

Supervisory control of partially observed weighted discrete-
event systems
Citation for published version (APA):
Su, R., Schuppen, van, J. H., & Rooda, J. E. (2010). Supervisory control of partially observed weighted discrete-
event systems. (SE report; Vol. 2010-03). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 13. Sep. 2024

https://research.tue.nl/en/publications/b3f5e064-1e76-48e2-9633-dbe7678bd9a8

Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://se.wtb.tue.nl/

SE Report: Nr. 2010-03

Supervisory Control of Partially

Observed Weighted Discrete-Event

Systems

Rong Su, Jan H. van Schuppen and Jacobus E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2010-03
Eindhoven, February 2010

SE Reports are available via http://se.wtb.tue.nl/sereports

Abstract

When the Ramadge-Wonham supervisory control paradigm is applied to practical prob-
lems, it is desirable to require a closed-loop system be finitely coreachable in the sense
that a marker state can be reached within a finite number of transitions regardless of
the current state. Furthermore, considering that actions in a real system usually carry
costs, it is desirable to synthesize a supervisor that incurs only a minimum cost. Pursuing
finite coreachability with a minimum cost is the main motivation for developing a theory
about optimal supervisory control of weighted discrete-event systems in the literature. In
this paper we follow the same line of optimal supervisory control but with a new focus
on partial observation, which is common in practical applications. We first define three
finitely-weighted supervisory control problems, namely (1) to decide the existence of a
finitely-weighted controllable and normal sublanguage; (2) to compute a finitely-weighted
controllable and normal sublanguage, when the answer to Problem (1) is affirmative; (3)
to compute the supremal minimum-weighted controllable and normal sublanguage, when
the answer to Problem (1) is affirmative. Then we provide concrete algorithms to solve
them.

1 Introduction

The Ramadge-Wonham supervisory control paradigm [2] [3] has been applied to many
industrial applications. In this paradigm a supervisor is synthesized so that the closed-
loop system satisfies some pre-specified requirements. There are three important notions:
controllability, which ensures a supervisor to disable only controllable events; observabil-
ity, which ensures a supervisor to respond only upon observations; and nonblockingness,
which ensures a supervisor to be able to drive a system towards a marker state regardless
of the current state. The last notion, nonblockingness, may potentially cause a problem
for implementation because it does not guarantee finite coreachability which is defined as
being able to reach a marker state within a finite number of transitions regardless of the
current state. There are at least two approaches to solve the finite coreachability prob-
lem: (1) to add weights to transitions, and solve a finitely-weighted supervisory control
problem; (2) to model a plant as an ω automaton, and synthesize a supervisor for infinite
behaviors. The first approach follows the standard Ramadge-Wonham control paradigm
with only a minor extension, namely to deal with weights. The idea is to compute a
supervisor such that the sum weight of any sequence of transitions in the closed-loop
system is finitely upper bounded. If there is no cycle in the system with zero sum weight,
then the closed-loop system can always reach a marker state within a finite number of
transitions. The weighted automata can not only help us achieve finite coreachability,
but also allow us to model and solve some optimization problems such as control with
minimum cost. This has been discussed in the work about optimal supervisory control,
e.g., [8] [10]. The second approach is to synthesize a supervisor such that, by adopting an
infinite-string acceptance condition, e.g. the Rabin or Muller acceptance condition, any
run in the closed-loop system visits marker states infinitely often [14] [15], which implies
finite coreachability in a finite-state automaton. The second approach has an arguable
shortcoming: it uses Safra’s determinization construction [18], which is rather difficult
to implement [19] [20], even though its complexity is exponential time. For this reason,
in this paper we adopt the setting of weighted finite-state automata with a goal of syn-
thesizing a supervisor that enforces finite coreachability with a minimum cost under an
assumption that partial observation may be present.

We model a plant as a weighted automaton, in which each transition is associated with a
nonnegative real number. A requirement is modeled as an unweighted automaton. After
defining the weight of a language as the largest of sum weights of strings in this language,
we first present three control problems: (1) to decide whether there exists a finitely-
weighted sublanguage of the plant’s marked behavior (subject to the requirement), which
is controllable and normal with respect to the plant; (2) to compute a finitely-weighted
controllable and normal sublanguage, when the answer to Problem (1) is affirmative;
(3) to compute the supremal minimum-weighted controllable and normal sublanguage,
when the answer to Problem (1) is affirmative. Problems (1) and (2) are related to fi-
nite coreachability, where Problem (1) is about deciding the existence of a solution, and
Problem (2) is to find one such solution. Problem (3) is about performance optimization.
Then we provide concrete algorithms to solve these problems. The complexities of solving
Problems (1) and (2) depend on the complexity of the relevant natural projection, which
projects out unobservable events from the plant model. If the projection is a natural
observer [12], whose complexity is shown to be polynomial time, then the complexities
of solving Problems (1) and (2) are also polynomial time. The complexity of solving
Problem (3) turns out to be NP-hard. Owing to the limited space, we have decided to
put the NP-hardness result in a companion paper, which is still under preparation.

Several papers in the literature about optimal supervisory control of weighted discrete-

2

event systems have a similar setting as ours, e.g., [9] [8] [10] [11] [22]. In these papers
weights are assigned to events or transitions, and the goal is to synthesize a supervisor,
which can drive a target system from the initial state to a marker state with a mini-
mum cost. Compared with them, the present paper is different in various aspects. The
most significant difference is that partial observation is not considered in the these pa-
pers except [11]. Without partial observation, the aforementioned three problems can be
solved by a single polynomial time algorithm described in [8], or in [10] when weights
are also assigned to control actions. In fact, the algorithm of [8] is used in this paper
to solve Problem (1) and (2), after we project out unobservable transitions and create
a model with only observable transitions. But this strategy works under an assumption
that the relevant natural projection is a natural observer [12]. Otherwise, we need to
elaborate the projected plant model to make sure that, an optimal control strategy for
the projected plant model will not cause blocking in the original plant model. This idea
bears some similarity with the work described in [11]. For example, in [11] the authors
use normality to handle partial observation by assuming that all unobservable events are
uncontrollable (which makes observability and normality coincide). They use projection
to remove unobservable transitions and create a so-called C-observer in order to obtain
an optimal supervisor based it. To ensure that costs of unobservable transitions can be
properly recorded in the projected model, they introduce the notion of locally computed
cost, which has its counterpart in the present paper. To ensure that a supervisor based
on the projected model will not cause blocking in the original model, they introduce the
concept of admissible control actions, which serves the same purpose as the notion of
auxiliary weight function in the present paper. Although two papers share many similar
features, their difference is also significant. In [11] the authors assume that the marker
state in the plant model has an indicator event, which is treated as controllable and
observable. Without this assumption their approach based on projection may not work.
In the present paper we do not make such an assumption. The authors in [11] pursue
the DP-optimality with respect to the projected plant model. In the present paper we
aim at the supremal controllable and normal sublanguage with respect to the original
plant model. As a consequence, the algorithms used in the present paper are completely
different from the one used in [11]. Besides partial observation, the models and/or cost
functions in the aforementioned papers are not exactly the same as the one used in this
paper. For example, in [9] all events are assumed to be controllable. In [10] and [11]
weights are assigned to events instead of directly on transitions, and are interpreted as
occurrence costs and control costs separately. Their notion of DP-optimality is different
from our notion of optimality in the sense that it consists of many local cost functions
that need to be minimized altogether, one for each local state whose value denotes the
cost of reaching a marker state from the current state. In [22] weights are assigned to
transitions, and the authors define their cost function by taking the maximum over some
local cost functions - one for each prefix substring whose value denotes the cost of extend-
ing the current string to a marked one. Such differences on models and/or cost functions
make their algorithms deviate from ours further.

The problems discussed in this paper are also related to supervisory control of timed
automata, where, in a restricted form, each transition is associated with a time interval
applicable to a specific clock. The control goal is to synthesize a supervisor such that
the closed-loop system can reach a certain desirable state (e.g. a marker state) with a
duration no more than some pre-specified value, even when uncontrollable events happen.
A timed automaton can be treated as a special weighted automaton. If we use only one
clock, and restrict every time interval to a singleton, then a timed automaton becomes
an ordinary weighted automaton with weights on transitions. Settings close to ours can
be found, e.g., in [5] [6] [7]. Compared with these papers, ours is different in the following
aspects. First, we deal with partial observation and they do not. Second, we use standard
Ramadge-Wonham control paradigm to deal with synthesis, and they use a game theo-

3 Introduction

retic approach, where uncontrollable events play the role of the opponent, which tries to
maximize the cost, and the controllable events correspond to the player who tries to min-
imize the cost. As a result, a solution to their control problems corresponds to a strategy
of the player in response to the opponent’s moves. Finally, all these papers except [7]
aim to find one strategy, which need not be the least restrictive. This synthesis objective
is close to ours in solving Problems (1) and (2), and part of (3) without addressing the
supremality. In [7] the least restrictive control strategy is in terms of game strategies,
which is close to state-based feedback control. As a contrast, our least restrictive control
strategy is in terms of supremal minimum-weighted controllable and normal sublanguages.

This paper is organized as follows. In Section II we first provide all relevant concepts
about languages and automata, then introduce three supervisory control problems. After
presenting algorithms to solve those problems in Section III, conclusions are drawn in
Section IV.

2 Finitely-weighted Supervisory Control Problems

In this section we first review basic concepts of languages and weighted finite-state au-
tomata. Then we present three finitely-weighted supervisory control problems under
partial observation.

Let Σ be a finite alphabet, and Σ∗ denote the Kleene closure of Σ, i.e. the collection
of all finite sequences of events taken from Σ. Given two strings s, t ∈ Σ∗, s is called a
prefix substring of t, written as s ≤ t, if there exists s′ ∈ Σ∗ such that ss′ = t, where
ss′ denotes the concatenation of s and s′. We use ǫ to denote the empty string of Σ∗

such that for any string s ∈ Σ∗, ǫs = sǫ = s. A subset L ⊆ Σ∗ is called a language.
L = {s ∈ Σ∗|(∃t ∈ L) s ≤ t} ⊆ Σ∗ is the prefix closure of L. We say L is prefix closed if
L = L. Given two languages L,L′ ⊆ Σ∗, let LL′ := {ss′ ∈ Σ∗|s ∈ L ∧ s′ ∈ L′} denote the
concatenation of two sets. When L is a singleton, say L = {s}, then we simply use sL′

to denote {s}L′. Let s/L := {s′ ∈ Σ∗|ss′ ∈ L}. Let Σ′ ⊆ Σ. A mapping P : Σ∗ → Σ′∗ is
called the natural projection with respect to (Σ,Σ′), if

1. P (ǫ) = ǫ

2. (∀σ ∈ Σ)P (σ) :=

{

σ if σ ∈ Σ′

ǫ otherwise

3. (∀sσ ∈ Σ∗)P (sσ) = P (s)P (σ)

Given a language L ⊆ Σ∗, P (L) := {P (s) ∈ Σ′∗|s ∈ L}. The inverse image mapping of
P is

P−1 : 2Σ
′∗

→ 2Σ
∗

: L 7→ P−1(L) := {s ∈ Σ∗|P (s) ∈ L}

Let Po : Σ∗ → Σ∗
o be the natural projection. Given L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2, the syn-

chronous product of L1 and L2 is defined as:

L1||L2 := P−1
1 (L1) ∩ P

−1
2 (L2)

where P1 : (Σ1 ∪ Σ2)
∗ → Σ∗

1 and P2 : (Σ1 ∪ Σ2)
∗ → Σ∗

2 are natural projections.

4

A weighted finite-state automaton is a pair (G = (X,Σ, ξ, x0, Xm), f), where G denotes
a deterministic finite-state automaton with X for the state set, Σ for the alphabet,
ξ : X×Σ → X for the (partial) transition function, x0 for the initial state, and Xm for the
marker state set, and f : X×Σ → R

+∪{+∞} is the (partial) weight function, where R+

denotes the set of nonnegative reals. Here we treat +∞ as a single value such that: (1)
(+∞)+ (+∞) = +∞; (2) for all a ∈ R

+, +∞+ a = +∞. We use ξ(x, σ)! to denote that,
the transition ξ(x, σ) is defined, and ¬ ξ(x, σ)! for ξ(x, σ) not being defined. As usual, we
extend the domain of ξ from X×Σ to X×Σ∗. Define µG(x) := {σ ∈ Σ|ξ(x, σ)!}, which is
the collection of all events that are defined at state x in G. Let L(G) := {s ∈ Σ∗|ξ(x0, s)!}
be the closed behavior of G and Lm(G) := {s ∈ L(G)|ξ(x0, s) ∈ Xm} for the marked be-

havior of G. We call G nonblocking if Lm(G) = L(G). Let Φ(Σ) be the collection of all
weighted finite-state automata, whose alphabet is Σ, and φ(Σ) for the collection of all
unweighted finite-state automata, whose alphabet is Σ. We say an automaton G ∈ φ(Σ)

recognizes a language K ⊆ Σ∗, if Lm(G) = K and Lm(G) = L(G).

To associate each sublanguage with a weight, we first define a weight for each string. To
this end, let θG,f : X × Σ∗ → R

+ be a map, where

1. θG,f(x, ǫ) = 0

2. (∀sσ ∈ Σ∗) θG,f (x, sσ) :=

{

θG,f (x, s) + f(ξ(x, s), σ) if ξ(x, sσ)!
+∞ otherwise

In other words, the weight of a string is simply the sum of weights of transitions appearing
in this string. For eachK ⊆ L(G), the weight of K with respect to G is defined as follows:

ωG,f(K) :=

{

sups∈K θG,f(x0, s) if K 6= ∅

+∞ otherwise

The reason why we define the weight of K as the supremum of string weights in K is
that, we intend to use the “worst-case” execution cost in terms of the largest weight of all
execution paths (i.e., strings) to measure the quality of a controlled behavior described
by a sublanguage. The motivation of assigning an infinite weight to the empty set is that,
there is no string in an empty set that can bring the system to a marker state, thus, no
finite weights can be incurred.

In this paper we will frequently use an automaton G′ ∈ φ(Σ) that recognizes a sub-
language of Lm(G). To associate a proper weight function with G′, we introduce the
following concept.

Definition 2.1. Given Gi = (Xi,Σ, ξi, xi,0, Xi,m) ∈ φ(Σ) for i = 1, 2, let g : X1 → X2

be a map. We say G1 is homomorphic to G2 with respect to g, if

1. (∀x ∈ X1,m) g(x) ∈ X2,m

2. (∀x, x′ ∈ X1)(∀σ ∈ Σ)x′ ∈ ξ1(x, σ) ⇒ g(x′) ∈ ξ2(g(x), σ) �

Suppose G′ = (X ′,Σ, ξ′, x′0, X
′
m) ∈ φ(Σ) is homomorphic to G = (X,Σ, ξ, x0, Xm) with

respect to a map g. Then we say a weight function f ′ : X ′ ×Σ → R
+ ∪ {+∞} is induced

5 Finitely-weighted Supervisory Control Problems

from (G, f) ∈ Φ(Σ), if

(∀x ∈ X ′)(∀σ ∈ Σ) f ′(x, σ) := f(g(x), σ)

Given a sublanguage K ⊆ Lm(G), which is regular, we can always find a finite-state
automaton G′ ∈ Φ(Σ), which recognizes K and is homomorphic to G. Let f ′ be induced
from (G, f). For each K ′ ⊆ K = Lm(G′) ⊆ Lm(G), it is straightforward to show that
ωG′,f ′(K ′) = ωG,f(K

′).

To present our supervisory control problem, we need the concepts of controllability and
normality. Let Σ = Σc ∪ Σuc = Σo ∪ Σuo, where disjoint subsets Σc and Σuc denote
respectively the set of controllable events and the set of uncontrollable events, and dis-
joint subsets Σo and Σuo denote respectively the set of observable events and the set of
unobservable events. We have the following two definitions.

Definition 2.2. [13] Given G ∈ φ(Σ), a language K ⊆ L(G) is controllable with respect
to G, if KΣuc ∩ L(G) ⊆ K. �

Definition 2.3. Given G ∈ φ(Σ), a language K ⊆ L(G) is normal with respect to G
and the natural projection Po : Σ∗ → Σ∗

o, if K = L(G) ∩ P−1
o (Po(K)). �

Def. 2.3 is different from the definition of normality defined in [4], where normality is a
property on the language itself, not on its prefix closure as used in Def. 2.3. We hope
this slight abuse of notation will not cause any confusion for readers. When Po is known,
we simply say that K is normal with respect to G. Given another automaton E ∈ φ(Σ),
which is treated as a requirement, let

C(G,E) := {K ⊆ Lm(G) ∩ Lm(E)|K is controllable with respect to G}

and
CN (G,E) := {K ∈ C(G,E)|K is normal with respect to G}

Since controllability and normality is closed under set union, we use supC(G,E) and
supCN (G,E) to denote respectively the supremal controllable sublanguage and the supre-
mal controllable and normal sublanguage of G with respect to E. Let

WCN (G, f,E) := {K ∈ CN (G,E)|ωG,f (K) < +∞}

be the collection of controllable and normal sublanguages of G with respect to E, whose
weights are finite. It is possible that, WCN (G, f,E) = ∅ while CN (G,E) 6= ∅. For
example, consider a weighted automaton (G, f) ∈ Φ(Σ) with only uncontrollable transi-
tions and some of them form a loop. If E allows all transitions in (G, f), e.g., L(E) =
Lm(E) = Σ∗, then clearly CN (G,E) = {Lm(G)} 6= ∅. But WCN (G, f,E) = ∅ because
the loop cannot be eliminated by disabling controllable events. Because

min
(x,σ)∈X×Σ:f(x,σ)>0

f(x, σ) > 0,

for all K ∈ WCN (G, f,E) we can derive that

{ωG,f(K
′)|K ′ ∈ WCN (G, f,E) ∧ ωG,f (K

′) ≤ ωG,f(K)}

is finite. Thus, there exists K∗ ∈ WCN (G, f,E) such that

(∀K ∈ WCN (G, f,E))ωG,f (K
∗) ≤ ωG,f(K)

We call K∗ a minimum weighted controllable and normal sublanguage of (G, f) with
respect to E. Let Ξ(G, f,E) ⊆ WCN (G, f,E) be the collection of all minimum weighted
controllable and normal sublanguages of (G, f) with respect to E. Since an arbitrary

6

union of controllable and normal sublanguages is still controllable and normal, we have
that

∪K∈Ξ(G,f,E)K ∈ Ξ(G, f,E),

which is called the supremal minimum weighted controllable and normal sublanguage of
(G, f) with respect to E, and denote it as supΞ(G, f,E). We make the following assump-
tion:

Assumption 1: Throughout this paper each plant model (G = (X,Σ, ξ, x0, Xm), f) ∈
Φ(Σ) is marking deadlock in the sense that, for all x ∈ Xm, µG(x) = ∅; and zero-
weighted-loop-free in the sense that, for all s1s

∗
2 ⊆ L(G) with s1, s2 ∈ Σ∗, we have

θG,f (ξ(x0, s1), s2) > 0. �

In other words, every marker state of G is a deadlock state and there is no loop in G,
whose weight is zero. The reason why we are interested in zero-weighted-loop-free au-
tomata is that we want to design a supervisor such that finite coreachability holds in the
closed-loop system. If there is a loop in (G, f) with zero weight, then it is possible that
the weight of a controllable and normal sublanguage is finite, but the closed-loop system
is not finitely coreachable. The reason why we impose marking deadlock on (G, f) is that
we are interested in a supervisor that can drive the closed-loop system to a marker state
from the initial state with a finite (and ideally, the minimum) cost. As long as a marker
state is reached, whether the plant continues or stops is not our concern. In reality, after
a marker state is reached, the system can be reset to repeat the same sequence. From
now on we assume that Φ(Σ) is the collection of all weighted finite-state automata, which
are marking deadlock and zero-weighted-loop-free. We now state our problems:

Problem 2.4. Given (G, f) ∈ Φ(Σ) and E ∈ φ(Σ), decide whether WCN (G, f,E) 6= ∅.
�

Problem 2.5. When WCN (G, f,E) 6= ∅, compute one K ∈ WCN (G, f,E). �

Problem 2.6. When WCN (G, f,E) 6= ∅, compute supΞ(G, f,E). �

For notation simplicity we use WSCP to denote the above computational problems, which
stands for theWeighted Supervisory Control Problem. To distinguish individual problems,
we use WSCP1, WSCP2 andWSCP3 respective. WSCP1 is about deciding whether there
exists a finitely weighted controllable and normal sublanguage of (G, f) with respect to
E. WSCP2 aims to find one such a sublanguage. WSCP3 aims to find the supremal
minimum-weighted controllable and normal sublanguage of (G, f) with respect to E.
Next, we will provide concrete algorithms to show that WSCP is solvable.

3 Algorithms for Solving WSCP

In this section we first present an algorithm to solve WSCP in its general setting, namely
with a plant modeled as a deterministic weighted finite-state automaton and a require-
ment modeled as a deterministic unweighted finite-state automaton. Then we show that,
WSCP can be solved more efficiently if the natural projection Po possesses a certain
property.

7 Algorithms for Solving WSCP

3.1 An algorithm for solving WSCP in the general setting

Given (G = (X,Σ, ξ, x0, Xm), f) ∈ Φ(Σ), we construct another finite-state automaton

Ĝ = (Z,Σo, δ, z0, Zm) ∈ φ(Σo), where

1. Z ⊆ 2X , Zm := {z ∈ Z|z ∩Xm 6= ∅}, z0 := {x ∈ X |(∃u ∈ Σ∗
uo) ξ(x0, u) = x}

2. (∀z ∈ Z)(∀σ ∈ Σo) δ(z, σ) := {x ∈ X |(∃x′ ∈ z)(∃s ∈ P−1
o (σ)) ξ(x′, s) = x}

The definition of Ĝ is simply a power-set construction [13], and Ĝ recognizes Po(Lm(G)),

i.e., Lm(Ĝ) = Po(Lm(G)) and L(Ĝ) = Po(L(G)). We call Ĝ the observable behavior of

(G, f). In general, G being nonblocking does not necessarily implies Ĝ being nonblocking,
because the natural projection may mask out some blocking behaviors of G. We define a

map ĥ : Z × 2Σo → {+∞, 0}, where for each (z, γ) ∈ Z × 2Σo ,

ĥ(z, γ) :=

{

0 if (∀x ∈ z) [(∃u ∈ Σ∗
uo) ξ(x, u) ∈ Xm ∨ (∃σ ∈ γ)(∃s ∈ P−1

o (σ)) ξ(x, s)!]
+∞ otherwise

We call ĥ the auxiliary weight function of (Ĝ, f̂) with respect to (G, f). If we interpret γ

as the collection of events that are allowed to be fired at z, then ĥ(z, γ) = 0 if and only
if under the transitions of γ every state x ∈ z can either reach a marker state of G via
a ‘silent’ path or reach another state via some path whose projected image is in γ. For
each z, z′ ∈ Z, let ρ[z, z′] : z × z′ × Σo → R

+ be a (partial) map, where, for all x ∈ z,
x′ ∈ z′ and σ ∈ Σo,

ρ[z, z′](x, x′, σ) :=

{

sups∈P
−1

o (σ)∧ ξ(x,s)=x′ θG,f (x, s) if (∃s ∈ P−1
o (σ)) ξ(x, s) = x′

not defined otherwise

The value of ρ[z, z′](x, x′, σ) is the largest weight of all pathes that connect x and x′, whose
project images are σ. It can be computed by using an ǫ-removal algorithm [21], which
creates between x and x′ multiple transitions labeled by σ but with different weights. The
maximum weight of these transitions is equal to ρ[z, z′](x, x′, σ). We now use a simple
example to illustrate these two functions.

Suppose we have a weighted automaton (G, f) ∈ Φ(Σ) depicted in Figure 1, where
Σ = {a, b, c, u1, u2, u3, u4} and Σo = {a, b, c}. The label a/1 on the transition from
state 0 to state 1 means that the event is a and the corresponding weight is f(0, a) = 1.

Other transition labels have similar meanings. The observable behavior Ĝ is depicted in
Figure 1, where z0 = {0, 2}, z1 = {1, 3, 5}, z2 = {3, 5} and z4 = {3, 4, 5, 6}. For state

z0, if we choose γ = {a}, then ĥ(z0, {a}) = 0 because both state 0 and state 2 can fire

the transition a in G. But if we choose γ = {b, c} then ĥ(z0, {b, c}) = +∞. Similarly,

for state z1, if we choose γ = {b}, then ĥ(z1, {b}) = +∞ because state 1 is a blocking
state and there is no string from state 1 to another state, whose projected image is b.

We can easily check that, ĥ(z2, {b}) = ĥ(z3, {b}) = 0. Since there are infinite number of
finite strings from state 0 to state 1 whose projected images are a, we can derive that
ρ[z0, z1](0, 1, a) = +∞. Since there is only one string s = u3b from state 3 to state 6,
whose project is b, we have ρ[z1, z3](3, 6, b) = θG,f(3, u3b) = 3. Other values of the func-
tion ρ can be derived accordingly.

We now present an algorithm, which returns a finite value v when WCN (G, f,G) 6= ∅

(or equivalently, Ξ(G, f,G) 6= ∅); or returns v = +∞ when WCN (G, f,G) = ∅. When

8

Figure 1: Example 1: Weighted automaton (G, f) ∈ Φ(Σ) and observable behavior Ĝ ∈
φ(Σo)

v < +∞, it returns a K ∈ WCN (G, f,G). This algorithm will be used to solve WSCP.

Pivotal Procedure 1 (PP1):

1. Input: (G = (X,Σ, ξ, x0, Xm), f) ∈ Φ(Σ)

2. Initialization:

(a) Let Ĝ = (Z,Σo, δ, z0, Zm) ∈ φ(Σo) be the observation behavior of (G, f).

(b) For all z ∈ Z let Γz := {γ ⊆ µ
Ĝ
(z)|Σuc ∩Σo ∩ µĜ

(z) ⊆ γ}.

(c) For each z ∈ Z and x ∈ z, if x ∈ Xm then κ0(z, x) := 0; if x /∈ Xm, then
κ0(z, x) := +∞; κ0(z) := maxx∈z κ0(z, x).

3. Iterate on k = 1, 2, · · · , as follows:

(a) For each z ∈ Z and x ∈ z we have

κk(z) :=

{

minγ⊆Γz
Wk(z, γ) + ĥ(z, γ) if κk−1(z) = +∞

κk−1(z) otherwise

where
Wk(z, γ) := max

x∈z
max(υ(z, γ, x) ∪ ϕ(z, x))

with

υ(z, γ, x) := {ρ[z, z′](x, x′, σ) + κk−1(z
′, x′)|(∃σ ∈ γ, x′ ∈ z′ = δ(z, σ)) ρ[z, z′](x, x′, σ)!}

ϕ(z, x) := {θG,f(x, u)|u ∈ Σ∗
uo ∧ ξ(x, u) ∈ Xm}

When κk−1(z) = +∞ and κk(z) < +∞, let γz ∈ Γz be the one such that

Wk(z, γz) + ĥ(z, γz) = κk(z). For each x ∈ z, let

κk(z, x) :=

{

max(υ(z, γz, x) ∪ ϕ(z, x)) if κk−1(z) = +∞ and κk(z) < +∞
κk−1(z, x) otherwise

(b) Termination when: (∃r ∈ N)(∀z ∈ Z)(∀x ∈ z)κr−1(z, x) = κr(z, x)

9 Algorithms for Solving WSCP

4. Outputs:

• v := κr(z0, x0)

• When v < ∞, output K∗ := Lm(Ĝ′)||Lm(G) with Ĝ′ := (Z ′,Σo, δ
′, z′0, Z

′
m),

where

– Z ′ := {z ∈ Z|κr(z) < +∞}, Z ′
m := Zm ∩ Z ′ and z′o := z0.

– δ′ : Z ′ × Σo → Z ′, where for all z, z′ ∈ Z ′ and σ ∈ Σo, δ
′(z, σ) = z′ if

σ ∈ γz. �

The complexity of constructing Ĝ is exponential time [16]. The main feature of Step (3)
is that, once κk(z, x) becomes finite, it will not be changed in the subsequent iterations.
This finite value denotes one finite “worst-case” weight of all strings from state x in z
to a marker state in G with no more than k transitions. Here, “worst-case” means that
the evolution of a string may be diverged by occurrences of uncontrollable events. By an
elaborated argument (which is not shown in this paper owing to limited space), we can
check that Step (3) terminates with k no more than the length of the longest string in
G, i.e., no more than the total number of states in G. Thus, the complexity of iterations
in Step (3) is polynomial with respect to the size of Ĝ. Finally, constructing Ĝ′ can be

done in linear time with respect to the size of Ĝ, and K∗ can be computed in polynomial
time. Thus, we can conclude that the complexity of PP1 is exponential time with respect
to the size of G. We have the following results.

Proposition 3.1. PP1 always terminates. �

Proof: We can check that, for each z ∈ Z, x ∈ z and k ∈ N, κk(z, x) is either +∞ or
finite. When κk(z, x) is finite, namely κk(z) < +∞, we can derive that, for all l ≥ k we
have κl(z, x) = κk(z, x). Before the termination condition holds, at each k there exist at
least one z ∈ Z and x ∈ z such that κk−1(z, x) 6= κk(z, x). The total number of changes
are no more than |Z| × |X |. Therefore, there must exist r ≤ |Z| × |X | such that

(∀z ∈ Z)(∀x ∈ z)κr−1(z, x) = κr(z, x)

This means PP1 terminates within no more than |Z| × |X | times iteration. �

The termination of PP1 comes from the fact that, we have only a finite number of states
to consider, which are no more than |Z| × |X |, and the value of each one of these states
can be changed no more than once during the iteration.

Proposition 3.2. Given (G, f) ∈ Φ(Σ), suppose the output v of PP1 is finite. Then

1. K∗ ∈ CN (G,G);

2. ωG,f(K∗) ≤ v. �

Proof: (1) For each s ∈ K∗ and σ ∈ Σuc, suppose sσ ∈ L(G). Let z = δ(z0, Po(s)) and
x = ξ(x0, s) and x

′ = ξ(x0, sσ). There are two cases to consider.

Case 1: σ ∈ Σuo. Then by the definition of Ĝ we know that x, x′ ∈ z. Since s ∈ K∗, we
know that z ∈ Z ′, which means κr(z) < +∞. Thus, κr(z, x

′) < +∞. By PP1 and the

definition of Ĝ we can derive that, there must exist s′ ∈ Σ∗ such that sσs′ ∈ K∗, which

10

means sσ ∈ K∗.
Case 2: σ ∈ Σo. Let z′ = δ(z, σ). Since σ ∈ Σuc we can derive that σ ∈ γz. Since
κr(z) < +∞ we get that κr(z

′) < +∞. Thus, again we can derive that there must exist
s′ ∈ Σ∗ such that sσs′ ∈ K∗, which means sσ ∈ K∗.
In either case sσ ∈ K∗. Thus, K∗ is controllable with respect to G.
To show that K∗ is normal with respect to G and Po, let s ∈ Lm(K∗ and s′ ∈ L(G)
with Po(s) = Po(s

′). Let s = u0σ0u1σ1 · · ·unσnun+1 with u0, · · · , un+1 ∈ Σ∗
uo and

σ0, · · · , σn ∈ Σo. Since Po(s) = Po(s
′) we get that s′ = u′0σ0u

′
1σ1 · · ·u

′
nσnu

′
n+1 with

u′0, · · · , u
′
n+1 ∈ Σ∗

uo. Clearly, for any š ≤ s and š′ ≤ s′, if Po(š) = Po(š
′), then

ξ(x0, š), ξ(x0, š
′) ∈ δ(z0, Po(š)). Let x

′ = ξ(x0, s
′) and z = δ(z0, Po(s)). Since s ∈ K∗, we

have κr(z) < +∞, which means κr(z, x
′) < +∞. Thus, there exists s′′ ∈ Σ∗ such that

s′s′′ ∈ K∗, which means s′ ∈ K∗.
(2) To show that ωG,f(K∗) ≤ v, let s ∈ K∗. Then either s ∈ Σ∗

uo or there exist
u0, · · · , un ∈ Σ∗

uo with n ≥ 1 and σ1, · · · , σn ∈ Σo such that s = u0σ1u1σ2 · · ·un−1σnun.
Suppose PP1 terminates at r. For the former case, i.e., s ∈ Σ∗

uo, we get that

κr(z0, x0) = v ≥ φ(z0, x0) ≥ θG,f(x0, s)

For the latter case, let x1 = ξ(x0, u0σ1u1) and xi := ξ(xi−1, σiui) for i = 2, · · · , n.
Let zi := δ(zi−1, σi) for i = 1, 2 · · · , n. Clearly, xi ∈ zi for i = 0, 1, 2, · · · , n. Since
s ∈ K∗ ⊆ Lm(G), we know that xn ∈ Xm. We now use induction to show that

(∀i ∈ N : 1 ≤ i ≤ n− 1)κr(zi, xi) ≥ θG,f(xi, σi+1ui+1 · · ·un−1σnun) (1)

For i = n− 1, we have

κr(zn−1, xn−1) = max(υ(zn−1, γzn−1
, xn−1) ∪ ϕ(zn−1, xn−1))

≥ maxυ(zn−1, γzn−1
, xn−1)

≥ ρ[zn−1, zn](xn−1, xn, σn) because κr−1(zn, xn) = 0

≥ θG,f(xn−1, σnun)

Suppose when 2 ≤ i = l ≤ n− 1 Expression (1) holds. Then we have

κr(zl−1, xl−1) = max(υ(zl−1, γzl−1
, xl−1) ∪ ϕ(zl−1, xl−1))

≥ maxυ(zl−1, γzl−1
, xl−1)

≥ ρ[zl−1, zl](xl−1, xl, σl) + κr−1(zl, xl)

≥ θG,f(xl−1, σlul) + θG,f(xl, σl+1ul+1 · · ·un−1σnun)

= θG,f(xl−1, σlulσl+1ul+1 · · ·un−1σnun)

Thus, Expression (1) holds. Clearly, we have

κr(z0, x0) = max(υ(z0, γz0 , x0) ∪ ϕ(z0, x0))

≥ maxυ(z0, γz0 , x0)

≥ ρ[z0, z1](x0, x1, σ1) + κr−1(z1, x1)

≥ θG,f (x0, u0σ1u1) + θG,f (x1, σ2u2 · · ·un−1σnun)

= θG,f (x0, u0σ1u1σ2u2 · · ·un−1σnun) = θG,f(x0, s)

In either case, we have v ≥ θG,f(x0, s). Thus, v ≥ maxs∈K∗
θG,f(x0, s) = ωG,f(K∗). �

By Prop. 3.2 we know that the finite output of PP1 is no smaller than the weight of a
controllable and normal sublanguage of Lm(G). By an extended argument we actually
can show that v = ωG,f(K∗), which means the finite output of PP1 is actually the weight
of a controllable and normal sublanguage of Lm(G). But owing to the limited space,
we are content with v ≥ ωG,f(K∗), which is sufficient for our purpose. The next result
indicates that, the existence of a controllable and normal sublanguage of Lm(G) implies
the finite output of PP1.

11 Algorithms for Solving WSCP

Proposition 3.3. Given a weighted automaton (G, f) ∈ Φ(Σ), if WCN (G, f,G) 6= ∅,
then the output v of PP1 is finite. �

Proof: Suppose G = (X,Σ, ξ, x0, Xm). Since WCN (G, f,G) 6= ∅ and G is zero-weighted-

loop-free, we know that there exists a finiteK ∈ WCN (G, f,G). Let Ĝ = (Z,Σo, δ, z0, Zm)
be the observation behavior of (G, f). Let Ω := {z ∈ Z|(∃s ∈ K) δ(z0, Po(s)) = z}. Since
K is normal with respect to G and Po, we know that, if z ∈ Ω, then for all x ∈ z, there ex-
ists s ∈ K such that x = ξ(x0, s). Let γ(z) := {σ ∈ Σo|¬δ(z, σ)! ∨ (∃s ∈ K) δ(z0, Po(s)) =
z ∧ sσ ∈ K}. Since K is controllable with respect to G and normal with respect to G
and Po, we get that

Σuc ∩ Σo ∩ µĜ
(z) ⊆ γ(z)

which means γ(z) ∈ Γz for each z ∈ Ω. Sice K ∈ WCN (G, f,G), namely ωG,f(K) < +∞,

by the definition of Ĝ and PP1, we can get that the output v is finite. �

From Prop. 3.2 and Prop. 3.3 we can see that, the finiteness of the output v of PP1 can
be used to decide the emptiness of WCN (G, f,G). In addition, when v < +∞, by Prop.
3.2 we can compute one K ∈ WCN (G, f,G). This allows us to present the following
procedure to solve WSCP1 and WSCP2.

Procedure for Solving WSCP1 and WSCP2 (PWSCP12):

1. Input: a plant (G = (X,Σ, ξ, x0, Xm), f) ∈ Φ(Σ) and a requirement E ∈ φ(Σ)

2. Compute K = supCN (G,E).

3. If K = ∅ then set KCN = ∅ and go to step (6).

4. Let G′ recognizes K and is homomorphic to G, and f ′ is induced from (G, f).

5. Apply PP1 to (G′, f ′). If the output v = +∞, then set KCN := ∅ and go to step
(6). Otherwise, let KCN := K∗, where K∗ is the output of PP1.

6. Output: KCN �

In PWSCP12 we use Step (2) to handle the requirement E. Since the complexity of
computing supCN (G,E) is exponential time [13] with respect to the size of the product
of G and E, and the complexity of PP1 is exponential time with respect to the size of
supCN (G,E), we may think that the complexity of PWSCP12 is double exponential.
Fortunately, our luck is not that bad. If supCN (G,E) is computed based on the power-

set construction to take partial observation into consideration, then the construction of Ĝ
from supCN (G,E) will be only polynomial time with respect to the size of the resulting
automaton obtained from the power-set construction. Thus, in the end the complexity
of PWSCP12 is exponential time with respect to the size of G.

Lemma 3.4. PWSCP12 terminates. �

Proof: By Prop. 3.1 we know that PP1 terminates. Thus, PWSCP12 terminates. �

12

Theorem 3.5. Given a plant (G, f) ∈ Φ(Σ) and a requirement E ∈ φ(Σ), let KCN be
computed by PWSCP12. Then (1) KCN = ∅ if and only if WCN (G, f,E) = ∅; (2)
When KCN 6= ∅, we have KCN ∈ WCN (G, f,E). �

Proof: (1) Let K = supCN (G,E). Suppose KCN = ∅. Then we have two cases to con-
sider: Case 1.1: K = ∅, namely Lm(G)∩Lm(E) has no controllable and normal sublan-
guage with respect to G; Case 1.2: the output v of PP1 is infinite. For Cases 1.1, clearly,
WCN (G, f,E) = ∅. For Case 1.2, by Prop. 3.3 we know that WCN (G′, f ′, G′) = ∅,
which means WCN (G, f,E) = ∅ because Lm(G) = supCN (G,E).
On the other hand, if WCN (G, f,E) = ∅, then either Lm(G)∩Lm(E) has no controllable
and normal sublanguage or there is no controllable and normal sublanguage with a finite
weight. In the former case, clearly, KCN = ∅ because K = ∅. In the latter case, we
have WCN (G′, f ′, G′) = ∅. By prop. 3.2, the output v of PP1 is infinite. Thus, we have
KCN = ∅.
(2) Suppose KCN 6= ∅. Then KCN = K∗, where K∗ is the output of PP1. By
Prop. 3.2 we have K∗ ∈ WCN (G′, f ′, G′). Since Lm(G′) = supCN (G,E), we have
K∗ ∈ CN (G,E). Since ωG′,f ′(K∗) < +∞ and f ′ is induced from (G, f), we have
KCN = K∗ ∈ WCN (G, f,E). �

By Theorem 3.5 we know that, when PWSCP12 terminates, WSCP1 can be solved by
simply checking the nonemptiness of KCN . When KCN 6= ∅, then it is a solution to
WSCP2. Next, we present an algorithm to solve WSCP3.

Procedure for Solving WSCP3 (PWSCP3):

1. Input: a plant (G = (X,Σ, ξ, x0, Xm), f) ∈ Φ(Σ), a requirement E ∈ φ(Σ)

2. Compute K = supCN (G,E).

3. If K = ∅ then set KCN = ∅ and go to step (7).

4. Let G′ recognizes K and is homomorphic to G, and f ′ is induced from (G, f).

5. Apply PP1 to (G′, f ′). When the output v < +∞, let Ĝ = (Z,Σo, δ, z0, Zm) be the
observable behavior of G′ and suppose the termination condition of PP1 holds at
r. Let S′ be a recognizer of the sublanguage

{s ∈ K|θG,f(x0, s) ≤ v ∧ (∀s′ ≤ s)κr(δ(z0, Po(s
′))) < +∞}

Compute

K̂ = supCN (G,S′)

6. Set K̂0 := K̂ and iterates on r = 0, 1, · · · , as follows:

(a) Search a set ψ(K̂r) := {s ∈ K̂r|θG,f (x0, s) = ωG,f(K̂r)}.

(b) Compute the largest K̂r+1 ⊆ K̂r−ψ(K̂r) that is controllable and normal w.r.t.
G.

(c) If K̂r+1 = ∅ then set KCN := K̂r and go to step (7). Otherwise, continue on
r + 1.

7. Output: KCN �

13 Algorithms for Solving WSCP

What PWSCP3 does is to fist run PWSCP12 but output v and Ĝ, then based on v
and Ĝ to construct a sublanguage K̂. It will be shown that the supremal controllable
and normal sublanguage of (G, f) with respect to E is contained in K̂. Step (6) is used
to find such a supremal solution by continuously taking out strings with the maximum
weight until no such strings can be taken out without nullifying the chance of finding a
controllable and normal sublanguage. As we have known, the complexity of PWSCP12
is exponential time. Step (6) in PWSCP3 makes the situation even worse because it

requires to enumerate all strings in K̂0, and compute a finite number of controllable and
normal sublanguages K̂r. So the complexity of PWSCP3 is at least exponential time.

Lemma 3.6. PWSCP3 terminates. �

Proof: Since v is finite, and (G, f) is zero-weighted-loop-free, we know that K̂r is finite.

Thus, the set ψ(K̂r) can be computed, e.g. by simply enumerating each string in K̂r and
determining its weight. Thus, PWSCP3 terminates. �

Theorem 3.7. Given a plant (G, f) ∈ Φ(Σ) and a requirement E ∈ φ(Σ), let KCN be
computed by PWSCP3. When KCN 6= ∅, we have KCN = supΞ(G, f,E). �

Proof: Since KCN 6= ∅, we know that WCN (G, f,E) = WCN (G′, f ′, G′) 6= ∅. By Prop.
3.3, the output v of PP1 is finite. Furthermore, by Prop. 3.2 we know that, there exists
K ′ ∈ WCN (G′, f ′, G′) such that

ωG,f(supΞ(G, f,E)) ≤ ωG,f(K
′) = ωG′,f ′(K ′) ≤ v

Since supΞ(G, f,E) ∈ WCN (G′, f ′, G′), we can derive that, for every s ∈ supΞ(G, f,E)
and for all s′ ≤ s, we have κr(δ(z0, Po(s

′))) < +∞. Thus, supΞ(G, f,E) ⊆ Lm(S′), which

means supΞ(G, f,E) ⊆ K̂0 ∈ WCN (G, f,E). Suppose step (6) terminates at r + 1 with

r ≥ 0. We use induction to show that, supΞ(G, f,E) ⊆ K̂r. It is true for l = 0. We
assume that it is also true for l and we need to show that, it is true for l + 1 ≤ r. Since
supΞ(G, f,E) ⊆ K̂l, we have

ωG,f(K̂l) ≥ ωG,f(supΞ(G, f,E))

For any s ∈ K̂l with θG,f(x0, s) = ωG,f(K̂l), we have s ∈ ψ(K̂l). Since K̂r 6= ∅ and l < r,

we have K̂l − ψ(K̂l) 6= ∅. Then

ωG,f (K̂l − ψ(K̂l)) < ωG,f(K̂l)

Let K̂l+1 be the largest controllable and normal sublanguage of K̂l −ψ(K̂l) with respect

to G. Since l + 1 ≤ r, we have K̂l+1 6= ∅. Thus, K̂l+1 ∈ Ξ(G, f,E), which means

ωG,f(supΞ(G, f,E)) ≤ ωG,f(K̂l+1) < ωG,f(K̂l)

Since supΞ(G, f,E) ⊆ K̂l and for any sublanguage W ⊆ K̂l, which is controllable and
normal with respect to G, we have

ωG,f(W) < ωG,f (K̂l) ⇒W ⊆ K̂l+1

we get that supΞ(G, f,E) ⊆ K̂l+1. Thus, the induction is true, namely supΞ(G, f,E) ⊆

K̂r. Since K̂r+1 = ∅, for any controllable and normal sublanguage W ⊆ K̂r with re-

spect to G, we get that, W ∩ ψ(K̂r) 6= ∅, which means ωG,f(W) = ωG,f(K̂r). Since

supΞ(G, f,E) ⊆ K̂r, we get ωG,f(supΞ(G, f,E)) = ωG,f(K̂r). Thus, supΞ(G, f,E) =

K̂r = KCN . �

14

Theorem 3.7 confirms that, we can solve WSCP3 by using PWSCP3. Since Step 6 in
PWSCP3 is computationally intensive, naturally, we want to know whether there exists a
polynomial-time algorithm to solve WSCP3. Unfortunately, it can be shown that solving
WSCP3 is NP-hard.

We now apply PWSCP12 and PWSCP3 to a small example to illustrate their main
steps. Suppose we have a weighted automaton (G, f) ∈ Φ(Σ) depicted in Figure 2,
where Σ = {a, b, c, u1, u2, u3, u4}, Σc = Σo = {a, b, c}. Since Lm(E) = Σ∗, we get that

Figure 2: Example 2: Weighted automaton (G, f) ∈ Φ(Σ) and requirement E ∈ φ(Σ)

K = supCN (G,E) = Lm(G). Let (G′, f ′) = (G, f). We now apply PP1 to (G′, f ′). We

first compute the observable behavior Ĝ = (Z,Σo, δ, z0, Zm) ∈ φ(Σo), which is depicted
in Figure 3. When k = 0 we have κ0(z0) = κ0(z1) = κ0(z2) = κ0(z3) = +∞ and

Figure 3: Example 2: Observable behavior Ĝ ∈ φ(Σ0)

κ0(z4) = 0. When k = 1, we have κ1(z0) = κ1(z1) = κ1(z2) = +∞, κ1(z3) = 21 with
γz3 = {c}, κ1(z4) = 0. Since κ0(z3) = +∞ and κ1(z3) < +∞, we get that κ1(z3, 3) = 21
and κ1(z3, 5) = 20. When k = 2, we have κ2(z1) = κ2(z2) = +∞, κ2(z0) = 23 with
γz0 = {c}, κ2(z3) = 21 and κ2(z4) = 0. Since κ1(z0) = +∞ and κ2(z0) < +∞, we
have κ2(z0, 0) = 23 and κ2(z0, 2) = 22. When k = 3, we have κ3(z1) = κ3(z2) = +∞,
κ3(z0) = 23, κ3(z3) = 21 and κ3(z4) = 0. Thus, the termination condition holds at k = 3.
The outputs of PP1 are v = κ3(z0, 0) = 23, and K∗ = {u1cu3c}. Thus, the output of
PWSCP12 isKCN = K∗ = {u1cu3c}. If we apply PWSCP3, then it is trivial to check that

15 Algorithms for Solving WSCP

the language recognized by S′ is {u1cu3c}. Thus, K̂0 = supCN (G,S′) = {u1cu3c}. Since

K̂0 is a singleton, we have K̂1 = ∅ because ψ(K̂0) = K̂0. Thus, we haveKCN = {u1cu3c},
which coincides with the output of PWSCP12.

3.2 An algorithm for solving WSCP in a special setting

The aforementioned algorithms PWSCP12 and PWSCP3 depend on PP1, which has two
costly computational steps: to construct the observable behavior Ĝ, and to utilize func-

tions ĥ and ρ[z, z′] with z, z′ ∈ Z, where Z is the state set of Ĝ. It is natural to ask under
what condition(s) we can reduce or even eliminate such costly computations. One answer
is to require the natural projection Po : Σ∗ → Σ∗

o be an appropriate natural observer,
whose definition is provided below.

Definition 3.8. [12] Given a language L ⊆ Σ∗ and an alphabet Σ′ ⊆ Σ, we say the
natural projection P : Σ∗ → Σ′∗ is a natural observer with respect to L, if

(∀t ∈ P (L))(∀s ∈ L)P (s) ≤ t ⇒ (∃s′ ∈ Σ∗) ss′ ∈ L ∧ P (ss′) = t

For simplicity, we also call P an L-observer. �

If Po is an L-observer, then any string s ∈ L, whose projected image Po(s) is a prefix
substring of t ∈ Po(L) must be extendable to a string in L by concatenating a string s′

such that the projected image of ss′ is t. We have the following result.

Theorem 3.9. Given a nonblocking G ∈ φ(Σ), let Po : Σ∗ → Σ∗
o be the natural projec-

tion. Let G′ ∈ φ(Σo) such that Lm(G′) = Po(Lm(G)) and L(G′) = Po(L(G)). If Po is an
Lm(G)-observer, then we have the following results:

1. If a sublanguage L′ ⊆ Po(Lm(G)) is controllable with respect to G′, then L′||Lm(G)
is controllable and normal with respect to G and Po.

2. If a sublanguage L̂ ⊆ Lm(G) is controllable and normal with respect to G, then

Po(L̂) is controllable with respect to G′. �

Proof: (1) Suppose L′ is controllable with respect to G′. We first show that L′||Lm(G)

is controllable with respect to G. Let s ∈ L′||Lm(G) and σ ∈ Σuc. Suppose sσ ∈ L(G).
We have two cases to consider.
Case 1: σ ∈ Σo. Then Po(sσ) = Po(s)σ ∈ Po(L(G)) = L(G′). Since s ∈ L′||Lm(G), we

have Po(s) ∈ Po(L′||Lm(G)) ⊆ L′. Since L′ is controllable with respect to G′, we get that

Po(s)σ ∈ L′, which means Po(sσ) ∈ L′. Thus, sσ ∈ L′||L(G) = L′||Lm(G). Since Po is

an Lm(G)-observer, we have L′||Lm(G) = L′||Lm(G). Thus, sσ ∈ L′||Lm(G).

Case 2: σ /∈ Σo. Since s ∈ L′||Lm(G) = L′||L(G) and sσ ∈ L(G), we have sσ ∈

L′||L(G) = L′||Lm(G).

In either case we have sσ ∈ L′||Lm(G). Thus, L′||Lm(G) is controllable with respect to
G,
To show L′||Lm(G) is normal with respect to G and Po, we have

L(G)∩P−1
o Po(L′||Lm(G)) = L(G)||Po(L′||L(G)) = L(G)||L′||Po(L(G)) = L(G)||L′ = L′||Lm

(2) Suppose L̂ is controllable and normal with respect to G. We show that Po(L̂) is

controllable with respect to G′. Let s ∈ Po(L̂) and σ ∈ Σuc ∩ Σo. Suppose sσ ∈

16

L(G′) = Po(L(G)). Since s ∈ Po(L̂), there must exist t ∈ L̂ such that Po(t) = s. Since

sσ ∈ L(G′) and Po is Lm(G)-observer and L(G′) = Lm(G′) = Po(Lm(G)), there must

exist tt′σ ∈ L(G) such that Po(tt
′) = s. Since t ∈ L̂ and Po(t) = Po(tt

′) = s, we know

that tt′ ∈ L̂ because L̂ is normal with respect to G. Since σ ∈ Σuc and L̂ is controllable

with respect to G, we have tt′σ ∈ L̂. Thus, sσ = Po(tt
′σ) ∈ Po(L̂) = Po(L̂). �

By Theorem 3.9 and the fact that two different normal sublanguages of Lm(G) must
have different projected images, we can derive that, there is a one-to-one mapping be-
tween CN (G,G) and C(G′, G′). This one-to-one mapping also holds between CN (G,E)
and C(G′, E) for all E ∈ φ(Σo). In particular, there is a direct connection between
supCN (G,E) and supC(G′, E), which is described in the following corollary.

Corollary 3.10. Given a nonblocking G ∈ φ(Σ) and a requirement E ∈ φ(Σo), let

G′ ∈ φ(Σo) such that Lm(G′) = Po(Lm(G)) and L(G′) = Lm(G′). Suppose Po is an
Lm(G)-observer. Then supCN (G,E) = supC(G′, E)||Lm(G). �

Proof: For all K ′ ∈ supC(G′, E), by Theorem 3.9 we have K ′||Lm(G) ∈ CN (G,E). Thus,
K ′||Lm(G) ⊆ supCN (G,E). In particular, supC(G′, E)||Lm(G) ⊆ supCN (G,E).
On the other hand, for all K ∈ CN (G,E), by Theorem 3.9 we have Po(K) ∈ C(G′, E),
which means Po(K) ⊆ supC(G′, E). In particular, Po(supCN (G,E)) ⊆ supC(G′, E).
Thus, supCN (G,E) ⊆ P−1

o (supC(G′, E)) ∩ Lm(G) = supC(G′, E)||Lm(G). The corollary
follows. �

Given (G = (X,Σ, ξ, x0, Xm), f) ∈ Φ(Σ), let Ĝ = (Z,Σo, δ, z0, Zm) be the observable

behavior of G. We define a (partial) weight function f̂ : Z×Σo → R
+∪{+∞} as follows:

(∀z ∈ Z)(∀σ ∈ Σo) f̂(z, σ) :=

{

sups∈P
−1

o (σ)∧ (∃x∈z) ξ(x,s)! θG,f(x, s) if δ(z, σ)!

not defined otherwise

We call (Ĝ, f̂) the over-weighted observable behavior of (G, f). As an illustration, let
(G, f) be depicted in the left picture of Figure 4, where Σ = {b, c, u1, u2} and Σo = {b, c}.

Figure 4: Example 3: (G, f) (left) and the over-weighted observable behavior (Ĝ, f̂)
(right)

The corresponding observable behavior Ĝ is depicted in the right picture of Figure 4.

To compute f̂(z0, b), we first determine the set {{s ∈ Σ∗|Po(s) = b ∧ ξ(0, s)!}, {s ∈

17 Algorithms for Solving WSCP

Σ∗|Po(s) = b ∧ ξ(1, s)!]}, which can be easily found as {{b, u1bu2}, {bu2}}. Then we
compute

max{θG,f(0, b), θG,f(0, u1bu2), θG,f (1, bu2)} = max{3, 5, 4} = 5

Thus, we have f̂(z0, b) = 5. Similarly, we can get f̂(z0, c) = 4. Using a procedure defined
in [12] we can check whether the projection Po is an Lm(G)-observer.

Theorem 3.11. Given (G, f) ∈ Φ(Σ), let (Ĝ, f̂) ∈ Φ(Σo) be constructed as above. Sup-
pose Po : Σ∗ → Σ∗

o is an Lm(G)-observer. For each K ∈ CN (G,G), if Po(K) 6= {ǫ}, then
we have ωG,f(K) ≤ ω

Ĝ,f̂
(Po(K)). In addition, if ωG,f(K) < +∞ then ω

Ĝ,f̂
(Po(K)) <

+∞. �

Proof: (1) Since Po(K) 6= {ǫ} and Po is an Lm-observer, we can derive that, for each
s ∈ K with Po(s) = ǫ, there must exist s′ ∈ Σ∗ with Po(s

′) 6= ǫ such that ss′ ∈ K. Let
K ′ := {s ∈ K|Po(s) 6= ǫ}. Clearly, ωG,f(K

′) = ωG,f(K). Thus, to show that ωG,f(K) ≤
ω
Ĝ,f̂

(Po(K)), we only need to show that, for each s ∈ K ′, θG,f(x0, s) ≤ θ
Ĝ,f̂

(z0, Po(s)).

For each s ∈ K ′, there must exist u1, · · · , un+1 ∈ Σ∗
uo and σ1, · · · , σn ∈ Σo such that

s = u1σ1u2σ2 · · ·unσnun+1. Let x1, · · · , xn ∈ X such that x1 = ξ(x0, u1σ1u2) and xi+1 =
ξ(xi, σiui+1) for i = 2, · · · , n. Similarly, let z1, · · · , zn ∈ Z such that z1 = δ(z0, σ1) and

zi+1 = δ(zi, σi) for i = 2, · · · , n. By the construction of (Ĝ, f̂), we get that, x1 ∈ z1 and
θG,f(x0, u1σ1u2) ≤ θ

Ĝ,f̂
(z0, σ1). Furthermore, xi ∈ zi and θG,f(xi, σiui+1) ≤ θ

Ĝ,f̂
(zi, σi)

for i = 1, · · · , n. Thus, θG,f (x0, s) ≤ θ
Ĝ,f̂

(z0, Po(s)).

(2) To show that ωG,f (K) < +∞ implies ω
Ĝ,F̂

(Po(K)) < +∞, suppose it is not true.

Then there exists a proper subset K ⊆ Lm(G), which is controllable and normal with
respect to G, and ωG,f (K) < +∞ but ω

Ĝ,f̂
(Po(K)) = +∞. Since ωG,f(K) < +∞, we

know that there is no ‘cycle’ in K, whose weight is nonzero, namely, for each sublanguage
s1s

∗
2s3 ∈ K, we have θG,f (ξ(x0, s1), s2) = 0. Thus, if ω

Ĝ,f̂
(Po(K)) = +∞, then there is

only one possibility, namely there must exist z ∈ Z and σ ∈ Σo such that f̂(z, σ) = +∞.
This means, there exist x ∈ z such that

max
s∈Σ∗:Po(s)=σ ∧ (∃x∈z) ξ(x,s)!

θG,f(x, s) = +∞

Clearly, either x /∈ {x′ ∈ X |(∃s ∈ K) ξ(x0, s) = x′} or there exists s′ ∈ Σ∗ with Po(s
′) = σ

such that Ks′ /∈ K. In either case, K is not normal with respect to G, which contradicts
the assumption that K is controllable and normal with respect to G. Thus, we have
ω
Ĝ,f̂

(Po(K)) < +∞. �

Since in Ĝ all events are observable, every sublanguage of Lm(Ĝ) is normal with re-

spect to Ĝ and P̂o : Σ∗
o → Σ∗

o. Thus, instead of writing WCN (Ĝ, f̂ , Ĝ), we simply write

WC(Ĝ, f̂ , Ĝ) to denote all controllable sublanguages of Lm(Ĝ), whose weight is finite. By
Theorem 3.9 and Theorem 3.11 we can derive the following important result.

Corollary 3.12. Given (G, f) ∈ Φ(Σ), let (Ĝ, f̂) ∈ Φ(Σo) be the over-weighted ob-
servable behavior of (G, f). Suppose Po : Σ∗ → Σ∗

o is an Lm(G)-observer, and for all

K ∈ CN (G,G), Po(K) 6= {ǫ}. Then (1) WCN (G, f,G) 6= ∅ if and only if WC(Ĝ, f̂ , Ĝ) 6=

∅; (2) for all K̂ ∈ WC(Ĝ, f̂ , Ĝ), there exists K ∈ WCN (G, f,G) such that ωG,f(K) ≤

ω
Ĝ,f̂

(K̂); (3) ωG,f (supΞ(G, f,G)) ≤ ω
Ĝ,f̂

(supΞ(Ĝ, f̂ , Ĝ)). �

Proof: (1) Suppose CN (G, f,G) 6= ∅. Then there exists K ∈ CN (G, f,G), which means
ωG,f(K) < +∞. Since Po(K) 6= {ǫ}. By Theorem 3.11 we know that ω

Ĝ,f̂
(Po(K)) <

18

+∞. By Theorem 3.9 we get that Po(K) ∈ C(Ĝ, Ĝ). Thus, WC(Ĝ, f̂ , Ĝ) 6= ∅.

Suppose WC(Ĝ, f̂ , Ĝ) 6= ∅. Then there exists K̂ ∈ WC(Ĝ, f̂ , Ĝ), namely ω
Ĝ,f̂

(K̂) < +∞.

Let K = P−1
o (K̂)||Lm(G). Clearly, Po(K) = K̂. By Theorem 3.11 we have ωG,f(K) ≤

ω
Ĝ,f̂

(K̂) < +∞. By Theorem 3.9 we have K ∈ CN (G,G). Thus, CN (G, f,G) 6= ∅. This

also proves (2).

(3) Set K̂ = supΞ(Ĝ, f̂ , Ĝ). Then

ωG,f (P
−1
o (supΞ(Ĝ, f̂ , Ĝ))||Lm(G)) ≤ ω

Ĝ,f̂
(supΞ(Ĝ, f̂ , Ĝ)) < +∞

By Theorem 3.9 we know that P−1
o (supΞ(Ĝ, f̂ , Ĝ))||Lm(G) ∈ CN (G,G). Thus,

ωG,f(supΞ(G, f,G)) ≤ ωG,f(P
−1
o (supΞ(Ĝ, f̂ , Ĝ))||Lm(G))

which means ωG,f(supΞ(G, f,G)) ≤ ω
Ĝ,f̂

(supΞ(Ĝ, f̂ , Ĝ)). �

Corollary 3.12 indicates that, as long as Po(K) 6= {ǫ} for each K ∈ CN (G,G), we can

determine the emptiness of WCN (G, f,G) by determining the emptiness of WC(Ĝ, f̂ , Ĝ).

Furthermore, when WC(Ĝ, f̂ , Ĝ) 6= ∅, the value ω
Ĝ,f̂

(supΞ(Ĝ, f̂ , Ĝ)) is an upper bound

of ωG,f(supΞ(G, f,G)), and can be computed by the following polynomial algorithm.

Procedure for Supremal Minimum-Weighted Controllable Sublanguages (SMC):

1. Input: a weighted plant (Ĝ = (Z, Σ̂, δ, z0, Zm), f̂), where the controllable alphabet

is Σ̂c and the observable alphabet is Σ̂o = Σ̂

2. Initialization: for each z ∈ Z, if z ∈ Zm then set κ0(z) := 0; otherwise, set
κ0(z) := +∞.

3. Iterate on k = 1, 2, · · · , as follows:

(a) For each z ∈ Z we have

κk(z) :=

max
σ∈Σ̂uc∩µ

Ĝ
(z)(f̂(z, σ) + κk−1(δ(z, σ))) if µ

Ĝ
(z) ∩ Σ̂uc 6= ∅

minσ′∈µ
Ĝ
(z)(f̂(z, σ

′) + κk−1(δ(z, σ
′))) if ∅ 6= µ

Ĝ
(z) ⊆ Σ̂c

κk−1(z) otherwise

(b) Termination when: (∃r ∈ N)(∀z ∈ Z)κr−1(z) = κr(z)

4. Set v := κr(z0) and go to step (5).

5. Output v. �

SMC is almost the same as the one used in [8], which is aimed to compute the least re-
strictive supervisor that can make a system move from its initial state to a marker state
with the smallest “worst-case” cost. The only difference is that, in [8] marker states may
not be necessarily deadlock states but there is no transition from a marker state to a
nonmarker state. Thus, once a marker state is reached, only marker states can be visited
in the future. In our case this condition is automatically satisfied because of the marking
deadlock assumption. By an argument similar to the one in [8], we can show that the
value κk(z) is the smallest “worst-case” cost of all strings from state z to a marker state

in (Ĝ, f̂) with no more than k transitions, thus, the maximum value for k in SMC is no

more than the length of the longest string in Lm(Ĝ). In addition, the overall complexity

19 Algorithms for Solving WSCP

of SMC is polynomial time. We now present the following procedure to solve WSCP1
and WSCP2.

Procedure for SolvingWSCP1 and WSCP2 (in the special setting) (SPWSCP12):

1. Input: a plant (G = (X,Σ, ξ, x0, Xm), f) ∈ Φ(Σ) and a requirement E ∈ φ(Σ)

2. Compute K = supCN (G,E).

3. If K = ∅ then set KCN = ∅ and go to step (8).

4. If K ∩ Σ∗
uo ∈ CN (G,E), then set KCN = K ∩ Σ∗

uo and go to step (8), if ωG,f(K ∩
Σ∗

uo) < +∞; or set KCN = ∅ and go to step (8), if ωG,f (K ∩ Σ∗
uo) = +∞.

5. Let G′ recognizes K and is homomorphic to G, and f ′ is induced from (G, f).

6. Construct (Ĝ, f̂) ∈ Φ(Σo), which is the over-weighted observable behavior of (G′, f ′).

7. Apply SMC on (Ĝ, f̂). If the output v = +∞, then set KCN := ∅ and go to step

(8). Otherwise, let Ĝ = (Z,Σo, δ, z0, Zm) and suppose SMC terminates at r. Let
S = (Z ′,Σo, δ

′, z0, Z
′
m) where

(a) Z ′ := {z ∈ Z|κr(z) < +∞}

(b) Z ′
m := Z ′ ∩ Zm

(c) δ′ : Z ′ × Σo → Z ′, where for any (z, σ) ∈ Z ′ × Σo,

δ′(z, σ) :=

{

δ(z, σ) if δ(z, σ) ∈ Z ′ ∧ f̂(z, σ) + κr(z
′) ≤ κr(z)

not defined otherwise

Let KCN := P−1
o (Lm(S))||Lm(G).

8. Output: KCN �

The main idea of SPWSCP12 is to project out all unobservable transitions and synthesize
a finitely-weighted supervisor based on the projected model. But to do that, we need
to make sure that (G, f) has no controllable and normal sublanguage only consisting of
unobservable transitions. This is why we need Step (4) in SPWSCP12. If there does exist
such a controllable and normal sublanguage K ∩ Σ∗

uo, then, by normality we know that
only observable and controllable events can be disabled. Therefore, any controllable and
normal sublanguage must contain K ∩ Σ∗

uo. This means, if ωG,f(K ∩ Σ∗
uo) = +∞, then

there certainly does not exist any finitely-weighted controllable and normal sublanguage.
If ωG,f(K ∩ Σ∗

uo) < +∞, then clearly it is the minimum weight, and K ∩ Σ∗
uo is the

supremal minimum-weighted controllable and normal sublanguage. In Step (7) by [8]

we can derive that Lm(S) is controllable with respect to Ĝ, whose usage will be shown
shortly. We have the following results.

Lemma 3.13. If (G, f) is zero-weighted-loop-free, then SPWSCP12 terminates. �

Proof: Since G and E are finite-state automata, K can be computed, so is K ∩ Σ∗
uo.

We now show that, determining whether ωG,f(K ∩ Σ∗
uo) < +∞ can be done in a finite

number of steps. We only need to determine whether there exists a nonzero-weight loop
in G̃ which recognizes K ∩ Σ∗

uo. This can be done in polynomial time by expanding the

20

transition structure of G̃ as a tree until some node is revisited during the expansion.
If G̃ does contain a loop with nonzero weight, then ωG,f(K ∩ Σ∗

uo) = +∞. Otherwise,
ωG,f(K ∩Σ∗

uo) < +∞. Since SMC terminates, we know that SPWSCP12 terminates. �

Theorem 3.14. Given a plant (G, f) ∈ Φ(Σ) and a requirement E ∈ φ(Σ), let KCN

be computed by SPWSCP12. Suppose Po : Σ∗ → Σ∗
o be a supCN (G,E)-observer. Then

(1) KCN = ∅ if and only if WCN (G, f,E) = ∅; (2) When KCN 6= ∅, we have KCN ∈
WCN (G, f,E). �

Proof: (1) Let K = supCN (G,E). Suppose KCN = ∅. Then we have three cases to
consider: Case 1.1: K = ∅, namely Lm(G) ∩ Lm(E) has no controllable and normal
sublanguage with respect to G; Case 1.2: K ∩ Σ∗

uo ∈ CN (G,E) and ωG,f(K ∩ Σ∗
uo) =

+∞; Case 1.3: the output of SMC is v = +∞. For Case 1.1 and Case 1.2, clearly,
WCN (G, f,E) = ∅. For Case 1.3, by [8] we get that there is no controllable sublanguage

of Po(K) with respect to Ĝ with a finite weight. Since Po is K-observer, by Theorem
3.11 we know that, there is no sublanguage K ′ ⊆ K with Po(K

′) 6= {ǫ}, which is control-
lable and normal with respect to G′, and has a finite weight. Since K = supCN (G,E),
we get that, there is no sublanguage K ′′ ⊆ Lm(G) ∩ Lm(E) with Po(K

′′) 6= {ǫ}, which
is controllable and normal with respect to G, and has a finite weight. Since SMC is
called to compute v, we know that, there is no sublanguage K ′′′ ⊆ Σ∗

uo ∩ K such that
ωG,f(K

′′′) < +∞. Thus, WCN (G, f,E) = ∅.
On the other hand, if WCN (G, f,E) = ∅, then either Lm(G)∩Lm(E) has no controllable
and normal sublanguage or there is no controllable and normal sublanguage with a finite
weight. In the former case, clearly, KCN = ∅ because K = ∅. In the latter case, there
are two possibilities. One is that K ∩ Σ∗

uo ∈ CN (G,E) but ωG,f(K ∩ Σ∗
uo) = +∞. In

this case, we have KCN = ∅. The other possibility is that, K ∩ Σ∗
uo /∈ CN (G,E). Thus,

for each sublanguage K ′ ⊆ K with K ′ ∈ CN (G,E), we have Po(K
′) 6= {ǫ}. Since Po is

an K-observer, by Theorem 3.11 we know that, each controllable sublanguage of Po(K)
has an infinite weight. Thus, the output of SMC is v = +∞. In either case we have
KCN = ∅.
(2) Suppose KCN 6= ∅. Then there are two cases. Case 1: KCN = K ∩ Σ∗

uo ∈ CN (G,E)
and ωG,f(KCN) < +∞. Clearly, KCN ∈ WCN (G, f,E). Case 2: K ∩ Σ∗

uo /∈ CN (G,E)
and the output of SMC is finite. Then by a proof in [8] we can derive that Lm(S) ∈

WC(Ĝ, f̂ , Ĝ). Since K ∩Σ∗
uo /∈ CN (G,E), we know that, for all K ′ ∈ CN (G,E), we have

Po(K
′) 6= {ǫ}. Thus, by Corollary 3.12 we can derive thatKCN = P−1

o (Lm(S))||Lm(G) ∈
WCN (G, f,E). �

Theorem 3.14 confirms that, when Po is a natural observer, we can use SPWSCP12 to
solve WSCP1 and WSCP2. Compared with PWSCP12, it is clear that SPWSCP12 is
more computationally efficient. In fact, when Po is a natural observer, the complexity of
SPWSCP12 is polynomial-time because computing supCN (G,E) [13], and constructing

(Ĝ, f̂) [12] and S (and subsequently KCN) can be done in polynomial time, and SMC
terminates in polynomial time [8]. Next, we provide an algorithm to solve WSCP3.

Procedure for Solving WSCP3 (in the special setting) (SPWSCP3):

1. Input: a plant (G = (X,Σ, ξ, x0, Xm), f) ∈ Φ(Σ) and a requirement E ∈ φ(Σ)

2. Compute K = supCN (G,E).

3. If K = ∅ then set KCN = ∅ and go to step (9).

21 Algorithms for Solving WSCP

4. If K ∩ Σ∗
uo ∈ CN (G,E), then set KCN = K ∩ Σ∗

uo and go to step (9), if ωG,f(K ∩
Σ∗

uo) < +∞; or set KCN = ∅ and go to step (9), if ωG,f (K ∩ Σ∗
uo) = +∞.

5. Let G′ recognizes K and is homomorphic to G, and f ′ is induced from (G, f).

6. Construct (Ĝ, f̂) ∈ Φ(Σo), which is the over-weighted observable behavior of (G′, f ′).

7. Apply SMC on (Ĝ, f̂). If the output v = +∞, then set KCN := ∅ and go to step

(9). Otherwise, let Ĝ = (Z,Σo, δ, z0, Zm) and the termination condition of SMC
holds at r. Let S′ be a recognizer of the sublanguage

{s ∈ K|θG,f(x0, s) ≤ v ∧ (∀s′ ≤ s)κr(δ(z0, Po(s
′))) < +∞}

Compute

K̂ = supCN (G,S′)

8. Set K̂0 := K̂ and iterates on r = 0, 1, · · · , as follows:

(a) Search a set ψ(K̂r) := {s ∈ K̂r|θG,f(x0, s) = ωG,f(K̂r)}.

(b) Compute the largest K̂r+1 ⊆ K̂r−ψ(K̂r) that is controllable and normal w.r.t.
G.

(c) If K̂r+1 = ∅ then set KCN := K̂r and go to step (9). Otherwise, continue on
r + 1.

9. Output: KCN �

What SPWSCP3 does is to fist run SPWSCP12 but output v and Ĝ, then based on v
and Ĝ to construct a sublanguage K̂. It can be shown that the supremal controllable
and normal sublanguage of (G, f) with respect to E is contained in K̂. Step (8) is used
to find such a supremal solution by continuously taking out strings with the maximum
weight until no such strings can be taken out without nullifying the chance of finding a
controllable and normal sublanguage. We have the following results.

Lemma 3.15. If (G, f) is zero-weighted-loop-free, then SPWSCP3 terminates. �

Proof: By Lemma 3.13 we only need to show that Step (8) terminates. Since v is finite,

and (G, f) is zero-weighted-loop-free, we know that K̂r is finite. Thus, the set ψ(K̂r) can

be computed, e.g. by simply enumerating each string in K̂r and determining its weight.
Thus, Step (8) terminates, which means SPWSCP3 terminates. �

Theorem 3.16. Given a plant (G, f) ∈ Φ(Σ) and a requirement E ∈ φ(Σ), let KCN

be computed by SMCN. Suppose Po : Σ∗ → Σ∗
o is a supCN (G,E)-observer. When

KCN 6= ∅, we have KCN = supΞ(G, f,E). �

Proof: Suppose KCN 6= ∅. There are two cases to consider. Case 1: KCN = K ∩ Σ∗
uo ∈

CN (G,E) and ωG,f (KCN) < +∞. Clearly, KCN = supΞWCN (G, f,E). Case 2:
K ∩ Σ∗

uo /∈ CN (G,E). Then for all K ′ ∈ CN (G,E), we have Po(K
′) 6= {ǫ}. By The-

orem 3.11 we can derive that, K̂0 = K̂ ∈ WCN (G, f,E), and supΞ(G, f,E) ⊆ K̂0.
By an argument similar to the one in the proof of Theorem 3.7, we can derive that
supΞ(G, f,E) = K̂r = KCN . �

22

Similar to PWSCP3, in Step (8) of SPWSCP3 the construction of S′ is computationally
intensive, making us wonder whether there exists a more computationally efficient solu-
tion to that. Unfortunately, it can be shown that, even when Po is a natural observer,
the complexity of solving WSCP3 is still NP-hard. We now use an example to illustrate
SPWSCP12 and SPWSCP3.

Figure 5 depicts a simple manufacturing system, which consists of one input unit IU,

Figure 5: Example 4: A simple manufacturing system

two machines M1 and M2, one test unit TU, and one buffer B. Work pieces are add
to the system through IU, which are stored in B. One of machines picks a work piece
and processes it. After that, the machine sends the processed work piece to TU. If the
quality of the work piece is good, then TU sends it out. Otherwise, TU sends it back to
B for rework. Work pieces are grouped in batches. Each batch consists of a fixed number
of work pieces. The system processes a batch, then is reset to its initial state before it
processes the next batch. To simplify the example for the sake of illustration, we make
the following assumptions: (1) the capacity of B is 1; (2) each batch consists of 2 work
pieces; (3) each work piece takes at most one time rework before it is sent out of the
system by TU. The component models are shown in Figure 6. The plant model is

Figure 6: Example 4: component models

23 Algorithms for Solving WSCP

G := IU ||M1||M2||TU

where Σc = {in, rw, rw1, rw2, w1, w2} and Σo = Σc, i.e., all and only controllable events
are observable. To simplify our analysis, we set all weights to be 1, except for weights
for rw1 and w2, which are 2. In other words, M1 is more expensive for rework, and
M2 is more expensive for normal processing. The requirements are shown in Figure 7.
E1 specifies that each batch consists of 2 work pieces, and E2 specifies that, the work

Figure 7: Example 4: requirement models

piece from IU is for normal processing and the piece from TU is for rework. By using
some software tool we can check that Po is a supCN (G,E)-observer. Thus, we can apply
SPWSCP12 and SPWSCP3.

After running SPWSCP12 we get that the output of SMC is 26, and the final solution
KCN is depicted in Figure 8. The weight is 18. We can see that, for each work piece
the normal processing is always done by M1 and the rework is always done in M2. This
is because the normal processing in M1 is “cheaper” than that in M2, and the opposite
holds for the rework. We now run SPWSCP3. The minimum weight is also 18 and
the corresponding supremal minimum-weighted controllable and normal sublanguage is
depicted in Figure 9. From the result we can see that, the result of SPWSCP12 is a
subset of the result of SPWSCP3. This is because the latter is supremal, which contains
all strings whose weights are no more than 18, e.g., if one work piece does not need
rework, then the second work piece can use either machine for rework because the overall
cost is certainly no more than the “worst-case” cost 18.

4 Conclusions

In this paper we have first presented three finitely-weighted supervisory control problems,
i.e., WSCP1, WSCP2 and WSCP3, then provided concrete algorithms to solve them. It
turns out that, it is always possible to decide whether there exists a finitely-weighted con-
trollable and normal sublanguage of a weighted plant (G, f) ∈ Φ(Σ) with respect to an
unweighted requirement E ∈ φ(Σ). If Po is simply a natural projection, then computing
a finitely-weighted controllable and normal sublanguage of (G, f) with respect to E can
be done in exponential time by PWSCP12 because the complexity of projection is expo-
nential time. If Po is a natural observer, then computing a finitely-weighted controllable
and normal sublanguage can be done in polynomial time by SPWCP12. Nevertheless, re-
gardless of Po being a natural observer, computing a minimum-weighted controllable and
normal sublanguage is always NP-hard. Owing to the limited space, its proof is provided
in a companion paper. In this paper we impose an assumption that the plant model is
marking deadlock. We are still investigating whether those problems are solvable after
dropping that assumption, and how to solve them efficiently.

24

start

state-1

in

state-5

state-16

rw2

state-6

state-7

in

state-11

state-13

rw2

state-14

proc2

state-15

tTU2

end

state-10

rw

out

state-17

state-18

tTU2

outproc2

out

state-8

w1

state-9

proc1

state-4

rw out

state-3

tTU1

state-2

proc1

w1

tTU1

Figure 8: Example 4: a minimum-weighted controllable and normal sublanguage

The supervisory control problems presented in this paper are formulated in a centralized
manner, namely there is one plant plus one specification. In reality, centralized synthe-
sis may result in high computational complexity. Thus, it is of our primary interest to
investigate whether similar approaches can be applied to a hierarchical and distributed
system, which will be addressed in our future papers.

Acknowledgement: We would like to thank Dr. Albert T. Hofkamp of the Sys-
tems Engineering Group at Eindhoven University of Technology for coding all algorithms
mentioned in this paper. We have used his code to generate the solution of Example 4 in
Section III.

25 Conclusions

state−22 state−12 state−31

state−24state−14 state−21 state−28

state−26 state−6state−40 state−18

state−20state−25

state−35

state−19

state−17

state−1

state−33

state−36

start

state−11

state−39

state−4

state−32

state−38

state−34

state−2

state−13

state−37

state−7

state−10

state−30

state−29state−15

state−27

state−3

state−16

state−23

state−5

end

state−8

state−9

proc2 w1tTU2 in

tTU2 proc1

out in

in w1out proc2 tTU1

w1tTU2 proc2 proc1

proc1out tTU2 tTU1w1 proc2 out

outproc1

tTU1 tTU2

out proc2

in

proc2

tTU2

proc1

tTU1

out

proc1

tTU1

in

w2w1

w1

inproc2

proc2

tTU2

proc1

tTU1

outout

rw2rw1

out

rw

rw2

rw

rw

rw2

Figure 9: Example 4: supremal minimum-weighted controllable and normal sublanguage

26

Bibliography

[1] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[2] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
systems. SIAM J. Control and Optimization, 25(1):206–230, 1987.

[3] W.M. Wonham and P.J. Ramadge. On the supremal controllable sublanguage of a
given language. SIAM J. Control and Optimization, 25(3):637–659, 1987.

[4] F. Lin and W. M. Wonham.On observability of discrete-event systems. Information
Sciences, vol. 44, no. 3, pp. 173-198, 1988.

[5] O. Maler, A. Pnueli and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In Proc. 12th Symposium on Theoretical Aspects of Computer Science
(STACS95), volume 900 of LNCS, pages 229-242, 1995.

[6] E. Asarin, O. Maler, A. Pnueli and J. Sifakis. Controller synthesis for timed au-
tomata. In Proc. IFAC Symposium on System Structure and Control, pages 469-474,
1998.

[7] E. Asarin and O. Maler. As soon as possible: time optimal control for timed au-
tomata. In Proc. 2nd International Workshop on Hybrid Systems: Computation and
Control (HSCC99), volume 1569 of LNCS, pages 19-30, 1999.

[8] Y. Brave and M. Heymann. On optimal attraction of discrete-event processes. In-
ternational Journal of Information Sciences, 67(3):245-276, 1993.

[9] K. Passino and P. Antsaklis. On the optimal control of discrete event systems. In
Proc. 28th IEEE Decision and Control Conference (CDC89), pages 2713-2718, 1989.

[10] R. Sengupta and S. Lafortune. An optimal control theory for discrete event systems.
SIAM J. Control and Optimization, 36(2):488-541, 1998.

[11] H. Marchand, O. Boivineau and S. Lafortune. On optimal control of a class of
partially observed discrete event systems. Automatica, 38(11): 1935-1943, 2002.

[12] K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event systems. Dis-
crete Event Dynamic Systems: Theory and Applications, 6(3):241–273, 1996.

[13] W. M. Wonham (2007). Supervisory Control of Discrete-Event Sys-
tems. Systems Control Group, Dept. of ECE, University of Toronto. URL:
www.control.utoronto.ca/DES.

[14] J.G. Thistle and W.M. Wonham. Supervision of infinite behavior of discrete-Event
Systems. SIAM Journal on Control and Optimization, 32(4):1098-1113, 1994.

[15] J.G. Thistle and H.M. Lamouchi. Effective control synthesis for partially observed
discrete-event systems. SIAM J. Control Optim, 48(3):1858-1887, 2009.

[16] K.C. Wong. On the complexity of projections of discrete-event systems. In Proc. the
4th international workshop on discrete event systems (WOODES98), pages 201206,
1998.

[17] E.Grädel, W.Thomas and T.Wilke. Automata, Logic and Infinite Games: A Guide
to Current Research. LNCS volumn 2500. Springer-Verlag, 2002.

[18] S. Safra. On the complexity of omega-automata. In Proc. 29th Annual Symposium
on Foundations of Computer Science, pages 319-327, 1988.

[19] S. Tasiran, R. Hojati and R.K. Brayton. Language containment using non-
deterministic omega-automata. In Proc. 8th CHARME, pages 261277, 1995.

27

[20] C.S. Althoff, W. Thomas and N. Wallmeier. Observations on determinization of
büchi automata. Theoretical Computer Science, 363(2): 224-233, 2006.

[21] M. Mohri. Generic epsilon-removal algorithm for weighted automata. Lecture Notes
in Computer Science, volumn 2088/2001, pages 230-242, 2001.

[22] J. Huang and R. Kumar. Optimal nonblocking directed control of discrete event
systems. IEEE Trans. Autom. Control, 53(7):1592–1603, 2008.

28 Bibliography

