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Abstract

We consider an environment in which several independent service providers

can collaborate by pooling their critical, low-utilization resources that are

subject to unavailability. We examine the allocation of the collective cost

savings for such pooled situation by studying an associated cooperative

game. For this game, we will prove non-emptiness of the core, present a

population monotonic allocation scheme, and show convexity under some

conditions. Moreover, four allocation rules will be introduced and we will

investigate whether they satisfy monotonicity to availability, monotonicity to

profit, situation symmetry and game symmetry. Finally, we will also

investigate whether the payoff vectors resulting from those allocation rules

are members of the core.

1 Introduction

In this paper, we will investigate situations in which several independent service

providers keep the same type of critical, low-utilization resource that is subject

to unavailability. For example, one can think of a railway setting with several

contractors, each having one tamping machine. Tamping machines are critical
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resources as they repair unstable, and so unusable, railway tracks. As only a few

railway tracks become unstable per year and tamping takes some hours only,

utilization of tamping machines is relatively low. However, tamping machines

sometimes fail, are in repair, and as a consequence are unavailable for some

weeks. One can also think of a setting with several maintenance companies, each

having one repairman with specific knowledge for one and the same type of

highly profitable machine. Repairmen are critical resources as they repair those

machines. As machines break down only a few times per year and repair takes

some hours only, utilization of repairmen is relatively low. However, due to

illness and vacation, repairmen may be unavailable for several days. In both

examples, it can occur that there is a demand for an unavailable resource. For

the railway setting, this leads to more unavailability of the railway network and

as a consequence to high social costs. For the specialized repairmen setting, this

leads to long(er) down time of the machine and as a consequence to lower profit.

As utilization for resources is assumed to be relative low, pooling of resources

may be a natural option here. Nonetheless, resource pooling may result in

concerns of the service provides about their share of the total cost savings.

We will examine the allocation of the collective cost savings for such pooled

situation by studying an associated cooperative game. This cooperative game,

which we call a cooperative availability game, is a stylized model of reality. We

assume (i) that resources get unavailable independently from each other and (ii)

that one available resource can satisfy all demand if necessary. The first

assumption is realistic as there is no reason to assume that a failure of a resource

of a service provider would affect the failure of a resource of another service

provider. The second assumption is a good approximation of reality when

demand is sparse and service time per demand is not too long, i.e., when

utilization is low. We will contribute in the following way. We will show that

there exist allocations that cannot be improved upon by any coalition, i.e., the

core is non-empty. Moreover, we present an allocation for every possible

coalition such that each player’s payoff increases as the coalition to which the

player belongs grows larger, i.e., we present a population monotonic allocation

scheme. In addition, we will present conditions that ensure that each player’s
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marginal contribution increases as the coalition to which he or she belongs

grows larger, i.e., convexity of the associated game. We will also introduce four

different allocation rules and investigate whether the payoff vectors resulting

from those allocation rules increase for an increasing availability and increasing

profit, i.e., satisfy monotonicity to profit and monotonicity to availability.

Furthermore, we will investigate whether the payoff vectors resulting from those

allocation rules are the same for players that have the same profit function and

availabilities, i.e., satisfy situation symmetry, and are the same for players that

have the same payoff for every possible coalition, i.e., satisfy game symmetry.

Finally, we will also investigate whether the payoff vectors resulting from those

allocation rules are members of the core.

This paper can be positioned at the interface of cooperative game theory and

operation research problems. In literature, this research area is summarized

under the heading of operation research (OR) games. An overview of OR games

can be found in Borm et al. (2001). They divide OR games in five categories,

namely connection, routing, scheduling, production and inventory. Availability

games are mostly overlapping with the last category. Recent publications in this

category focus on EOQ situations (Meca et al. (2004)), economic lot sizing

situations (Van den Heuvel et al. (2007)), newsvendor situations (Özen et al.

(2008) and spare parts pooling situations (Karsten et al. (2012); Karsten and

Basten (2014); Karsten et al. (2015)). Recently, Bachrach et al. (2012a,b, 2014)

introduced and investigated a new class of operation research games, called

cooperative reliability games, which comes closer to our work. Those games

consider a directed network with one sink and one source, where each link is

controlled by a self-interested agent. Those links are subject to failures with

some fixed probability. The agents can form coalitions to obtain connectivity

from the sink to the target node. A fixed reward, which is equal to the

probability of achieving connectivity for that coalition, should then be divided

amongst the participating agents. In particular, Bachrach et al. (2012b) focused

on how to approximate the Shapley value for large networks and Bachrach et al.

(2012a, 2014) focussed on when cooperative reliability games are convex and

balanced. The key difference with their work is that Bachrach et al. (2012b,a,
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2014) assumed that the reward obtained per coalition depends on a single

societal profit function only, while in our model it is assumed that the reward

obtained per coalition depends on the sum of the profit functions of all players of

that coalition. Hence, results from Bachrach et al. (2012b,a, 2014) are not

applicable to our situation.

The remainder of this paper is as follows. We start in Section 2 with preliminaries

on cooperative game theory. Then, in Section 3 cooperative availability games will

be introduced, followed by showing general properties regarding those games. In

Section 4, four different allocation rules will be introduced and investigated on

several properties. Finally, conclusions will be drawn in Section 5.

2 Preliminaries on cooperative game theory

In this section, we provide some basic elements of cooperative game theory.

Consider a finite set N = {1, 2, ..., n} of players and a function v : 2N → R called

the characteristic function, with v(∅) = 0. The pair (N, v) is called a cooperative

game with transferable utility, shortly called a game. A subset S ⊆ N is a coalition

and v(S) is the worth coalition S can achieve by itself. The worth can be

transferred freely among the players. The set N is called the grand coalition. For a

coalition S ⊆ N, the subgame (S, vS) is the game with player set S and

characteristic function vs such that vs(T) = v(T) for all T ⊆ S.

A game (N, v) is called monotonic if the value of every coalition is at least the value

of any of its subcoalitions, i.e., v(S) ≤ v(T) for all S, T ⊆ N with S ⊆ T. When the

value of the union of any two disjoint coalitions is larger than or equal to the sum

of the values of these disjoint coalitions, a game (N, v) is called superadditive, i.e.,

v(S) + v(T) ≤ v(S ∪ T) for all S, T ⊆ N with S ∩ T = ∅. A game (N, v) is called

convex if the marginal contribution of any player to any coalition is less than his

marginal contribution to a larger coalition, i.e., v(T ∪ {i})− v(T) ≥ v(S ∪ {i})−
v(S) for all S ⊆ T ⊆ N\{i} and all i ∈ N.

An allocation for a game (N, v) is an n-dimensional vector x ∈ RN describing

the payoffs to the players, where player i ∈ N receives xi. An allocation is called
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efficient if ∑i∈N xi = v(N). This implies that all worth is divided among the players

of the grand coalition N. An allocation is called individual rational if xi ≥ v({i})
for all i ∈ N and called stable if no group of players has an incentive to leave the

grand coalition N, i.e. ∑i∈S xi ≥ v(S) for all S ⊆ N.

The set of efficient and individual rational allocations, called the imputation set of

(N, v), is denoted by

I (N, v) :=

{
x ∈ RN : xi ≥ v({i}) for all i ∈ N and ∑

i∈N
xi = v(N)

}
.

The set of efficient and stable allocations, called the core of (N, v), is denoted by

C (N, v) :=

{
x ∈ RN : ∑

i∈S
xi ≥ v(S) for all S ⊆ N and ∑

i∈N
xi = v(N)

}
.

Following Bondareva (1963) and Shapley (1967), a game (N, v) is called balanced

if the core is non-empty. If for every S ⊆ N, the corresponding subgame (S, vS) is

balanced, the game is called totally balanced.

A well known allocation rule defined on games is the Shapley value, proposed by

Shapley (1953). The Shapley value can be described in several ways. One is

to calculate a weighted average over all marginal contributions that a player can

make to any possible coalition. Formally, for any game (N, v) the Shapley value

is defined by

Φi(N, v) = ∑
T⊆N\{i}

|T|!(|N| − 1− |T|)!
|N|! v(T ∪ {i})− v(T) ∀i ∈ N.

For any game (N, v) an allocation scheme y = (yi,S)S⊆N,i∈S specifies how to

allocate the worth of every coalition. A population monotonic allocation scheme

(PMAS), introduced by Sprumont (1990), is an allocation scheme (yi,S)S⊆N,i∈S

that is efficient, i.e., ∑i∈S yi,S = v(S) for all S ⊆ N, and monotonic, i.e., yi,S ≤ yi,T

for all S, T ⊆ N with S ⊆ T and all i ∈ S. If a game (N, v) admits a PMAS y, then

it is totally balanced and its allocation for the grand coalition, (yi,N)i∈N, is a

member of the core.
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3 Model

In this section, we will introduce availability situations and define the associated

games, called availability games.

3.1 Availability situations

Consider a situation with n ∈ N independent service providers, each providing

the same service with a single interchangeable resource. We assume those

resources to be unavailable occasionally. Let Ai ∈ [0, 1] be the long term fraction

of time that the resource of service provider i is available, i.e., the availability of

service provider i, and let 1 − Ai be the long term fraction of time that the

resource of service provider i is unavailable, i.e. unavailability of service

provider i. We assume Pi : [0, 1] → R+ being a non-decreasing function with

Pi(0) = 0. For availability Ai, service provider i receives a profit of Pi(Ai). We

will formalize this situation by a tuple, which we will refer to as an availability

situation.

Definition 1. An availability situation is a tuple (N, A, P), where

� N = {1, 2, . . . , n} is the set of players (a player corresponds to a service provider);

� A = (Ai)i∈N is a vector of availabilities, (Ai is the availability of the service of

player i);

� P = (Pi)i∈N is a vector of profit functions (Pi is the profit function of player i).

For short, we will use θ to refer to an availability situation θ = (N, A, P) and θ′

to refer to an(other) availability situation θ′ = (N′, A′, P′). Moreover, the set of

availability situations is denoted by Θ.

3.2 Availability games

The service providers can protect against unavailability by pooling their resources.

Here, we assume (i) that resources get unavailable mutually independent from

each other and (ii) that one available resource can handle demand of all service

6



providers if necessary. Based on those assumptions, pooling of resources works

as follows. If the resource of player i ∈ M becomes unavailable, another player

in M with an available resource will help player i until his resource becomes

available again. If the resource of the helping player becomes unavailable itself,

another player in M with an available resource will help, and so on. Only when

all resources in coalition M are unavailable, no service can be provided anymore.

Hence, the availability of player i as part of coalition M becomes

AM
i = 1− ∏

j∈M
(1− Aj). (1)

The profit related to player i as part of coalition M becomes Pi(AM
i ) and thus

the profit of coalition M becomes ∑i∈M Pi(AM
i ). Now, we can define a game

corresponding to an availability situation θ.

Definition 2. For any availability situation θ = (N, A, P), the game (N, vθ) with

vθ(M) = ∑
i∈M

Pi

(
AM

i

)
(2)

for all M ∈ 2N\{∅} and vθ(∅) = 0 is called the associated availability game.

Example 1. Consider availability situation θ ∈ Θ with A1 = 0.6, A2 = 0.9 and

A3 = 0.5 and P1(x) = x, P2(x) = 2x and P3(x) = 7x. In Table 1, the related

availabilities and corresponding profits for (N, vθ) are presented per coalition. �

Table 1: Corresponding availabilities and profits

M AM
i vθ(M) M AM

i vθ(M)

∅ 0 0 {1,2} 0.96 2.88

{1} 0.60 0.60 {1,3} 0.80 6.40

{2} 0.90 1.80 {2,3} 0.95 8.55

{3} 0.50 3.50 {1,2,3} 0.98 9.80

3.3 General properties

In this section, we will present general properties for availability games. The

following two Lemma’s will be used frequently.
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Lemma 1. For every availability situation θ ∈ Θ it holds that for any M, K ⊆ N with

M ⊆ K

∏
i∈M

(1− Ai) ≥∏
i∈K

(1− Ai).

Proof : Let θ ∈ Θ be an availability situation and M, K ⊆ N with M ⊆ K. We

have 0 ≤ 1− Ai ≤ 1 for all i ∈ N and consequently

∏
i∈M

(1− Ai) ≥ ∏
i∈M

(1− Ai) · ∏
i∈K\M

(1− Ai) = ∏
i∈K

(1− Ai),

where the inequality uses 0 ≤ ∏i∈S(1− Ai) ≤ 1 for all S ⊆ N. �

Lemma 2. For every availability situation θ ∈ Θ with M, K ⊆ N, M ⊆ K and i ∈ M it

holds that

Pi

(
AM

i

)
≤ Pi

(
AK

i

)
. (3)

Proof : Let θ ∈ Θ be an availability situation. Then

Pi

(
AM

i

)
= Pi

(
1− ∏

j∈M
(1− Aj)

)
≤ Pi

(
1−∏

j∈K
(1− Aj)

)
= Pi

(
AK

i

)
,

where the inequality is a result of (i) Lemma 1 and (ii) the non-decreasing

property of Pi. The first and last equality follow from (1). �

As a result of Lemma 2 we can now claim that availability games are monotonic.

Proposition 1. Every availability game (N, vθ) is monotonic.

Proof : Let θ ∈ Θ be an availability situation and (N, vθ) be the corresponding

availability game. Now, let M, K ⊆ N with M ⊆ K. Then

vθ(M) = ∑
i∈M

Pi(AM
i ) ≤ ∑

i∈M
Pi

(
AK

i

)
≤ ∑

i∈K
Pi

(
AK

i

)
= vθ(K).

The first and last equality hold by definition. The first inequality holds by

Lemma 2 and the second one holds by the combination of Pi(0) = 0 and the

non-decreasing property of Pi. �

In addition, we are able to show that every availability game (N, vθ) is

superadditive: the value of the union of disjoint coalitions is larger than or equal

to the sum of the values of the disjoint subcoalitions.

8



Proposition 2. Every availability game (N, vθ) is superadditive.

Proof : Let θ ∈ Θ be an availability situation and (N, vθ) be the corresponding

availability game. Let M, K ⊆ N with M ∩ K = ∅. Then

vθ(M) + vθ(K) = ∑
i∈M

Pi

(
AM

i

)
+ ∑

i∈K
Pi

(
AK

i

)
≤ ∑

i∈M
Pi

(
AM∪K

i

)
+ ∑

i∈K
Pi

(
AM∪K

i

)
= ∑

i∈M∪K
Pi

(
AM∪K

i

)
= vθ(M ∪ K).

where the inequality holds by Lemma 2. �

Superadditivity does not suffice to conclude that efficient and stable allocations

exist. Following Shapley (1953), convexity of games is a sufficient condition for

the existence of (an) efficient and stable allocation(s). The following example will

show that availability games are not convex in general.

Example 2. Consider the situation of Example 1. Observe that v({1, 2, 3}) −v({2, 3})
= 9.80 −8.55 = 1.25 < 2.90 = 6.40 −3.50 = v({1, 3}) −v({3}) and we can conclude

that the game is not convex. �

Despite that availability games are not convex in general, the existence of an

efficient and stable allocation can still be proven.

Theorem 1. Every availability game (N, vθ) has a non-empty core.

Proof : Let θ ∈ Θ be an availability situation and (N, vθ) be the corresponding

availability game. Let (xi)i∈N be the allocation with

xi = Pi

(
AN

i

)
for all i ∈ N.

First, observe that

∑
i∈N

xi = ∑
i∈N

Pi

(
AN

i

)
= vθ(N),

and thus the allocation is efficient. Secondly, observe that for any M ⊆ N

∑
i∈M

xi = ∑
i∈M

Pi

(
AN

i

)
≥ ∑

i∈M
Pi

(
AM

i

)
= vθ(M),
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where the inequality holds by Lemma 2. Given that ∑i∈M xi ≥ vθ(M) the

allocation is stable as well. Hence, (xi)i∈N is an efficient and stable allocation and

thus always a member of the core. The core is non-empty. �

We can also claim that availability games have a population monotonic allocation

scheme (PMAS).

Theorem 2. For every availability situation θ ∈ Θ the allocation scheme (ai,S)S⊆N,i∈S,

given by

ai,S = Pi

(
AS

i

)
for all i ∈ S and all S ⊆ N

is a population monotonic allocation scheme (PMAS) for (N, vθ).

Proof : Let θ ∈ Θ be an availability situation. Then, observe that

∑
i∈S

ai,S = ∑
i∈S

Pi

(
AS

i

)
= vθ(S)

for all S ⊆ N. Secondly, observe that for any S, T ⊆ N with S ⊆ T and i ∈ S we

have

ai,S = Pi

(
AS

i

)
≤ Pi

(
AT

i

)
= ai,T

and so (ai,S)i∈S,S⊆N is a PMAS. �

Following Sprumont (1990), every game with a PMAS is totally balanced. Since

every availability game has a PMAS, it is totally balanced as well.

Corollary 1. Every availability game (N, vθ) is totally balanced.

In Example 2, it is illustrated that availability games are not convex in general.

However, it is of interest to investigate if there exist necessary and sufficient

conditions for a class of availability situations for which convexity can be

ensured. We will investigate the class of availability situations with linear profit

functions, i.e., for which for every player i ∈ N, there exists a pi ∈ R+ such that

Pi(x) = pix for all x ∈ [0, 1]. These situations will be called linear availability

situations. The set of linear availability situations will be denoted by ΘL.

Definition 3. Let θ ∈ ΘL be a linear availability situation. Then the function Lij(θ) is

defined by

Lij(θ) = Aj

(
∑

k∈N
pk Ai − pi

)
− pj Ai for all i, j ∈ N with i 6= j.
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Theorem 3. For every linear availability situation θ ∈ ΘL with |N| ≥ 2 and Ai ∈
[0, 1) for all i ∈ N the corresponding game (N, vθ) is convex if and only if

Lij(θ) ≤ 0 for all i, j ∈ N with i 6= j.

Proof : See Appendix1.

Example 3. Consider the (linear) availability situation of Example 1. Note that p1 = 1,

p2 = 2 and p3 = 7. Then, L12(θ) is given by

L12(θ) = 0.9 · (10 · 0.6− 1)− 2 · 0.6 = 3.3 > 0.

As derived directly in Example 2, the game is indeed not convex. �

For linear availability situations θ ∈ ΘL with pi = p ∈ R+ for all i ∈ N, Theorem

3 reduces to an easier result.

Corollary 2. For every linear availability situation θ ∈ ΘL with |N| ≥ 2,

pi = p ∈ R+ for all i ∈ N, and 1 > A1 ≥ A2 ≥ . . . ≥ An, the corresponding

availability game (N, vθ) is convex if and only if

|N|A1A2 − A1 − A2 ≤ 0.

Proof : See Appendix.

Corollary 2 states that, under specific conditions, the corresponding availability

game is convex. For example, availability games with only few players are more

likely to be convex than games with many players (under the same highest and

second highest availabilities). This may be due to the following effect. The

additional profit player i ∈ N generates when another player j ∈ N\{i} enters

the coalition decreases by the size of the coalition player i ∈ N belongs to. This

effect may occur for linear availability situations θ ∈ ΘL where availabilities (and

profits) are constant as well.

Corollary 3. For every linear availability situation θ ∈ ΘL with |N| ≥ 2 and

Ai = A ∈ [0, 1) and p1 ≤ p2 ≤ . . . ≤ pn the corresponding availability game (N, vθ) is

convex if and only if

A ≤ p1 + p2

∑i∈N pi
.

1For the sake of readability, lengthy proofs are presented in the Appendix.
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Proof : See Appendix.

Corollary 4. For every linear availability situation θ ∈ ΘL with |N| ≥ 2 and

pi = p ∈ R+ and Ai = A ∈ [0, 1) for all i ∈ N the corresponding availability game

(N, vθ) is convex if and only if

A ≤ 2
|N| .

Proof : See Appendix.

4 Allocation Rules

In the proof of Theorem 1, an interesting allocation for every availability situation,

i.e., an allocation rule, is presented. Despite that the payoff vector of this allocation

rule is a core member of every availability situation, it will not necessarily satisfy

any other (appealing) property. Even stronger, there may exist other allocation

rules that (i) allocate total profit based on other criteria, (ii) satisfy interesting

properties and (iii) have a payoff vector that is a core member for every availability

situation as well. For that reason, we will introduce three other (interesting)

allocation rules regarding availability situations. For the, in total, four allocation

rules, we will investigate if they satisfy monotonicity to availability, monotonicity

to profit, situation symmetry and game symmetry. Finally, we will also investigate

the core membership of the payoff vectors resulting from the allocation rules.

4.1 Four allocation rules

First, we will formally introduce an allocation rule defined on availability

situations.

Definition 4. An allocation rule on availability situations is defined as a mapping γ that

assigns to any availability situation θ ∈ Θ a vector γ(θ) ∈ RN.

We will only pay attention to allocation rules that divide the total profit, i.e.,

∑i∈N fi(θ) = vθ(N) for any availability situation θ ∈ Θ. The total profit that can

be generated only depends on (i) the availabilities and (ii) the profit functions
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of the different players. In what follows, we will first introduce three intuitive

allocation rules, each depending on the availabilities and profit functions of the

different players of the corresponding availability situation. Thereafter, we will

present the fourth allocation rule which is based on a well-known allocation rule

for cooperative games, namely the Shapley value.

The first allocation rule (which is introduced in the proof of Theorem 1 as an

allocation for every availability situation) will allocate to every player the profit,

he or she generates with its own profit function while being part of the grand

coalition. It is based on the idea that a player that generates more profit than

another player under the same availability should also be rewarded more. This

allocation rule, which we call Own Profit (OP), is described for any availability

situation θ ∈ Θ by

OPi(θ) = Pi

(
AN

i

)
for all i ∈ N.

A possible drawback of the first allocation rule is that players are not rewarded

directly for the impact of their own availability (on the profit functions of

others). The second allocation rule overcomes this by allocating the total profit

proportional to the availabilities of the players. The idea behind this allocation

rule is that the more a player is available, the more it can help others and for this

it will be rewarded. Formally, for every availability situation θ ∈ Θ for which

there exists at least one player j ∈ N with Aj > 0, this allocation rule, which we

call Proportional to Availability (PA), is defined by

PAi(θ) =
Ai

∑j∈N Aj
vθ(N) for all i ∈ N.

A possible drawback of the second allocation rule is that players are not rewarded

directly for the profit generated with their own profit function while being part

of the grand coalition. The third allocation rule will not overcome this (nor the

other) drawback. However, it tries to find another intuitive way of dividing the

profit based on the availabilities and profit functions. This allocation rule will first

allocate the individual profit, i.e., the profit that every player would obtain in the

individual situation, to every player. In fact, every player will be rewarded for

their own availability and profit function. Then, the remaining part of the total

profit will be divided proportional to the players’ cost of unavailability. Hence,
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the more a player is unavailable, the more it gets from the remaining part of the

total profit. The idea behind this part is that the more a player is unavailable,

the more (potential) profit it can generate while cooperating. For that, the player

will be rewarded. Formally, for every availability situation θ ∈ Θ for which there

exists at least one player j ∈ N with Aj < 1, this allocation rule, which we call

Proportional to Unavailability Costs (PUC), is defined by

PUCi(θ) = vθ({i}) + Pi(1)− Pi(Ai)

∑j∈N
[
Pj(1)− Pj(Aj)

] (vθ(N)− ∑
j∈N

vθ({j})
)

for all i ∈ N.

The last allocation rule that will be introduced is the Shapley value. The Shapley

value (Shapley (1953)) is a well-known (and accepted) allocation rule for

cooperative games. It is the only one that satisfies the efficiency, monotonicity,

symmetry and dummy property simultaneously. We will define the Shapley

value (SV) for every availability situation θ ∈ Θ by

SVi(θ) = Φi(N, vθ) for all i ∈ N.

4.2 Properties of allocation rules

In this section we will investigate whether the allocation rules satisfy intuitive

properties as monotonicity to availability, monotonicity to profit, situation

symmetry and game symmetry. Finally, we will also investigate whether the

payoff vectors resulting from the allocation rules are core members.

4.2.1 Monotonicity to availability

Suppose the availability of a player increases. Then, this specific player is able to

generate more profit. Moreover, as the total availability increases, other players

can generate more profit as well. Hence, it is natural to assume that players do

not expect decreases in their allocations. We will investigate whether the

allocation rules will allocate to all players not less when the availability of any

player increases., i.e., satisfy monotonicity to availability.
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Definition 5. An allocation rule γ satisfies monotonicity to availability on D ⊆ Θ if

for any two availability situations θ, θ′ ∈ D, where θ and θ′ coincide except for the

availability of player j with Aj ≤ A′j

γi(θ) ≤ γi(θ
′) for all i ∈ N.

The following example will show that allocation rules PA, PUC and SV do not

satisfy monotonicity to availability on Θ.

Example 4. Consider availability situation θ ∈ Θ with N = {1, 2, 3}, A1 = 0.5,

A2 = 0.5, A3 = 0.5 and

P1(x) = P2(x) =



x if 0 ≤ x ≤ 1
2

1
2 if 1

2 < x < 1

1 if x = 1,

P3(x) =


x if 0 ≤ x ≤ 1

2

1 if 1
2 < x ≤ 1.

Moreover, consider situation θ′ ∈ Θ, which coincides with θ except that A′3 = 0.75. In

Table 2, the four allocations regarding those two situations θ and θ′ are depicted for all

three players.

Table 2: Allocations for availability game

i OPi PAi PUCi SVi i OPi PAi PUCi SVi

1 1
2

2
3

2
3

7
12 1 1

2
4
7

1
2

1
2

θ 2 1
2

2
3

2
3

7
12 θ′ 2 1

2
4
7

1
2

1
2

3 1 2
3

2
3

10
12 3 1 6

7 1 1

Allocation rules PA, PUC and SV do not satisfy monotonicity to availability, since

PA2(θ) =
2
3
>

4
7
= PA2(θ

′),

PU2(θ) =
2
3
>

1
2
= PU2(θ

′),

SV2(θ) =
7

12
>

1
2
= SV3(θ

′).

Note that this example can also be constructed with continious profit functions. �
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Theorem 4. Allocation rule OP satisfies monotonicity to availability on Θ.

Proof : See Appendix.

For linear availability situations, we obtain different results regarding

monotonicity to availability. The following example will be used to show that

allocation rules PA and SV do not satisfy monotonicity to availability on ΘL.

Example 5. Consider the (linear) availability situation θ ∈ ΘL of Example 1. Moreover,

consider situation θ′ ∈ ΘL, which coincides with θ except that A′1 = 0.8 now. In Table

3, the four allocations regarding those two situations θ and θ′ are depicted for all three

players. All numbers are rounded to two decimals.

Table 3: Allocations for availability game

i OPi PAi PUCi SVi i OPi PAi PUCi SVi

1 0.98 2.94 0.98 1.28 1 0.99 3.60 0.99 1.52

θ 2 1.96 4.41 1.99 2.95 θ′ 2 1.98 4.05 2.00 2.70

3 6.86 2.45 6.83 5.57 3 6.93 2.25 6.91 5.68

Allocation rules PA and SV do not satisfy monotonicity to availability, since

PA2(θ) > 4.40 > 4.06 > PA2(θ
′),

SV2(θ) > 2.94 > 2.71 > SV2(θ
′). �

Theorem 5. Allocation rules OP and PUC satisfy monotonicity to availability on ΘL.

Proof : See Appendix.

4.2.2 Monotonicity to profit

Suppose the profit function of a player changes such that the outcome of the

difference between the old and the new profit function increases for an increasing

availability. Then, this specific player is able to generate more profit. Despite that

the other players will not generate more profit themselves, they are responsible

(in terms of availability) for the (extra) profit of the specific player as well. Hence,

it is natural to assume that players do not expect decreases in their allocations.

We will investigate whether the allocation rules will allocate to all players not less
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when the difference between the outcome of the new and old profit function of

a specific player is non-decreasing in the availability, i.e., satisfy monotonicity to

profit.

Definition 6. An allocation rule γ satisfies monotonicity to profit on D ⊆ Θ if for any

two availability situations θ, θ′ ∈ D, where θ and θ′ coincide except for the profit of player

j with P′j (x)− Pj(x) non-decreasing in x

γi(θ) ≤ γi(θ
′) for all i ∈ N.

The following example will show that allocation rule PUC does not satisfy

monotonicity to profit on ΘL.

Example 6. Consider an availability situation θ ∈ ΘL with N = {1, 2, 3} and A1 = 0.6,

A2 = 0.7 and A3 = 0.5 and p1 = 1, p2 = 3 and p3 = 9. Moreover, consider situation

θ′ ∈ ΘL, which coincides with θ except that p′1 = 10 now. In Table 4, the four allocations

regarding those two situations θ and θ′ are depicted for all three players. Note that all

numbers are rounded to two decimals.

Table 4: Allocations for availability game

i OPi PAi PUCi SVi i OPi PAi PUCi SVi

1 0.94 4.07 0.95 1.69 1 9.40 6.89 9.44 8.83

θ 2 2.82 4.75 2.88 3.54 θ′ 2 2.82 8.04 2.87 4.38

3 8.46 3.39 8.39 6.98 3 8.46 5.74 8.37 7.46

Allocation rule PUC does not satisfy monotonicity to profit, since

PUC3(θ) > 8.38 > PUC3(θ
′). �

Theorem 6. Allocation rules OP, PA and SV satisfy monotonicity to profit on Θ.

Proof : See Appendix.

4.2.3 Situation Symmetry

Suppose that two players have the same profit function and availability. Then,

those players both generate the same profit and both help other players (in terms
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of availability) in the same way. Hence, it is natural to assume that those players

expect the same allocation. We will investigate whether the allocation rules will

indeed allocate the same to both players, i.e., satisfy situation symmetry. For this

we will introduce some new definitions.

Definition 7. For any availability situation θ ∈ Θ, players i, j ∈ N with i 6= j are called

situation symmetric if

Pi(x) = Pj(x) for all x ∈ [0, 1] and Ai = Aj.

Definition 8. An allocation rule γ satisfies situation symmetry on D ⊆ Θ if for all

θ ∈ D and all situation symmetric players i, j ∈ N with i 6= j it holds that

γi(θ) = γj(θ).

Theorem 7. Allocation rules OP, PA, PUC and SV satisfy situation symmetry on Θ.

Proof : See Appendix.

4.2.4 Game Symmetry

Suppose that player i and player j have the same individual profit, but not

necessarily the same profit functions and availabilities. Moreover, assume that

the total profit of any coalition including player i equals the total profit of the

same coalition including player j rather than i. So, both players are symmetric,

but now in terms of the corresponding availability game. Hence, it is natural to

assume that both players expect the same allocation. We will investigate whether

the allocation rules will allocate the same to both players, i.e., satisfy game

symmetry. We will first introduce the definition of symmetric players in terms of

availability games.

Definition 9. For any availability situation θ ∈ Θ players i, j ∈ N with i 6= j are called

game symmetric if for the corresponding availability game (N, vθ)

vθ(S ∪ {i}) = vθ(S ∪ {j}) ∀S ⊆ N\{i, j}.

Definition 10. An allocation rule γ satisfies game symmetry on D ⊆ Θ if for all θ ∈ D

and all game symmetric players i, j ∈ N with i 6= j it holds that

γi(θ) = γj(θ).
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The following example will show that allocation rules OP, PA and PUC do not

satisfy game symmetry on ΘL.

Example 7. Consider a linear availability situation θ ∈ ΘL with N = {1, 2, 3} and

A1 = 0.7, A2 = 0.8 and A3 = 0.9 p1 = 9, p2 = 40 and p3 = 7. Then vθ
1({1}) = 6.3 =

vθ
3({3}) and vθ({1, 2}) = 49 · 0.94 = 47 · 0.98 = vθ({2, 3}) and thus we can conclude

that player 1 and 3 are symmetric. The corresponding allocations are presented in Table

5. All numbers are rounded to two decimals.

Table 5: Allocations for availability game

i OPi PAi PUCi SVi

1 8.95 16.24 8.92 9.18

θ 2 39.76 18.55 39.76 37.30

3 6.96 20.87 6.98 9.18

The allocation rules OP, PA and PUC do not satisfy game symmetry, since

OP1(θ) > 7.00 > OP3(θ),

PA1(θ) < 20.00 < PA3(θ),

PUC1(θ) > 7.00 > PUC3(θ). �

Theorem 8. Allocation rule SV satisfies game symmetry on Θ.

Proof : Let θ ∈ Θ be an availability situation. Moreover, let i, j ∈ N with i 6= j

be two game symmetric players in (N, vθ). Following Shapley (1953), it holds

that Φi(N, vθ) = Φj(N, vθ). As a consequence, SVi(θ) = Φ(N, vθ) = Φj(N, vθ) =

SVj(θ), which concludes that SV satisfies game symmetry. �

4.2.5 The core

In Section 3.2 we already investigated the non-emptiness of the core. This result

was based on finding a payoff vector that always belongs to the core. Now, we

will investigate whether the payoff vectors resulting from the allocation rules are

always members of the core as well.

The following example will show that there exists an availability situation θ ∈ Θ

for which payoff vectors PA(θ), PUC(θ) and SV(θ) are not core elements.
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Example 8. Consider the availability situation of Example 4. Then, the corresponding

game (N, vθ) is given by vθ({1}) = vθ({2}) = vθ({3}) = 1
2 ,

vθ({1, 3}) = vθ({2, 3}) = 11
2 , vθ({1, 2}) = 1 and vθ({1, 2, 3}) = 2. The payoff

vectors resulting from allocation rules PA, PUC and SV (see Table 2) are not elements of

the core, since

PA1(θ) + PA3(θ) =
2
3
+

2
3
< 1

1
2
= vθ({1, 3}),

PUC1(θ) + PUC3(θ) =
2
3
+

2
3
< 1

1
2
= vθ({1, 3}),

SV1(θ) + SV3(θ) =
7
12

+
10
12

= 1
5

12
< 1

1
2
= vθ({1, 3}). �

Theorem 9. For every availability situation θ ∈ Θ it holds that

OP(θ) ∈ C(N, vθ).

Proof : See proof of Theorem 1 where OPi(θ) = xi for all i ∈ N. �

The following example will show that there exists a linear availability situation

θ ∈ ΘL for which payoff vector PA(θ) and SV(θ) are not core elements.

Example 9. Consider the (linear) availability situation θ ∈ ΘL of Example 1. The related

allocations are presented in Table 6. All values are rounded to two decimal places.

Table 6: Allocations for availability game

i OPi PAi PUCi SVi

1 0.98 2.94 0.98 1.28

θ 2 1.96 4.41 1.99 2.95

3 6.86 2.45 6.83 5.57

The payoff vectors resulting from allocation rules PA and SV are not elements of the core,

since

PA2(θ) + PA3(θ) < 4.42 + 2.46 = 6.88 < vθ({23}),

SV2(θ) + SV3(θ) < 2.96 + 5.58 = 8.54 < vθ({23}). �

For the upcoming theorem, the following lemma will be used.
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Lemma 3. Let θ ∈ ΘL be a linear availability situation with xi = 1− Ai for all i ∈ N.

Then for all S ⊆ N it holds that

∑
i∈S

pi

(
∏
j∈S

xj

)
≥ ∑i∈S pixi

∑j∈N pjxj
∑
i∈N

pi

(
∏
j∈N

xj

)
.

Now, it is possible to show that for every linear availability situation θ ∈ ΘL

payoff vectors PUC(θ) and OP(θ) are core members.

Theorem 10. For every availability situation θ ∈ ΘL it holds that

PUC(θ), OP(θ) ∈ C(N, vθ).

Proof : See Appendix.

Following Shapley (1953), the Shapley value is a member of the core if the

corresponding game is convex. In Theorem 3 necessary and sufficient conditions

are given for convexity of games associated with linear availability situations.

Corollary 5. For linear availability situations θ ∈ ΘL with Lij(θ) ≤ 0 for all i, j ∈ N

and i 6= j, SV(θ) is a member of the core of (N, vθ).

5 Conclusions

In this paper, an environment was considered in which several independent

service providers can collaborate by pooling their critical, low-utilization

resources that are subject to unavailability. We examined the allocation of the

collective cost savings for such pooled situation by studying an associated

cooperative game. For this game, we proved non-emptiness of the core,

presented a population monotonic allocation scheme, and showed convexity

under some conditions. Moreover, we discussed four allocation rules and

investigated whether they satisfy intuitive properties as monotonicity to

availability, monotonicity to profit, situation symmetry and game symmetry.

Next to that, we investigated whether the payoff vectors resulting for those

allocation rules are core members. In Table 7 and Table 8 all results are
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summarized together. It turns out that none of the four allocation rules satisfies

all properties. However, in terms of the underlying properties, allocation rule

Own Profit (OP) is preferable to allocation rule Proportional to Unavailability

costs (PUC) and to allocation rule Proportional to Availability (PA). Finally,

Allocation rule Shapley Value (SV) is preferable to PA.

Table 7: Results for availability situations

Properties OP PA PUC SV

Monotonicity to availability X × × ×
Monotonicity to profit X X × X

Situation symmetry X X X X

Game symmetry × × × X

Member of the core X × × ×
X: satisfies property

× : does not (always) satisfy property

Table 8: Results for lineair availability situations

Properties OP PA PUC SV

Monotonicity to availability X × X ×
Monotonicity to profit X X × X

Situation symmetry X X X X

Game symmetry × × × X

Member of the core X × X ×?

? : satisfies property if conditions of Corollary 5 hold.
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6 Appendix

Proof of Theorem 3

Proof : Let θ ∈ ΘL be a linear availability situation with |N| ≥ 2 and (N, vθ)

be the corresponding availability game. We will show that the corresponding

availability game is convex if and only if Lij(θ) ≤ 0 for all i, j ∈ N with i 6= j.

(⇒) Suppose the availability game is convex, i.e. (Shapley (1953)),

vθ(S ∪ {i, j})− vθ(S ∪ {j})− (vθ(S ∪ {i})− vθ(S)) ≥ 0 (4)

for all i, j ∈ N with i 6= j and all S ⊆ N\{i, j}. Let i, j ∈ N with i 6= j and

S ⊆ N\{i, j}. Based on (4) it holds that

0 ≤ vθ(S ∪ {i, j})− vθ(S ∪ {j})− (vθ(S ∪ {i})− vθ(S))

= ∑
k∈S∪{i,j}

pk

1− ∏
l∈S∪{i,j}

(1− Al)

− ∑
k∈S∪{j}

pk

1− ∏
l∈S∪{j}

(1− Al)


− ∑

k∈S∪{i}
pk

1− ∏
l∈S∪{i}

(1− Al)

+ ∑
k∈S

pk

(
1−∏

l∈S
(1− Al)

)

= ∑
k∈S∪{j}

pk

Ai ∏
l∈S∪{j}

(1− Al)

+ pi

1− ∏
l∈S∪{i,j}

(1− Al)


− ∑

k∈S
pk

(
Ai ∏

l∈S
(1− Al)

)
− pi

1− ∏
l∈S∪{i}

(1− Al)


= ∏

l∈S∪{j}
(1− Al)

 ∑
k∈S∪{j}

pk Ai − pi(1− Ai)


−∏

l∈S
(1− Al)

(
∑
k∈S

pk Ai − pi(1− Ai)

)

= ∏
l∈S

(1− Al)

(1− Aj)

 ∑
k∈S∪{i,j}

pk Ai − pi

−
 ∑

k∈S∪{i}
pk Ai − pi

 ,

where the first equality follows by definition. The second equality follows by

combining all terms k ∈ S ∪ {j} from the first and second summation into one

summation and combining all terms k ∈ S from the third and fourth summation
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into one summation. In the two new summations we combine the product terms

and use that Ai = 1− (1− Ai). Finally, we write down the terms that are left from

the original summations. In the third equality the product term ∏l∈S∪j(1− Al) is

taken out of the first and second term and the product term ∏l∈S(1− Al) is taken

out of the third and fourth term. Moreover, pi · 1 and −pi · 1 cancel out against

each other. In the fourth equality the product term ∏l∈S(1− Al) is taken out of

the whole equality and −pi(1− Ai) is written as pi Ai − pi, where pi Ai is finally

included into the summation.

As Ai ∈ [0, 1) for all i ∈ N, it holds that ∏l∈S(1− Al) > 0. If the last expression

is divided by ∏l∈S(1− Al), we obtain

0 ≤ (1− Aj)

 ∑
k∈S∪{i,j}

pk Ai − pi

−
 ∑

k∈S∪{i}
pk Ai − pi


= pj Ai − Aj

 ∑
k∈S∪{i,j}

pk Ai − pi

 .

This is equivalent to

Aj

 ∑
k∈S∪{i,j}

pk Ai − pi

− pj Ai ≤ 0. (5)

As i, j ∈ N with i 6= j and S ⊆ N\{i, j} were chosen arbitrarily, (5) holds for any

i, j ∈ N with i 6= j and all S ⊆ N\{i, j}. In particular, (5) holds for any i, j ∈ N

with i 6= j and S = N\{i, j}. For S = N\{i, j} the left side of (5) coincides with

Lij(θ) and thus Lij(θ) ≤ 0 for all i, j ∈ N with i 6= j.

(⇐) Now, we assume that

Lij(θ) ≤ 0

for all i, j ∈ N with i 6= j. Then, for a given i, j ∈ N with i 6= j it holds that

Aj

(
∑

k∈N
pk Ai − pi

)
− pj Ai ≤ 0.

Now, let S ⊆ N\{i, j}. As ∑k∈S∪{i,j} pk Ai ≤ ∑k∈N pk Ai, we can conclude that

Aj

 ∑
k∈S∪{i,j}

pk Ai − pi

− pj Ai ≤ Aj

(
∑

k∈N
pk Ai − pi

)
− pj Ai ≤ 0.
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This implies that

0 ≤ −Aj

 ∑
k∈S∪{i,j}

pk Ai − pi

+ pj Ai

= −Aj

 ∑
k∈S∪{i,j}

pk Ai − pi

+

 ∑
k∈S∪{i,j}

pk Ai − pi


−

 ∑
k∈S∪{i}

pk Ai − pi


= (1− Ai)

 ∑
k∈S∪{i,j}

pk Ai − pi

−
 ∑

k∈S∪{i}
pk Ai − pi


Multiplying the last expression by ∏l∈S(1− Al) > 0 results into

∏
l∈S

(1− Al)

(1− Ai)

 ∑
k∈S∪{i,j}

pk Ai − pi

−
 ∑

k∈S∪{i}
pk Ai − pi

 ≥ 0.

From proof (⇒) we know that this inequality coincides with

v(S ∪ {i, j})− v(S ∪ {j})− (v(S ∪ {i})− v(S)) ≥ 0 (6)

As i, j ∈ N with i 6= j and S ⊆ N\{i, j} were chosen arbitrarily, we can conclude

that (6) holds for any i, j ∈ N with i 6= j and all S ⊆ N\{i, j}. This coincides with

convexity, which concludes the proof. �

Proof of Corollary 2

Proof : Let θ ∈ ΘL be a lineair availability situation with pi = p ∈ R+ for all i ∈ N

and 1 > A1 ≥ A2 ≥ . . . ≥ An. Let (N, vθ) be the corresponding availability game.

We will show that the corresponding availability game is convex if and only if

|N|A1A2 − A1 − A2 ≤ 0.

(⇒) Suppose the corresponding availability game is convex. Then, by Theorem 3,

Lij(θ) ≤ 0 for all i, j ∈ N with i 6= j and so

L12(θ) = A2 (|N|pA1 − p)− pA1 ≤ 0.

As p ∈ R+, we derive
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|N|A1A2 − A1 − A2 ≤ 0,

which concludes this part of the proof.

(⇐) Suppose that |N|A1A2 − A1 − A2 ≤ 0. Then, it holds

A1

(
1
2
|N|A2 − 1

)
+ A2

(
1
2
|N|A1 − 1

)
≤ 0. (7)

As 0 ≤ A2 ≤ A1 < 1, this implies that 1
2 |N|A2 − 1 ≤ 0 and 1

2 |N|A1 − 1 ≤ 0 or
1
2 |N|A2 − 1 ≤ 0 and 1

2 |N|A1 − 1 ≥ 0. We will now investigate those different

cases.

Case 1 1
2 |N|A2 − 1 ≤ 0 and 1

2 |N|A1 − 1 ≤ 0

As 1
2 |N|A1 − 1 ≤ 0, it holds that 1

2 |N|Aj − 1 ≤ 1
2 |N|A1 − 1 ≤ 0 for all j ∈ N. As

Ai ∈ [0, 1) for all i ∈ N, it holds that Ai(
1
2 |N|Aj − 1) ≤ 0 for all i, j ∈ N. Thus

Ai

(
1
2
|N|Aj − 1

)
+ Aj

(
1
2
|N|Ai − 1

)
≤ 0.

Case 2 1
2 |N|A2 − 1 ≤ 0 and 1

2 |N|A1 − 1 ≥ 0

(i) As A1(
1
2 |N|Aj − 1) ≤ A1(

1
2 |N|A2 − 1) for all j ∈ N\1 and Aj(

1
2 |N|A1 − 1) ≤

A2(
1
2 |N|A1 − 1) for all j ∈ N\1, it holds that

A1(
1
2
|N|Aj − 1) + Aj(

1
2
|N|A1 − 1) ≤ A1(

1
2
|N|A2 − 1) + A2(

1
2
|N|A1 − 1) ≤ 0

for all j ∈ N\1.

(ii) For i ∈ N\1 and j ∈ N : j > i, it holds that 1
2 |N|Aj − 1 ≤ 1

2 |N|Ai − 1 ≤
1
2 |N|A2 − 1 ≤ 0. Thus

Ai

(
1
2
|N|Aj − 1

)
+ Aj

(
1
2
|N|Ai − 1

)
≤ 0, (8)

Combining Case 1 and Case 2, we conclude that (8) holds for all i ∈ N and all

j ∈ N with j > i. Since Lij(θ) = Lji(θ) for all i, j ∈ N with i 6= j, (8) holds for

all i, j ∈ N with i 6= j. As multiplying (8) with p ∈ R+ will not affect the right
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hand side of the inequality, it holds that Lij(θ) ≤ 0 for all i, j ∈ N with i 6= j. By

Theorem 3, the corresponding availability game is convex. �

Proof of Corollary 3

Proof : Let θ ∈ ΘL be a lineair availability situation with Ai = A ∈ [0, 1) for all

i ∈ N and p1 ≤ p2 . . . ≤ pn. Let (N, vθ) be the corresponding availability game.

We will show that the corresponding availability game is convex if and only if

A ≤ p1+p2
∑i∈N pi

.

(⇒) Suppose the corresponding availability game is convex. Then, by Theorem 3,

Lij(θ) ≤ 0 for all i, j ∈ N with i 6= j and so

L12(θ) = A

(
∑
i∈N

pi A− p1

)
− p2A ≤ 0.

After some rewriting, we derive

A ≤ p1 + p2

∑i∈N pi
,

which concludes this part of the proof.

(⇐) Suppose that 0 ≤ A ≤ p1+p2
∑i∈N pi

. After some rewriting, we derive

A

(
∑
i∈N

pi A− p1

)
− p2A ≤ 0. (9)

The left hand side of (9) coincides with L12(θ), and so L12(θ) ≤ 0. Now, observe

that

0 ≥ L12(θ) = A

(
∑

k∈N
pk A− p1

)
− p2A = A2 ∑

k∈N
pk − A(p1 + p2)

≥ A2 ∑
k∈N

pk − A(pi + pj)

= Lij(θ)

for all i, j ∈ N with i 6= j. This implies that Lij(θ) ≤ 0 for all i, j ∈ N with i 6= j.

By Theorem 3, the corresponding availability game is convex. �
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Proof of Corollary 4

Proof : Let θ ∈ ΘL be a lineair availability situation with Ai = A ∈ [0, 1) for all

i ∈ N and pi = p ∈ R+ for all i ∈ N. Let (N, vθ) be the corresponding availability

game. We will show that the corresponding availability game is convex if and

only if A ≤ 2
|N| .

(⇒) Suppose the corresponding availability game is convex. Then, by Corollary

3, it holds that

A ≤ p1 + p2

∑k∈N pk
=

2p
|N|p =

2
|N| ,

which concludes the first part of the proof.

(⇐) Suppose that A ≤ 2
|N| . This implies that

A ≤ 2
|N| =

2p
|N|p =

p1 + p2

∑k∈N pk
,

and thus, by Corollary 3, the corresponding game is convex. �

Proof of Theorem 4

Proof : Let θ ∈ Θ be an availability situation and θ′ ∈ Θ be another availability

situation that coincides with θ except for the availability of player j, i.e., Aj ≤ A′j.

Then, it holds for any player i ∈ N that

OPi(θ) = Pi

(
1− ∏

k∈N
(1− Ak)

)

= Pi

1− ∏
k∈N\{j}

(1− Ak)(1− Aj)


= P′i

1− ∏
k∈N\{j}

(1− A′k)(1− Aj)


≤ P′i

1− ∏
k∈N\{j}

(1− A′k)(1− A′j)


= OPi(θ

′).
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where the third equality results from Ak = A′k for all k 6= j and Pi = P′i for all i ∈
N. The inequality results from 0 ≤ Aj ≤ A′j ≤ 1 with 0 ≤ ∏k∈N\{j}(1− A′k) ≤ 1,

and the fact that Pi is non-decreasing. �

Proof of Theorem 5

Proof : (i) OP. From Theorem 4 it follows that allocation rule OP satisfies

monotonicity to availability on Θ. As ΘL ⊆ Θ, allocation rule OP satisfies

monotonicity to availability on ΘL as well.

(ii) PUC. Let θ ∈ ΘL be a linear availability situation and θ′ ∈ ΘL be another

linear availability situation that only deviates in the availability of player j ∈ N

with Aj ≤ A′j. We claim that the derivative of PUCi(θ) for any player i ∈ N is non-

negative with respect to availability Aj. Note that Pi(1)− Pi(Ai) = pi − pi Ai =

pi(1− Ai) for all i ∈ N.

Allocation PUCi(θ) for player i ∈ N can be rewritten as

PUCi(θ) = pi Ai +
pi(1− Ai)

∑k∈N pk(1− Ak)

(
∑
t∈N

pt

(
1− ∏

k∈N
(1− Ak)

)
− ∑

l∈N
pl Al

)

= pi Ai +

(
1−

∑l∈N\{i} pl(1− Al)

∑l∈N pl(1− Al)

)
×(

∑
t∈N

pt

(
1− At − ∏

k∈N
(1− Ak)

))

= pi Ai + ∑
t∈N

pt

(
1− At − ∏

k∈N
(1− Ak)

)
− ∑

l∈N\{i}
pl(1− Al)

+
∑l∈N\{i} pl(1− Al)

∑l∈N pl(1− Al)
∑
t∈N

pt ∏
k∈N

(1− Ak)

= pi Ai + pi(1− Ai)− ∑
t∈N

pt ∏
k∈N

(1− Ak)

+
∑l∈N\{i} pl(1− Al)

∑l∈N pl(1− Al)
∑
t∈N

pt ∏
k∈N

(1− Ak)

= pi − ∑
t∈N

pt ∏
k∈N

(1− Ak)

(
1−

∑l∈N\{i} pl(1− Al)

∑l∈N pl(1− Al)

)
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= pi − ∑
t∈N

pt ∏
k∈N

(1− Ak)

(
pi(1− Ai)

∑l∈N pl(1− Al)

)
.

As at least for one player k ∈ N, Ak < 1, function PUCi(θ) is continuous and

differentiable in Aj. For player j, the derivative of PUCj(θ) to Aj is given by

d
dAj

PUCj(θ)

= −∑l∈N pl(1− Al) · (−pj)− pj(1− Aj) · (−pj)

(∑l∈N pl(1− Al))
2 ∑

t∈N
pt ∏

k∈N
(1− Ak)

−
pj(1− Aj)

∑l∈N pl(1− Al)
∑
t∈N

pt ∏
k∈N\{j}

(1− Ak) · (−1)

=
pj

(∑l∈N pl(1− Al))
2

(
∑

l∈N\{j}
pl(1− Al) ∑

t∈N
pt ∏

k∈N
(1− Ak)

+ ∑
l∈N

pl(1− Al) ∑
t∈N

pt ∏
k∈N

(1− Ak)

)

=
pj ∑t∈N pt ∏k∈N(1− Ak)

(∑l∈N pl(1− Al))
2

 ∑
l∈N\{j}

pl(1− Al) + ∑
l∈N

pl(1− Al)

)
≥ 0.

Note that all terms are non-negative and thus the derivative is non-negative as

well. Hence, PUCj(θ) is non-decreasing in Aj. This implies that PUCj(θ) ≤
PUCj(θ

′). Taking the derivative of PUCi(θ) to Aj with i ∈ N\{j} gives

d
dAj

PUCi(θ) = −
0− (pi(1− Ai) · (−pj))

(∑l∈N pl(1− Al))
2 ∑

t∈N
pt ∏

k∈N
(1− Ak)

− pi(1− Ai)

∑l∈N pl(1− Al)
∑
t∈N

pt ∏
k∈N\{j}

(1− Ak) · (−1)

=
pi(1− Ai)

(∑l∈N pl(1− Al))
2

(
−pj ∑

t∈N
pt ∏

k∈N
(1− Ak)

+ ∑
t∈N

pt ∏
k∈N\{j}

(1− Ak) ∑
l∈N

pl(1− Al)


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=
pi(1− Ai)

(∑l∈N pl(1− Al))
2

∑
t∈N

pt ∏
k∈N\{j}

(1− Ak)


×
(
−pj(1− Aj) + ∑

l∈N
pl(1− Al)

)

=
pi(1− Ai)

(∑l∈N pl(1− Al))
2

∑
l∈N

pl ∏
k∈N\{j}

(1− Ak)


×

 ∑
l∈N\{j}

pl(1− Al)

 ≥ 0.

Note that all terms are non-negative and thus the derivative is non-negative as

well. Hence, PUCi(θ) is non-decreasing in Aj for all i ∈ N\{j}. We conclude that

PUCi(θ) ≤ PUCi(θ
′) for all i ∈ N. �

Proof of Theorem 6

Proof : Let θ, θ′ ∈ Θ be two availability situations where θ and θ′ coincide except

for the profit of player j with P′j (x) − Pj(x) non-decreasing in x. As P′k(x) −
Pk(x) = 0 for all k ∈ N\j, it holds that P′i (x) ≥ Pi(x) for all i ∈ N. Hence, it holds

for all i ∈ N that

OPi(θ) = Pi

(
1− ∏

k∈N
(1− Ak)

)

≤ P′i

(
1− ∏

k∈N
(1− A′k)

)
= OPi(θ

′)

given that Ak = A′k for all k ∈ N.

In the same line, it holds that

PAi(θ) =
Ai

∑k∈N Ak
∑

k∈N
Pk

(
1− ∏

h∈N
(1− Ah)

)

≤
A′i

∑k∈N A′k
∑

k∈N
P′k

(
1− ∏

h∈N
(1− A′h)

)
= PAi(θ

′),

given that Ak = A′k for all k ∈ N.
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Finally, let i ∈ N and S ⊆ N\{i}. Then

vθ′(S ∪ {i})− vθ′(S) = ∑
k∈S∪{i}

P′k

1− ∏
l∈S∪{i}

(1− Al)


− ∑

k∈S
P′k

(
1−∏

l∈S
(1− Al)

)

= ∑
k∈S

P′k

1− ∏
l∈S∪{i}

(1− Al)


− P′k

(
1−∏

l∈S
(1− Al)

))
+ P′i

1− ∏
l∈S∪{i}

(1− Al)


≥ ∑

k∈S

Pk

1− ∏
l∈S∪{i}

(1− Al)


− Pk

(
1−∏

l∈S
(1− Al)

))
+ Pi

1− ∏
l∈S∪{i}

(1− Al)


= vθ(S ∪ {i})− vθ(S).

where the inequality holds, as

i) if j ∈ S (and thus j 6= i) then P′j (y)− P′j (x) ≥ Pj(y)− Pj(x) for y ≥ x

and P′l = Pl for all l ∈ S\{j} and P′i = Pi.

ii) if j 6∈ S and i = j then P′l = Pl for all l ∈ S and P′i ≥ Pi.

iii) if j 6∈ S and i 6= j then P′l = Pl for all l ∈ S and P′i = Pi and so

the inequality becomes equality.

As vθ′(S ∪ {i})− vθ′(S) ≥ vθ(S ∪ {i})− vθ(S) for any i ∈ N and S ⊆ N\{i} and

given that the Shapley value of a cooperative game is a weighted average over

those marginal contributions, it follows that

SVi(θ) = Φi(N, vθ) ≤ Φ(N, vθ′) = SVi(θ
′) for all i ∈ N,

which concludes the proof. �
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Proof of Theorem 7

Proof : Let θ ∈ Θ be an availability situation and i, j ∈ N with i 6= j two players

that are situation symmetric. For allocation rule OP it holds that

OPi(θ) = Pi

(
1− ∏

k∈N
(1− Ai)

)
= Pj

(
1− ∏

k∈N
(1− Ai)

)
= OPj(θ),

as Pi(x) = Pj(x) for all x ∈ [0, 1]. For allocation rule PA, it holds that

PAi(θ) =
Ai

∑k∈N Ak
vθ(N) =

Aj

∑k∈N Ak
vθ(N) = PAj(θ),

as Ai = Aj. For allocation rule PUC, it holds that

PUCi(θ) = vθ({i}) + Pi(1)− Pi(Ai)

∑k∈N Pk(1)− Pk(Ak)

(
vθ(N)− ∑

l∈N
vθ({l})

)

= Pi(Ai) +
Pi(1)− Pi(Ai)

∑k∈N Pk(1)− Pk(Ak)

(
vθ(N)− ∑

l∈N
vθ({l})

)

= Pj(Aj) +
Pj(1)− Pj(Aj)

∑k∈N Pk(1)− Pk(Ak)

(
vθ(N)− ∑

l∈N
vθ({l})

)

= vθ({j}) +
Pj(1)− Pj(Aj)

∑k∈N Pk(1)− Pk(Ak)

(
vθ(N)− ∑

l∈N
vθ({l})

)
= PUCj(θ),

As Pi(x) = Pj(x) for all x ∈ [0, 1] and Ai = Aj. Finally, for allocation rule

SV, it holds that Pi(x) = Pj(x) for all x ∈ [0, 1] and Ai = Aj. This implies that

vθ(S∪ {i}) = vθ(S∪ {j}) for all S ⊆ N\{i, j}. Based on Definition 9, player i and j

are game symmetric. Based on Theorem 82, we can conclude that SVi(θ) = SVj(θ).

This concludes the proof. �

Proof of Lemma 3

Proof : Let θ ∈ ΘL be a linear availability situation and xi = 1− Ai for all i ∈ N.

Then, it holds that

∑
i∈S

pixi ∑
j∈S

pj

1− ∏
k∈N\S

xk

 ≥ 0.

2This theorem will be proven later on.
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Moreover, it holds that

∑
i∈N\S

pixi ∑
k∈S

pk − ∑
i∈N\S

pi ∏
j∈N\S

xj ∑
k∈S

pkxk ≥ 0.

Now, when both parts are summed, we obtain

0 ≤ ∑
i∈S

pixi ∑
j∈S

pj

1− ∏
k∈N\S

xk

+ ∑
i∈N\S

pixi ∑
k∈S

pk

− ∑
i∈N\S

pi ∏
j∈N\S

xj ∑
k∈S

pkxk

= ∑
i∈S

pixi ∑
j∈S

pj −∑
i∈S

pixi ∑
j∈S

pj ∏
k∈N\S

xk + ∑
i∈N\S

pixi ∑
k∈S

pk

− ∑
i∈N\S

pi ∏
j∈N\S

xj ∑
k∈S

pkxk

= ∑
i∈N

pixi ∑
j∈S

pj −∑
i∈S

pixi ∑
j∈S

pj ∏
k∈N\S

xk − ∑
i∈N\S

pi ∏
j∈N\S

xj ∑
k∈S

pkxk

= ∑
i∈N

pixi ∑
j∈S

pj −∑
i∈S

pixi ∑
j∈S

pj ∏
k∈N\S

xk − ∑
k∈S

pkxk ∑
i∈N\S

pi

 ∏
j∈N\S

xj


= ∑

i∈N
pixi ∑

j∈S
pj −∑

i∈S
pixi ∑

j∈N
pj

 ∏
k∈N\S

xk

 ,

where the equalities hold by rewriting. From the last expression, we derive

∑
i∈N

pixi ∑
j∈S

pj ≥ ∑
i∈S

pixi ∑
j∈N

pj

 ∏
k∈N\S

xk

 .

Multiplying both sides by ∏j∈S xj ≥ 0 and subsequently dividing both sides by

∑j∈N pjxj gives

∑
i∈S

pi ∏
j∈S

xi ≥
∑i∈S pixi

∑j∈N pjxj
∑
i∈N

pi ∏
j∈N

xi,

which concludes the proof. �

Proof of Theorem 10

Proof : Let θ ∈ ΘL be a linear availability situation. Note that Pi(1)− Pi(Ai) =

pi − pi Ai = pi(1− Ai) for all i ∈ N.
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(i) PUC. It holds that

∑
i∈N

PUCi = ∑
i∈N

(
vθ({i}) + pi(1− Ai)

∑j∈N pj(1− Aj)

(
vθ(N)− ∑

k∈N
vθ({k})

))
= ∑

i∈N
vθ({i}) + vθ(N)− ∑

k∈N
vθ({k})

= vθ(N),

and thus PUC(θ) is efficient. Secondly, let M ⊆ N, then

vθ(M) = ∑
i∈M

pi

(
1− ∏

j∈M
(1− Aj)

)
= ∑

i∈M
pi Ai + ∑

i∈M
pi(1− Ai)− ∑

i∈M
pi ∏

j∈M
(1− Aj)

≤ ∑
i∈M

vθ({i}) + ∑
i∈M

pi(1− Ai)−
∑i∈M pi(1− Ai)

∑k∈N pk(1− Ak)
∑
i∈N

pi ∏
j∈N

(1− Aj)

= ∑
i∈M

vθ({i}) + ∑i∈M pi(1− Ai)

∑k∈N pk(1− Ak)

×
(

∑
k∈N

pk(1− Ak)− ∑
i∈N

pi ∏
j∈N

(1− Aj)

)

= ∑
i∈M

vθ({i}) + ∑i∈M pi(1− Ai)

∑k∈N pk(1− Ak)

×
(

∑
k∈N

pk(1−∏
j∈N

(1− Aj))− ∑
k∈N

pk Ak

)

= ∑
i∈M

(
vθ({i}) + pi(1− Ai)

∑k∈N pk(1− Ak)

(
vθ(N)− ∑

k∈N
vθ({k})

))
= ∑

i∈M
PUCi,

where the inequality is a result of Lemma 3 with S = M and xj = 1− Aj for all

j ∈ N. Hence, PUC(θ) is also stable and thus a member of the core.

(ii) OP. From Theorem 9 it follows that OP(θ) ∈ C(N, vθ) for every θ ∈ Θ. Note

that θ ∈ ΘL ⊆ Θ. Hence, OP(θ) ∈ C(N, vθ) for all θ ∈ ΘL. �
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