h|t} = \tilde{y}_t + hF_t
$$

The starting values \tilde{y}_m and F_m of the recursive equations in (2) can be obtained by a linear ordinary least squares fit in a startup period, as described in Bowerman et al. (2005). More specifically, regressing y_t versus the time t, for $t = 1 \ldots m$, yields an intercept $\hat{\alpha}_0$ and a slope $\hat{\beta}_0$ resulting in

$$
\tilde{y}_m = \hat{\alpha}_0 + \hat{\beta}_0 m
$$

$$
F_m = \hat{\beta}_0
$$

Holt’s method in equation (2) can easily be extended to time series with seasonality, in which case the method is referred to as the Holt–Winters method (see Winters, 1960). We address seasonality in the fourth section. For convenience, we use in this paper the name ‘Holt–Winters method’ for both the setting with and without seasonality.

The exponential and Holt–Winters forecasting methods in equations (1) and (2) are not robust with respect to outlying observations. One extremely large or small observation results in high or low values of the smoothed series over some period and deteriorates the forecast performance. To obtain better forecast accuracy in the presence of outliers, robust versions of this technique are needed.

Cipra (1992) proposes a robust exponential and Holt–Winters smoothing method based on M-estimation. In the case of ordinary exponential smoothing, the value of the smoothed series at time t, \tilde{y}_t, is the solution of the following minimization problem:

$$
\tilde{y}_t = \arg\min_\theta \sum_{i=1}^t (1 - \lambda)^{t-i} (y_i - \theta)^2
$$

To obtain robustness according to the idea of M-estimation, the square in equation (5) is replaced by a suitable function ρ applied to standardized data:

$$
\tilde{y}_t = \arg\min_\theta \sum_{i=1}^t (1 - \lambda)^{t-i} \rho \left(\frac{y_i - \theta}{\hat{\sigma}_i} \right)
$$

where $\hat{\sigma}_t$ estimates the scale of the residuals $r_i = y_i - \hat{\tilde{y}}_{t|i-1}$. By taking a function ρ which increases more slowly than the quadratic function, the effect of outlying values is reduced. Cipra (1992) uses
the \(\rho \)-function with derivative \(\rho' = \psi \) and the Huber-\(\psi \)-function with \(k = 1.645 \) (the Huber-\(\psi \)-function is given in equation (11)). For the scale estimates, Cipra (1992) proposes to use

\[
\hat{\sigma}_t = 1.25 \lambda_\sigma |r_t| + (1 - \lambda_\sigma) \hat{\sigma}_{t-1}
\]

where the parameter \(\lambda_\sigma \) is another smoothing parameter taking values between zero and one. After algebraic manipulations and making use of an iterated weighted least squares algorithm, recursive formulae are obtained for the smoothing methods proposed by Cipra (1992). In the sequel of the paper we refer to this approach based on \(M \)-estimation as the weighted regression (WR) method.

A new robust smoothing method

The approach we recommend in this paper is different from that of Cipra (1992), and turns out to yield a better performance than the WR method, as will be shown in the third section. The idea is to replace the observed \(y_t \) in equation (1) by a ‘cleaned’ version \(\tilde{y}_t \). The robust exponential smoothing recursive equation is then simply given by

\[
\tilde{y}_t = \lambda \tilde{y}_t^* + (1 - \lambda) \tilde{y}_{t-1}
\]

and similarly for the Holt smoothing system of equations (2)

\[
\tilde{y}_t = \lambda_1 \tilde{y}_t^* + (1 - \lambda_1)(\tilde{y}_{t-1} + F_{t-1}) \\
F_t = \lambda_2 (\tilde{y}_t - \tilde{y}_{t-1}) + (1 - \lambda_2) F_{t-1}
\]

For both the exponential and Holt–Winters smoothing, the cleaned series \(\tilde{y}_t^* \) is obtained as

\[
y_t^* = \psi\left(\frac{y_t - \hat{y}_{t-1}}{\hat{\sigma}_t}\right)\hat{\sigma}_t + \hat{y}_{t-1}
\]

where the \(\psi \)-function is applied to standardized one-step-ahead forecast errors. As before, forecasts are computed by equation (3). The scale of these forecast errors is estimated by \(\hat{\sigma}_t \). The \(\psi \)-function reduces the influence of outlying observations. In this paper we take the Huber \(\psi \)-function

\[
\psi(x) = \begin{cases}
 x & \text{if } |x| < k \\
 \text{sign}(x)k & \text{otherwise}
\end{cases}
\]

The pre-cleaning based on the Huber \(\psi \)-function can be interpreted as replacing unexpected high or low values by a more likely value. More specifically, if the difference between the observed \(y_t \) and its predicted value at \(t - 1 \) is small, the cleaned value \(\tilde{y}_t^* \) simply equals the observed \(y_t \). On the other hand, if the deviation between the predicted and the observed value is too large, the observation is considered an outlier and gets replaced by a boundary value dependent on \(k \). This positive constant \(k \) hence regulates the identification of outliers. A common choice of \(k \) is two, implicitly assuming a normal distribution of the one-step-ahead forecast errors \(r_t = y_t - \hat{y}_{t|t-1} \). If \(k \) is set to infinity, the robust smoothing procedure reduces to the classical method.
The pre-cleaning process in equation (10) makes use of an estimated scale $\hat{\sigma}_t$ of the one-step-ahead forecast errors. This scale can simply be estimated by applying any robust scale estimate on all previous values of r_t. For example, one could take the median absolute deviation (MAD), defined as

$$\hat{\sigma}_t = \text{MAD}(r_t) = \text{med}_{t \leq t'} |r_t - \text{med}_{t \leq t'} r_t|$$

However, this implicitly assumes that the scale remains constant. An option allowing for (slowly) varying scale is to estimate σ_t by the following update equation:

$$\hat{\sigma}_t^2 = \hat{\sigma}_{t-1}^2 + (1 - \hat{\sigma}_{t-1}^2)(1 - \lambda)\hat{\sigma}_{t-1}^2$$

(12)

where we make use of a bounded loss-function ρ. Here, we choose the biweight r-function defined by

$$\rho(x) = \begin{cases} c_k \left(1 - \left(\frac{x}{k}\right)^2\right)^3 & \text{if } |x| \leq k \\ c_k & \text{otherwise} \end{cases}$$

(13)

where c_k is a constant to achieve consistency of the scale parameter for a normal error distribution. For the common choice of $k = 2$ we have $c_k = 2.52$. The scale estimator in (12) corresponds to a τ^2-scale estimator as in Yohai and Zamar (1988), now computed in a recursive way. This τ^2-scale estimator is highly robust, but at the same time almost as efficient as the standard deviation. Equation (12) yields a much more robust scale estimation procedure as compared to (7). Indeed, the estimated scale in (7) can be made arbitrarily large by including extreme outliers in the data, since the impact of $|r_t|$ is still unbounded.

Combining the robust Holt system of equations (9) and the pre-cleaning process in equation (10) yields the following recursive scheme:

$$\tilde{y}_t = \lambda_1 \psi\left(\frac{y_t - (\tilde{y}_{t-1} + F_{t-1})}{\hat{\sigma}_t}\right)\hat{\sigma}_t + \tilde{y}_{t-1} + F_{t-1}$$

$$F_t = \lambda_2 (\tilde{y}_t - \tilde{y}_{t-1}) + (1 - \lambda_2) F_{t-1}$$

(14)

Predictions of y_t can be obtained by straightforward application of the forecast formula (3), as for the classical method. Outlying observations will not attract the smoothed values as much as in the classical method, resulting in more accurate predictions in the presence of outliers. We refer to the above equations, together with equation (12), as the robust Holt–Winters method, abbreviated RHW. It is important to note that this procedure still yields an easy-to-implement forecasting method. The choices we made for the ψ-function, the r-function, and the scale estimator are standard in the modern literature on robust statistics (e.g. Maronna et al., 2006).

Not only do the update equations need to be robust to outliers, but also the starting values. For the starting value in exponential smoothing, we suggest using the median of the first m observations instead of the mean. For Holt–Winters smoothing, we replace the ordinary least squares regression in equation (4) by the repeated median estimator (Siegel, 1982), where $\hat{\alpha}_0$ and $\hat{\beta}_0$ in (4) are given by
\[\hat{\beta}_0 = \text{med}(\text{med}_{i \neq j} \frac{y_i - y_j}{i - j}) \] and \[\hat{\alpha}_0 = \text{med}(y_i - \hat{\beta}_i i) \]

for \(i, j = 1, \ldots, m \). The repeated median regression has been shown to have good properties for time series smoothing; see, for example, Davies et al. (2004) and Fried (2004). A starting value of the recursive scale estimation in (12) is obtained by the MAD of the regression residuals in this startup period.

Selecting the smoothing parameters
In this subsection, we give guidelines for the choice of the smoothing parameters \(\lambda_1 \) and \(\lambda_2 \). A first approach is rather subjective and based on a prior belief of how much weight should be given to the current versus the past observations. If one believes that current values should get high weights, large values of the smoothing parameters are chosen.

Another possibility for selecting the smoothing parameters is to use a data-driven procedure optimizing a certain criterion. For every \(\lambda \) (in the case of exponential smoothing) or for every possible combination of values for \(\lambda_1 \) and \(\lambda_2 \) (Holt smoothing), the one-step-ahead forecast error series \(r_t \) is computed. The best smoothing parameters are those resulting in the smallest one-step-ahead forecast errors. A common way to evaluate the magnitude of the one-step-ahead forecast error series is by means of the mean squared forecast error (MSFE):

\[\text{MSFE}(r_1, \ldots, r_T) = \sum_{t=1}^{T} r_t^2 \]

However, since we deal with contaminated time series, the MSFE criterion has a drawback. One very large forecast error causes an explosion of the MSFE, which typically leads to smoothing parameters being biased towards zero. For this reason, we propose to use a robustified version of the MSFE, based on a \(\tau \)-estimator of scale:

\[\tau^2(r_1, \ldots, r_T) = s_T^2 \frac{1}{T} \sum_{t=1}^{T} \rho \left(\frac{r_t}{s_T} \right) \]

where \(s_T = 1.48 \text{Med}_{t \neq r_t} |r_t| \). The \(\tau \)-estimator downweights large forecast errors \(r_t \). It requires a bounded \(\rho \)-function for which we choose again the biweight \(\rho \)-function as in (13). The effect of extremely large forecast errors on criterion (16) is limited. If the \(\rho \)-function in (16) is replaced by the square function, this procedure reduces to the usual minimization of the MSFE. Other criteria than the MSFE or \(\tau \)-measure could also be considered, as, for example, mean or median absolute prediction error. More details can be found in the review article Gardner (2006).

COMPARISON OF THE FORECAST PERFORMANCE
In this section we conduct a simulation study to compare the forecast performance of the classical and the robust Holt–Winters methods for trended data. For the classical method we use the MSFE criterion for selecting the smoothing parameters. Optimization with respect to \(\lambda_1 \) and \(\lambda_2 \) is carried out by a simple grid search. The classical Holt method, denoted by HW, is compared to the two
Robust Forecasting with Exponential and Holt–Winters Smoothing

291

DOI: 10.1002/for

robust schemes presented above. The first is the weighted regression approach of Cipra (1992) (WR), and the second the robust Holt method (RHW) that we recommend. To illustrate the importance of the use of an appropriate robust scale estimator in the recursive equations, we also apply the proposed RHW method with the non-robust scale estimator (7) instead of (12). This variant will be abbreviated RHW'. For the robust methods, the smoothing parameters are chosen optimally by a simple grid search according to the t^2 criterion in (16). Furthermore, the smoothing parameter λ_m, needed in (7) and (12), is fixed at 0.2 and the length of the startup period is fixed at $m = 10$.

As mentioned before, the robust Holt method proposed in (9) applies the classic update equations to a pre-cleaned time series. Instead of using the proposed cleaning rule (10), other simple pre-cleaning schemes where outliers are replaced by fitted values can be used; see, for example, Gardner (1999). Some systems routinely reject extreme values and replace them with averages, where a value is declared as 'extreme' when it has a distance of more than 2 standard deviations from the average. An obvious drawback of this approach is that it cannot be applied to trending time series. Hence, as an alternative to computing the average, a regression line needs to be fitted. To allow for stochastic trends, the regression fit will be computed locally within a window. More precisely, for every observation y_t, we fit by ordinary least squares a linear trend from the data $y_t, y_{t-1}, \ldots, y_{t-n}$ in a window of length $n = 20$, and compute the fitted value \hat{y}_t. Then we define an upper and lower bound as

$$UB_t = \hat{y}_t + 2 \hat{\sigma}_{OLS}$$

$$LB_t = \hat{y}_t - 2 \hat{\sigma}_{OLS}$$

where $\hat{\sigma}_{OLS}$ is the standard deviation of the regression residuals. Whenever the observed time series exceeds the bounds, i.e. $y_t > UB_t$ or $y_t < LB_t$, it is replaced by its fitted value. Identifying outliers as those observations with large residuals in a linear regression is standard and described in most statistics textbooks; see, for example, Kutner et al. (2005). After the pre-cleaning phase, the classic Holt’s smoothing method in equation (2) can be applied to the cleaned series. This 2-sigma rule for pre-cleaning is further referred to as HWc and is included in the simulation study.

We first compare the forecast performance when the data are generated according to a local linear trend model. For this model, it is known that Holt’s smoothing method is optimal. However, exponential smoothing methods generally work very well for many different types of models. To study whether this property also holds for the robust smoothing methods, we also compare the forecast performance of the different methods under model misspecification.

Local linear trend model

The model from which we simulate the time series y_t is the local linear trend model. This model specifies that the observed series y_t is composed of an unobserved level α_t and trend β_t:

$$y_t = \alpha_t + e_t, \quad e_t \sim N(0, \sigma^2)$$

where α_t and β_t are given by

$$\alpha_t = \alpha_{t-1} + \beta_{t-1} + \eta_t, \quad \eta_t \sim N(0, \sigma^2)$$

$$\beta_t = \beta_{t-1} + \nu_t, \quad \nu_t \sim N(0, \sigma^2)$$

We take the error terms e_t in equation (17) to follow a standard normal distribution (or a certain contaminated version of it) and set both σ_{η} and σ_{ν} in equation (18) equal to 0.1, so that the variation

DOI: 10.1002/for
around the local level and trend is large as compared to the variation of the level and trend themselves.

Our main interest is the forecast performance of the smoothing methods. Therefore we evaluate them with respect to their prediction abilities. We simulate 1000 time series of length 105, for which we let the smoothing algorithm run up to observation 100 and then forecast observations 101 and 105. We compare the one- and five-step-ahead forecast errors under four different simulation schemes. These schemes correspond to four possibilities for the innovation terms e_t in equation (17) and are given in Table I. For the out-of sample period, $t = 101, \ldots, 105$, we do not allow for outliers, since these are unpredictable by nature. As such, 1000 forecast errors are computed for each method and for every simulation scheme at horizons $h = 1$ and $h = 5$. The outcomes are presented in a boxplot in Figure 1 and summarized by their mean squared forecast error in Table II. We only present the results for $h = 1$, since the relative performance of the different procedures is similar for $h = 5$. Results for $h = 5$ are available upon request. The t^2-scale estimate of the forecast errors is also presented in Table II, measuring the magnitude of the forecast errors without interference of extreme errors that blow up the MSFE.

The first simulation setting is the reference setting, where the simulated time series follow a non-contaminated local linear trend model. This setting is referred to as the clean data setting, and indicated by CD. The top left panel of Figure 1 presents a boxplot of the one- and five-step-ahead forecast errors for the HW, HWc, WR, RHW$'$ and RHW methods. Their median forecast error is not significantly different from zero, as is confirmed by a sign test. This property is called median unbiasedness. The dispersion of the forecast errors is about the same for all methods, with the exception of the HWc approach. Standard HW combined with cleaning based a 2-sigma rule yields an important increase in the forecast error. The reasons for this bad performance of HWc is that the local regression fits assume local linearity, which does not hold in the model we simulate from. Hence, clean observations will be falsely declared as outliers, leading to an efficiency loss. Table II shows that the classical method has the smallest MSFE and t^2-scale, although the difference from the robust methods WR, RHW$'$ and RHW is rather small. We conclude that in the clean data case the method we advocate, RHW, performs only slightly worse than the non-robust standard HW.

In the second setting, a small fraction of the clean observations is replaced by symmetric outliers (SO), i.e. equal probability of observing an extremely large or small value. More specifically, we replace on average 5% of the error terms e_t in (17) by drawings from a normal distribution with mean zero and standard deviation 20. One-step-ahead forecast errors are presented in the top right panel of Figure 1. Similarly as for the clean data, the forecast methods are median unbiased. The RHW methods show a smaller dispersion of the forecast errors than all other methods. This can also be seen from the MSFE and t^2 figures in Table II. The MSFE is the smallest for the RHW method, Table I. Simulation schemes

<table>
<thead>
<tr>
<th>CD</th>
<th>Clean data</th>
<th>$e_t \sim N(0, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO</td>
<td>Symmetric outliers</td>
<td>$e_t \sim (1 - \varepsilon) N(0, 1) + \varepsilon N(0, 20)$, where the outlier probability ε equals 0.05</td>
</tr>
<tr>
<td>AO</td>
<td>Asymmetric outliers</td>
<td>$e_t \sim (1 - \varepsilon) N(0, 1) + \varepsilon N(20, 1)$, where the outlier probability ε equals 0.05</td>
</tr>
<tr>
<td>FT</td>
<td>Fat-tailed data</td>
<td>$e_t \sim t_3$</td>
</tr>
</tbody>
</table>

1All reported MSFE values in Table II have a standard errors below 0.05, except for the setting 'Fat-tailed' (FT), where the standard deviation is about 0.5.
Figure 1. One-step-ahead forecast errors of 1000 replications of a time series of length 100, simulated according to sampling schemes CD (clean data, top left), SO (symmetric outliers, top right), AO (asymmetric outliers, bottom left) and FT (student-t_3 error terms, bottom right). We consider standard Holt–Winters (HW), HW with standard pre-cleaning (HWc), weighted regression (WR), robust HW without robust scale (RHW$'$) and with robust scale (RHW).

Table II. The MSFE and τ^2-scale for one-step-ahead forecast errors for four different simulation schemes under the local linear trend model

<table>
<thead>
<tr>
<th>Setting</th>
<th>HW</th>
<th>HWc</th>
<th>WR</th>
<th>RHW'</th>
<th>RHW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>1.76</td>
<td>1.84</td>
<td>1.79</td>
<td>1.83</td>
<td>1.86</td>
</tr>
<tr>
<td>τ^2</td>
<td>1.77</td>
<td>1.88</td>
<td>1.90</td>
<td>1.91</td>
<td>1.93</td>
</tr>
<tr>
<td>SO</td>
<td>7.00</td>
<td>2.43</td>
<td>3.92</td>
<td>2.65</td>
<td>2.10</td>
</tr>
<tr>
<td>τ^2</td>
<td>4.68</td>
<td>2.07</td>
<td>2.47</td>
<td>2.01</td>
<td>2.04</td>
</tr>
<tr>
<td>AO</td>
<td>32.26</td>
<td>10.34</td>
<td>29.85</td>
<td>16.96</td>
<td>2.21</td>
</tr>
<tr>
<td>τ^2</td>
<td>13.85</td>
<td>3.05</td>
<td>2.65</td>
<td>2.03</td>
<td>1.92</td>
</tr>
<tr>
<td>FT</td>
<td>3475.37</td>
<td>2656.47</td>
<td>2706.17</td>
<td>2643.62</td>
<td>2638.70</td>
</tr>
<tr>
<td>τ^2</td>
<td>25.31</td>
<td>10.37</td>
<td>11.36</td>
<td>7.91</td>
<td>7.23</td>
</tr>
</tbody>
</table>

while the τ^2 for the RHW and RHW$'$ methods are comparable. The reason for this is that the RHW and RHW$'$ methods show similar forecast performance in general, but occasionally the RHW$'$ methods have much larger forecast errors. This illustrates the advantage of the robust pre-cleaning and scale estimation of the RHW method.
The third setting is similar to the previous setting, but here the data contain asymmetric outliers (AO) instead of symmetric ones. We replace on average a small fraction $e = 0.05$ of the clean data by large positive values. The boxplot in the bottom left panel of Figure 1 shows that the median prediction error is now below zero, since adding large positive outliers makes the forecasts upward biased. A sign test indicates that this median bias is significant at the 1% level, for all methods. However, the bias is much less prevalent for the robust methods than for the classical HW. Note that in this setting with large asymmetric outliers, the HWc method does a much better job than before and improves now on the standard HW. However, it is still not competitive with the recommended RHW approach. As can be seen from Table II, the RHW method is the most accurate one. The advantage of using RHW instead of WR and RHW$'$ is much more pronounced than before, as is also confirmed by the boxplot.

In the two previous settings (SO and AO), the outliers occur with probability e. In the next simulation setting, every observation follows a fat-tailed (FT) distribution, namely a Student-t with three degrees of freedom. The boxplot in the bottom right panel of Figure 1 illustrates that for this FT distribution the robust methods are much better than standard HW. Hence, not only in the presence of outliers, but also for FT time series, there is a gain in terms of forecast accuracy by using a robust approach. Table II indicates that in case of the Student-t errors the MSFE is the smallest for the RHW method. The t^2 criterion also indicates better forecast performance of the RHW compared to the other methods.

In the simulation results presented here, the selection of the tuning parameters might be influenced by the presence of outliers. Table III presents the average value of the smoothing parameters under the four simulation settings.\(^2\) One sees readily from Table III that, when using the classical HW procedure, the selected values for the smoothing parameters decrease strongly in presence of contamination of the SO and SA type.\(^3\) For example, λ_1 decreases from an average value of 0.36 to 0.14 under AO. Also the HWc and RHW$'$ methods lack stability here. This is in contrast to RHW, showing that it is not only important to use a robust pre-cleaning algorithm as in (10), but that also robust selection of the smoothing parameter is important.

Model misspecification

One of the reasons exponential smoothing is often used in practice is its good performance under a variety of models. Forecasts based on the Holt–Winters method are optimal at the local linear trend model considered above. Obviously, the true data-generating process may deviate from this model, causing model misspecification. Therefore we compare the forecast performance of the different

\(^2\)All values reported in Table III have a standard error of about 0.002.

\(^3\)The results in Table III for the FT distribution are not directly comparable to those of the (contaminated) normal ones, since also in the absence of sampling error and outliers, their optimal values are different.
methods for other models. It will turn out, however, that the robust smoothing method RHW is still to be preferred.

In the first setting, we simulate according to an ARIMA (1, 1, 1) model given by

\[(1-0.2L)(1-L)y_t = (1-0.5L)e_t\]

where \(L\) denotes the lag operator and the innovations \(e_t \sim N(0, 1)\). Secondly, we consider series following a deterministic trend model with correlated errors:

\[y_t = 0.5t + e_t \quad \text{with} \quad (1-0.2L)e_t = (1-0.5L)\delta_t\]

and \(\delta_t \sim N(0, 1)\). In both settings, we study clean data (CD) and series contaminated with symmetric outliers (SO). For the latter, we add realizations of an \(N(0, 20)\) to on average 5% of the observations. The one-step-ahead forecast errors, with and without outliers, are presented in Figure 2 and the accompanying MSFE and \(t^2\)-values can be found in Table IV. Similar figures are available upon request for the five-step-ahead forecast errors.

It is striking how poor the HWc method performs in the ARIMA clean data setting. This can be explained by the fact that the cleaning process involves fitting a linear trend, while the data contain a stochastic trend. At the deterministic trend model, however, the HWc method performs as expected: a small efficiency loss with respect to HW in the absence of outliers, and an improved performance under contamination. But even in this setting the HWc approach cannot outperform our recommended robust RHW. The four other methods (HW, WR, RHW\(^\prime\) and RHW) perform comparably for the two models if no outliers are present. When we add 5% contamination, the RHW is to be preferred under both forms of model misspecification, as can be seen from the MSFE values in Table IV and the boxplots in Figure 2.

In this subsection we studied the performance of the different procedures when we deviate from the local linear trend model. We can conclude again that RHW performs comparably to standard HW in the absence of outliers, and better than the other robust smoothing methods in the presence of outliers. Obviously, we cannot guarantee that this will happen for all possible time series. In particular, when a level shift is present, there will be some loss of efficiency for the robust approach, since the first few observations after a level shift will be detected as outliers.

<table>
<thead>
<tr>
<th>ARIMA(1, 1, 1)</th>
<th>CD</th>
<th>MSFE</th>
<th>HW</th>
<th>HWc</th>
<th>WR</th>
<th>RHW′</th>
<th>RHW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIMA(1, 1, 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>MSFE</td>
<td>1.58</td>
<td>4.25</td>
<td>1.61</td>
<td>1.44</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t^2)</td>
<td>1.59</td>
<td>2.19</td>
<td>1.48</td>
<td>1.39</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>MSFE</td>
<td>20.03</td>
<td>7.25</td>
<td>11.74</td>
<td>19.71</td>
<td>5.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t^2)</td>
<td>9.70</td>
<td>5.22</td>
<td>4.92</td>
<td>5.25</td>
<td>4.94</td>
<td></td>
</tr>
<tr>
<td>Deterministic trend</td>
<td>CD</td>
<td>MSFE</td>
<td>1.55</td>
<td>1.61</td>
<td>1.59</td>
<td>1.61</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td>(t^2)</td>
<td>1.51</td>
<td>1.49</td>
<td>1.55</td>
<td>1.52</td>
<td>1.52</td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>MSFE</td>
<td>9.95</td>
<td>3.44</td>
<td>5.45</td>
<td>3.81</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t^2)</td>
<td>5.27</td>
<td>3.44</td>
<td>3.73</td>
<td>3.05</td>
<td>3.09</td>
<td></td>
</tr>
</tbody>
</table>
REAL DATA EXAMPLE: SEASONALITY

In this section, we apply Holt–Winters smoothing to a real time series with seasonality. The Holt smoothing method given in (2) can easily be generalized to allow for seasonality, as originally described in Winters (1960). A recursive equation for smoothing the seasonal component is then included. The update equations can easily be made robust in the same manner as before, i.e. by replacing y_t by its cleaned version y^*_t, as defined in (10). The resulting recursive scheme is given by

$$a_t = \lambda_4 (y^*_t - S_{t-s}) + (1-\lambda_4)(a_{t-1} + F_{t-1})$$

$$F_t = \lambda_2 (a_t - a_{t-1}) + (1-\lambda_2)F_{t-1}$$

$$S_t = \lambda_3 (y^*_t - a_t) + (1-\lambda_3)S_{t-s}$$

(19)

where s is the order of the seasonality. The extra smoothing parameter λ_5 takes values between zero and one, and is fixed at 0.1 throughout the section. In the first equation, a_t is interpreted as the
smoothed series corrected for seasonality. The smoothed series \(\hat{y}_t \) is then defined as the sum of \(a_t \) and the smoothed seasonality component \(S_t \):

\[
\hat{y}_t = a_t + S_t
\]

and forecasts are obtained by means of

\[
\hat{y}_{t+h} = a_t + hF_t + S_{t+h-q}, \quad q = [h/s]
\]

where \(\lceil z \rceil \) denotes the smallest integer larger than or equal to \(z \).

To obtain robust starting values for the update equations (19), we run a repeated median regression in the startup period. We obtain a robust regression fit \(\hat{y}_t = \hat{\alpha} + \hat{\beta}t \), for \(t = 1, \ldots, m \), resulting in starting values

\[
a_m = \hat{\alpha} + \hat{\beta}m, \quad F_m = \hat{\beta}, \quad \text{and}
\]

\[
S_{t+(p-1)s} = \operatorname{Med}(y_t - \hat{y}_t, y_{t+s} - \hat{y}_{t+s}, \ldots, y_{t+(p-1)s} - \hat{y}_{t+(p-1)s}) \quad \text{for } i = 1, \ldots, s
\]

The length of the startup period \(m \) is a multiple \(p \) of the seasonal period \(s \): \(m = ps \). Here, \(p \) equals 3, such that the median in the above equation is computed over three observations, allowing for one outlier among them while still keeping the robustness. Also the simple pre-cleaning method HWC based on ordinary least squares can easily be adjusted by including seasonal dummy variables in the regression stage.

The Holt–Winters smoothing technique with seasonality is applied to the resex time series (see, for example, Maronna et al., 2006). This series presents sales figures of inward telephone extensions, measured on a monthly basis from January 1966 to May 1973 in a certain area in Canada. The resex time series is plotted in Figure 3. We see two large outliers near the end of the time series,

![Figure 3. Resex time series (large dots). The Holt–Winters smoothed series up to observation 84 is given, with respective forecasts for observations 85–89, using classical HW (solid line), HWC (dotted line), and the robust RHW method (dashed line).](image)
observations 83 and 84, as the result of a price promotion in period 83 with a spillover effect to
period 84. These are expected to strongly affect the forecasts using the classical method. We apply
the classical HW and the robust Holt–Winters (RHW) smoothing algorithms to the series up to
observation 84 and predict the last five observations. For comparison, we also apply the pre-cleaning
method HWc discussed above, now with seasonal dummies included in the regression fit.

The smoothing parameters to be used in the recursive schemes are chosen according to a grid
search, where we let λ_1 and λ_2 vary from zero to one in steps of 0.1. The HW method selects $\lambda_1 = 0.3$ and $\lambda_2 = 0.2$, HWc takes $\lambda_1 = 0.1$ and $\lambda_2 = 0.2$, and the RHW method chooses $\lambda_1 = 0.7$ and $\lambda_2 = 0.1$. The robust method takes a much larger value for λ_1, and will smooth the series less than HW
and HWc. The standard approach tends to overestimate the persistence in series, due to the presence
of the outliers.

The smoothed series and forecasts of the last 5 weeks, according to the HW, HWc and RHW
methods, are depicted in Figure 3. Up to the outlying values, the classical and robust smoothed series
are very similar. In the forecast period, right after the occurrence of the outliers, the performance of
the classical method deteriorates, while the robust smoothing still performs reasonably well. The
mean squared forecast error over time horizon five equals 2423 for the classical method. This mean
squared forecast error is reduced to 174 for HWc, thanks to the pre-cleaning. However, a further
substantial improvement is obtained when the proposed robust Holt–Winters procedure is used, since
it achieves a mean squared error of only 37. This illustrates that in real data applications a robust
method can considerably improve forecast performance.

CONCLUSION

Exponential and Holt–Winters smoothing are frequently used methods for smoothing and forecasting
univariate time series. The main reason of the popularity of these methods is that they are simple
and easy to put into practice, while at the same time quite competitive with respect to more compli-
cated forecasting models. In the presence of outlying observations, however, the performance of the
Holt–Winters forecasting performance deteriorates considerably. In this paper a robust version of
exponential and Holt–Winters smoothing techniques is presented. By downweighting observations
with unexpectedly high or low one-step-ahead prediction errors, robustness with respect to outlying
values is attained. Moreover, as shown in the simulation study, the robust Holt–Winters method also
yields better forecasts when the error distribution is fat-tailed. There is only a small price to pay for
this protection against outliers, namely a slightly increased mean squared forecast error at a normal
error distribution.

It is important to note that the proposed robust Holt–Winters method preserves the recursive for-
mulation of the standard method. Hence the forecasts are still computed online, without computa-
tional effort, using explicit expressions. The choices we made for the loss-function ρ, the tuning
constant k, and the auxiliary scale estimate are all standard in the robustness literature. This paper
also explains how robust selection of the smoothing parameters, starting values, and auxiliary scale
estimates can be dealt with. These choices are crucial for a good overall performance of the forecast
methods. Earlier proposals, such as Cipra (1992) and Cipra and Romera (1997), did not treat these
issues. The robust method then applies standard Holt–Winters smoothing to the cleaned time series.
We also made a comparison with another pre-cleaning method, based on a standard 2-sigma outlier
detection rule, and showed that such rules do not provide a satisfactory performance. Applying robust
outlier detection rules for cleaning time series (see Pearson, 2005) would yield better results, but
such rules are not applicable to non-stationary series, and do not lead to a simple recursive computing scheme. We consider the latter to be a key property of a Holt–Winters smoothing scheme. The advantages of the cleaning method (10) proposed in this paper are that (i) it can cope with correlated observations, (ii) it can be applied to non-stationary data, also with stochastic trend, (iii) it is robust to large outliers, (iv) it is simple to compute, and (v) its recursive scheme allows for online cleaning of the series. We are not aware of other cleaning methods sharing these properties.

Both the simulation study and the real data example illustrate the advantages of the robust forecasting procedure. The presented robust Holt–Winters method is robust with respect to outliers, results in accurate and stable predictions, and works well for different types of data. This is of great importance for practical business forecasting, where the underlying data-generating process is unknown and outliers frequently occur. Moreover, thanks to the simplicity of the procedure, it can be implemented without much effort with the appropriate software tools.

There are some issues left open for future research. For example, we did not develop formulas for prediction intervals (as in Hyndman et al., 2005). Another issue is the behavior of the method in the presence of level shifts or other forms of structural break. In this case, one would need to allow the smoothing parameters to vary over time, as described in Taylor (2004). Alternatively, more ad hoc detection rules for structural breaks, as in Kirkendall (2006), can be applied.

ACKNOWLEDGEMENTS

This research has been supported by the Research Fund KU Leuven and the Fonds voor Wetenschappelijk Onderzoek (contract number G.0594.05). The second author gratefully acknowledges financial support from the Deutsche Forschungsgemeinschaft (SFB 475, ‘Reduction of complexity in multivariate data structures’).

REFERENCES

Copyright © 2009 John Wiley & Sons, Ltd.

DOI: 10.1002/for

Author’s biographies:

Sarah Gelper is an Assistant Professor of Marketing at the Erasmus School of Economics (Rotterdam, the Netherlands). This article is a result of her research as a PhD student at Katholieke Universiteit Leuven.

Roland Fried is an Associate Professor for Biostatistics in the Department of Statistics at TU Dortmund University (Dortmund, Germany). Before this he was a visiting professor in the Department of Statistics at University Carlos III (Madrid, Spain). His research interests include time series and spatial processes, robustness, change-point detection, and computational statistics.

Christophe Croux is a Professor of Statistics and Econometrics at the Katholieke Universiteit Leuven (Leuven, Belgium). His research interests are robust statistics, multivariate data analysis, computational statistics, predictive marketing modeling, and applied time series analysis. His work has been published in the *Biometrika*, *Journal of the American Statistical Association*, and *The Review of Economics and Statistics*, among others. He serves on the editorial board of *Journal of Multivariate Analysis*.

Author’s addresses:

Sarah Gelper and **Christophe Croux**, Faculty of Business and Economics, Katholieke Universiteit Leuven, Naamsestraat 69, 3000 Leuven, Belgium.

Roland Fried, Department of Statistics, University of Dortmund, 44221 Dortmund, Germany.