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Abstract We consider the inventory control of repairable spare parts in a network consisting
of a central warehouse, a central repair facility, and multiple local warehouses. Demands for
spare parts occur at the local warehouses. If a local warehouse is out of stock, then an arriv-
ing demand is satisfied by an emergency shipment from the central warehouse or the central
repair facility. Such emergency shipments are common practice for networks that support
technical systems with high downtime costs. We develop a new evaluation method that pro-
vides accurate approximations for the key performance measures like fractions of demands
supplied by the local warehouses or emergency shipments. The method can be easily incor-
porated in existing (greedy) heuristic optimization methods. Our method outperforms the
approximate evaluation method of Muckstadt and Thomas (Manag. Sci. 26:483–494, 1980),
as we show via a numerical analysis. Finally, we show that the performance of the system is
virtually insensitive to the leadtime distribution of repairs at the central repair facility.

Keywords Spare parts · Two-echelon system · Emergency shipments · Approximate
evaluation

1 Introduction

The management of spare parts has become an important issue in the capital goods indus-
try. For many technical systems, downtime costs are high and, thus, failed parts need to
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be replaced by spare parts as quickly as possible. Spare parts may be kept in stock in net-
works by the user itself, or by original equipment manufacturers (OEM) or third parties.
Networks of spare parts typically consist of local warehouses within close proximity of in-
stalled systems and one or more layers of central and regional warehouses. In such networks,
different types of flexibilities have been employed to react as quickly as possible to failures
of technical systems. If a local warehouse is out of stock at the moment of a demand ar-
rival, then it is possible to send a part from a neighboring local warehouse and/or directly
from a higher-level warehouse. These options are denoted as lateral and emergency ship-
ments, respectively. The options that are used or available depend on geographical factors
and on arrangements that have been made with, for example, logistics service providers and
external repair centers.

We consider repairable spare parts in a two-echelon system consisting of a central ware-
house, a central repair facility, and multiple local warehouses. The repair facility, which is
assumed to have an infinite repair capacity, supplies the central warehouse, and the central
warehouse supplies the local warehouses. We assume a continuous review, one-for-one re-
plenishment policy within the network (i.e., base stock control), a common policy in the
literature of spare parts. As an illustration, we describe the supply chain of spare parts at
Nedtrain, a train maintenance company in the Netherlands. Nedtrain has thousands of dif-
ferent repairables in its supply chain. The repairables have a wide price range; their price can
reach up to tens of thousands of euros. A failure of a critical repairable causes downtime of
the train until the failed part is replaced by a ready-for-use part, and downtime costs per hour
are very high, which makes the availability of a critical repairable very important. When a
demand arrives at a local warehouse, it is supplied by the local warehouse if there is on-hand
stock available. If the demanded repairable is not available at the local warehouse, then an
emergency shipment is made from the central warehouse if it has on-hand stock. If the cen-
tral warehouse does not have on-hand stock, an emergency shipment must be requested from
the repair facility to the local warehouse. The leadtime for an emergency shipment is shorter
than a normal replenishment leadtime; therefore this supply option is costly. Managing this
kind of inventory system needs quantitative models which take emergency shipments into
account.

There are many studies on inventory control of spare parts. Sherbrooke (1968) intro-
duced the METRIC (Multi-Echelon Technique for Repairable Item Control) model for two-
echelon systems, without lateral and emergency shipments. Via the METRIC approach, ex-
pected backorder levels at all local warehouses can be computed under base stock con-
trol and assigned base stock levels. Sherbrooke (1968) approximates the realized replenish-
ment leadtimes for the local warehouses by independent and deterministic leadtimes. Graves
(1985) develops exact and approximate evaluation procedures for multi-echelon systems. In
the approximation method, Graves (1985) fits a negative binomial distribution to the first
two moments of pipeline stocks, and this approximation is shown to yield more accurate
results than the METRIC approximation with respect to the expected backorder levels at the
local warehouses. Rustenburg et al. (2003) generalize Graves’ exact and approximate evalu-
ation methods to multi-echelon, multi-indenture systems. Sherbrooke (1968) also develops
a heuristic optimization method for the minimization of the total stock of multiple items un-
der a constraint for the total number of backorders in the whole system. Wong et al. (2007)
develop multiple heuristics for the same optimization problem but with a constraint per lo-
cal warehouse. Saranga and Kumar (2006) look at the integrated optimization of spare parts
stocks and the places where parts are repaired (‘Level Of Repair Analysis’). Basten (2010)
and Basten et al. (2009) first develop a computationally faster algorithm for the problem of
Saranga and Kumar (2006), and next extend the integrated model to a more general structure
for the fixed costs of required maintenance resources.
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Andersson and Melchiors (2001) consider a two-echelon system, but, different from
Sherbrooke (1968), they assume that backorders are not allowed at local warehouses, and
demand which cannot be supplied by the local warehouse is lost. Based on the METRIC
approximation of Sherbrooke (1968), they develop an accurate heuristic to determine a cost-
effective base stock policy.

Muckstadt and Thomas (1980) extend the work of Sherbrooke (1968) to systems with
emergency shipments from the central warehouse and central repair facility. Their focus is
on the (heuristic) optimization of the base stock levels, which builds on the approximate
evaluation method introduced in their paper. They also compare centralized and decentral-
ized decision making. Hausman and Erkip (1994) improve the decentralized case of Muck-
stadt and Thomas (1980) and show that the performance of the improved single-echelon
model differs from the multi-echelon model of Muckstadt and Thomas (1980) by 3–5 %.

Axsäter et al. (2004) consider a two-echelon inventory system in which emergency ship-
ments are sent only from the central repair facility to the local warehouses. They assume
that the emergency shipment time exceeds regular replenishment leadtimes from the central
warehouse to the local warehouses. In contrast to other studies, Axsäter et al. (2004) as-
sume that the central warehouse also receives direct customer demands, and this stream of
demands has priority over the replenishment orders of the local warehouses. They use crit-
ical inventory levels at the central warehouse to differentiate between the demand streams.
Axsäter et al. (2004) also develops a heuristic optimization method.

Alvarez and van der Heijden (2011) also consider a two-echelon inventory system but
in their model only the external supplier (which is equivalent to the central repair facility
in our model) is allowed to make emergency shipments. They assume that the emergency
shipment from the external supplier takes more time than a shipment from the central ware-
house. They derive an accurate approximate evaluation procedure for the following two per-
formance measures: (i) the fraction of demands supplied by the local warehouses, central
warehouse, or spare parts which are in the transit pipeline between the central warehouse
and the local warehouse; (ii) the fraction of demands supplied by the emergency shipments
from the external supplier.

Axsäter (1990) develops an approximate evaluation method for two-echelon systems
with lateral shipments. Alfredsson and Verrijdt (1999) consider a two-echelon system with
both lateral and emergency shipments. In case of a demand arrival, if the local warehouse is
out of stock, they first check other local warehouses for a lateral shipment, then they check
the central warehouse for an emergency shipment, and lastly they make an emergency ship-
ment from the repair facility, if needed. Because of the lateral shipments, which are possible
between all pairs of local warehouses (full pooling), they can aggregate all stocks in the
local warehouses to calculate the fractions of demands satisfied by emergency shipments
from the central warehouse and repair facility. For the latter step, they make use of a two-
dimensional Markov process with respect to the central and local stock, and numerically
compute the limiting distribution of this Markov process. Consequently, their approxima-
tion method is very time-consuming even for medium high base stock levels. Alfredsson
and Verrijdt (1999) also execute a sensitivity analysis with respect to the distribution of the
leadtime of the repair facility and the distribution of the transportation times between the
central warehouse and the local warehouses. They find that the performance parameters are
virtually insensitive to these distribution types.

Grahovac and Chakravarty (2001) consider the same system as Alfredsson and Verrijdt
(1999), but without the possibility of emergency shipments from the repair facility (and thus
with the possibility of backordering at the local warehouses). A second difference is that in
case of a demand arrival, if the local warehouse is out of stock, they first check the central



150 Ann Oper Res (2015) 224:147–169

warehouse for an emergency shipment, and then they check other local warehouses for a
lateral shipment. Lastly, they consider emergency trigger inventory levels at the local ware-
houses, i.e, they allow lateral shipments not only when there is a stock-out situation, but at
arbitrarily chosen levels of on-hand stock. They use a similar iterative solution methodology
as Axsäter (1990). They also show that sharing of stock (via the emergency and lateral ship-
ments) often, but not always, reduces overall system costs. Moreover, the optimal emergency
trigger inventory levels are found to be −1 in most of the cases, implying that anticipation
of future demand is often not beneficial.

Wong et al. (2005) develop a heuristic optimization method for a single-echelon, multi-
location, multi-item system with lateral and emergency shipments. The emergency ship-
ments can be done from a central warehouse which is assumed to have unlimited stock.
The heuristic optimization is built on exact evaluations via Markov processes. Kranenburg
and van Houtum (2009) consider the same system as Wong et al. (2005) but with a form
of partial pooling instead of full pooling. In their system, only a limited number of main
local warehouses are allowed to provide lateral shipments. They develop an approximate
evaluation method in which demands for lateral shipments are modeled as Poisson overflow
processes (in the spirit of the model by Axsäter 1990). In addition, they develop an efficient
greedy heuristic for the minimization of total inventory, and lateral and emergency shipment
costs, subject to mean waiting time constraints at the local warehouses. They show that using
only some of the local warehouses as lateral shipment sources is sufficient to obtain most of
the benefits of full pooling. Their work has been implemented at ASML, a manufacturer of
lithography machines for the production of semiconductors. There are many more studies
related to lateral shipments. For an overview, see Paterson et al. (2011).

In some networks, the use of emergency shipments is strongly preferred over lateral
shipments, because lateral shipment may be more expensive, e.g. the local warehouses can
be geographically dispersed and/or procedures for lateral shipments may not be well orga-
nized. Or, lateral shipments are even excluded by ensuring that the repair facility can always
provide an emergency shipment. In the situation of Nedtrain, lateral shipments are not com-
pletely excluded, but they are seen as undesirable exceptions and, thus, they are excluded for
inventory planning at the tactical level. Surprisingly, such networks with emergency ship-
ments, but without lateral shipments, have scarcely been studied in the literature. To our
knowledge, only the work of Muckstadt and Thomas (1980) considers supply networks of
this kind.

In this paper, we introduce a new approximate evaluation method for two-echelon sys-
tems with emergency shipments but without lateral shipments. It will be shown that our
method performs significantly better than the approximate evaluation method of Muckstadt
and Thomas (1980). Our method is accurate and fast, and thus can well be used in greedy
heuristic optimization methods for the multi-item version of our model. Such greedy op-
timization methods can be used for the minimization of inventory holding, and emergency
and lateral shipment costs, subject to aggregate waiting time constraints per local warehouse.
They have been shown to work very well for closely related systems; see Wong et al. (2005),
Wong et al. (2007), and Kranenburg and van Houtum (2009). Our numerical results indicate
that the performance of our system is virtually insensitive to the distribution of repair lead-
times at the central repair facility, which implies that our method works well for generally
distributed repair leadtimes.

Exact evaluation for the system analyzed in this paper is possible via Markov meth-
ods if repair leadtimes and transportation times from the central warehouse to the local
warehouses are exponentially distributed. But that would require a numerical solution of
multi-dimensional Markov processes and then we would obtain long computation times for
already medium high base stock levels.
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Although we use the terminology of repairable spare parts in this paper, our model applies
more generally. Consumable spare parts fit equally well into the same framework, as the
central repair facility can be viewed as an external supplier.

The remainder of the paper is organized as follows. In Sect. 2, we describe our model. In
Sect. 3, we describe our approximate evaluation method and we summarize the method of
Muckstadt and Thomas (1980). Next, in Sect. 4, we test our method via a numerical analysis
and perform a sensitivity analysis with respect to the repair lead time distribution and a cost
optimization experiment. Some concluding remarks are provided in Sect. 5.

2 Model description

Consider a single-item, two-echelon inventory model with one central warehouse (CW),
denoted by index 0, and N (N ≥ 1) local warehouses (LW). Let N = {1,2, . . . ,N} be the
set of local warehouses. In addition, there is a central repair facility to which all failed parts
are returned and repaired.

Demands for spare parts occur at the local warehouses. We assume that demands at local
warehouse n arrive according to a Poisson process with a constant rate mn (mn > 0). Each
demand at a local warehouse n stems from a failure of a part in a technical system. For each
demand, one of the following procedures is applied (see also Fig. 1):

1. If local warehouse n has a part in stock, then it satisfies the demand itself. In this case,
there is no delay in satisfying the demand. The failed part is sent to the repair facility.
Further, the local warehouse places a replenishment order for one ready-for-use part at
the central warehouse, and the central warehouse places an order for one unit at the repair
facility.

2. If local warehouse n is out of stock, and there is at least one part in stock at the central
warehouse, then the demand is satisfied from the central warehouse. In this case, the
part is delivered via a fast emergency shipment, which leads to a delay in satisfying the
demand of on average tCW

n time units. The failed part is sent to the repair facility, and
at the same time the central warehouse places an order for one ready-for-use unit at the
repair facility.

3. If both local warehouse n and the central warehouse is out of stock, then a part is deliv-
ered from the central repair facility. We assume that the repair facility can always provide
a spare part, e.g., it may finish the repair of one of the parts in the repair shop via an emer-
gency procedure. This leads to an average delay of tRF

n time units. The failed part is sent
to the repair facility.

Under these procedures, the inventory position remains at a constant level at each of the
warehouses. Let Sn be the constant level for warehouse n, n ∈ N ∪ {0}. Equivalently, we
may say that the inventory is controlled by a base stock policy, and Sn is the base stock level
at warehouse n.

The replenishment leadtime for local warehouse n is assumed to be deterministic and
denoted by tn. Obviously, replenishments are delayed when the central warehouse is out of
stock. The central repair facility is assumed to follow a given planned leadtime, denoted
by t0. This implies that every order for a ready-for-use part placed by the central warehouse
will be delivered after exactly t0 time units. This is equivalent to modeling the repair facility
as an ample server with deterministic service times t0.

The main performance measures that need to be determined are directly related to the
demand streams at the local warehouses. For the demand stream at local warehouse n ∈ N ,
our aim is to approximate:
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Fig. 1 Graphical depiction of the demand fulfillment process

• βn: the steady-state fraction of demands occurring at local warehouse n that are satisfied
by local warehouse n itself. This measure is also denoted as the fill rate of local warehouse
n;

• θn: the steady-state fraction of demands occurring at local warehouse n that are directly
satisfied by the central warehouse;

• γn: the steady-state fraction of demands occurring at local warehouse n that are directly
satisfied by the central repair facility.

Notice that,

βn + θn + γn = 1, ∀n ∈ N . (1)

The fractions βn, θn, and γn are visualized in Fig. 1.
The remainder of the paper focuses on the (approximate) evaluation of the fractions βn,

θn, and γn. In optimization problems, one often minimizes a cost function subject to con-
straints related to downtime or availability of the supported technical systems. For example,
a constraint on the mean waiting/delay time (Wn) until demands at local warehouse n are
fulfilled, is common; here,

Wn = θnt
CW
n + γnt

RF
n . (2)

A typical total cost function would consists of inventory holding costs (for all parts in stock
and in repair or in transport from the central warehouse to a local warehouse) and extra costs
for demands fulfilled from the central warehouse and the repair facility:

C = h

N∑

n=0

Sn +
N∑

n=1

mn

(
θnC

CW
n + γnC

RF
n

)
, (3)

where h represents the inventory holding cost per stock keeping unit per time unit, CCW
n rep-

resents the cost for an emergency shipment from the central warehouse to local warehouse
n, and CRF

n represents the cost for an emergency shipment from the repair facility to local
warehouse n. For both the Wn and C, extended expressions are obtained when one wants to



Ann Oper Res (2015) 224:147–169 153

optimize over multiple items. As we see, quantities such as the mean waiting times Wn and
total costs C are easily obtained from the βn, θn, and γn.

3 Solution procedures

In this section, we describe a new approximate evaluation method and summarize the ap-
proximation scheme of Muckstadt and Thomas (1980).

3.1 Approximate evaluation method

Our approximate evaluation procedure starts with a solution procedure that iteratively cal-
culates the fill rates βn at the local warehouses and the expected delay at the central ware-
house. In each iteration, first the fill rates βn are calculated under a given delay at the central
warehouse, and next the expected delay at the central warehouse is calculated using the
fill rates βn. Below, we first describe these two steps in detail, and then we summarize the
iterative procedure. Finally, we give the approximations for the fractions θn and γn.

3.1.1 Calculating the fill rates

The replenishment leadtime of local warehouse n is given by a deterministic value tn. This
time may be seen as the planned leadtime. When a replenishment order is placed at the
central warehouse, its fulfillment will be delayed, and thus the realized leadtime is longer.
Let W0 be the mean delay for an arbitrary replenishment order at the central warehouse.
Notice that the replenishment orders from different local warehouses experience statisti-
cally the same delays. Let LTn denote the mean realized replenishment leadtime for local
warehouse n. Then,

LTn = tn + W0. (4)

These realized leadtimes depend on the on-hand stock distribution at the central warehouse.
The higher the basestock level at the central warehouse, the shorter the mean delay W0.
And, higher basestock levels at the local warehouses have a decreasing effect on the stream
of requests for emergency shipments at the central warehouse and, thus, also a decreasing
effect on the stream of emergency shipments from the repair facility (i.e., more demand has
to be satisfied by the central warehouse), which then may lead to a slightly longer mean
delay. In our analysis, all basestock levels are given, but the basestock levels at the local
warehouses are correlated with the fill rates βn and, thus, W0 and βn are dependent. For the
initial computation of the βn, we assume a zero delay, i.e., W0 = 0.

The fill rates βn are computed per local warehouse n ∈ N . We assume that the realized
leadtimes for replenishment orders at local warehouse n are independent and identically
distributed (so this is an approximate step). Demands arrive according to a Poisson process
with rate mn. Because of the emergency shipments from the central warehouse and the repair
facility, there is no backordering of demand. From the perspective of the local warehouse
n, demand that is not satisfied from stock can be seen as lost demand. This implies that the
local warehouse n behaves the same as an Erlang loss system (i.e., an M/G/c/c queue; see
e.g. Tijms 2003). Each unit of stock may be seen as a server that is occupied for on average
LTn time units when it serves a demand. In fact, the steady-state behavior of the number of
outstanding replenishment orders (= Sn minus the on-hand stock) is identical to the steady-
state behavior of the number of occupied servers in an Erlang loss system with Sn servers,
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arrival rate mn, and mean service time LTn. As a result, the fill rate βn may be obtained as
the proportion of arriving customers who find an available server in the Erlang loss system.

For a general Erlang loss system with c servers and offered load ρ (the product of the
arrival rate and the mean service time of a single server), let L(c,ρ) denote the Erlang loss
probability (i.e., the proportion of customers that are not served). It is well known that (cf.
Tijms 2003)

L(c,ρ) =
ρc

c!∑c

x=0
ρx

x!
, ρ > 0. (5)

The fill rate at local warehouse n is then obtained by

βn = 1 − L(Sn,mn · LTn). (6)

3.1.2 Calculating the expected delay in the central warehouse

Suppose now that the fill rates βn are known. We want to estimate the mean delay W0 at the
central warehouse.

We model the process for the inventory level at the central warehouse as a continuous-
time birth-death process (cf. Tijms 2003). Notice that the inventory level is equal to the
on-hand stock minus the backordered replenishment orders from the local warehouses. Per
local warehouse n, there is a demand stream of replenishment orders and a demand stream
for emergency shipments. The first demand stream has rate mnβn and is assumed to be a
Poisson process (that this process is a Poisson process is an approximation). Demands from
this stream are immediately satisfied if the central warehouse has at least one part on stock
(i.e., a strictly positive inventory level) and otherwise they are backordered. The second
stream has rate mn(1 − βn) and is also assumed to be a Poisson process. Demands from this
stream are immediately satisfied if the central warehouse has at least one part in stock and
otherwise they are lost (i.e., they will be satisfied by the repair facility via an emergency
shipment). All demand streams are assumed to be mutually independent and independent
of the actual inventory level at the central warehouse. As a result of these assumptions, the
total demand stream at the central warehouse is a Poisson process with rate

∑

n∈N

(
mnβn + mn(1 − βn)

) =
∑

n∈N

mn = m0

when the inventory level at the central warehouse is strictly positive, and it is a Poisson
process with rate

m′
0 =

∑

n∈N

mnβn (7)

when the inventory level is zero or strictly negative.
The second approximation that we make is that the deterministic leadtime t0 at the central

warehouse is replaced by an exponential leadtime with the same mean, i.e., by exponential
times with rate μ0 = 1/t0. It will be shown that the steady-state behavior of the whole sys-
tem is virtually insensitive to the probability distribution of repair leadtimes; see Sect. 4.2.
As noted in Sect. 1, a similar insensitivity property was also observed by Alfredsson and
Verrijdt (1999) for their two-echelon system with lateral and emergency shipments. Hence,
this approximation should not yield excessive errors in the estimation of the performance
measures, and it facilitates that the inventory level process can be modeled as a birth-death
process.
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Fig. 2 Transition diagram for the inventory level at the central warehouse

Finally, we truncate the state space of the birth-death process. Because backorders can
only occur when replenishment orders are placed, and the number of outstanding replenish-
ment orders at local warehouse n can never be more than Sn, the number of backorders at
the central warehouse cannot exceed S̄ = ∑

n∈N Sn. Hence, we truncate the states x with
x < −S̄. This completes the construction of the birth-death process of the inventory level at
the central warehouse; the resulting process is depicted in Fig. 2.

The mean delay W0 is obtained from the steady-state distribution of the birth-death pro-
cess. Let the steady-state distribution be denoted by {πx}. The steady-state probabilities
satisfy the balance equations

πx =
{

m′
0

(S0−x)μ0
· πx+1, −S̄ ≤ x < 0,

m0
(S0−x)μ0

· πx+1, 0 ≤ x < S0.
(8)

By these equations, they can all be expressed as a function of πS0 , and πS0 itself follows
from normalization. Next, the mean number of backordered demands, B0, follows from

B0 =
−1∑

x=−S̄

(−x)πx, (9)

and, by Little’s Law (cf. Tijms 2003), we find (notice that the rate for the total stream of
replenishment orders is m′

0)

W0 = B0

m′
0

. (10)

3.1.3 Iterative algorithm for the approximation method

We obtain the following iterative algorithm for the computation of the fill rates βn, n ∈ N ,
and the mean delay W0:

Step 0 W0 := 0.
Step 1 Compute βn via (4) and (6), ∀n ∈ N .
Step 2 Compute W0 via (7), (8), (9), and (10).
Step 3 Repeat Step 1 and Step 2 until W0 does not change more than ε.

With respect to the convergence of this algorithm, we have no theoretical results, but we
obtained convergence for all instances used in our numerical study. The setup of the numer-
ical study and the outcomes are reported in Sect. 4. Figures 3a and 3b show convergence of
W0 and βn for instance 62 of the symmetric instances, where N = 20, mn = 0.1 demands
per day for all n ∈ N , t0 = 20 days, tn = 3 days for all n ∈ N , S0 = 40, Sn = 1 for all n ∈ N .
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Fig. 3 Convergence of W0 and βn in the instance 62 of symmetric instances

As we see in Fig. 3a, the initial value of W0 is 0. In this case the corresponding βn

becomes the largest because the lower the expected delay in the central warehouse, the lower
the lead times and the higher the fill rate at each local warehouse. In the following iteration,
W0 becomes the largest, because the fill rates βn are largest and the higher the fill rates, the
higher the number of replenishment orders from the central warehouse and the higher the
delay for these orders. Afterwards, βn becomes the lowest as seen in iteration number 2 in
Fig. 3b. Then, W0 becomes the second lowest, and so on. At each even numbered iteration,
the βn and W0 decrease, and at each odd numbered iteration, the βn and W0 increase. At
each iteration, the differences of the values for the βn and W0 with the values of the previous
iteration decrease, and we obtain convergence.

The algorithm is robust with respect to the initial value of W0. We experimented with
different starting values, and for all possible initial values of W0, we obtained convergence.

3.1.4 Calculation of the θn and γn

We finally approximate the fractions of demands satisfied by an emergency shipment from
the central warehouse and the repair facility, respectively. Let ILn and IL0 be random vari-
ables which denote the inventory level in local warehouse n and the central warehouse,
respectively. Then, it holds that

θn = P(IL0 > 0, ILn = 0).

By conditioning to “IL0 > 0”, we obtain

θn = P(ILn = 0|IL0 > 0) · P(IL0 > 0).

The probability P(IL0 > 0) may be estimated from the birth-death process to compute W0 in
the last iteration of the iterative algorithm; we estimate P(IL0 > 0) by

∑S0
x=1 πx =: β0. For

the conditional probability P(ILn = 0|IL0 > 0), we assume that the central warehouse has
a strictly positive inventory level for a very long time. Then the behavior of the inventory
level at local warehouse n will conform with an Erlang loss system with mean service times
tn instead of LTn (see the step to compute the fill rates βn in the iterative algorithm). This
leads to:

P(ILn = 0|IL0 > 0) ≈ L(Sn,mntn),
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where L(·) is given by (5). For θn, we thus obtain

θn ≈ β0L(Sn,mntn). (11)

Finally, γn can be calculated by substituting βn and θn into (1).

3.2 The method of Muckstadt and Thomas (1980)

We briefly summarize the approximate evaluation method of Muckstadt and Thomas (1980),
which is a sequential solution procedure without iterations. It first approximates the mean
delay at the central warehouse, and subsequently βn, θn, and γn at the local warehouses are
computed.

First consider the central warehouse in isolation. They ignore the effect of demands that
are fulfilled by the repair facility via an emergency shipment. They assume that the total
demand stream is a Poisson process with rate m0 and the number of backordered demands
can grow to infinity. The steady-state behavior is then equal to that of an M/G/∞ queue
(see Tijms 2003) with arrival rate m0 and mean service time t0. By Palm’s theorem, the
steady-state probability for x occupied servers within this queueing system equals

πx = (m0t0)
x

x! e−m0t0 , x ≥ 0.

The probability distribution of the inventory level IL0 at the central warehouse is then ap-
proximated by:

P(IL0 = y) = πS0−y, y ≤ S0.

Next, the mean on-hand stock I0, the mean number of backorders B0, and the mean delay
W0 are obtained by

I0 =
S0∑

y=1

yπS0−y,

B0 =
−1∑

y=−∞
−yπS0−y = I0 − E(IL0) = I0 − (S0 − m0t0),

W0 = B0

m0
.

The second step for the computation of the βn, θn, and γn proceeds as follows. Per local
warehouse n ∈ N , first the realized replenishment leadtime is approximated by LTn = tn +
W0 (as in (4) in our method). Then, the fill rate βn is approximated by βn = 1 − L(Sn,mn ·
LTn) (as in (6)). The fractions θn and γn are approximated by

θn = β0(1 − βn), (12)

γn = (1 − β0)(1 − βn) = 1 − βn − θn, (13)

where β0 = P(IL0 > 0) = ∑S0
y=1 πS0−y .

When comparing our new approximate evaluation method to the method of Muckstadt
and Thomas (1980), we see differences at two points:
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• The approximation of W0: There, we use a more refined approximation, where we take
into account that unfilled requests for emergency shipments at the central warehouse are
satisfied by the repair facility and, thus, they are lost for the central warehouse itself. To
incorporate this effect, we make use of the fill rates βn, and thus we need to iterate.

• The approximation of θn: In our approximation, we use (11). Muckstadt and Thomas
(1980) use (12), which is equivalent to approximating θn = P(IL0 > 0, ILn = 0) by
P(IL0 > 0)P(ILn = 0), i.e., by assuming that the inventory levels at the central ware-
house and local warehouse n behave independently. By using (11), we take a form of
dependency into account.

4 Numerical results

This section consists of three parts. We first test the accuracy of our approximation method
in Sect. 4.1. After that in Sect. 4.2, we investigate the sensitivity of the system to the repair
leadtime distribution. Lastly, we perform a cost optimization experiment in Sect. 4.3.

4.1 Accuracy of the approximate evaluation method

In this subsection, we compare our approximation method with exact results obtained by
simulation and with the method of Muckstadt and Thomas (1980).

We consider 96 different instances for our numerical experiment. The input parameters
are the number of local warehouses N , the demand rates mn, the repair lead time t0, the
planned replenishment leadtimes of the local warehouses tn, and the base stock levels Sn

at the central warehouse and all local warehouses. Among all instances, 64 of them are
symmetric, where the mn, Sn, and tn are the same for all local warehouses, and the remaining
32 instances are asymmetric.

In both the symmetric and asymmetric instances, we consider the following numbers
for N : 2, 4, 10, 20. We choose a wide range for N , because there are companies keeping
spare parts on stock in only a couple of local warehouses as well as companies with many
local warehouses. In the symmetric instances, three different values for mn are used: 0.01,
0.04, and 0.1 demands per day. We assume tn = 3 days in each instance, and two values are
assumed for t0: 5 and 20 days. The base stock levels Sn are chosen such that the performance
measures of the system are within different ranges. We set ε, as used for the stopping criteria
in our approximation method, at 10−6.

In the asymmetric cases, we determined mn and tn for all instances by

mn = mn−1 + Δm, n ≥ 2,

tn = tn−1 + Δt, n ≥ 2,

where Δm and Δt are chosen constants per instance. The parameters m1, t1, Δm, and Δt

of each instance are depicted in Table 1. We choose the base stock levels Sn from the set
{1,2,3}, such that they are nondecreasing in n (because mn is increasing in n). The columns
“Sn = 1”, “Sn = 2” and “Sn = 3” of Table 1 show the local warehouses with base stock
level 1, 2, and 3, respectively. For instance, the value “1 − 3” of instance 21 at the column
“Sn = 1” means that the base stock level is 1 for the local warehouses 1, 2, and 3. The test
bed for the asymmetric instances can be seen in Table 1.

We implemented the simulation in the Arena Simulation Software. At each instance, we
determined the warm-up period and total run time such that each local warehouse sees at
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Table 1 Test bed of the asymmetric instances

Instance N m1 Δm (t0, t1) Δt S0 Sn = 1 Sn = 2 Sn = 3

1 2 0.01 0.01 (5, 3) 0 1 1–1 2–2 –

2 0.04 0.04 (5, 3) 0 2 1–1 2–2 –

3 0.04 (20, 3) 0 2 1–1 2–2 –

4 0 (5, 2) 1 3 1–1 2–2 –

5 0.1 0.1 (5, 3) 0 3 1–1 2–2 –

6 0.1 (5, 3) 0 4 1–1 2–2 –

7 0.1 (20, 3) 0 4 1–1 2–2 –

8 0 (20, 2) 1 4 1–1 2–2 –

9 4 0.01 0.01 (5, 3) 0 3 1–4 – –

10 0.04 0.01 (5, 3) 0 3 1–2 3–4 –

11 0.01 (20, 3) 0 3 1–2 3–4 –

12 0 (5, 2) 0.5 2 1–2 3–4 –

13 0.1 0.02 (5, 3) 0 2 1–1 2–4 –

14 0.02 (5, 3) 0 4 1–1 2–4 –

15 0.02 (20, 3) 0 10 1–1 2–3 4–4

16 0 (20, 2) 0.5 5 1–1 2–3 4–4

17 10 0.01 0.01 (5, 3) 0 6 1–8 9–10 –

18 0.04 0.01 (5, 3) 0 10 1–6 7–10 –

19 0.01 (20, 3) 0 20 1–4 5–10 –

20 0 (5, 2) 0.2 4 1–4 5–10 –

21 0.1 0.01 (5, 3) 0 8 1–3 4–10 –

22 0.01 (5, 3) 0 10 1–1 2–8 9–10

23 0.01 (20, 3) 0 25 1–1 2–6 7–10

24 0 (20, 2) 0.2 20 1–1 2–4 5–10

25 20 0.01 0.005 (5, 3) 0 8 1–16 17–20 –

26 0.04 0.005 (5, 3) 0 12 1–12 13–20 –

27 0.005 (20, 3) 0 45 1–10 11–20 –

28 0 (5, 2) 0.1 5 1–15 16–20 –

29 0.1 0.005 (5, 3) 0 20 1–6 7–20 –

30 0.005 (5, 3) 0 15 1–6 7–16 17–20

31 0.005 (20, 3) 0 50 1–6 7–13 14–20

32 0 (20, 2) 0.1 37 1–6 7–15 16–20

least 10,000 demands in the warm-up period and 50,000 demands in total. We performed
100 replications for each instance.

Methods M1, M2, and M3 represent the exact results (via simulation), the results of
our approximation method, and the results of the approximation method of Muckstadt and
Thomas (1980), respectively. The computation times for the methods M2 and M3 are quite
short. All computations have been executed on a computer with an Intel Core2 Duo 2.5 GHz
processor. Table 2 shows the average computation times (in milliseconds) for both methods
for groups of instances with 2, 4, 10, and 20 local warehouses. We performed 10,000 replica-
tions for each instance to get accurate measures for the average computation times. We have
not exploited the symmetry when executing the computations in the symmetric instances in



160 Ann Oper Res (2015) 224:147–169

Table 2 Computation times and numbers of iterations

Instances Average Computation Time (ms) Average Number of Iterations

M2 M3 M2

Sym. Inst. Asym. Inst. Sym. Inst. Asym. Inst. Sym. Inst. Asym. Inst.

N = 2 0.31 0.30 0.03 0.04 4.6 4.4

N = 4 0.52 0.56 0.06 0.06 5.6 5.8

N = 10 1.12 1.02 0.14 0.16 6.8 5.3

N = 20 2.05 1.96 0.27 0.31 7.1 6.0

All N 1.00 0.96 0.12 0.14 6.0 5.3

both methods, i.e., we computed the performance measures for each local warehouse sepa-
rately in the symmetric instances. According to the results, the average computation times
for the methods M2 and M3 are less than 1.00 and 0.14 milliseconds, respectively. We see
that the average computation time increases with N for both methods. Table 2 also shows
the average number of iterations in the method M2 and we see that the average number of
iterations generally increases with N . Further, we see low average number of iterations in
both the symmetric and asymmetric instances, i.e. the method M2 converges quickly.

Table 3 shows the results of the symmetric instances and the exact results can be seen
with their 95 % confidence intervals. As one can see, the simulated results have been de-
termined with high absolute precision. According to the results, our method M2 clearly
outperforms method M3 with respect to the approximation of the βn. When M3 is accurate,
M2 is also accurate. M3 has large deviations from the exact values in several cases, espe-
cially when the exact βn is low, but M2 is still quite accurate in those cases. With respect
to the approximation of the θn and γn, the picture is less clear, but it is clearer when we
compute the differences for groups of instances.

In Tables 4 and 5, we see differences between M2 and M1, and M3 and M1, for the sym-
metric and asymmetric instances, respectively. For groups of instances with 2, 4, 10, and
20 local warehouses, we have computed the average of the difference, the average of the
absolute difference, and the maximum absolute difference respectively. In the asymmetric
instances, we compute the average of the absolute differences of each performance measure
in the following way. We first compute the absolute differences for each performance mea-
sure at each warehouse and instance. Then we compute the average values of the absolute
differences for all warehouses at each instance, and then take the average over all instances
with 2, 4, 10, 20 warehouses.

According to the results, our approximation method M2 is accurate at each of the perfor-
mance measures. The absolute differences over all instances for βn, θn, and γn are less than
0.0067, 0.0129, and 0.0114, respectively. For βn, the absolute differences are low for all
values of N . For θn and γn, very low absolute differences are obtained for high values of N

and larger absolute differences are obtained for low values of N . The latter is most likely due
to the stronger dependence between inventory levels at the central and local warehouse(s)
when N is low.

With respect to the average difference, our method M2 gives better results than method
M3 for βn and θn. However, for γn, method M3 gives slightly better results. With respect to
average absolute and maximum absolute differences, M2 gives much better results than M3
for all performance measures. This means that our method M2 dominates method M3.

An interesting result is that both M2 and M3 have a tendency to overestimate θn. For
the symmetric instances, M2 overestimated θn at all instances and M3 overestimated θn in
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Table 4 Results of the symmetric instances for groups of instances

Instances βn θn γn

M2-M1 M3-M1 M2-M1 M3-M1 M2-M1 M3-M1

Average Difference

N = 2 −0.0022 −0.0242 0.0250 0.0393 −0.0228 −0.0151

N = 4 −0.0015 −0.0227 0.0140 0.0226 −0.0124 0.0001

N = 10 −0.0060 −0.0291 0.0079 0.0093 −0.0020 0.0197

N = 20 −0.0039 −0.0256 0.0046 0.0017 −0.0007 0.0239

All N −0.0034 −0.0254 0.0129 0.0182 −0.0095 0.0072

Average Absolute Difference

N = 2 0.0083 0.0261 0.0250 0.0393 0.0228 0.0372

N = 4 0.0079 0.0238 0.0140 0.0229 0.0128 0.0269

N = 10 0.0065 0.0292 0.0079 0.0131 0.0061 0.0319

N = 20 0.0042 0.0257 0.0046 0.0106 0.0039 0.0310

All N 0.0067 0.0262 0.0129 0.0215 0.0114 0.0317

Maximum Absolute Difference

N = 2 0.0313 0.1345 0.0800 0.1048 0.0575 0.0993

N = 4 0.0255 0.0922 0.0448 0.0640 0.0326 0.0942

N = 10 0.0274 0.1565 0.0218 0.0295 0.0166 0.1705

N = 20 0.0204 0.1517 0.0128 0.0448 0.0127 0.1965

All N 0.0313 0.1565 0.0800 0.1048 0.0575 0.1965

56 of the 64 instances. Similar results can be observed for the asymmetric instances (we
see this result when looking at the underlying values for the θn). We can analyze this result
by considering (11) and (12). In Table 6, the average difference, the average of the absolute
difference, and the maximum absolute difference between M2 and M1, and M3 and M1 with
respect to β0 are given.

Firstly, we see from Table 6 that M2 and M3 underestimate β0 on average. (We can
also see this result in the underlying β0 values, i.e., M2 underestimates β0 at all instances
except the symmetric instance 63, and M3 underestimates β0 at all 96 instances. For more
detailed results see Özkan et al. (2011), which is the working paper version of this study
and contains more detailed numerical results.) We explain this result in the following way.
The approximation method M2 is based on the implicit assumption that the inventory levels
at the local warehouses are independent of the inventory level at the central warehouse.
More precisely, when analyzing the behavior of the central warehouse, we assume that,
independent of the actual inventory level, there is always a Poisson demand stream with rate
mnβn for replenishment orders placed by local warehouse n and a Poisson demand stream
with rate mn(1−βn) for emergency shipment requests placed by local warehouse n (n ∈ N ).
This leads to the approximate birth-death process for the behavior of the inventory level at
the central warehouse as depicted in Fig. 2. However, in the true system, we have a positive
correlation between the inventory level IL0 at the central warehouse and the inventory levels
ILn at the local warehouses n ∈ N . Hence, in the true system, the total stream of emergency
shipment requests will have a higher rate than

∑
n∈N mn(1 − βn) when IL0 ≤ 0, and the

stream of replenishment orders will have a lower rate than
∑

n∈N mnβn. Hence, in Fig. 2,
the rate m′

0 for transitions to the left when IL0 ≤ 0 is an overestimation, and this leads to an
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Table 5 Results of the asymmetric instances for groups of instances

Instances βn θn γn

M2-M1 M3-M1 M2-M1 M3-M1 M2-M1 M3-M1

Average Difference

N = 2 −0.0065 −0.0316 0.0189 0.0364 −0.0123 −0.0047

N = 4 −0.0054 −0.0182 0.0113 0.0239 −0.0059 −0.0057

N = 10 −0.0019 −0.0072 0.0053 0.0116 −0.0034 −0.0044

N = 20 −0.0025 −0.0131 0.0052 0.0073 −0.0026 0.0058

All N −0.0041 −0.0175 0.0102 0.0198 −0.0061 −0.0023

Average Absolute Difference

N = 2 0.0075 0.0317 0.0189 0.0364 0.0141 0.0268

N = 4 0.0065 0.0182 0.0113 0.0239 0.0097 0.0157

N = 10 0.0024 0.0073 0.0053 0.0116 0.0048 0.0089

N = 20 0.0026 0.0131 0.0052 0.0089 0.0049 0.0147

All N 0.0048 0.0176 0.0102 0.0202 0.0084 0.0165

Maximum Absolute Difference

N = 2 0.0425 0.1431 0.0381 0.1034 0.0308 0.0884

N = 4 0.0380 0.0941 0.0292 0.0524 0.0252 0.0615

N = 10 0.0233 0.0625 0.0167 0.0510 0.0163 0.0483

N = 20 0.0191 0.0870 0.0142 0.0238 0.0152 0.1108

All N 0.0425 0.1431 0.0381 0.1034 0.0308 0.1108

Table 6 Average, average of the absolute, and maximum absolute differences for β0

Symmetric Ins. Asymmetric Ins.

M2-M1 M3-M1 M2-M1 M3-M1

Average Diff. −0.0435 −0.0864 −0.0394 −0.0791

Absolute Diff. 0.0437 0.0864 0.0394 0.0791

Maximum Abs. Diff. 0.1559 0.3865 0.1105 0.2462

underestimation of β0. Notice that the bounding of the state space (at state −S̄) reduces the
effect of the overestimation of the transitions to the left when IL0 ≤ 0.

Method M3 underestimates β0 more than M2, as seen in Table 6. This is explained by the
fact that M3 assumes that the demand rate at the central warehouse is always equal to m0.
Hence, the transitions to the left when IL0 ≤ 0 are even further overestimated. Furthermore,
no bounding of the state space is assumed.

Although method M2 generally underestimates β0, it overestimates θn, which is deter-
mined via (11). The reason is that L(Sn,mntn) generally overestimates P(ILn = 0 | IL0 > 0).
In the true system, there is a positive correlation between IL0 and ILn. If there is positive
stock at the central warehouse, then it is less likely to have zero stock at a local warehouse.
Apparently, the relative overestimation of P(ILn = 0|IL0 > 0) is larger than the relative un-
derestimation of β0. Lastly, because method M2 generally overestimates θn, it has a ten-
dency to underestimate γn because of (1). Similarly, although M3 underestimates β0 in all
instances, it generally overestimates θn, which is determined by (12). The reason is that
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Table 7 Average, average absolute, and maximum absolute differences between the deterministic and the
remaining distribution cases

Case Average Difference Average Absolute Diff. Maximum Absolute Diff.

βn θn γn βn θn γn βn θn γn

Erlang-Det. −0.0004 0.0006 −0.0002 0.0004 0.0006 0.0004 0.0024 0.0044 0.0020

Expo.-Det. −0.0008 0.0022 −0.0014 0.0008 0.0022 0.0015 0.0048 0.0125 0.0081

Log.-Det. −0.0010 0.0028 −0.0018 0.0010 0.0028 0.0020 0.0060 0.0161 0.0110

1 − βn severely overestimates P(ILn = 0|IL0 > 0). Again, this is because of the ignored
positive correlation between IL0 and ILn.

Notice that all over- and underestimations become smaller when the correlation between
IL0 and the ILn is not as pronounced. This is typically so when we have higher numbers of
local warehouses.

4.2 Sensitivity analysis

In our model, we assumed that the repair leadtime at the repair facility is deterministic. This
leadtime has been denoted by t0. However, this assumption does not always hold in a real-
life situation as there may be variability in the leadtime. Here, we analyze the sensitivity of
the system performance with respect to the repair leadtime distribution. We consider four
different distributions. The first distribution is the deterministic distribution, cf. the assump-
tion in our model. As we mentioned in Sect. 3, we assumed an exponential distribution for
the repair leadtime in our approximate evaluation method (in the step to determine the mean
delay W0). So, the second distribution that we consider is the exponential distribution, with
mean time t0. The other two distributions are with a coefficient of variation of 0.5 and 2,
respectively. We choose an Erlang-4 distribution as the third distribution. This distribution
has a coefficient of variation of 0.5; its scale parameter is chosen such that the mean is equal
to t0. For the fourth distribution, we choose a lognormal distribution, with parameters such
that the coefficient of variation is 2 and the mean equals t0. We simulated results for each
performance measure under each distribution, and generated results for the symmetric in-
stances with 4 and 10 local warehouses (32 instances in total). Table 7 depicts the average
difference, average absolute difference, and maximum absolute difference of the determin-
istic case with the other distributions (for more detailed results, see Özkan et al. 2011).

According to the Table 7, the average differences and average absolute differences are all
below 0.003. Hence, we may conclude that the performance is rather insensitive to the repair
leadtime distribution. We also made some simulation runs for the asymmetric instances to
check the sensitivity, and we got similar results. This implies that our approximate evaluation
method works also well for systems with a generally distributed repair leadtime.

Another interesting result that we see from Table 7 is that the most sensitive performance
measure for the repair leadtime is θn, which is also the one that our approximation method
estimates the worst among the three performance measures βn, θn, and γn. Table 7 also
shows that the insensitivity of the system to the repair leadtime decreases as the coefficient of
the variation increases. This means that our system is not completely insensitive to the repair
leadtime distribution, but even in the lognormal distribution case, which has the highest
coefficient of variation among the four distribution cases; the average, average absolute, and
maximum absolute differences are still very low.



166 Ann Oper Res (2015) 224:147–169

4.3 Cost optimization

In this section, we demonstrate the use of our approximation method for a single-item opti-
mization problem. The objective is to minimize the total cost subject to mean waiting time
constraint per local warehouse. Let W

obj
n denote the target mean waiting time at local ware-

house n ∈ N . Then, our optimization problem is as follows:

min C

s.t. Wn ≤ Wobj
n , ∀n ∈ N ,

Sn ∈ N ∪ {0}, ∀n ∈ N ∪ {0},
where C and Wn are defined as in (3) and (2), respectively.

The above optimization problem may be solved by a smart enumeration method. First,
we derive lower bounds for the base stock levels at the local warehouses under a feasible
solution. By (2) and (1), Wn ≥ (1 −βn)t̂n, where t̂n := min{tCW

n , tRF
n } (generally, it will hold

that tCW
n ≤ tRF

n and then t̂n = tCW
n ). By (4) and (6), LTn ≥ tn and thus βn ≤ 1 − L(Sn,mntn)

(here, we use the property that L(c,ρ) is increasing as a function of ρ, cf. Harel 1990).
Hence, Wn ≥ t̂nL(Sn,mntn), and each feasible solution (S0, S1, . . . , SN) satisfies Sn ≥ sn,
n ∈ N , where:

sn = min
{
j ∈ N ∪ {0} : t̂nL(j,mntn) ≤ Wobj

n

}
(14)

(here, we use that L(c,ρ) is decreasing as a function of c ≥ 0, cf. Karush 1957; see also
Remark 2 in Kranenburg and van Houtum 2007).

Next, define C(k) as the solution with the lowest costs of all feasible solutions with a total
stock of k = ∑N

n=0 Sn units. Because of the above lower bounds sn for the base stock levels at
the local warehouses, there is no feasible solution for k <

∑N

n=1 sn. An optimal solution may
be computed by determining C(k) for k = ∑N

n=1 sn,
∑N

n=1 sn +1, . . . . Obviously, C(k) ≥ hk

for all k. Hence, this procedure may be stopped at a given value for k as soon as the cost
of the best solution under a total stock of at most k = ∑N

n=0 Sn units, is less than or equal
to h(k + 1), i.e., as soon as C∗(k) ≤ h(k + 1) with C∗(k) := minj≤k C(j). This leads to the
following exact solution procedure:

Step 0 Let k = ∑N

n=1 sn, C∗(k) = ∞.
Step 1 For each (S0, S1, . . . , SN) with

∑N

n=0 Sn = k and Sn ≥ sn for all n ∈ N , compute C

and Wn for all n ∈ N . If C < C∗(k) and Wn ≤ W
obj
n for all n ∈ N , then C∗(k) = C.

Step 2 If C∗(k) ≤ h(k + 1), then stop, else k := k + 1 and go to Step 1.

The above procedure generates an optimal solution when an exact evaluation method is
used. We use the above method with the approximate evaluation method M2, which leads
to a heuristic solution. Because of the accuracy of method M2, one may expect that the
heuristic solutions will be close to optimal and that their mean waiting times are below
or close to the target levels. We test this in a small experiment consisting of 10 asymmetric
instances with N = 6 local warehouses. We apply the above smart enumeration method with
evaluations by method M2. This leads to a heuristic solution (S0, S1, . . . , SN), approximated
costs C and approximated mean waiting times Wn, n ∈ N . Next by simulation, we determine
the exact costs and waiting times of the heuristic solution. We compare the exact costs to the
approximated costs and we measure

ΔW =
N∑

n=1

max
{
0,Wn − Wobj

n

};
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Table 8 Results of the cost optimization experiment

Inst. N m1 Δm (t0, t1) Δt h Heuristic sol.
(S0, S1, . . . , S6)

Total Costs (C) Feasib.
ΔW (hours)M1 M2 M2-M1

1 6 0.01 0.01 (5,3) 0 20 (2,1,1,1,2,2,2) 226 225 0.4 % 0.013

2 0.04 0.01 (5,3) 0 20 (2,2,2,2,2,2,2) 293 292 0.5 % 0

3 0.01 (20,3) 0 2 (9,2,2,2,2,3,3) 53.5 52.1 2.7 % 0

4 0 (5,2) 0.5 2 (2,2,2,2,2,2,2) 30.6 30.0 2.1 % 0

5 0.01 (20,2) 0.5 20 (8,2,2,2,2,2,3) 436 435 0.3 % 0

6 0.08 0.01 (5,3) 0 20 (4,2,2,2,2,2,2) 348 345 0.9 % 0

7 0.01 (20,3) 0 2 (14,3,3,3,3,3,3) 72.5 70.0 3.4 % 0

8 0 (20,2) 0.5 2 (10,3,3,3,3,3,3) 62.1 60.0 3.3 % 0

9 0.01 (5,2) 0.5 2 (5,2,2,3,3,3,3) 49.5 47.9 3.2 % 0

10 0.01 (20,2) 0.5 20 (13,2,2,2,3,3,3) 584 582 0.3 % 0

ΔW measures how much the mean waiting time constraints are violated.
For all 10 instances, we take tCW

n = 10 hours, tRF
n = 20 hours, CCW

n = 500 USD, CRF
n =

1000 USD, and W
obj
n = 1.5 hours for all n ∈ N . For h, we take 2 and 20 USD per unit per

day, which corresponds to items with a price of 5,000 and 50,000 USD, respectively. The
other parameters are denoted in the same way as for the asymmetric instances in Sect. 4.1.
The results are listed in Table 8.

According to the results, total cost values of the method M1 are close to the results of
M2. The average absolute deviation of M2 from M1 is 1.7 %. Moreover, M1 gives feasible
results at each instance except instance 1. In instance 1, W3 is just a little bit larger than
W

obj

3 (the difference is less than one minute); this difference can be considered as negligible
in practical applications. When h = 20, i.e. the inventory holding cost is high, the absolute
differences of the method M2 with respect to M1 are smaller than for h = 2. This result is
expected, because the inventory holding cost of the two methods are the same and the only
cost difference occurs in the computation of total emergency shipment costs. When h = 20,
total inventory holding costs dominate the total emergency shipment costs in each of the
methods, and thus the relative absolute differences with respect to the total cost values are
smaller. Another interesting observation is that the method M2 underestimates the total cost
values at each instance. The reason of this result is that M2 has a tendency to overestimate
θn and underestimate γn as explained in Sect. 4.1, and CRF

n > CCW
n for all n ∈ N in our

experiment. Because the results of the method M1 are close to the method M2 with respect
to the objective function value and the use of M2 in the smart enumeration procedure leads
to feasible solutions, we may say that M2 can be safely used for this type of optimization
problems.

Note that, for given k, N , and sn, n ∈ N , the number of solutions considered in Step 1
of the smart enumeration procedure is equal to (k − ∑N

n=1 sn + N)!/[(k − ∑N

n=1 sn)!N !].
Therefore, as k and N increase, the number of solutions and the computation time grow
exponentially. Hence, for large problems, one has to use other procedures such as greedy
procedures; see e.g. the greedy procedures in Wong et al. (2005, 2007) and Kranenburg and
van Houtum (2009), which have been shown to work well for similar optimization problems.



168 Ann Oper Res (2015) 224:147–169

5 Conclusion

In this study, we derived an accurate and fast approximate evaluation method for two-
echelon spare parts systems with emergency shipments. We also showed that our method
outperforms the method of Muckstadt and Thomas (1980). Further, we showed that the per-
formance measures of our system are virtually insensitive to the repair leadtime distribution,
which increases the applicability of our approximation method. Lastly, we performed a cost
optimization experiment and show that our approximation method can be safely used in
optimization problems as well.

The main idea behind our approximation method is to decompose the analysis of the
whole system into an analysis for local warehouses (leading to the βn for a given W0) and an
analysis for the central warehouse (leading to W0 for given βn’s), and an iterative procedure
to couple those two analyses. This idea may also work for systems with additional features.

One of such features is that, demands do not only occur for single units at a time but for
two or more units (‘compounds’). One has this feature when a repairable occurs multiple
times in the configuration of a technical system. It may be desired to replace all parts of a
repairable when one of them fails. Modeling demand as compound Poisson processes will be
more accurate in that case. The main idea of our approximation method can still be followed,
but the procedure has to be adapted at multiple places (notice that one also has to specify
whether partial or only complete fulfillments of demands are allowed by a local warehouse):
(i) in the analysis of a local warehouse, one gets a parallel with an MX/G/c/c instead of
an M/G/c/c queue and one gets more complicated calculations for the ‘overflow’ demand
processes to the central warehouse and the repair facility; (ii) in the analysis of the central
warehouse, one does not get a birth-death process anymore, but a Markov process with a
more general transition structure, which requires a computational solution; (iii) the logic
to derive θn has to be adapted. Obviously, new numerical experiments are needed to verify
whether the resulting approximation method would still be accurate.

Another additional feature that one may have in a real-life situation is the presence of
lateral shipments, where the application of a lateral shipment may be preferred above an
emergency shipment from the central warehouse (as in Alfredsson and Verrijdt 1999) or
the other way around (because of logistics reasons). The main idea of our method may also
work in that case, but in the analysis the ‘overflow’ demand streams because of the lateral
shipments have to be added (e.g., like in Kranenburg and van Houtum 2009).
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