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Summary

Engineering cheese sensory texture
using structure-property modeling

Product reformulation of structured processed foods, which is the replacement or
removal of ingredients from the product in order to reduce e.g. caloric content, raw
material costs, or carbon footprint, is a major theme in food industry. Consumers
have strong references for the sensory texture attributes of food products. When
removing or replacing large amounts of fat, sugars, or proteins, without signi�cantly
changing the structuring process, de�cits in the sensory texture pro�le and handling
properties of the product are likely to occur. In this thesis, we use structure-property
modeling for the design of the microstructure of a low-caloric, resource-e�cient, semi-
hard cheese, in which fat content is halved, and water content is signi�cantly icreased.
The cheese should match the sensory texture properties of a full-fat semi-hard Gouda
cheese, i.e. be �rm, meltable and moldable. In this work we combine instrumental
and computational techniques from both solid and non-Newtonian uid mechanics,
two �elds of sciences that both overlap with the �eld of rheology. The casus treated
in this thesis serves as an example of how rheology and structure-property modeling
can be used in the context of soft-solid food engineering.

First, rheological analogues for the sensory texture attributes �rmness and rubberiness
are de�ned. These two key attributes determine both the consumers’ �rst sensory
impression as well as how easily cheese is handled during storage, portioning and
packaging. Studying the manipulations and observations involved in the assessment
of �rmness and rubberiness by hand, reveals that �rmness measures the resistance of
a soft-solid gel to deform, whereas rubberiness is a measure for its resistance to ow.
These rheological de�nitions for �rmness and rubberiness allow for quanti�cation of
the two texture attributes in terms of measurable rheological properties. This is an
essential step in building a quantitative structure-texture model.

Firmness is a linear viscoelastic property and its antonym is softness. Complex food
materials such as cheese display a power-law stress relaxation with a broad relaxation
spectrum. Through the use of fractional derivatives we quantify the stress response
by a rheological equation of state with only two material properties: an exponent
and a pre-factor called quasi-property. Quantitative values for these two parameters
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are obtained from any of the standard linear viscoelastic material functions in shear.
The magnitude of the exponent quanti�es the time-dependency of �rmness, and is to
a small extent a�ected by fat, protein or water content. However, at the long time-
scales common in cheese storage, small variations in the exponent have a signi�cant
e�ect on the extent of sagging of cheese blocks. The quasi-property quanti�es the
scale of the stress in the material and dominates the resistance to deformation at
the short time scales of manual �rmness assessment. A high magnitude of the quasi-
property, and thus �rmness, is obtained by increasing the fat content while decreasing
the temperature. A full-fat cheese turns soft if temperature is increases to the level
of oral conditions. We call this �rm-soft transition melting.

Rubberiness, which antonym is moldability, is quanti�ed by the magnitude of
the yield strain of a soft-solid gel. The attribute is measured by imposing a strain
increasing in time, through Large Amplitude Oscillatory Shear or uniaxial monotonic
compression. The magnitude of rubberiness is strongly reduced by increasing the fat
content, but is una�ected by increasing the water content. Once cheese starts to ow,
it transitions from a solid to a uid, which we call uidization. Adding fat increases
the smoothness of the solid-uid transition. If fat is absent the uidization is abrupt,
and the material response is more brittle, the antonym of smooth.

The macrorheological experiments show that the fat particles emulsi�ed in the gel
phase, have a pivotal role in modulating �rmness, meltability, rubberiness and smooth-
ness. Simulations on Representative Volume Elements (RVE’s) of the cheese mi-
crostructure, loaded in compression, and studying the local stress and strain response
using Finite Element Analyses, con�rm the importance of fat. At storage temperature
the rigidity of the dispersed fat globules is percolated through the gel, and �rmness
is enhanced. At room temperature, the strong temperature-dependence of the shear
modulus of fat increases cheese meltability. The dispersed fat particles also cause the
strain to amplify in the gel phase, promoting the progressive collapse of microstruc-
ture through microcrack nucleation and propagation. The magnitude of these e�ects
increases exponentially with the fat volume fraction. Maintaining the modulating
properties of fat while its weight fraction is halved, requires an inhomogeneous distri-
bution of fat over the gel phase. Simulations on the RVE’s of novel microstructures
show that a phase inversion, i.e. creating an almost continuous fat phase, is the most
promising restructuring option. The structure allows for a larger reduction in fat
content than 50 %, or alternatively, an increase in water content, without loosing the
texture properties of full-fat cheese. The optimized structures lead to a signi�cant
reduction in calories of semi-hard cheese, and resource use in its production.

The use of advanced rheological methods and tools, like fractional derivatives and
LAOS experiments, allows for a fast and objective evaluation of food texture at-
tributes. The micromechanical RVE approach applied results in quantitative structure
models with su�cient local detail for texture optimization. The presented approach
to structure-texture engineering is generally applicable to structured food products.
It is a powerful add-on to product-driven process design methodologies, that guides
the rational selection within the wealth of structuring options.



Chapter 1

General introduction

1.1 Reformulation of structured food materials

Product reformulation, the replacement or removal of ingredients from a product in
order to reduce e.g. caloric content or carbon footprint, is a major theme in the
processed-food industry [4, 136, 152]. Consumers have strong references for the sen-
sory texture attributes of food products, and when removing or replacing ingredients
like fat, sugars, proteins, or salt, this sensory texture can be negatively a�ected [152]
and the resulting product disliked. It is the task of the food engineer to deliver
technological solutions that overcome these trade-o�s.

Cheese is a canonical example of a structured processed-food product (Fig. 1.1).
Structured products are complex multiphase materials, with microstructures on a
scale of 0.1 - 100 µm. Non-food examples of structured products [85] are household
products (e.g. laundry detergents), and beauty or personal care products (e.g. skin
creams). The macroscopic properties of structured materials are primarily determined
by their microstructure and, in second instance, by their formulation [2, 4, 85]. The
term ’processed-food’ implies that the microstructure of the food is man made through
a manufacturing process, opposed to natural structured foods such as raw milk or raw
vegetables. When reformulation of processed-food products leads to de�cits in the
sensory texture pro�le, the manufacturing process should be adapted to the extent
that a microstructure is created that o�-sets these de�cits.

A wealth of engineering solutions is available to modify food microstructures based
on knowledge from soft matter and colloidal science [45, 123, 124, 135, 182, 196, 199]
as well as from process technology [4, 24, 65, 92]. Jumping between the micro- and
the macroscale and dealing with a multitude of constraints requires a rational and
integrated product and process design approach [4, 53, 85, 136]. There is a need for
models that quantitatively relate food formulation and processing to structure and
sensory texture [24, 92].

In food industry most of the modeling involved in product and process design,
arises from applying the chemical engineer’s toolbox to food production processes
[85]. Since the large capital investments involved in chemical industry do not allow
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Figure 1.1: Cheese is a structured, processed-food product. The numbers in red
represent the formulation of full fat semi-hard cheese. The units are weight fractions
[w/w % × 100]. Reduction of caloric content and carbon footprint are incentives for
radical reformulation: a step-change in the weight ratios of protein, water and fat.

for a complete overhaul of the production process, the chemical engineering toolbox
is process-oriented. The tools equip the food engineer to tweak and �ne-tune the
unit operations that make up the process. Within these boundaries, process-driven
product innovation takes place which is in most instances incremental. For radical
reformulation , e.g. a step-change in the weight ratios of protein, water, and fat in
the cheese formulation, a reverse engineering approach is required. It is now widely
recognised that for structured products, chemical engineering should shift towards
product-driven process design [4, 53, 85], i.e. those unit operations are selected that
give the microstructure which meets the product requirements. The design method-
ologies that evolve from this notion, still leave room for empirical recipe making, albeit
that the process-formulation combinations are screened in an early stage of design.

Deliberate food product design, however, requires structure-property models, which
relate the food microstructure to the product property of interest [92] making use of
the principles of physics. Materials science has a long history and strong reputation
of putting the property of the product central and drive both product- and process
innovation using structure-property models [3, 48, 179]. Although classical materials
like plastics, ceramics, and metals are generally not referred to as structured mate-
rials, it is recognised that their properties are largely determined by structures on
the nano- and micrometer length scale. In order to improve the predictive value of
structure-property models applied to the mechanical performance of materials, ma-
terial science has developed an extensive experimental infrastructure of nano-, micro-
and macroscale loading, imaging and simulation of materials and their production
process. The aim of this thesis is to demonstrate that the experimental-numerical ap-
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Figure 1.2: Structure-texture engineering in this thesis. We will develop a structure-
texture model for cheese and use it in an engineering design context.

proach of the material engineer who builds structure-property models, can be applied
to food engineering as well (Fig. 1.2).

1.2 Engineering design of food microstructure

The American Accreditation Board for Engineering and Technology (ABET), de�nes
engineering as: ’The creative application of scienti�c principles to design or develop
structures, machines, apparatus, or manufacturing processes, or works utilizing them
singly or in combination; or to construct or operate the same with full cognizance of
their design; or to forecast their behavior under speci�c operating conditions; [...]’

This thesis focuses on the product design aspect of engineering, we will not ac-
tually make new products nor we will adress how to make them. The Accreditation
Board de�nes engineering design as ’The process of devising a system, component,
or process to meet desired needs. It is a decision-making process (often iterative),
in which the basic science and mathematics and engineering sciences are applied to
convert resources optimally to meet a stated objective.’

The casus that we discuss in this thesis is the need for a semi-hard cheese with
reduced caloric content. The objective is a radical reduction of fat content and increase
of water content, while maintaining the typical texture pro�le of the classical full
fat cheese. We apply material engineering sciences to generate speci�cations of a
microstructure that will meet these objectives. This supports an e�ective decision
making process on what structuring route should be developed. In order to generate
the speci�cations of the microstructure, we need a validated structure-texture model.
In the following sections we outline our modeling approach and discuss what part of
material engineering sciences we will apply in this thesis.
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1.3 From cheese sensory texture to rheology

(a) first bite (b) first touch (c) indexers

(d) simple shear (e) uniaxial compression (f) uniaxial tension

extrinsic texture properties

intrinsic material properties

Figure 1.3: From cheese sensory texture to rheology.

Szczesniak [191] de�nes texture as \the sensory and functional manifestation of
the structural and mechanical properties of foods, detected through the senses of vision,
hearing, touch and kinesthetics". Hutchings and Lillford [87] emphasize that the food
texture is perceived during mastication and is thus a measure of a destruction process
which involves the food material, rather than solely a property of the food itself.
Jousse [92] de�nes modeling as ’an application of the scienti�c approach, an attempt
to unravel the complexity of a natural phenomenon by representing it by a number of
simpler components and most often reducing it with a mathematical expression’. The
two views of sensory texture presented above show that a mathematical expression in
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which sensory texture is quanti�ed, requires a great simpli�cation of the concept.
Quantitative Descriptive Analysis is a �rst step of unraveling the complexity of

sensory texture [49]. In QDA, trained panelists generate words to describe the per-
ceived texture. These descriptors are referred to as texture attributes, and panelists
assign grades to the intensity of these attributes as perceived during mastication
(Fig. 1.3(a)) or manipulation (Fig. 1.3(b)) of a sample. The words used in the Quan-
titative Descriptive Analysis of cheese texture are grouped in hand-evaluated, �rst
bite, chew-down and afterfeel terms. Typical descriptors for cheese are (in temporal
order of evaluation) �rmness, rubberiness, crumbliness and smoothness. The grading
excercise results in a quanti�ed texture pro�le which can be statistically correlated
either to a liking score or to the formulation of a product [131]. The resulting re-
gression models allow for identifying texture de�cits and increase the e�ectiveness of
texture optimization based on empiricism. However such regression models do not
lead to a physically sound, quantitative structure-texture model.

The panels that perform Quantitative Descriptive Analysis are costly and not
always available, therefore instrumented tests have been developed. The indentation
test depicted in Fig. 1.3(c) is very popular for measuring cheese properties. The test
can be performed on a sample cut from a hard cheese, as well as on a sample of soft
cheese that is left to rest in a sample holder. The typical output of an indentation test
is a force-displacement curve, which is characterized by measures such as the initial
secant modulus and a penetration force. Correlations between texture attributes
perceived at �rst touch and �rst bite and instrumental measures are strong, but
become insigni�cant for chew-down and after-feel terms [66].

Reducing sensory texture to points on a force-displacement curve obtained from
the cheese indentation experiment is an over-simpli�cation of texture perception.
However for the rheologist the indentation test is far too complicated to charac-
terize a material. Rheology is de�ned as the study of the ow and deformation of
matter and is a �eld of science positioned in between solid mechanics and uid me-
chanics. Rheology studies complex materials which display both solid- (deformation)
and uid-like (ow) characteristics. A rheological set-ups consist of a well-de�ned
sample geometry and contact area between instrument and sample, such that the
deformations in the macroscopically homogeneous material under investigation are
uniform, and the measured forces and displacements are easily converted to stresses
and strains. Quantitative information of the evolution of the stress and the strain in
a material forms the starting point of resolving structure-property relations. First of
all the shape of the stress-strain curve can be regarded as a rheological �ngerprint,
it points towards classes of materials like rubbers, critical gels or amorphous plastics.
This guides the rheologists to those areas of science and engineering that will provide
adequate models for the microstructure of the material under investigation. Further-
more the �ngerprint forms the starting point of setting up a constitutive model, which
we will discuss in the next section.

Fig. 1.3(d)-(f) are pictures of the rheometric set-ups used to characterize cheese
in this thesis. Without presenting any data of the measurements, the pictures already
illustrate that we deal with a material that behaves predominantly as a solid at rest:
the samples are able to hold their own weight and are cut and shaped from a larger
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piece of test material. The uniaxial compression Fig. 1.3(e) and uniaxial tension
Fig. 1.3(f) experiments are common within the solid-mechanics community, which
uses this set-up to test the strength of plastics and elastomers. In these experiments
the material is loaded until it yields or fractures, which are both signs of material
failure. Yielding is the transition from solid- to uid-like behaviour and in solid
materials also referred to as plastic ow. Fracture involves a loss of continuity in
the material which ends in the macroscopic separation of two pieces of a material.
When a material fractures macroscopically, it cannot be treated as a continuum, and
cannot be studied by rheology. Please note that in this thesis we will not study the
macroscopic fracture properties of cheese.

Cheese shows the typical characteristics of soft matter. The microstructure of
many soft materials is classi�ed as a gel or a soft glass, often �lled with an emulsion
or suspension [182]. From a macroscopic viewpoint soft matter is characterised as
systems that have large response functions [40]. The response of a soft material is
best illustrated by the hypothetical experiment of holding a piece of cheese and a
piece of plastic material of equal size and shape between thumb and index �nger, and
squeeze both materials simultaneously. Whereas the plastic material is most likely
undeformable, the cheese will undergo a transition from an elastic solid to a owing
uid [208]. Thus under the same loading and temperature conditions, the response
function of the cheese to a stress or strain is orders of magnitudes larger than the
response function of the plastic material.

One could say that in this hypothetical experiment the cheese fails and the plastic
doesn’t. However failure clearly has negative connotations: in terms of engineering
design it implies that the material does not meet the functional requirement. How-
ever from the views on sensory texture above, the collapse and breakdown of structure
through yielding and fracture is actually the goal of mastication, and a necessity to
perceive any texture at all. We hypothesize here that de�cits in the sensory texture
pro�le of cheese come from changes in the failure mode which results in changes in
the signatures of the solid-uid transition. Rheometers (Fig. 1.3(f)) are particularly
suitable of tracking the evolution of stress and strains in soft materials while under-
going a solid-to-uid transition. We will therefore use this set-up for the rheological
analysis of cheese and use the data to proof our hypothesis.

1.4 Constitutive models and microrheology

In an historical perspective on the evolution of rheology Doiraswamy (2002) proposes
an engineering de�nition of rheology: The description of materials using constitutive
equations between the stress history and the strain history’. One of the earliest con-
stitutive equations is Hookes law for an elastic solid, which states that the stress is
proportional to the strain in the material. On the other end of the spectrum of ma-
terials that exhibit solid- and uid- like properties lies the Newtonian liquid. Newton
stated that "The resistance [...] in a uid [...] is proportional to the velocity by which
parts of the uids are being seperated from each other." Fluids that obey Newton’s
law and solids that obey Hooke’s law are called ’ideal’ or ’perfect’ bodies. Rheology
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studies materials that show stress-strain relationships that deviate from the ideal situ-
ation, the material under investigation displays both solid- and liquid-like behaviour.
A constitutive equation describing the material response should thus account for both.

A popular approach is to treat the material as if it was built up from ideal solids
and liquids, which are represented by mechanical elements in the form of a spring
s, and a dashpot d respectively. The assumption of how stresses and strains are
distributed over these ideal materials is depicted by drawing up a scheme of springs
and dashpots and connecting them in series or parallel. The constitutive equation for
the ideal solid, represented by the spring (subscript s) is given by:

�s(t) = G0s(t) (1.1)

Here �s and s are the stress and the strain in the spring respectively, as a function
of time t. The constant G0 is a proportionality constant. Young called this constant
an intrinsic material property: its magnitude does not depend on the load applied
on the material nor the mode of deformation. The constitutive equation for the ideal
liquid represented by the dashpot (subscript d) is:

�d(t) = �0
dd
dt

(1.2)

where �d and d are the stress and the strain in the dashpot respectively, �0 is a
coe�cient of viscosity and dd/dt the strain rate in the dashpot.

A canonical example of constructing a constitutive model from mechanical ele-
ments is the Maxwell model. This model assumes that a material is built up of a
single ideal solid and a single ideal liquid. The spring and dashpot that represent the
constitutive equations Eq. (1.1) and Eq. (1.2) of these bodies, are placed in series.
This implies that the stress in each element is equal to the total stress �(t),

�(t) = �s(t) = �d(t) (1.3)

and that the total strain  in the material follows from the addition of the strain in
the spring and dashpot respectively,

(t) = s(t) + d(t) (1.4)

When we di�erentiate the strain with respect to time, we obtain the strain rate
d(t)/dt and Eq. (1.4) can be rewritten as:

d(t)

dt
=
ds(t)

dt
+
dd(t)

dt
(1.5)

Di�erentiating the equation for the spring (Eq. (1.1)) with respect to time, substitut-
ing the equality of the stress, �(t) = �s(t) , and rewriting the strain rate in the spring
as a function of the total stress �(t); gives:

ds(t)

dt
=

1

G0

d�(t)

dt
(1.6)
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Substituting the equality of the stress �(t) = �d(t) in (Eq. (1.2)), and writing the
strain rate in the dashpot as a function of the total stress gives:

dd(t)

dt
= �(t)/�0 (1.7)

Substituting Eq. (1.7) and Eq. (1.6) in Eq. (1.5) provides us with the constitutive
equation of the Maxwell model:

�(t) +
�0

G0

d�

dt
= �0

d

dt
(1.8)

This constitutive equation contains two intrinsic material properties, an elastic shear
modulus G0 and a coe�cient of viscosity �0. If we would apply a step in the strain
(t) =H(t)0, where H(t) is the Heavyside step-function, and measure the resulting
stress over time we obtain a stress-relaxation curve. The Maxwell model predicts that
the shape of this curve is captured by

�(t) =
0

G0
et/� (1.9)

with the relaxation time � de�ned as:

� = G0/�0 (1.10)

The magnitude of the intrinsic material properties G0 and �0 are obtained by �tting
Eq. (1.9) and Eq. (1.10) to the data of the stress relaxation experiment.

Reiner and Scott Blair [151] call properties like the shear modulus G0 and viscosity
�0 measurable rheological properties, which are generally given dimensions of mass,
length and time. They consider the terms used to generate a food texture pro�le,
like �rmness, springiness and rubberiness, assessable rheological properties. Such
properties do not have dimensions and are not given any symbols. These properties
are extrinsic properties, as their assessment depends on the experimental conditions.
Reiner and Scott Blair say that it is the hope of the rheologist to reduce the meaning
of assessable rheological properties to measurable concepts. In Chapter 2 we show
this indeed is possible for the �rmness, springiness and rubberiness of cheese.

Using the Maxwell model to describe the response of a material is an application
of ’macrorheology’ which treats materials as homogeneous and devoid of structure
[150]. The quality of macrorheological models is expressed by the number of intrinsic
material properties needed for an accurate �t to the data, and by how well the model
predicts the material response in alternative modes of loading or deformation. A high
quality is a sign of physical signi�cance of the model. We will use a macrorheological
approach in Chapters 2 and 3.

’Microrheology’ derives the rheological behaviour of two- and multiphase systems
from the known rheological behaviour of their constituents [150]. The most famous
example is Einsteins equation for the viscosity of suspensions of dilute mono-disperse
and rigid spherical inclusions. A family of microrheological models exist that build
on Einsteins approach and that has been tested on cheese [213]. These models vary
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Figure 1.4: Graphical abstract of the outline of this thesis and our approach to
build a structure-texture model for reformulated cheese. The numbers in the �gure
correspond to the chapters in this thesis. Structure creation is not in scope of this
thesis.

on the extent to which they account for visco-elasticity of the suspending medium,
compressibility of the phases and maximum packing of the inclusions. The bene�t of
the microrheological models tested by Yang et al. [213] is that they contain volume
fraction of the phases as model input parameters. This implies that they connect
the formulation of a food product to rheological behaviour. However the models are
only predictive in the elastic or linear viscoelastic limit and can only handle simple
microstructures. In this thesis we present an alternative modeling approach which
does not have these limitations.

1.5 Scope and outline of the thesis.

We aim for a model that quantitatively relates the sensory texture of semi-hard cheese
to its formulation and microstructure (Fig. 1.2). The model must be applicable in
a engineering design context: providing the speci�cations of the microstructure of a
cheese that is reduced 50% in fat content and increased signi�cantly in water content,
while maintaining the texture properties of the full-fat reference. We will de�ne cheese
structure on the length scale level of the �ller composite (Fig. 1.1). The data used
to build and validate our model comes from macrorheological experiments on cheese
(Fig. 1.3). The cheese samples vary in formulation but are produced using the same
production process. The range of formulations is chosen such that both un�lled as
well as highly �lled gels (0 v/v% to 30 v/v% �ller) are measured, and the water to
protein weight ratio ranges from very low (1.6 w/w) to very high (2.4 w/w). Fig. 1.4
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is a graphical abstract of our modeling approach and the outline of this thesis. The
numbers in the �gure correspond to the numbers of the chapters of this thesis.

In Chapter 2, ’Describing the �rmness, springiness and rubberiness of food gels
using fractional calculus’ we give rheological analogues for these three texture at-
tributes. We create analytically solvable equations for �rmness F , springiness S,
and rubberiness R, (FSR-equations), expressed in terms of two intrinsic material pa-
rameters of a linear viscoelastic constitutive equation. The FSR-equations provide
guidance in the e�ective reformulation of food gels. The equations also give a mecha-
nistic understanding of the time- stress- and interdependency of the extrinsic texture
attributes �rmness, springiness and rubberiness.

In Chapter 3, ’From �rm to uid - Structure-texture relations of �lled gels probed
under Large Amplitude Oscillatory Shear (LAOS)’ we propose a mechanism of the
collapse of cheese microstructure when subjected to severe shear loads. The hypoth-
esis is based on the macrorheological �ngerprints obtained from the LAOS curves of
both un�lled and �lled cheese gels. We relate the �ngerprints to the rheological ana-
logues of �rmness and rubberiness derived in Chapter 2, and introduce new rheological
measures for meltability, brittleness and uidization.

In Chapter 4: ’Micromechanics of the �rmness and rubberiness of emulsion-�lled
gels’, we analyze the microrheology of loaded cheese microstructures. The analysis
comprises of simulations in which representative volume elements (RVE’s) of cheese
microstructures are loaded in uniaxial compression and simple shear. The simulations
are performed using the �nite element method (FEM), which gives a large exibility
in varying microstructure and loading conditions. In Chapter 4 simulations are solely
performed to validate the structure-texture model and to use it for a micromechanis-
tic explanation of the changes observed in �rmness and rubberiness when changing
formulation. The validation of the structure-texture model is based on the quality of
the predictions of macrorheological measurements.

In Chapter 5, ’Structure re-design of low-fat cheese’ we use the structure-texture
model as an engineering-design tool to provide solutions to our cheese reformulation
problem. We use the structure of a reformulated cheese, produced using the classical
cheese making process, as a reference. The structure-texture model from Chapter
4 is used to explain the texture de�cits in low-fat cheese from a microrheological
perspective. Then we virtually explore alternative archetypes of microstructures,
which we evaluate on their ability to provide a texture-pro�le of a low-fat cheese.

In Chapter 6 ’Conclusions and recommendations’ we draw conclusions on: 1) the
use of rheology in quantifying texture; 2) the time-dependency of �rmness, springi-
ness and rubberiness and the e�ect of yielding on the magnitude of these texture
properties; 3) the relation between cheese microstructure and the uid properties of
cheese; 4) the physics behind the contribution of fat to the cheese-texture pro�le; 5)
the speci�cations of a cheese microstructure that solves our reformulation problem,
and 6) the applicability of our modeling approach, based on rheological principles, in
food engineering. In Chapter 6 we also give recommendations on the next steps to
take in the product-driven of process design of a low-fat cheese with a microstructure
as proposed in Chapter 5.



Chapter 2

Describing the �rmness,
springiness and rubberiness of

food gels using fractional
calculus

Abstract

Constitutive models for soft solids that relate the stress to the deformation history
have the potential to be used in a structure-texture engineering context, but success-
ful examples are scarce. In the present work we de�ne equations for the �rmness F ,
springiness S, and rubberiness R, of semi-soft food gels that exhibit broad power-law
stress relaxation over a wide range of timescales. The equations contain only two
material properties, which have their origin in the food microstructure: a fractional
exponent, which quanti�es the frequency and temporal response and secondly a scale
factor or \quasi-property", which sets the magnitude of the stress in the material.
Together they form a constitutive element, known as the ‘springpot’ or Scott Blair el-
ement. This model correctly predicts the time- and interdependency of the �rmness,
springiness, and rubberiness of emulsion-�lled hydrocolloidal gels such as full- and
reduced-fat semi-soft cheeses. Firmness and rubberiness are time-dependent proper-
ties, whereas springiness is not. The magnitude of the �rmness and springiness are
inversely related through the fractional constitutive model. Our equations for F , S
and R also correctly predict the e�ect of changing the magnitude or time-scale of
the stress loading on the material even in the case of irreversible ow events, when

The contents of this chapter are based on (a) T.J. Faber, A. Jaishankar, and G.H. McKinley.
Describing the �rmness, springiness and rubberiness of food gels using fractional calculus. Part I:
Theoretical framework. In preparation for Food Hydrocolloids, and (b) T.J. Faber, A. Jaishankar,
and G.H. McKinley. Describing the �rmness, springiness and rubberiness of food gels using fractional
calculus. Part II: Measurements on cheese. In preparation for Food Hydrocolloids.
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Figure 2.1: Three methods of assessing the �rmness, springiness, and rubberiness
of cheese: (a) with human senses using touch (mouth or hands) or sight (eyes) or
(b,c) with rheological measurements. (b) Monotonic uniaxial compression is the
most commonly used test protocol but involves complex kinematics: non-linear vis-
coelastoplasticity and fracture. In this paper we use (c) creep / recovery in simple
shear to quantify �rmness springiness, and rubberiness in the linear viscoelastic limit.

cheese progressively transitions from a solid to a liquid. Finally we show how our
FSR-equations can be used in a texture engineering context; they guide product re-
formulation studies and allow for extrapolation of a �rmness measurement to practical
situations where the gel is subjected to prolonged creep loading.

2.1 Introduction

Product reformulation is a major theme in the food industry, which is driven by raw
material costs, carbon footprint, or health incentives [4, 65, 136, 152]. However when
replacing or removing ingredients, sensory texture, shelf life and processability can be
negatively a�ected [152]. It is the task of the food product engineer to deliver solutions
that overcome these trade-o�s. Macroscale food properties such as sensory texture
are, to a large extent, determined by the microstructure of the food [2, 108]. A wealth
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of engineering solutions are available to modify food microstructure based on insights
from soft matter and colloidal science [45, 123, 124, 135, 182, 196, 199] as well as
from process technology [4, 65, 92]. Jumping between the micro- and the macroscale
and dealing with a multitude of constraints requires a rational and integrated product
and process design approach [4, 136], using models that can quantitatively relate food
formulation and structure to processing and sensory texture.

The �elds of rheology and soft matter science have the potential to deliver those
models [19, 67, 128, 164] especially when put in the form of a constitutive relationship
[74] for the essential rheological properties [150] describing the material response to
deformation. Whereas for non-food materials application of rheological models to
improve process throughput and product performance has become standard, success-
ful examples for texture engineering are scarce. Probable causes are the additional
non-rheological factors that contribute to sensory judgment, such as phase transfor-
mations [17], interaction with saliva [33, 94] and repeated macroscopic fracture while
the food material is orally processsed [16, 29].

For the �rmness F , springiness S, and rubberiness R, of food gels, these arguments
are less relevant, since these texture attributes can be assessed solely by pressing and
depressing the material by hand (Fig. 2.1) [66, 76, 192]. Such manually-evaluated
texture attributes can be measured instrumentally using bulk rheological testing [183]
which makes these texture attributes excellent candidate for a structure-texture model
based on analysis of the imposed kinematics, using appropriate constitutive equations
for the material. These constitutive equations should also then predict how well the
product performs under handling conditions other than sensory texture assessment
[168], such as whether the product retains its intended shape when stacked and stored
[16] (Fig. 2.1).

Firmness is one of the most researched texture attributes for a wide variety of
foods [192]. The most common route to enhance the �rmness of a food product is by
transforming one or more of the hydrocolloidal food constituents into a gel. A second
important function of gelation is to keep water and fat in the product, implying that
�rmness and composition are intrinsically related [65]. Examples of gelled foods are
numerous and include yoghurt, cheese, starch puddings [158], hotdogs and sausages
[158, 159], seafood analogues [83] and tofu [160]. When consumed these food gels
are masticated into smaller pieces and mixed with saliva to form a bolus that can
be swallowed [29, 87]. If the force required to initiate fragmentation of the gel is
delivered by pressing the gel between tongue and palate, the food is called semi-solid.
If the use of teeth or molars is necessary the gel is called semi-soft [68, 197]. The
sensations arising when the product is touched and squeezed are good predictors for
the sensations perceived in the �rst steps of mastication [10, 50].

Of the food products mentioned above, cheese is one of the most researched prod-
uct in terms of rheology-texture relationships [37, 66, 78, 110, 171, 207]. It is the
canonical example of a food gel for which having the right level of �rmness is of piv-
otal importance. The �rmness of cheese demarcates the di�erent types of cheese on
physical grounds [37, 38] and groups them into soft, semi-soft, semi-hard and hard
varieties [78]. The level of �rmness determines whether we use utensils or hands when
consuming a cheese. When o�ered a type of cheese, e.g. Cheddar, Gouda or Parme-
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san cheese, consumers have speci�c expectations regarding its �rmness [214]. Finally,
having the right �rmness is not only important to consumers, it is as critical for ef-
�cient production of cheese as well. All handling from whey drainage to portioning,
storing and slicing [91, 170] is adapted to the cheese �rmness.

Where �rmness is determined while the food material is being pressed, the texture
attribute springiness S is measured after depressing the piece of food [10, 27, 66, 188,
201]. In former days, craftsmen in cheese production used to assess both the �rmness
as well as the ’spring’ of the cheese curds to determine if this precursor in the cheese-
making process was ready to proceed to the next stage of processing [169, 170]. For
bread, springiness is a desired property [116] and this texture attribute is used as a
measure for being fresh or stale [149]. Springiness and rubberiness are two texture
attributes that are often intertwined [93] and for both terms the synonym elasticity
is used [22, 37, 44, 81, 165]. Rubbery, springy, or elastic food gels are very popular
in Japan [22] however they are also linked to eating di�culties [72, 81]. In cheese, a
Muenster type is allowed to be springy, whereas a Parmesan is not [66]. ‘Rubbery’
has been used as a negative descriptor for cheese that has reduced fat content [214].

Shortly after the �eld of rheology was founded, Davis and Scott Blair [37, 173] were
among the �rst to apply concepts from this new area of science to �nd the essential
properties that determine cheese texture. Davis’ incentive was to develop proper
instrumental measures for �rmness and springiness for quality control. He constructed
a simple compression apparatus from Meccano parts and performed creep / recovery
tests in compression to determine an apparent shear modulus G and viscosity �. In a
table he showed that the �rmness of cheese, as graded by professional graders, were
placed in the same sequence as the measured magnitudes of modulus and viscosity.
He suggested that the springiness S is quanti�ed as a Maxwellian relaxation time
�r = S = �/G. To our knowledge this is the �rst equation expressing a texture attribute
in terms of essential material properties.

Davis [37] described the creep phase of his experiment as a period of ow and
elastic compression. At the end of the recovery period, he assumed an equilibrium
state and measured the elastic recoverable deformation e, and plastic non-recoverable
deformation, which he denoted as plastic ow f . He pointed out the importance of
discriminating between severe and mild load cases since it could greatly a�ect the
response of the cheese. He used the term "stress-time" to indicate the severity of the
loading; a combination of the weight put on the cheese plug and the time taken to fol-
low the response in both the creep and recovery phase. He did not quantify stress-time
but only used it in qualitative sense, speaking of high and low stress-time conditions
or periods. Since the introduction of Texture Pro�le Analysis (TPA) in food research
[70, 189] the uniaxial compression experiment has become more popular over the
creep / recovery experiment to measure food texture. In the uniaxial compression
experiment, loading is applied by imposing a constant rate of axial displacement or
compressive strain on the material. Recovery from the loading is obtained by re-
versing the direction of the displacement (Fig. 2.1(b)). By contrast, in the creep /
recovery experiment, loading is applied by imposing a constant stress over a de�ned
period of time, and the unloading is achieved by setting the stress to zero (Fig. 2.1(c))
and measuring the recoil in the sample. We favour the latter experiment to determine
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the �rmness, springiness, and rubberiness since it more closely resembles the loading
experienced by the material in actual use conditions and allows us to interconnect
the �rmness to situations where stresses are applied for short times, such as sensory
texture measurement, or for long times, such as in storing cheese (Fig. 2.1(a)). When
performed in a modern torsional shear rheometer we can compare and contrast the
�rmness, springiness, and rubberiness of food gels spanning a wide variety of modulus
or viscosity, whereas the uniaxial compression experiment requires the gel to be able
to hold its owns weight.

George William Scott Blair, who is considered by many to be the founding father
of food rheology [18, 191], had a special interest in the subjective aspects of �rmness,
which led to ground breaking panel studies [168]. He laid the foundations of a special
branch called psychorheology [163], which later evolved into texture studies [166].
His central question was: What material property gives rise to key texture properties
like the ‘body’ of dough and the ‘�rmness’ of cheese? His approach was as simple as
it was e�ective: ask panels to squeeze two graspable complex materials with known
material constants and which are purely viscous (bitumen), purely elastic (rubber) or
viscoelastic (cheese, unvulcanized rubber). He asked the panelist to judge which of
the two materials they squeezed was softest with the restriction that the two objects
were pressed at the same time, and for a well de�ned period. The conclusions where
threefold. First human touch is very sensitive in discriminating between softer and
�rmer objects, even if one is purely elastic and the other purely viscous. Second,
�rmness is a time-dependent property and is judged dynamically, which is in line
with the notion that the perception of sensory texture is the result of measuring a
dynamic process rather than measuring a �nal state [44, 87]. Finally Scott Blair
demonstrated that the time-dependence of �rmness of all these complex materials
has the form of a power-law in time.

Thus in rheological terms the �rmness, springiness, and rubberiness of food gels
can be considered as viscoelastic texture attributes. This suggests the use of con-
stitutive models that correlate these attributes to linear viscoelastic (LVE) material
parameters of the materials of interest. Various models have been �tted to material
property data of cheese obtained from rheometry in the LVE region to correlate com-
position and processing conditions to cheese material properties. The most popular
model is the generalized Maxwell model [195], that has been applied by numerous
authors [11, 26, 86, 105, 132, 156, 184, 185, 204]. To describe measured LVE be-
havior accurately over two decades of time at least three relaxation modes (with six
parameters) are needed, from which it is hard to derive insight into structure-texture
relations. Furthermore �tted results are not valid outside the domain of measurement
making extrapolation di�cult and thus the extracted model parameters lack a strong
physical underpinning [89, 98] which is essential for a connection to the underpinning
microstructure. One approach to reduce the number of parameters in the mechanical
model is to �t a continuous spectrum of relaxation times to the material functions
determined in the LVE regime [43, 107, 156, 209]. However such models result in
integral equations that can be hard to use in engineering applications and again the
spectral parameters obtained lack physical meaning.

When a creep / recovery test is performed to measure the response of a food gel,
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Figure 2.2: Cheese as a complex multi-scale material. Casein, the main protein
in cheese forms a hydrocolloid in milk. An artist impression of this hydrocolloid,
often denoted as the casein micelle and abbreviated as CN, is depicted in (a) (col-
ored image, taken from [42], artist impression originally published in [41], reprinted
with permission). The casein micelle has a diameter dCN ≈ 200 nm [42] and con-
tains colloidal Calcium-Phosphate (CCP) nano-clusters with size dCCP ≈ 4 nm [42],
depicted as black dots in Fig. (a). Around these nano-clusters the concentration of
protein is more dense. In cheese production the steric layer present of �-casein with
size d�−CN ≈ 7 nm [42] present around the casein micelle is cut o� and attractive
para-casein micelles (p-CN) are formed. The latter colloids aggregate into (b) a frac-
tal, space spanning, structure [21] to form a water-holding gel, with a stress-carrying
backbone (in black, picture taken from [96] with author’s permission). After removal
of whey, a concentrated gel with a water-protein ratio w/p= 1.8 remains as depicted
in the micrograph in (c), obtained by Confocal Scanning Light Microscopy (CSLM).
Material properties of the un�lled gel are obtained by measuring the rheological re-
sponse of zero-fat cheese produced from skimmed milk; the corresponding rheological
data is colored blue throughout this paper. (d) If cheese is produced from milk that
contains fat, the suspended fat globules present in the milk are occluded by the pro-
tein network, and an emulsion-�lled gel is obtained, as depicted in the CSLM image
in (d). In full-fat cheese the fat volume fraction is typically �f = 30v/v%. Material
properties of the �lled gel are obtained by measuring the rheology full-fat cheese, and
the corresponding rheological data is colored red throughout this paper.

the Burgers model is widely used to obtain material properties [39, 47, 80, 99, 107,
121, 129, 138, 167]. This four-parameter model is capable of describing unrecoverable
strain at the end of recovery [167] and comprises of a spring and dashpot in series
(Maxwell model) attached to a spring and dashpot in parallel (Kelvin-Voigt model).
Scott Blair [165] proposed to measure springiness S, by a dimensionless number com-
posed from the characteristic relaxation time �r, and retardation time �ret in the
Burger model, S = �r/�ret. However he also concluded that to capture more com-
plex relaxation behaviour, addition of an extra Kelvin-Voigt body is necessary, which
makes the modeling increasing phenomenological in nature [167].

Various authors have independently recognized the power-law relaxation charac-
teristics in food gels when performing Small Amplitude Oscillatory Shear Tests and
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�tted a model of the form G′(!) = A!b and G′′(!) = C!d to frequency data, where
A, b, C and d are constants, ! the frequency and G′(!) and G′′(!) the storage and
loss modulus, repectively. [99, 129, 155, 185]. Zhou and Mulvaney and Gabriele et al.
[73, 215] further reduced the number of constitutive �tting parameters from four to
two by �tting a similar model to the magnitude of the complex modulus ∣G∗(!)∣. In
all these papers no attempt was made to represent these functional forms in the form
of a constitutive model that could be applied in a predictive form to describe other
deformations.

Goh et al. [76] show that the power-law relaxation characteristics of hard and semi-
hard cheese can be characterized in compression by �tting a constitutive equation of
the form � = �"m(t/tr)

−n to uniaxial monotonic compression data. Here � is the
stress di�erence in the material, � is a pre-factor with units of Pa, m and n are
power-law exponents for the strain " and time t respectively and tr is the arbitrarily
chosen reference time of 1 s. They argue that the pre-factor � is more suitable for
comparing the �rmness of various food materials, because in contrast to a modulus
E it is not time-dependent. We chose to retain the time-dependency in our de�nition
of �rmness however, because this allows us to extrapolate the measured �rmness to
how a food gel performs under practical conditions, e.g. whether it will retain shape
when stored on a shelf.

Scott Blair (1947) was the �rst to focus on developing constitutive equations where
the stress �(t) is related to the strain (t) or strain rate _(t) in the form of a power-
law. He started with the Nutting equation [137, 171], 	 = ��−1tk, where t is the
time, � and k are constants and 	 a �rmness intensity [162]. From his experiments
he concluded that the number of parameters in this equation could be reduced by
writing the stress in terms of a fractional di�erential equation � = 	(d�/dt�). He
called attention to two novel rheological concepts, the use of a fractional derivative
with a fractional exponent, and the existence of a ‘quasi-property’ 	 [173]. Scott
Blair argued that the quasi-property is intermediate between a shear modulus G and
a viscosity � and is a measure of the dynamic relaxation processes within a material
rather than of an equilibrium state. The magnitude of this quasi-property sets the
scale of the stress in the material. The fractional exponent quanti�es the frequency
and temporal response. The fractional constitutive framework was further developed
in the 1980’s by Bagley and Torvik and Koeller [7, 8, 97]. The latter introduced a new
mechanical element, the springpot, also referred to as the Scott Blair element [115],
which is quanti�ed by two material parameters; the quasi-property and the fractional
exponent.

Successful �tting of a fractional constitutive model to a linear viscoelastic re-
sponse can be found for red blood cells [35], lung tissues [186] and arteries [34]. A
selective number of other examples can be found for describing food ingredients like
gums [89] emulsi�ers [30, 112] and melon [212]. Bagley and Torvik [7] proved that
at su�ciently high frequencies, the Rouse theory for polymer melts can also be com-
pactly expressed in terms of an equivalent fractional constitutive equation containing
a springpot with exponent � = 1/2. Schiessel [161] and Heymans [84] built constitu-
tive models by hierarchically ordering springs and dashpots in self-similar structures,
like those encountered in biological materials, and showed that the hierarchical model
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asymptotically approaches a springpot.
The fact that only two constitutive parameters are needed to capture the broad

relaxation process of a food or biological material over a wide range of time and fre-
quency scales suggests a coupling between microstructure and the fractional equation.
A power-law relaxation is ubiquitous for materials in which the underlying microstruc-
ture ranges over a broad range of length scales [89, 133]. In processed foods this range
can come from the intrinsic variations present in the ingredients that constitute the
product or the (self-similar) morphologies that are formed by the structuring process.
Cheese is a beautiful example of a textured food having a multi-scale and self-similar
structure as depicted by the sequence of images shown in Fig. 2.2. On the scale
of 1 − 100 µm, cheese is a �lled gel (Fig. 2.2(d)) [110, 213] of fat globules with
characteristic size 1-3 µm [206] (Fig. 2.2(c)) dispersed in a gel of protein and water
(Fig. 2.2(b)). At temperatures below 15○C, the �ller is sti� and elastic and cheese
is a ‘suspension-�lled gel’. At higher temperatures the �ller becomes viscoelastic and
we may instead speak of an ‘emulsion-�lled gel’ [45]. In milk, casein is arranged in hy-
drocolloids with a diameter of approximately 200 nm, often denoted as casein micelles
[42]. When adding rennet together with calcium to milk at a temperature of 30○C,
the steric layer present around the casein micelle is cut o� and fractal aggregates or
ocks of attractive para-casein colloids are formed which end up forming a percolating
structure. The gel is further concentrated through a process called syneresis [202],
in which water and water-soluble materials are expelled from the network. The end
result is a cheese that contains roughly equal amounts of fat, protein and water and
a liquid by-product called whey.

The microstructural origins of the power-law relaxation commonly observed in
complex materials, can also be found in the distribution of lengths in dangling chains
in elastomers [36], the distribution of energy wells around interacting blobs that form
soft glassy materials [89, 180] and a continuous distribution of waiting times for a
particle that di�uses in a heterogeneous structure [5, 14]. Tracking the trajectory
of such a particle, as it di�uses through the heterogeneous structure, is a form of
microrheology. Caggioni et al. [25] used this technique in combination with shear
rheology to characterize gellan gum microgels. They showed that both bulk- and
microrheological measurements displayed power-law frequency sweeps with identical
slopes, and that this power-law slope changed when the microstructure was altered.

In the remainder of the paper we build on the e�orts of Davis and Scott Blair to
link cheese texture attributes to essential rheological properties that can be extracted
from rheometry and we proceed through the steps of building a structure-texture
model based on a fractional constitutive framework. First we introduce the main
mathematical relations that are required to construct this framework. Then we in-
troduce expressions for the basic linear viscoelastic material functions. We show that
irrespective of fat, protein or water content, our cheese displays power-law relaxation
in the linear viscoelastic regime over a wide range of frequencies and we explain how
to evaluate the quasi-properties and exponents from measurements of the storage and
loss modulus {G′(!),G′′(!)}. We show that from these parameter values we can
correctly predict the evolution of both the relaxation modulus G(t) and creep com-
pliance J(t) . We next introduce exact de�nitions of the �rmness F , springiness S,
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(a) (b)

Figure 2.3: (a) Schematic representation of the springpot, a mechanical element
de�ned by the quasi-property G and the power-law exponent �, which we call the
fractional exponent (adapted from [89]). For a material characterized by a single
power-law only one element is needed to capture its linear viscoelastic response, we
call this the Scott Blair model (SB). The arrows demonstrate how the springpot inter-
polates between a Newtonian dashpot with viscosity � (� = 1) and a Hookean spring
with modulus G (� = 0). The corresponding constitutive equations are given be-
low each element. (b) Mechanical analogue of the Fractional Maxwell Model (FMM)
constructed from two springpots. The FMM has four material parameters: two quasi-
properties (G and V) and two fractional exponents (� and �).

and rubberiness R, of food gels in terms of speci�c points on the creep / recovery
curve. This allows us to derive expressions for the material �rmness, springiness, and
rubberiness in terms of the quasi-property and the power-law exponent that char-
acterize the cheese. We show that we can predict springiness and rubberiness from
the creep curve which demonstrates that �rmness, springiness, and rubberiness are
interrelated and all governed by the two material parameters we determine in the
linear viscoelastic regime. We �nally demonstrate that our equations give correct,
quantitative predictions of the e�ect of stress-time loading on the value of F , S and
R. Subsequently we combine model �ts from 40 combinations of cheese composition
and temperature into a �rmness, springiness, and rubberiness master plot. It shows
at a glance that the operating window for cheese reformulation is limited and that
novel, �rmness enhancing structures are required. In the discussion section we outline
how our equations can be used in the context of structure-texture design.

2.2 Fractional constitutive framework

To construct fractional constitutive equations in an identical fashion as classical con-
stitutive models (e.g. the Maxwell) models, Koeller [97] de�ned a rheological element
whose stress is proportional to the fractional derivative of the strain. He called this
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two-parameter viscoelastic element the springpot:

�spingpot = G
d�

dt�
(2.1)

This constitutive response is a generalization of the classical dashpot and spring:
for � = 1, the springpot behaves as a dashpot, for � = 0 as a spring, as depicted in
Figure 2.3(a). The front factor G is equal to Scott Blair’s quasi-property (originally
denoted 	) and has units of Pa s� . The exponent � is a measure of the frequency or
temporal dependence of the material response, as well as the relative degree of vis-
coelasticity, such as the phase angle tan(�). The latter parameter is more commonly
used to describe the solid- or liquid- like nature of semi-solid food gels such as cheese
[69]. Various material responses can be described with constitutive models derived
from mechanical analogues built with the springpot and comprehensive reviews can
be found in [71] and [161].

The fractional constitutive framework builds on ideas from fractional calculus, that
incorporate integrals and derivatives of arbitrary order [90, 114, 147]. For compactness
these derivatives are called fractional derivatives and we give models, expressions and
parameters derived from these derivatives the adjective ’fractional’ as well as materials
that can be mechanically described by these entities.

There are several alternative de�nitions for the fractional operator indicated by
Eq. (2.1). In order to deal more physically with the boundary conditions for appropri-
ate rheological tests, we use the Caputo derivative, which reformulates the fractional
derivative into a fractional integral through integro-di�erentiation [187]. The deriva-
tive in Eq.(2.1) with order 0 < � < 1 is then de�ned as :

G
d�

dt�
≡

G

�(1 − �)

t

∫
0

(t − t′)−� _(t′)dt′ (2.2)

The constitutive response of the springpot [97, 194] is thus equivalent to a Boltz-
mann memory integral with a power-law relaxation kernel, rather than the more
familiar Maxwell-Debye exponential form (or sum of exponentials) commonly used in
viscoelastic models [64]. The Caputo derivative has a Laplace transform, which for
0 < � < 1 is de�ned as [147, 187]:

L{
d�

dt�
f(t); s} = s� ~f(s) (2.3)

This enables us to derive analytical expressions for two standard linear viscoelastic
shear material functions [12]: the relaxation modulus G(t) and the creep compliance
J(t): In a stress relaxation experiment, a sudden step in shear strain (t) = 0H(t) is
imposed (where H(t) is the Heaviside step function [1]), and the resulting stress �(t)
is measured. This provides the relaxation modulus G(t) ≡ �(t)/0 for the material.
By analogy the creep compliance, J(t) ≡ (t)/�0 is obtained, by imposing a step in
shear stress, �(t) = �0H(t), and following the evolution of the strain (t) over time.

Other standard linear viscoelastic shear material functions, such as the storage
and loss moduli (G′(!), G′′(!)), are obtained by harmonic excitations in shear, also
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denoted as small amplitude oscillatory shear (SAOS) experiments. To �nd the ap-
propriate fractional expression for these functions we use the Fourier transform of the
Caputo derivative of a function f(t), which is given by ([161])

F {
d�

dt�
f(t);!} = (i!)� ~f(!) (2.4)

where ~f(!) = F{f(t);!}.
Equations (2.2), (2.3) and (2.4) provide the mathematical framework to build frac-

tional constitutive equations from mechanical analogues and solve them analytically.
In this paper we will use fractional models consisting of a single springpot, (i.e. the
canonical Scott Blair model (SB)) as well as two springpots arranged in series, which
we call the Fractional Maxwell model (FMM). In the latter four-parameter model
each element is described by a quasi-property (V or G) and an exponent (� or �),
where we take � > � without loss of generality. This constitutive model is schemati-
cally depicted in Fig. 2.3(b). In the Maxwell model the stresses in each element are
equal (� = �1 = �2) and the strains are additive ( = 1 + 2). With the constitutive
relation for each springpot (Eq.(2.1) and Fig. 2.3(b)) this gives

�(t) +
V

G

d�−��(t)

dt�−�
= V

d�(t)

dt�
(2.5)

where 0 ≤ � ≤ � ≤ 1. In section 2.4.1 we give the fractional expressions for both the
SB and FMM for the linear viscoelastic material functions de�ned above.

Materials that are described by a single power-law (e.g. Eq. (2.2)), have no char-
acteristic timescale that can be identi�ed. A discrete spectral representation of the
power-law kernel in Eq. (2.2), requires an in�nitely broad spectrum of time constants
[133]. However for a material displaying two power-law regimes, as described by the
FMM, we can unambiguously de�ne a single characteristic timescale �c by:

�c = (V/G)
1/(�−�) (2.6)

This time corresponds to the characteristic time (or frequency !c = 1/�c) at which
the local power-law in the material response, transitions from one exponent (�) to
the other (�). This expression also reduces to the expected value for the limit of a
classical Maxwell model for which V → �; G → G; � → 1 and � → 0.

2.3 Materials and methods

2.3.1 Cheese composition

Foil-ripened Gouda rectangular cheeses (500×300×100 mm) were acquired at an age
of 3-14 days and kept at 5○C to minimise compositional changes due to protein break-
down or (de-)solubilization of minerals [109, 140] . Fat content was varied by using
cheese from three fat classes: zero-fat (≈ 0% fat in dry matter, �dm), low fat (≈ 20%
�dm) and full-fat (≈ 48% �dm). The cheese was analyzed for composition according



22 Chapter 2

to international standards (standard in brackets): pH (NEN 3775, Netherlands Nor-
malisation Institute), l-lactic acid (ISO 8069, International Standard Organisation),
protein (through total nitrogen / soluble nitrogen / anhydrous nitrogen fractions
[205]), ash (Association of O�cial Analytical Chemists 930.30), calcium (insoluble
calcium phosphate, AOAC 984.27), lactose (ISO 5762-2), water (=100-total solids
(ISO 5534)), fat (ISO 1735) and chloride (ISO 5943). Weight fractions of protein,
water and fat were converted to volume fractions according to the procedure outlined
by Yang et al. [213] taking the temperature-dependent densities of these main cheese
constituents from Sahin and Sumnu [157].

2.3.2 Cheese hydration

Cheese slices of approximately 60 × 60 × 2:5 mm were cut from a block coming from
the core of the cheese. To provide cheese with di�erent water/protein ratios, denoted
as w/p, the hydration procedure developed by [110] Luyten was followed, with slight
adaptations for shear rheometry. Part of the slices were hydrated in a salt solution,
which had equal concentration of calcium (Ca2+) and chloride (Cl−) as in the moisture
of the non-hydrated cheeses on a molar basis. For the fraction of soluble calcium
of total calcium, a value of 20% was assumed [118]. Hydration was performed by
submersing a single cheese slice for 1, 2, 4, 8, 16 or 24 hours in 250 ml of the salt
solution. After this period, slices were taken from the liquid and excess moisture
was carefully removed with tissue paper. Just before and after hydration the slices
were weighed. From the weight increase the new water/protein ratio was calculated,
assuming that the concentration of solubles in the cheese moisture remained the same
and that there was no net transfer of material from cheese to the liquid. Slices were
wrapped in aluminum foil and kept in the refrigerator for 2-3 days to allow for moisture
equilibration [110].

2.3.3 Small strain shear rheology

Experiments were performed at 10○C, 25○C and 30○C. From each cheese slice, three
discs of 25 mm diameter were punched for plate plate rheometry. When measurements
from frequency sweeps were compared against stress relaxation or creep experiments,
samples were taken from the same slice. Measurements were performed with a Physica
MCR501 Rheometer (Anton Paar, Austria) with a parallel plate geometry. To prevent
slip, sandblasted upper and lower plates are used. The temperature of the lower plate
was controlled with a Peltier stage, and the upper plate and cheese environment were
thermally controlled with a cap hood. The upper plate was lowered with a speed
of 25 µm / min until a normal force of 1 N (4 kPa) was reached. The gap width
was recorded at that point and decreased by an extra 2% while keeping the normal
force constant at 1 N to ensure full contact with the cheese. Gap settings were then
switched from �xed normal force to �xed gap width. No signi�cant e�ect of normal
pressure on storage and loss modulus was found in the range of 0.5-20 kPa. After
loading the sample between the two parallel plates it was heated at a heating rate
of 0.5○C per minute until the desired temperature was reached. The exposed surface



Firmness, springiness and rubberiness of food gels 23

area of the sample was covered with sunower oil to minimise sample drying during
the experiment. A maximum weight loss of 0.5 w/w% was recorded.

Linear viscoelastic region (LVR) To determine the LVR a strain sweep at a
frequency of 1 rad/s was conducted with a logarithmic increase of the strain amplitude
0 from 0.1 to 100%. Strain sweeps were performed at temperatures of T = 10 ○C and
T = 25○C.

Storage and Loss Modulus fG′(!), G′′(!)g Frequency sweeps were performed
at a strain amplitude 0 = 0:2%, which lies within the LVR for all samples. The
frequency was decreased logarithmically from ! = 100 Hz to ! = 0:1 Hz at �xed
measuring temperatures of either T = 10 ○C and T = 30○C. The heating rate inbetween
the two sweeps was 0.5○C per minute.

Relaxation modulus (G(t)) A step-strain of 0 = 0.2% was imposed on the test
specimen and held at that value for t = 100 s at a measuring temperature of T = 10○C.

Creep compliance (J(t)) A step stress �0 was imposed on the test specimen of
�0 = 100 or 1000 Pa and held at this value for t = 10 s or t = 100 s at �xed measuring
temperatures of either T = 10○C or T = 25○C, while measuring the resulting strain
(t). Subsequently the imposed stress is released and the resulting strain recovery or
recoil is measured for t = 10 s or t = 100 s.

2.3.4 Confocal Scanning Laser Microscopy (CSLM)

A Leica inverted CSLM (TCS SP2, DM IRE2) was used in the experiments. The
water/protein phase was stained with uorescent isothiocyanate (FITC) and the fat
phase with nile red (0.1%/0.01%). Staining occurred by placing a sample of approxi-
mately 1×5×5mm in a solution of the dyes in a glycerol / water / polyethyleneglycol
(PEG) (45/5/50%) mixture for 30 minutes. All cheese manipulations (cutting and
staining) were done at 8○C in the cold room to prevent fat melting. Stained cheese
was transported to the confocal microscope in a Petri dish placed in a polystyrene
foam box containing frozen ice pack isolated by rubber foam. Image acquisition was
done below 15○C using a conditioned air ow. Single 2D images were obtained from
the internal structure imaging at about 10 µm below the surface generated with a
razor blade. The size frame of all images was 119:05 ×119:05 µm (1024× 1024 pixels)
obtained with a water immersion objective (63×, zoom 2, NA = 1:2). Baseline adjust-
ment and auto-dye-�nding were applied to all images acquired using LEICA Confocal
Software (LCS).
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Figure 2.4: Acquiring the quasi-properties and fractional exponents of zero-fat (a,c)
and full-fat (b,d) cheese with a water/protein ratio w/p= 1:8, at temperatures T =

10○C (a,b) and T = 30○C (c,d). The material parameters are obtained by �tting
the Scott Blair model (SB) for the complex modulus, Eq. (2.10) to the storage and
loss modulus measurements {G′(!),G′′(!)}. The SB model gives a good �t for all
samples, demonstrating that the relaxation behaviour of cheese is well described by
a power-law over frequencies 1≤ ! ≤ 100 rad s−1. The additional dashed lines shown
in Fig. 2.4(b) are predictions from an independent measurement of the relaxation
modulus, G(t) , of the same material (measurement displayed in Fig. 2.5(a)), over
an extended range of timescales 0≤ t ≤ 200 s.
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2.4 Results

2.4.1 Obtaining cheese material properties

In Fig. 2.4 we display a subset of the 40 frequency sweeps that were performed on
Gouda cheese samples varying in temperature and composition. This subset consists
of full-fat and zero-fat cheese at temperatures T = 10○C and T = 30○C and a wa-
ter/protein ratio of w/p = 1.8. In all cases the linear viscoelastic properties of the
cheese show the typical power-law behaviour of a critical gel [209]: a line of constant
slope on a log-log plot over a wide range of frequencies for both the storage and loss
modulus, {G′(!),G′′(!)}, with both curves nearly parallel. To retrieve the quasi-
properties and exponents from these plots, we need an expression for the storage and
loss modulus for the Scott Blair model. The complex modulus is obtained by Fourier
transforming the constitutive equation for the springpot, Eq. (2.1), which results in:

G∗
(!) = G(i!)� (2.7)

Following the procedure for separating out the real and the imaginary part, outlined
by Friedrich et al. [71] and Schiessel et al. [161], one can readily �nd for the storage
modulus

G′
(!) = G!� cos (��/2) (2.8)

and for the loss modulus

G′′
(!) = G!� sin (��/2) : (2.9)

The magnitude of the complex modulus, ∣G∗(!)∣, can be calculated from

∣G∗
(!)∣ =

√

(G!� cos (��/2))
2
+ (G!� sin (��/2))

2
= G!� : (2.10)

This set of equations shows that G′(!) can be predicted from G′′(!) and vice versa
and that we can either �t equations (2.8), (2.9) or (2.10) to our dataset of G′(!),
G′′(!), or ∣G∗(!)∣ respectively. We choose Eq. (2.10) in combination with a least
square optimisation procedure to obtain G and �, since it gives the least bias towards
either the G′(!) or G′′(!) data points. The reconstituted curve of the SB model is
depicted by the solid lines in Fig. 2.4, and shows that the model gives a good �t for
both the elastic and storage moduli, with only two material parameters. The values
for the model parameters can be found in Table 2.1. The fractional exponent � varies
between 0.16 and 0.21 depending on temperature and fat content, thus our cheese is
more elastic than viscous or more solid- than liquid-like. These values are in line with
what Goh et al. [76] found for Gouda cheese and Zhou and Mulvaney [215] found for
their model cheese gels. In the introduction we noted that the tangent of the phase
angle tan(�), is commonly employed for gelled foods to express their solid- or liquid-
like nature [69]. For the SB model the phase angle is independent of the frequency
and is only a function of the exponent �:

tan(�) =
G′′(!)

G′(!)
= tan (��/2) (2.11)
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In Fig. 2.5 we use the quasi-property, G, and fractional exponent, �, obtained from
frequency sweeps, to predict a priori the relaxation modulus (G(t) , Fig. 2.5(a)) and
creep compliance (J(t) , Fig. 2.5(b)) of zero-fat and full-fat cheese. We compare the
predictions against direct measurements of these linear viscoelastic material functions.
Fig. 2.5(b) shows that at t ≈ 10−2 s creep measurements for both cheese �rst coincide
and then oscillate until the ultimate power-law regime is reached at t ≈ 10−1 s. This
characteristic short time response is due to coupling between the complex modulus
of the material with the moment of inertia of the rheometer and is often referred to
as ‘creep ringing’. It has been extensively studied by Jaishankar and McKinley [89]
for the Fractional Maxwell Model, resulting in a higher-order di�erential equation
that predicts the damped response of power-law materials in the ringing regime at
short times as well as at longer times (for brevity this is not included here). Similar
‘ringing’ for the measurements of the relaxation modulus at times t < 10−1 s, can be
seen in Fig. 2.5(a). Another contributions to the high values of G(t) measured at
times t < 10−1s, is the Rouse modes of the biopolymer network [133]. However this
should give an initial slope of d(log(G(t)))/d(log(t)) = −0:5 [7], which is not the case
here.

To predict the relaxation modulus from the material parameters G and �, we need
an analytical expression for G(t) . This is obtained by substituting the step-strain
deformation in the constitutive equation for the springpot (Eq. (2.1)) and taking the
Laplace transform (Eq. (2.3)) to solve for G(t) = �(t)/0. Inverse transforming the
result gives [89]:

G(t) =
Gt−�

�(1 − �)
(2.12)

where �(z) is the Gamma function [1]. The predictions of this two-parameter Scott
Blair model (SB) are plotted as solid lines in Fig. 2.5(a). We see that for zero-
fat cheese, both the magnitude and the slope of G(t) are correctly predicted with
Eq. (2.12). For full-fat cheese, the SB model predictions are good at times t < 10 s.
For times t > 10 s, a second power-law relaxation process with a steeper slope sets
in. This can be described by adding an additional springpot in series characterizing
the cheese, which leads to the constitutive equation for the Fractional Maxwell Model
(FMM ,Eq. (2.5)). Following the same procedure as for constructing the Scott Blair
model, we arrive at an expression for the relaxation modulus of the FMM [71, 89]:

G(t) = Gt−�E�−�;1−� (−
G

V
t�−�) (2.13)

where Ea;b(z) is the generalized Mittag-Le�er function de�ned as [147]

Ea;b(z) =
∞

∑
k=0

zk

�(ak + b)
; (a > 0; b > 0) (2.14)

By using the de�nition for the characteristic time constant in Eq. (2.6), the (dimen-
sionless) argument of the Mittag-Le�er function is recognized to be z = −(t/�c)

�−� .
When we �t equation Eq. (2.13) to the full-fat cheese measurements in Fig. 2.5(a), we
obtain the dashed line. The second element has a fractional exponent � = 0:65 and



Firmness, springiness and rubberiness of food gels 27

is more viscous in character than the �rst element, which has an exponent � = 0:14.
We can check whether the obtained �t values represent true material properties by
seeing how they independently predict the storage and loss modulus {G′(!),G′′(!)}
of the same cheese material, by substituting the properties in the expression for G′(!)
and G′′(!) obtained for the Fractional Maxwell model. This model is obtained by
taking the Fourier transform as de�ned in Eq. (2.4) of the constitutive equation for
the FMM (Eq. (2.5)) [89] and gives:

G∗
(!) =

V(i!)� ⋅G(i!)�

G(i!)� +V(i!)�
(2.15)

By separating out the real and imaginary parts and substituting the de�nition for the
characteristic time scale �c from Eq. (2.6), we have

G′
(!) = G0

(!�c)
� cos(��/2) + (!�c)

2�−� cos(��/2)

(!�c)2(�−�) + 2(!�c)�−� cos(�(� − �)/2) + 1
(2.16)

and

G′′
(!) = G0

(!�c)
� sin(��/2) + (!�c)

2�−� sin(��/2)

(!�c)2(�−�) + 2(!�c)�−� cos(�(� − �)/2) + 1
(2.17)

where G0 ≡ V�−�c sets the scale of the stress in the material. The model predictions for
the storage and loss modulus from the FMM are plotted as dashed lines in Fig. 2.4(b).
This shows that the predictions of this more-accurate four-parameter model are still
consistent with the data available. The second relaxation mode with V = 4:7 × 106

Pa s� and � = 0.65 predicts a more rapid roll-o� in the viscoelastic moduli at low
frequencies (! ≪ �c) or long times (t ≫ �c), consistent with the stress relaxation
modulus observed in Fig. 2.5(a).

In contrast to the Scott Blair model, the Fractional Maxwell Model can predict a
cross-over frequency !c at which G′(!)=G′′(!), depending on the values of � and �.
This frequency can be calculated by equating Eq. (2.16) and (2.17) resulting in the
following expression

!c = (
G

V
[

sin(��/2) − cos(��/2)

cos(��/2) − cos(��/2)
])

1
�−�

(2.18)

and is real-valued provided 0 ≤ � < 0:5 < � ≤ 1, as obtained for the cheese samples
studied here. For the full-fat cheese shown in Fig. 2.4(b), substitution of the values for
the quasi-properties and fractional exponents gives a value for the cross-over frequency
of !c = 1 × 10−4 rad s−1. For cases where the system is predominantly elastic (0 ≤ � <

� < 0:5) or viscous (0:5 ≤ � < � ≤ 1) over the entire frequency domain, no characteristic
cross-over frequency exists.

For the analytical expressions of the creep compliance J(t) , the steps to obtain
an expression for G(t) are repeated, but now with a step shear stress as the input
and solving for the strain (t). For the Scott Blair model this gives the following
expression for the compliance [89]:

J(t) ≡
(t)

�0
=

1

V

t�

�(1 + �)
(2.19)
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Figure 2.5: Measurement and prediction of (a) relaxation modulus G(t) and (b)
creep Compliance J(t) of zero-fat (blue) and full-fat (red) cheese at a temperature
T =10○C and for a water/protein ratio w/p = 1.8. (a,b) Zero-fat cheese shows single
power-law behavior up to times t = 100 s of relaxation or creep. (a) Full-fat cheese
starts to deviate from a single power-law response after times t = 10 s of stress relax-
ation. The second power-law relaxation process is captured with a �t of the Fractional
Maxwell Model of the relaxation modulus (dashed line).

and for the fractional Maxwell model

J(t) = (
1

V

t�

�(1 + �)
+

1

G

t�

�(1 + �)
) (2.20)

In Fig. 2.5(b) we plot the measured and predicted creep compliance J(t) for zero-fat
and full-fat cheese at 10○C. The SB model correctly predicts the creep compliance from
the material parameters obtained independently from a frequency sweep. Extending
the SB model to a Fractional Maxwell Model is not required here because the data
does not extend beyond tmax ≃ 102 s.

From the data shown in Fig. 2.4 and 2.5 we have demonstrated that cheese, a �lled
casein gel, displays power-law relaxation behaviour over a wide range of temperature
and composition. The fractional constitutive framework allows us to predict the re-
sponse of cheese to standard shearing deformations. If only one power-law relaxation
process is excited, we have shown that it is necessary to determine just two constitu-
tive parameters to make the predictions. These material parameters are obtained by
�tting the appropriate fractional expression for the standard linear viscoelastic ma-
terial functions to the measured data. In the next section we will use this fractional
constitutive framework to derive equations for the texture attributes of �rmness (F ),
springiness (S) and rubberiness (R). These equations are expressed in terms of the
quasi-property G, and the fractional exponent � of the Scott Blair element.



Firmness, springiness and rubberiness of food gels 29

2.4.2 Rheological de�nitions of �rmness, springiness, and rub-
beriness

Unfortunately there is no consensus on a unique de�nition of the �rmness, springiness,
and rubberiness of food gels such as cheese, nor its method of assessment [66], which
hampers correlation of these texture attributes to essential material properties. The
�rmness F , can be judged while deforming a piece of cheese with the mouth (tongue
and pallet, incisors, front teeth or molars) or by hand (Fig. 2.1(a)). During the
assessment, the cheese can be slightly pressed or completely bitten through [49]. When
choosing a method of assessment, panelists tend to make a choice that depends on
the level of �rmness itself [192].

Correlative studies between panel test results and instrumental measurements do
not provide additional clarity on how �rmness should be de�ned. It has been corre-
lated to rheological properties covering the regimes of linear to non-linear rheology
up to fracture [67, 201]. Since the development of the Texturometer [70] and the
entrance of the Instron Universal Testing Machine in texture measurements [15], the
uniaxial compression experiment has become very popular to assess �rmness and is
still deployed regularly (e.g. [27, 106]). In this experiment (Fig. 2.1(b)), a cylindrical
sample is crushed between two parallel plates either at a constant rate of displace-
ment [15, 70] or at constant strain rate [76, 110]. In an alternative con�guration,
�rmness is determined with a penetration test, where the upper plate is replaced by
an indenter and the test material is left to rest in the cup or beaker in which it was
prepared (e.g. [13, 105, 139]). Such indentation tests deform the material locally and
are of speci�c relevance when the materials with the lowest �rmness are too weak to
hold their own weight. When using maximal force as a measurement for �rmness, it
appears that the relative �rmness of two types of cheese depends both on the rate
and the degree (or extent) of compression [20, 175]. This gives an indication that
when measured instrumentally, �rmness has both a viscoelastic as well as a plastic
(or ow) component.

Firmness is often intertwined with hardness [93, 145, 201]. Jowitt [93] prefers the
term �rm over hard and de�nes it as ’high resistance to deformation’. Reiner and
Scott Blair [151] de�ne hardness as a ’resistance to penetration’, i.e. the resistance
to a speci�c type of deformation, which can be instrumentally quanti�ed with the
indentation test described above. They use ‘suppleness’ as an antonym for ‘hardness’
whereas ‘soft’ is the antonym for ‘�rm’ [93]. Van Vliet ([201]) proposes the use of �rm-
ness for recoverable viscoelastic deformations only and hardness for non-recoverable
plastic deformations. This is in line with Scott Blair’s �ndings that �rmness is a
time-dependent texture attribute.

Two alternative studies indicate that �rmness can indeed be measured with loading
conditions that remain within the linear viscoelastic regime of the food material. The
�rst is a series of comparative experiments on Monterey Jack and Mozarella cheese
between an expert panel and rheometry. Brown et al. [23] showed that the maximum
compliance, Jmax = max{J(t)}, determined in a 600 s creep test (Fig. 2.1(c)) in the
linear viscoelastic region had a strong negative correlation with both hand and mouth
evaluated �rmness. Ewoldt [56] demonstrated that by plotting the creep compliance
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Figure 2.6: (a) Creep / recovery curves of two hypothetical materials A (red) and
B (blue) with identical �rmness and di�erent springiness and rubberiness. Values of
the compliance for each material indicated with �lled markers are used to calculate
�rmness F , (squares), springiness S, (triangles), and rubberiness R, (circles). Their
corresponding times of observations, tf , ts and tr are plotted as hollow markers on
the time-axis. We de�ne the elapsed time of recovery as �t = t− tf (black dashed
line). Firmness is the inverse of the maximal creep compliance max{J(t)} and thus
has units of Pa. Springiness has units of (Pa s)−1 and is de�ned as the secant rate
of recovery just after the stress is removed at t = tf+ �ts, where �ts << tf . For
each material, the dashed, colored, secant line goes through the �lled square and
triangle. The absolute magnitude of the slope of the secant is equal to the springiness
S. Rubberiness is de�ned as the relative extent to which the compliance recovers
from the stress applied. If J(t) = 0 Pa at t = tr then the rubberiness R = 1. We have
chosen tr such that �tr >> �ts. Material A (red) is more springy and more rubbery
than material B (blue). (b) The same experiment as in (a) but now plotted on a log-
log scale, without the recovery phase and with the creep phase extrapolated (dashed
line). The plot shows that A and B are power-law materials: J(t) ∝ t� , where �
is the power-law exponent. This plot emphasizes the importance of controlling and
reporting time when assessing �rmness: only at tf are the two materials equally �rm,
before or after this point the material with the lowest compliance is the �rmest. In
the text we also demonstrate that the magnitude of the springiness and �rmness are
also dependent on the time of observation chosen.

J(t) , the best discrimination between a soft and �rm grade of therapy putty could
be made. Ewoldt also showed that �rmness is a sensory texture attribute that cannot
only be measured with tactile senses but also by vision [18] as long as one probes the
property over long time-scales. A soft material will lose shape rapidly over time, an
undesirable feature for a cheese that needs to be sliced (Fig. 2.1(a)).

In Fig. 2.6 we have summarized the �ndings from Scott Blair [163], Scott Blair
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and Coppen [168], Brown et al. [23] and Ewoldt [56]. In Fig. 2.6(a) we plot the
compliance against time for a creep / recovery experiment (see also Fig. 2.1(c)) on
two hypothetical materials. Firmness F , is de�ned as a resistance to creep, and can
be expressed by the inverse of the maximum compliance J(t) measured at the end
of the creep phase. The time at which we measure a texture attribute is generically
called the time of observation tobs . For �rmness this time is denoted as to = tf . Thus
the �rmness F is de�ned as

F ≡ 1/max{J(t)} = 1/J(tf) (2.21)

and has units of Pa. The datapoints that are used to calculate the �rmness F , of
materials A and B are indicated by the �lled, colored square on the creep / recovery
curve in Fig. 2.6. The corresponding time of observation tf is indicated by the hollow
square on the time-axis. The two hypothetical materials A and B are equally �rm
at the time of observation tf = 10 s, however the two creep curves approach J(tf) ≡
max{J(t)} di�erently. In Fig. 2.6(b) we have plotted the creep phase of the same
experiment on a double logarithmic scale and extrapolated the curves beyond the time
of observation tf (dashed line). It shows that the two materials each have the form
of a power-law with di�erent slopes �. The plot also emphasizes the importance of
the time of observation in measuring �rmness. If we had chosen a smaller observation
time material A would have been considered �rmer than B and vice versa at longer
times.

The term ‘elastic’ is often used as a synonym for ‘springy’ [37, 44, 165]. The
word ‘elasticity’ was taken up in the list of primary parameters in the Texture Pro�le
Analysis (TPA) [188]. Davis [37] pointed out that the use of ‘elasticity’ is not correct
and that should be reserved for the assessment of a modulus by hand. More recently
‘elasticity’ has been replaced by ‘springiness’ [191] in Texture Pro�le Analysis and it is
de�ned in TPA as ‘the rate at which a deformed material goes back to its undeformed
condition after the deforming force has been removed’ [188]. Davis and Blair argued
that springiness is related to a time of relaxation [37, 165] and that the sensation
involved is an amount of recovery instead of a rate. Based on the graphical de�nition
of springiness in [70], Van Vliet [201] concluded that the springiness S indeed should
be de�ned as an ‘extent’ to which a deformed material returns to its undeformed state.
In their review of texture de�nitions, Foegeding and Drake [66] identify authors that
speak of ‘a rate at which sample \springs" back’, as well as those who speak of an
’extent of recovery’.

Van Vliet (1991) combines both rate and extent of deformation in one de�ni-
tion by proposing ‘the tendency to instantaneously and completely recover from a
large deformation after removal of the deforming force’, however he prefers to use the
term rubberiness instead of springiness. Foegeding and Drake [66] link rubberiness
to springiness by de�ning it as "the degree of rubberiness experienced when biting in
a sample". We feel that from a rheological perspective and based on the competing
de�nitions above, it is justi�able and necessary to have two separate, distinct de�ni-
tions for the springiness S and rubberiness R. Intuitively the word ‘springiness’ deals
with sudden responses that are evaluated over a short period of time and thus the
use of a rate is appropriate. As a consequence the term ‘rubberiness’ is used to relate
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to the total extent of strain that is recovered at the end of the creep / recovery ex-
periment. In polymeric theories, rubbery materials are assumed to be purely elastic;
in other words any applied deformation is reversed upon cessation of the application.
By analogy, the term ‘rubberiness’ is used to relate to the amount of strain recovered
at the end of the creep-recovery experiment.

Our precise, rheological de�nitions for the springiness S and rubberiness R, follow
from the location of the three markers on each creep / recovery curve in Fig. 2.6(a).
For convenience we de�ne the elapsed time of recovery as �t= t − tf (denoted by
the dashed, horizontal black line in Fig. 2.6(a)). The springiness S is de�ned as the
absolute secant rate of recovery just after the stress is released and is judged at a time
of observation ts =tf + �ts. The springiness is thus mathematically de�ned as:

S ≡ ∣
J(ts) − J(tf)

ts − tf
∣ =

∣J(tf +�ts) − J(tf)∣

�ts
(2.22)

and has units of 1 / Pa s, which is equal to the inverse of the units of viscosity. In
practice one judges the springiness of a material such as cheese, by looking at the
instantaneous response when the stress is released. It is thus logical to take �ts<<
tf . We will use �ts= 0:1 s when we report values for springiness in the remainder
of this paper, which is a time close to the response time of a modern rheometer.
The location of the time of observation for measuring springiness is denoted on the
time-axis is indicated by the hollow triangle in Fig. 2.6(a), which visually overlaps
with the hollow square representing tf , indicating that the elapsed time of recovery
is very small. Note, that although the recovery time is short, the creep compliance
of Material A (red triangle) has decreased considerably. This is reminiscent of a very
springy material and is expressed by a secant (red dashed line) that is more steeply
negatively sloped than the secant of material B (blue dashed line). Thus the materials
A and B are equally �rm, but not equally springy for a �xed time of observation tf .

The rubberiness R, is de�ned as the extent to which a cheese returns to its orig-
inal shape during the interval (tf ; tr], where tr is the time we take for measuring
rubberiness. If the strain is fully recovered at the time t = tr, then R = 1. If there is
no strain recovery at t = tr , then the rubberiness R = 0. Thus R is mathematically
de�ned as:

R ≡
J(tf) − J(tr)

J(tf)
= 1 −

J(tf +�tr)

J(tf)
= 1 − F (tf)J(tf +�tr) (2.23)

which is a dimensionless quantity, and where �tr is the elapsed time of recovery (�t)
for measuring rubberiness. In this paper we will use values of �tr= 10 seconds (hollow
circle on the time axis in Fig. 2.6(a)) and �tr= 100 seconds, a time convenient to
measure in the rheometer and which corresponds to practical times of judging the
attribute. By choosing �tr>>�ts we distinguish between the key features of the
short and intermediate time response of power-law materials and make springiness
and rubberiness two distinct attributes.

To conclude, we want to address the suggestion that the de�nition of an antonym
of a texture attribute [93] or the de�nition of an inverse of a rheological property
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[151] helps the comprehension of the di�erences between terms used. We propose to
follow Jowitt [93] and call a food gel with a low level of �rmness ‘soft’. Foegeding and
Drake [66] de�ne ‘softness’ as easily ‘moldable’, we propose to use the latter term as
an antonym for the rubberiness R. For the springiness S Jowitt [93] proposes to use
the word ‘plastic’, but this is a synonym for ‘moldable’ and has no sense of rate. We
suggest the use of ‘squishy’ instead [214].

2.4.3 Fractional equations for �rmness, springiness, and rub-
beriness (FSR)

In the previous section we have given precise rheological de�nitions of �rmness,
springiness, and rubberiness both in words as well as in terms of speci�c points on the
creep compliance curve, J(t) , of a creep / recovery experiment (Fig. 2.6). We will
now use these rheological de�nitions to derive expressions for �rmness, springiness,
and rubberiness using the fractional constitutive framework. We subsequently refer
to these de�nitions as the FSR-equations.

For materials probed at strains within the linear viscoelastic limit and that can
be described by a single power-law, or springpot element, the compliance is given by
Eq. (2.19). Using the de�nition of �rmness in Eq. (2.21) the fractional equation for
the �rmness F , becomes

F (tf) =
1

J(tf)
= G�(1 + �)t−�f (2.24)

This expression for �rmness is in line with Scott Blair’s observations [173]: it is a
time-dependent texture attribute that depends on two material properties, the quasi-
property and the power-law exponent, as well as on the time of observation tf . We
have de�ned the �rmness F , as being independent of the stress applied, which also
corresponds to Scott Blair’s �ndings: although the stresses applied by panelists varied
by a factor two, it did not a�ect their judgments of di�erences in �rmness. Since the
time of observation is essential for quantifying numerical values of the �rmness, any
measurement should always be provided together with the observation time tf and the
characteristic power-law exponent �, to enable extrapolation to practical situations.
The time dependency of the �rmness F (tf), favours a stress-controlled creep mea-
surement (Fig. 2.1(c)) over the more common practice of reporting a modulus from
a strain-rate-controlled compression experiment (Fig. 2.1(b)); the �rst experiment
naturally exposes time e�ects and allows us to interconnect the �rmness to situations
where stressess are applied for short times, such as sensory texture measurement, or
for long times, such as in storing cheese (Fig. 2.1(a)) .

The de�nition of the springiness S is given in Eq. (2.22). The point J(tf) lies at
the end of the creep curve and is given by the inverse of Eq. (2.24). The point J(ts)
lies on the recovery curve and requires an appropriate fractional calculus expression
for this part of the creep-recoil experiment. The derivation of this expression [90] is
given below.

For all times during the experiment the applied stress �(t) is given by

�(t) = �0 [H(t) −H(t − tf)] (2.25)
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where �0 is the step in stress and H(t) is the Heaviside step function. Substituting
Eq. (2.1) into Eq. (2.25) gives

�0 [H(t) −H(t − tf)] = G
d�(t)

dt�
(2.26)

Taking the Laplace transform of the equation (keeping in mind that t > tf ) we have:

�0 (
1 − e−stf

s
) = Gs�~(s) (2.27)

Isolating the Laplace-transformed strain ~(s) gives

�0

G
(

1

s�+1
−
e−stf

s�+1
) = ~(s) (2.28)

By inverse transforming and utilizing the de�nition of the compliance J(t) ≡ (t)/�0,
we arrive at the following expression for the material compliance of the Scott Blair
element in the recovery phase for times t > tf :

J(t) =
t� − (t − tf)

�

G�(1 + �)
, for t > tf (2.29)

When we divide both nominator and numerator in Eq. (2.29) by t�f and substitute

the equation for �rmness, F (tf) = G�(1 + �)t−�f , Eq. (2.24), and our de�nition for
the recovery time, �t= t - tf , we get

J(t) =
t−�f (t� −�t�)

F (tf)
, for t > tf (2.30)

We de�ne the elapsed recovery time at which we measure springiness S as �ts= ts−tf .
The numerator of Eq. (2.22) is then expressed as

J(ts) − J(tf) =
t−�f (t�s −�t�s )

F (tf)
−

1

F (tf)
, for ts > tf (2.31)

Substituting this in Eq. (2.22) and writing out ts = tf+ �ts gives

S =
∣(1 +�ts/tf)

� − (�ts/tf)
� − 1∣

F (tf)�ts
(2.32)

The springiness equation reveals that this attribute is inversely related to �rmness.
The time dependency of a springiness measurement is two-fold, it depends on the
duration tf of the creep phase and the time �ts over which the secant rate is measured.
We have depicted this two-fold time dependency in Fig. 2.7 where we have plotted
springiness for the two hypothetical materials A and B from the previous section
(Fig. 2.6). Recall that at a time tf= 10 s these two materials were equally �rm,
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Figure 2.7: E�ect of measurement time on the values of (a) springiness and (b)
rubberiness. The colors represent the two hypothetical materials A (red) and B(blue)
from Fig. 2.6. The solid and dashed line represent a time tf for measuring �rmness
of tf= 10 s and tf= 106 s respectively. The springiness S and rubberiness R, are
functions of both tf , and the elapsed time of recovery �t at which we calculate S
and R. The markers denote the elapsed recovery times we have chosen to calculate
springiness, �ts= 0.1 s (triangles in (a)) and rubberiness, �tr= 10 s (circles in (b) ).
Our choice of �ts<< tf makes the springiness S independent of the time for measuring
�rmness tf . Our choice of �ts<< �tr makes springiness and rubberiness two distinct
properties.

and that material A (with the smaller fractional power-law exponent) was the most
springy. This is in line with what we read out from the solid lines in Fig. 2.7(a) when
we take �ts= 0.1 seconds (for the elapsed time at which we measure springiness).
However if we increase the value of the elapsed time �ts, we arrive at a point where
we measure equal springiness for both materials. The dashed lines show that this
crossover point shifts towards smaller times if we increase tf to 106 seconds. For
small values of the elapsed recovery time �t the springiness becomes independent of
the total creep time tf . If we expand the expression for �rmness in Eq. (2.32) for
times �ts that are small compared to the time of measuring �rmness, tf , the latter
time indeed cancels out:

S ≈

RRRRRRRRRRRR

−(�ts/tf)
�

G�(1 + �)t−�f �ts

RRRRRRRRRRRR

= ∣
−�t�−1

s

G�(1 + �)
∣ , for �ts << tf (2.33)

To derive an expression for the rubberiness R of the Scott Blair element, we begin
with the de�nition given in Eq. (2.23). Substituting the time tr in Eq. (2.30) and
subsequently de�ning this time in terms of elapsed recovery time, using tr = tf+�tr
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gives:

J(tr) =
t−�f ((tf +�tr)

� −�tr
�
)

F (tf)
, for t > tf (2.34)

When we substitute this equation for the compliance at the time at which we
measure rubberiness, J(tr), into the mathematical de�nition of rubberiness, given by
Eq. (2.23), we obtain the following expression:

R = 1 − t−�f ((tf +�tr)
�
−�tr

�
) (2.35)

It thus appears that rubberiness is not a function of the quasi-property G of
the material, but of the two times �tr and tf , and the fractional exponent only.
This two-fold time dependency is reected in Fig. 2.7(b) where we have plotted the
rubberiness R, for the same materials A and B as in Fig. 2.6 and Fig. 2.7(a). For
rubberiness we do not observe a cross-over point of the two materials. However the
plots of the rubberiness reveal another remarkable feature of this texture attribute:
all power-law materials probed in the linear viscoelastic region will ultimately show
a rubberiness approaching unity. Distinctions between the two materials only comes
from di�erences in the fractional time exponent and the combination of values of tf
and �tr chosen. In rheological terminology this means that the long term compliance
of the recovery phase, modeled with a single springpot, will approach zero, so that all
of the imposed strain is recovered elastically. Jaishankar and McKinley [90] showed
that this long term behaviour for J(t) , Eq. (2.29), is approximated by

J(t) ≈
t�f

G�(�)
(
t

tf
)

�−1

(2.36)

Since � < 1, the compliance thus monotonically approaches zero, which con�rms
the response in Fig. 2.7(b). The full elastic recovery of strain after an applied defor-
mation within the linear viscoelastic regime is a hallmark of protein gels [103].

In section 2.4.1, wepresented the fractional expression for the creep compliance
J(t) (Eq. (2.19)) and showed that we can use this equation to obtain the material
parameters G and � for a given cheese. Our FSR-equations consist of only these ma-
terial parameters and a speci�cation of the time of measurement. This suggests that
we can obtain values for both springiness and rubberiness by performing a single �rm-
ness measurement as long as we stay within the linear viscoelastic region; a recovery
measurement is not required. Fig. 2.8 shows that this is indeed the case. The solid
lines in Fig. 2.8(a) and (c) are �ts of Eq. (2.19), the dashed lines in �gures Fig. 2.8(a)
and (d) are predictions from Eq. (2.29). Fig. 2.8(a) shows that we correctly predict
the rubberiness (circles) of the zero-fat and full-fat cheese, the latter being the most
rubbery. In Fig. 2.8(b) we have plotted the same experiment as in 2.8(a) but now
we zoom in on the region over which we measure springiness just after the time tf .
The secant lines plotted in Fig. 2.8(b) are predictions from Eq. 2.32 and show that
the zero-fat cheese is the springiest (with the largest rate of recovery), which can be
ascribed to its smaller value of the quasi-property G.

The equations for �rmness, springiness, and rubberiness assume a viscoelastic re-
sponse that can be described with a single springpot or Scott Blair element. These
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Figure 2.8: (a) Creep / recovery experiment (�0 = 100 Pa) of zero-fat and full-fat
cheese at T =10○C. Dashed line: prediction of the compliance J(t) in the recovery
phase using the Scott Blair element, Eq. (2.29), with tf = 10 s. The material pa-
rameters G and � are obtained by �tting Eq. (2.19) to the compliance J(t) of the
creep phase. The �t result is indicated by the solid line and denoted as \SB �t".
The hollow symbols are the speci�c points from the creep / recovery curve which are
used to calculate the measured �rmness F , (square), springiness S, (triangle), and
rubberiness R, (circle). (b) Same experiment as in (a) now plotted over a limited
time range −2 < �t = t − tf < 2, The absolute slope of the secant (dashed line) repre-
sents the springiness and is calculated with Eq. (2.32). (c,d) Same experiment as in
(a) plotted on a log-log scale and with the creep phase (c) and the recovery phase
(d) separated. Both phases show some ‘creep ringing’ due to coupling of the elas-
ticity with the moment of inertia of the instrument. (d) The compliance ultimately
approaches zero, as predicted from Eq. (2.36). For full-fat cheese, the Scott Blair
model overestimates the recovery, an irreversible ow event appears to have occurred,
see section 2.4.4. These plots demonstrate that our equations correctly predict the
�rmness, springiness, and rubberiness of power-law materials such as cheese, from the
two material parameters G and � describing the material.
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expressions contain only two material parameters, the quasi-property G and the frac-
tional exponent �, and therefore we call these expressions (Eqs. (2.24),(2.32),(2.35))
the two-parameter FSR-equations. In section 2.4.1 we have seen that at longer relax-
ation times, the addition of a second springpot in series might be required for a more
accurate �t or prediction. Following the same procedure as outlined above, but using
the constitutive equation for the Fractional Maxwell Model (FMM) given in Eq. (2.5),
we can derive four-parameter FSR-equations. The �rmness is calculated by taking
the inverse of the prediction for the compliance J(t) of the FMM model Eq. (2.20),
and substituting the �tted material parameters and chosen time of observation, tf .
To evaluate the rubberiness and springiness we need the expression for viscoelastic
recoil of the Fractional Maxwell Model, which is given by [90]:

J(t) = (
t� − (t − tf)

�

G�(� + 1)
+
t� − (t − tf)

�

V�(� + 1)
) , for t > tf (2.37)

Substituting the appropriate times of observation and using the mathematical
de�nitions for springiness Eq. (2.22), and rubberiness Eq. (2.23), gives numerical
values for these attributes. The response for recovery times �t>>tf is dominated by
the more viscous element and can be approximated by [90]:

J(t) ≈
t�f

V�(�)
(
t

tf
)

�−1

(2.38)

We have developed equations that enable the texture attributes of �rmness F ,
springiness S, and rubberiness R to be determined from two constitutive material pa-
rameters, which can be extended to four parameters if necessary. The FSR-equations
show that in the linear viscoelastic regime these three texture attributes are not inde-
pendent, but coupled (depending on the total experiment duration). From a measure-
ment of the creep compliance we can determine the magnitudes of the quasi-property
G and fractional exponent � describing the material, and the predict values of the
�rmness, the springiness and the rubberiness. These equations reveal that according
to our de�nitions, the rubberiness is a time-dependent property whereas springiness is
not. The �rmness and springiness of a sample are anti-correlated through the magni-
tude of the quasi-property G. The rubberiness is not a function of the quasi-property,
but only of the fractional exponent �. We emphasize that it is not essential to quantify
the �rmness, springiness, and rubberiness of cheese with a creep / recovery experiment
speci�cally. Measuring the materials’ response to any of the standard shearing ows
(e.g. a small amplitude oscillatory shear frequency sweep), will provide numerical
values for the quasi-properties and fractional exponent, provided that an appropriate
and quantitative constitutive model is used to �t the measured material response.
Entering the numerical values for the quasi-properties and fractional exponents in
the FSR-equations ((2.24),(2.32),(2.35)) will quantify the �rmness, springiness, and
rubberiness of power-law gels such as cheese in the linear viscoelastic regime.



Firmness, springiness and rubberiness of food gels 39

2.4.4 Stress-time and ow

We have argued that the creep / recovery curve, introduced to food rheology by
Davis [37], should be the standard rheological curve for de�ning and measuring the
�rmness, springiness, and rubberiness of food gels. The shape of the curve (and thus
the magnitude of F , S and R) is determined by the intrinsic material properties of
the test material, as well as the severity of the creep loading. The severity is set by
setting both the magnitude �0 as well as the time-scale tf of the stress. Davis [37]
denoted the combination chosen as the ‘stress-time’. He showed that setting a high
or low stress-time had signi�cant e�ect on the amount of ow measured from the
creep / recovery curves, and thus on the measured food properties. In this section we
demonstrate that the FSR-equations correctly predict the magnitude of F , S and R,
irrespective of the ‘stress-time’ conditions chosen.

First we look at zero-fat cheese and the linear viscoelastic responses. We have
de�ned compliance-based expressions for the �rmness, springiness, and rubberiness
of food gels, thus in the linear viscoelastic regime F , S and R are independent of the
stress applied. Davis [37] based his conclusions on the owing properties of cheese on
stress-strain curves. To show how the magnitude of F , S and R varies if we would
take the same approach we also examine the e�ect of stress-time on the magnitude of
strain-based de�nitions of the three texture attributes. We denote these as F̂ ; Ŝ and
R̂ respectively. Using such strain-based equations is equivalent to assessing F , S and
R based on observations by vision only (Fig. 2.1(a), [18, 56],) without any (tactile)
feedback of the stress applied.

The concept of stress-time has recently received a lot of attention in soft matter
science, speci�cally in the study of yielding, where a progressive collapse of the internal
structure gives rise to ow. The interplay of stress and time has been used to introduce
concepts such as ‘delayed yielding’ [181] and ‘time-stress superposition’ (TSS) [75].
However these two concepts have been applied in the polymer and plastics community
for several decades [117] and successful predictive constitutive models have been built
based on TSS [54]. We compare the �rmness, springiness, and rubberiness of full-fat
cheese at two stress-time conditions, one of which leads to yielding and irreversible
ow. In the latter case our equations for F , S and R correctly predict the measured
value of �rmness, springiness, and rubberiness.

The three curves in Fig. 2.9(a) are creep / recovery measurements on zero-fat
cheese performed at three increasing levels of stress-time. The three cases are: 1)
a �rmness measuring time tf = 10 s at a stress amplitude of �0 = 100 Pa; 2) a
measurement time of 100 seconds combined with 100 Pa; 3) 100 seconds at a stress
level of 1000 Pa. The times are chosen such that tf1 = tf2/10 = tf3/10, and the stresses
such that �0;1 = �0;2 = �0;3/10. Note that we have taken identical creep and recovery
times within each experiment, thus the time for measuring rubberiness �tr= tf . In
Fig. 2.9(b) we have converted the compliance, J(t) , to strains, (t), by multiplying
it with the corresponding stress amplitudes. In Fig. 2.9(c) and (d) we separate the
creep from the recovery phase and plot both phases on a log-log scale, to reveal the
presence of power-law creep. In Fig. 2.9(e)-(h) the zero-fat cheese (blue symbols) is
replaced by full-fat cheese (red symbols).
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Figure 2.9: Creep / recovery experiments of zero-fat (blue) and full-fat cheese (red)
at 25○C for three combinations of stress and time. The hollow symbols indicate
the points on the creep / recovery curve that are used to calculate �rmness (square),
springiness (triangle) and rubberiness (circle). The numbers ’1’, ’2’ and ’3’ correspond
to the order of severity of the stress-time loading. (a),(e) Creep compliances. (b),(f)
Compliances converted to strains. (c),(g) Same creep curves as in (a),(e) plotted on
a log-log scale. (c),(g) Same recovery curves as in (a),(e) plotted on a log-log scale.
(c) For zero-fat cheese all the curves coincide and the recovery shown in (d) is well
predicted with the Scott Blair (SB) element. For full-fat cheese (g) enhanced ow
sets in when a high ’stress-time’ is applied as shown in curve 3. This leads to poor
�ts (g) and poor predictions (h) of the very simple SB element (continuous lines) ,
the Fractional Maxwell Model (dashed lines) gives good �ts and better predictions
however.
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Creep / recovery experiments of zero-fat (blue) and full-fat cheese (red) at 25○C for
three combinations of stress and time. The hollow symbols indicate the points on
the creep / recovery curve that are used to calculate �rmness (square), springiness
(triangle) and rubberiness (circle). The numbers ’1’, ’2’ and ’3’ correspond to the
order of severity of the stress-time loading. (a),(e) Creep compliances. (b),(f)
Compliances converted to strains. (c),(g) Same creep curves as in (a),(e) plotted on
a log-log scale. (c),(g) Same recovery curves as in (a),(e) plotted on a log-log scale.
(c) For zero-fat cheese all the curves coincide and the recovery shown in (d) is well
predicted with the Scott Blair (SB) element. For full-fat cheese (g) enhanced ow
sets in when a high ’stress-time’ is applied as shown in curve 3. This leads to poor
�ts (g) and poor predictions (h) of the very simple SB element (continuous lines) ,
the Fractional Maxwell Model (dashed lines) gives good �ts and better predictions
however.
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Curve 2 and curve 3 in Fig. 2.9(c) show identical compliances at the end of the
curves. We thus measure the same �rmness for stress-time conditions 2 and 3 and
we have F2 = F3 (any o�-set in Fig. 2.9(a) comes from experimental error). This is
what we would expect, since in the linear viscoelastic region, �rmness is independent
of the stress (�0;2 ≠ �0;3), and both the test temperature and test time are identical
(tf2 = tf3). Our de�nition of �rmness, Eq. (2.24), and the fractional expression for
the compliance, Eq. (2.19), allow us to calculate any point on the creep compliance
curve with the expression:

J(t) =
1

F2
(
t

tf2
)

�

for t < tf (2.39)

When we substitute tf1 in Eq. (2.39) and take F1 = 1/J(tf1), we can correlate the
�rmness for the three stress-time cases as:

(
tf2

tf1
)

�

F1 = F2 = F3 (2.40)

For � = 0:26 and tf2/tf1 = 10, this gives a �rmness F1 that is 1.8 times smaller than
F2 and F3, which corresponds to what is shown in Fig. 2.9(a). Such an e�ect of
the stress-time loading on �rmness is in line with Scott Blair’s �ndings: only the
time taken to load a material a�ects the judgement of �rmness, variations in the
stress applied have no e�ect [173], at least within the material’s linear regime. The
magnitude of these temporal e�ects are determined by the scaling factor in Eq. (2.40),
and the fractional exponent �. For a purely elastic material with � = 0, this time e�ect
is zero, for a purely viscous material, with � = 1 the time e�ect is equal to tf2/tf1.

If we de�ned �rmness as the inverse of the strain at the end of creep and called it F̂
than we would get:

(
tf3

tf1
)

�
�0;3

�0;1
F̂1 =

�0;3

�0;1
F̂2 = F̂3 (2.41)

For zero-fat cheese values in this experiment we have 18F̂1 = 10F̂2 = F̂3 which corre-
sponds to the relative vertical position of the maximal strains  in Fig. 2.9(b).

Springiness can be graphically distinguished in the curves of the creep compliance,
Fig. 2.9(a), as the distance between the values of the measured compliance at tf , and
tf+ �ts (corresponding to the squares and the triangle respectively). Visually, it
appears to be equal for all three stress-time conditions, so neither time nor stress
has a signi�cant e�ect on springiness. Numerical values of the springiness from the
data in Fig. 2.9(a), give S1 = 3:5 × 10−4 , S2 = 4:6 × 10−4, S3 = 4:3 × 10−4 (Pa s)−1 so
variations are less then 25 %.

This is what we predicted from Eq. (2.33): at short times in the recovery phase
(�ts= 0:1 s), springiness is only a function of the fractional exponent � and the
quasi-property G. So for the three cases springiness can be calculated with:

S1 = S2 = S3 = ∣
−10−1(�−1)

G�(1 + �)
∣ (2.42)
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If we de�ned springiness from measured deformations instead of compliances, we
would have obtained:

Ŝ1 = Ŝ2 =
�0;3

�0;1
Ŝ3 (2.43)

This is what we observe in Fig. 2.9(b), the vertical distance between the square and
the triangle is 10 times larger for curve 2 than for curve 3.

For rubberiness we showed in Eq. (2.35) that the de�nition of R depends on two
times, the time tf taken to measure �rmness during creep and the elapsed time �tr=
tr−tf taken to measure rubberiness during recovery. In our stress-time experiments we
have chosen tf to be equal to �tr for all three curves. Substituting this in Eq. (2.35)
gives

R1 = R2 = R3 = 2 − 2� (2.44)

We have de�ned rubberiness from a ratio of two compliances as R = 1 − J(tf +

�tr)/J(tf). Converting this into a de�nition of two strains, R̂ = 1−(tf +�tr)/(tf),
requires both compliances to be multiplied by the same stress �0, which therefore
cancels out. Thus R = R̂:

For the �rmness, springiness, and rubberiness of full-fat cheese we follow the same
analysis as for the zero-fat cheese sample. The curves 1 and 2 in Fig. 2.9(e) and
(f) show that for stress-time cases 1 and 2, equations (2.40)-(2.4.4) apply. However
for stress-time case 3, with a long test time tf = 100s at a large stress of �0 =
1000 Pa, the creep response of curve 3 in Fig. 2.9(e)-(g) deviates from a single
power-law. At such large stress-loadings from the two-parameter Scott Blair model
for the creep compliance J(t) is insu�cient, and instead we �t the four-parameter
Fractional Maxwell Model, given by Eq. (2.20). The dashed line denoted with a ’3’ in
Fig. 2.9(g) shows that this gives a good �t. This also leads to a good prediction of the
recovery data, as demonstrated by the dashed line 3 in Fig. 2.9(h). The prediction
is obtained by substituting a priori �tted material parameters for the FMM model
into the corresponding expression for the recovery phase, Eq. (2.37). The more elastic
element has a quasi-property value of G = 0:4 × 105 Pa s� and a fractional exponent
� = 0:13. The second element is a dashpot: V = 7:6 × 105 Pa s� and � = 1. One can
say that the �rst element describes the semi-solid, fractional viscoelastic nature of
cheese, whereas the second element represents the ultimate transition at long values
of the stress-time to a liquid with a very high viscosity.

The stress-induced yielding and failure of casein gels has recently been studied
in detail by Leocmach et al. [103], who combined creep experiments with ultrasonic
velocimetry imaging. They showed that at large strains casein gels display brittle-like
failure which is a resultant of two consecutive physical processes. The �rst is reversible
primary creep, also referred to as Andrade creep [6]. In contrast to crystalline or
amorphous solids, the strain in gels can be fully recovered during primary creep [103],
which corresponds to what the SB element predicts. The second process is nucleation
and growth of fracture, leading to plastic deformation and eventually failure. This
regime is called tertiary creep. In between lies a transition regime which is denoted
as secondary creep.

If we map these processes onto our measurements and model predictions, we can
conclude that the more elastic SB element in the FMM model (with parameters G
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and �) represents the spectrum of reversible viscoelastic processes in the material,
and the second element in series (with parameters V and � ) models empirically an
additional irreversible plastic part. By putting the elements in series we add elastic
and plastic strains induced by both physical processes. When �tting the FMM to
bulk creep data (which may contain a yielding event) we are using a model derived
from linear viscoelastic theory to capture a non-linear viscoelastoplastic response. It
is important to recognize that a linear model such as the Fractional Maxwell Model
does not predict a yield stress or strain, this requires more sophisticated non-linear
models that include a damping function [90] or a damage function [127, 193]. However
�tting creep data at small and moderate strain to the FMM enables us to e�ectively
predict the recovery phase of the bulk material very well, on �ve curves in Fig. 2.9(d)
and (h), suggesting that it also correctly describes two of the primary processes
occurring during the initial loading and unloading phases. We will use this feature to
our advantage to separate viscoelastic, recoverable contributions, from plastic, non-
recoverable contributions to the �rmness, springiness, and rubberiness in the case of
a irreversible ow event.

The continuous line denoted with a ’3’ in Fig. 2.9(g) shows the �t of the SB model
for the creep compliance, for the most severe stress-time loading (case 3) of full-fat
cheese, �0;3 = 1000 Pa and tf3 = 100s. For this �t, we only used the creep data ob-
tained from the measurement at times t < 3 s. The result is a continuous line 3, that
corresponds to the same stress-time combination and initially coincides with curve 2.
But for times t > 3 s the model prediction only follows the measurement that corre-
sponds to the smaller stress-time combination 2, �0;2 = 100 Pa and tf2 = tf3 = 100 s .
For the latter loading conditions, the observed response is predominantly viscoelastic.
The greatly improved �t to the four-parameter fractional model result demonstrates
that from the creep compliance curve 3, that displays both primary creep and a transi-
tion to secondary creep, we can still extract the material parameters that capture the
viscoelastic part of the overall response. As an additional demonstration we substitute
these material parameters in the SB model for the compliance J(t) , of the recovery
phase, and plot the prediction in Fig. 2.9(h). The predicted response, represented
by the continuous line denoted with a ’3’, coincides with the measured compliance of
the recovery response corresponding to stress-time loading case 2.

When we use the full measurement dataset obtained for the stress-time combina-
tion corresponding to curve 3 in Fig. 2.9(g) and �t the FMM model for the creep
compliance, we obtain the dashed line 3 in Fig. 2.9(g). The corresponding prediction
of the recovery phase, dashed line 3 in Fig. 2.9(h), coincides with the measured curve
for the stress-time combination 3. The observed response of the gel in both the creep
and recovery phase is viscoelastoplastic.

We have demonstrated that our de�nitions for the �rmness F , springiness S, and
rubberiness R, of food gels give correct quantitative predictions of the e�ect of the
stress-time loading on measurements of F , S, and R. If the deformation amplitude
remains within the linear viscoelastic regime the magnitude of the springiness is not
a�ected by stress or time. For chosen times of observations for the �rmness and
rubberiness such that tf=�tr, the texture attribute of rubberiness R, becomes stress
and time independent as well. When very large stress-time loading leads to larger



Firmness, springiness and rubberiness of food gels 45

zero fat

low fat

full fat

10°C

30°C

30°C

filled

open

open
1.5 1.8 2.1 2.4 2.7

103

104

105

106

fir
m

ne
ss

, F
 [P

a]

water / protein [g/g]

‘firm’

‘soft’

(a) Firmness

1.5 1.8 2.1 2.4 2.7
10�6

10�5

10�4

10�3

sp
rin

gi
ne

ss
, S

 [1
 /(

P
a 

s)
]

water / protein [g/g]

�springy�

�squishy�

(b) Springiness

1.5 1.8 2.1 2.4 2.7
0.7

0.8

0.9

1

ru
bb

er
in

es
s,

 R
 [P

a]

water / protein [g/g]

‘rubbery’

‘moldable’

(c) Rubberiness

Figure 2.10: Composition-temperature-texture plots of Gouda cheese. (a) �rmness
F , (b) springiness S, (c) rubberiness R. The plots are obtained by determining the
quasi-property G, and the fractional exponent �, from forty frequency sweeps, and
entering the value in the FSR-equations. The time of observations for �rmness and
rubberiness are tf= �tr= 10 s. For springiness �ts= 0.1 s. (a) Cheese is most �rm
at low temperature, and at a low water / protein ratio, and high fat content. (b)
Springiness is inversely related to �rmness, the softest cheese is the most springy. (c)
Rubberiness is a function of the fractional exponent only.

deformations in the viscoelastoplastic region, our four-parameter FSR-equations de-
rived from the Fractional Maxwell Model (FMM) correctly predict the variation in
the �rmness, springiness, and rubberiness of cheese, provided that the material has
not entered the regime of tertiary creep and fracture. The presence or absence of an
irreversible ow event at large values of the stress-time, has a large impact on the
quantitative rheological measurement of the �rmness, springiness, and rubberiness of
food gels. This suggest that when the �rmness, springiness, and rubberiness of a food
gel is evaluated by hand, the magnitude of the stress-time loading applied should be
de�ned as precisely as possible, conforming to Scott Blair’s initial assertion [168].

2.4.5 Comparing cheese formulations on the basis of �rmness,
springiness, and rubberiness

In Fig. 2.4 we showed four representative frequency sweeps of Gouda cheese, varying
in temperature and composition. In all cases the cheese showed a clear power-law
relaxation. This relaxation behaviour can be adequately described by the Scott Blair
model for the complex modulus, Eq. (2.8). By �tting this model to the dataset, we
determine the numerical values of the two material properties for this cheese: the
quasi-property G and the fractional exponent �. From these material parameters we
can calculate �rmness F , springiness S, and rubberiness R, at any time of observation,
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using equations (2.24), (2.33) and (2.35).
We demonstrate the power of these FSR-equations in Fig. 2.10. In total we have

measured 40 combinations of cheese composition and temperature, corresponding to
80 curves of the frequency-dependent storage and loss modulus, G′(!) and G′′(!).
We condense this extensive dataset into three composition-temperature-texture plots
of the �rmness, springiness, and rubberiness, shown in Fig. 2.10. The de�nitions for
FSR, in equations (2.24), (2.33) and (2.35) allow us to enter any time of observation
of interest; here we select tf= �tr= 10 s for �rmness and rubberiness, and �ts=0.1
s for springiness.

Compositional changes are represented in two ways. On the abscissa we have
plotted the water/protein ratio w/p of the cheese. Variations in fat content are repre-
sented by the three colors, blue, green and red, for zero, low and full-fat respectively.
Since the material properties of many food products are highly temperature sensitive
[190], we have measured the viscoelastic properties of the cheese at T =10○C (�lled
markers), a temperature relevant for storing cheese, and T =30○C (un�lled markers),
a temperature the cheese will attain during oral processing.

We interpret the data in this �gure as describing the reformulation window for
�rmness. Under storage conditions the cheese has to be �rm; this inhibits sagging
and gives optimal slicing properties. Our reference point for optimal �rmness prior
to consumption is full-fat cheese at T = 10○C, having its standard water/protein ratio
of w/p =1.8. This appears to be the most �rm cheese. Now the challenge for the food
engineer dealing with product reformulation becomes apparent: at T = 10○C either a
reduction of fat content, or an increase of water content, will always lead to a softer
cheese. This will inevitably lead to inferior processing properties. When removing fat
from the product for reasons of calorie reduction, one has to lower the water/protein
ratio as a countermeasure to retain �rmness.

When increasing temperature we see that our reference full-fat cheese shows a
pronounced drop in �rmness. It can be argued that this ‘thermal-induced softening’
gives rise to a melting sensation during consumption [44]. This adds to the ‘stress-
induced softening’ we observed in Fig. 2.9(g). Removing fat signi�cantly reduces this
thermal softening-e�ect on cheese �rmness. Changing the water/protein ratio has no
e�ect on the temperature-�rmness relation.

The strong ‘thermal-induced softening’ of full-fat, semi-hard cheese can be physi-
cally explained using �lled gel models (Fig. 2.2(d)). Yang et al. [213] �tted a variety
of these models on data of the storage modulus G′(!) of Cheddar cheese, at a fre-
quency ! = 1 rad s−1. Depending on the model applied, they predicted that at T =

10 ○C, the shear modulus, Gf , of the �ller (fat) is 6-11 times larger than the shear
modulus of the matrix Gm. At T = 10 ○C the �ller thus acts as a �rmness enhancer.
When increasing the temperature of the cheese from T = 10 ○C to T = 25 ○C they
predicted a decrease of Gf with a factor ranging from 10-27, depending on the model
applied. Over the same temperature range, Gm decreased not more than a factor of
two, which corresponds to what we measure for the decrease of the storage modulus of
zero fat cheese when raising the measuring temperature from T = 10 ○C to T = 30 ○C
(Fig. 2.4(a) and (c), blue �lled symbols). At T = 25 ○C, Yang et al. [213] measure a
storage modulus, G′(!), that is independent of the fat content of the cheese, which is
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similar to what we �nd for the �rmness F , at T = 30 ○C and a time of observation tf=
10 s. (Fig. 2.10(a), hollow symbols). Note that the �rmness of low-fat cheese (green
symbols in Fig. 2.10(a)), is approximately equal to the �rmness of zero-fat cheese
(blue symbols). Apparently there is a threshold value for the fat volume fraction, �f ,
below which this cheese constituent has no signi�cant e�ect on the overall �rmness of
the cheese.

Next we examine the e�ect of temperature and composition of the cheese on the
springiness S, plotted in Fig. 2.10(b). We see that the softer cheese will be the most
springy, which corresponds to the anti-correlation between �rmness and springiness
found in panel tests [76]. The trend can be explained by the inverse relation between
springiness and �rmness, as expressed in Eq. (2.32), and has also been observed in
the Texture Pro�le Analysis of reformulated mu�ns [116].

The rubberiness plot, Fig. 2.10(c), shows that S and R are two distinct properties,
they scale di�erently with composition and temperature. Since we have chosen the
time of observation �tr for rubberiness to be equal to tf , we can use Eq. (2.44) to
calculate R. This expression shows that under these time conditions, the rubberiness
R is only a function of the fractional exponent �. For our cheeses, the measured
values for this exponent range from 0.14 ≤ � ≤ 0.25. Fig. 2.10(c) shows that for these
values the strain recovery is fast; in 10 seconds 80-90 % of the strain is recovered for
all samples.

We can conclude that reformulating a cheese by merely changing the relative
amount of protein, water and fat will give great �rmness de�cits, both from a sensory
texture as well as a processing perspective. To decouple this texture-composition
relation, alternative structuring routes need to be explored. This exploration should
start with a physical understanding of the observed scaling between fat content and
water/protein ratio on the one hand, and �rmness, rubberiness and springiness on
the other. Such understanding requires structure-texture relations such as the �lled
gel models tested by Yang et al. [213] or such as the model proposed by Bot et al.
[13], who developed a structural model for the �rmness and syneresis of food gels
as a function of composition and temperature based on a set of recursive power-law
scaling relations. However both Yang et al. [213] and Bot et al. [13] do not account for
the time-dependence of the magnitude of the �rmness F, and the structure-texture
relations they use are not extrapolated to other texture attributes assessed at �rst
touch and �rst bite. Since we have shown that the attributes F , S and R, all stem
from the quasi-property, G, and the fractional exponent � of the viscoelastic test
material, a coupling of the models as discussed in [13] and [213] to the magnitudes of
the quasi-property G, and fractional exponent � of Scott Blair’s springpot, would be
the next step to take in the development of an appropriate structure-texture model.

2.5 Discussion

We have demonstrated how a framework based on fractional equations can be used to
characterize and quantify the linear viscoelastic (LVE) response of cheese, a hydrocol-
loidal �lled gel. This framework is very e�ective and only one constitutive element,
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(c) Springiness, tf= 10 s , �ts= 0:1 s
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(d) Springiness, tf= 106 s , �ts= 0:1 s

Figure 2.11: Contour plots of the magnitude of the �rmness F , Eq. (2.24), and
the springiness S, Eq. (2.32), of power-law materials such as cheese. The magnitude
of the �rmness and springiness are functions of the quasi-property G and fractional
exponent � describing the material. The times of observation tf and �ts at which the
�rmness and springiness are measured are indicated above each plot. The scale bars
and contour lines are spaced logarithmic. The material properties of the hypothetical
materials A and B from Fig. 2.6 and Fig. 2.7 are mapped onto each contour plot as red
and blue markers respectively. (a) At tf= 10 s, materials A and B are equally �rm
and the iso-�rmness lines are close to horizontal, meaning the �rmness F is dominated
by the magnitude of the quasi-property G. (b) At tf= 106 s, the iso-�rmness lines
are inclined to be almost vertical and the magnitude of the fractional exponent �
dominates the magnitude of the �rmness F . For times tf>10 s, material A is �rmer
than material B, which corresponds to what we have depicted in Fig. 2.6(b). (c,d)
Springiness is hardly a�ected by the value of tf . All iso-springiness lines are sloped
downwards as the exponent � increases. For materials with equal fractional exponent
�, the material with the smallest value for the quasi-property G is the most springy.



Firmness, springiness and rubberiness of food gels 49

the two-parameter springpot given in Eq. (2.1) [97], is required to describe the LVE
material functions of cheese over a broad range of frequencies or times. The springpot
is characterized by the quasi-property, G, and the fractional exponent, �, both intro-
duced to rheology by Scott Blair et al. [173]. The quasi-property can be viewed as an
intermediate material property that is appropriate for characterizing soft materials,
and that smoothly interpolates between a shear modulus G and a viscosity � and
sets the scale of the stress in the material. The fractional exponent quanti�es the
frequency and temporal response of the material and ranges from purely elastic (� =
0), to purely viscous (� = 1). Our measurements show that its magnitude is related
to the underlying structure and composition of the material.

From the descriptions of the manipulations and observations required to evaluate
the �rmness, springiness, and rubberiness of cheese from textural analysis [37, 66, 189,
201] we have deduced that the rheological analogues of these attributes are all de�ned
by speci�c points on the creep / recovery curve (Fig. 2.6). We have demonstrated that
the fractional constitutive framework allows us to obtain quantitative descriptions of
this rheological experiment that can be expressed explicitly in terms of the quasi-
property and the fractional exponent of the model. By substituting the appropriate
timescales of observations we are able to predict the textural measures of �rmness F ,
springiness S, and rubberiness R, from the material properties G and �. We refer to
our predictive equations based on essential material properties as the FSR-equations
(Eq. (2.24), (2.32), (2.35) respectively). They guide the e�ective reformulation of
semi-soft food gels such as cheese, while keeping the product at a desired level of
�rmness, springiness, and rubberiness.

In section 2.4.5 we demonstrated the use of the FSR-equations as a screening
tool for texture optimisation. In Fig. 2.10 a wide range of formulations are plot-
ted in texture-composition-temperature space. The three plots show at a glance the
reformulation window for cheese with respect to the �rmness, springiness, and rub-
beriness. However the construction of these plots requires a substantial experimental
e�ort, while a structure-texture model should reduce these e�orts and point a pri-
ori towards the most optimal formulation and structure. In Fig. 2.11 we sketch
out one example of our FSR-equations being used as a design tool. The markers in
Fig. 2.11(a) represent two sets of material parameters {G; �}A and {G; �}B . These
sets describe the hypothetical materials A and B from Fig. 2.6 and are mapped onto
�rmness contours, which are calculated with Eq. (2.24) and plotted on a logarithmic
scale. In Fig. 2.11(a) we take the same time of observation tf = 10 s as in Fig. 2.6,
which results in the materials A and B being equally �rm, i.e. FA = FB . The markers
in Fig. 2.11(a) thus lie on the same iso-�rmness line, and we take the magnitude of
F = 6 × 104 Pa at tf = 10 s represented by these markers, as our desired level of
�rmness.

When we increase the time of observation in Fig. 2.11(b) from tf = 10 s to tf
= 106 s, the iso-�rmness lines rotate counterclockwise, from a more horizontal to more
vertical orientation. This tells us that at short times, the magnitude of the quasi-
property G dominates �rmness assessment, whereas at long times of observation it is
dominated by the fractional exponent � of the material. This results in material A
being the �rmer of the two materials at tf = 106 s. It has the lowest quasi-property but
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also the lowest fractional exponent giving FA = 6×103 Pa as compared to FB = 2×101

Pa at tf = 106 s. If retaining shape after long times of loading (e.g. during storage)
is a product requirement, material A is preferred over material B.

In Fig. 2.11(c) we map these same two materials A and B onto a springiness
contour plot. This �gure shows that a more elastic material with a low value of
the quasi-property is the most springy. Fig. 2.11(d) demonstrates that there is no
signi�cant e�ect of the observation time tf on the magnitude of springiness, provided
that we use small values for the elapsed recovery time �ts ≪ tf . This corresponds
to our analysis of the springiness equation in section 2.4.3, the bulk of the elastic
strain energy stored in the material is accumulated at short times. For values of the
fractional exponent � > 0:8, the springiness rapidly drops and the material becomes
very ’squishy’. If low springiness is preferred over retaining shape, than we chose
material B. For rubberiness, similar plots to those shown in Fig. 2.11(a)-(d) can also
be created. If we take equal times of observations for �rmness and rubberiness, tf
= �tr, then equation (2.44) applies and all iso-rubberiness lines are vertical: the
magnitude of the rubberiness is independent of the magnitude of the quasi-property
G. The most rubbery material will be material A, which has the lowest fractional
exponent.

We have chosen for a stress-controlled experiment to measure �rmness, springi-
ness, and rubberiness. Such an experiment exposes temporal e�ects more directly
than the more common rate-controlled compression experiment used in Texture Pro-
�le Analysis [70]. Moreover it enables us to interconnect the �rmness F , to situations
where stresses are applied for short times, such as sensory texture measurement, or
for long times, such as in storing cheese (Fig. 2.1(a)). We have developed rheolog-
ical de�nitions of �rmness, springiness, and rubberiness based on an understanding
of compliances, since in the linear viscoelastic regime, the judgement of �rmness is
independent of the stress applied [172]. To extrapolate the measured �rmness to how
a cheese performs under practical conditions, e.g. whether it will retain shape when
stored on a shelf, we need to convert a �rmness measurement to an expected deforma-
tion. In section 2.4.4 we revisited the concept of stress-time, originally introduced by
Davis [37], and we showed how to calculate the resulting material strains  from the
�rmness F , for a certain stress-time loading pro�le. In Fig. 2.12 we plot the strain as
contours in stress-time space for both zero-fat (a) and full-fat (b) cheese at 10○C. The
stress-time space is spanned by the typical handling stresses �h and handling times
�h common in the cheese industry. The contour lines for the strains  are calculated
from the expression

 =
�h
F

(
�h
tf

)

�

(2.45)

One obtains insight into the practical relevance and implications of a �rmness
measurement by considering three terms in this expression. First, we focus on the
product �h�

�
h in the numerator, which is the measure of stress-time inherent to the

handling process to which the cheese is subjected. When �rmness is judged by hand,
stresses are high and times are short, which corresponds to the upper left corner of
each plot in Fig. 2.12. When a cheese is put on the shelf, the imposed stresses (arising
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Figure 2.12: The e�ect of handling stress, �h and handling time �h on the predicted
deformation of (a) zero fat and (b) full-fat cheese at 10 ○C. Shear strains,  are
plotted as contours on a log-scale and calculated by (2.45). (a),(b) At equal stress-
time loadings, the softer zero-fat cheese, F = 0:2 × 105 Pa generates lighter contours
compared to the �rmer full fat cheese, F = 1×105 Pa, as a result of the higher strains
predicted. The slopes of the contours are equal to the fractional exponent �. For zero-
fat cheese, � = 0:18 and for full-fat cheese � = 0:14. At stress-time loadings that lead
to irreversible ow, (2.45) does not hold and predicted strains are under-estimated.
Stress-time conditions for texture judgment are located on the top left corner of the
plots, where irreversible ow is desired to prevent rubberiness. Stress-time conditions
for storing cheese on the shelf are located on the bottom right corner of the plots,
where higher levels of �rmness favour shape retention.

from body forces) are relatively low, but times can be of the order of weeks. This is
represented by the lower right corner of the graph. Under these conditions the full-fat
cheese depicted in Fig. 2.12(b) will be the least deformed, since it is the most �rm.

The second term of interest in Eq. (2.45) is the ratio �h/tf which is a dimensionless
ratio of times in the spirit of Reiner’s original de�nition of the Deborah number. For
cheese subjected to creep loading the characteristic times are the values inherent to
the handling process to which the material is subjected and that over which the
�rmness is determined. For the cheese industry, handling times vary from �h = 1 s
(for �rmness judged by hand) to �h = 106 −107 s (for storing cheese on a shelf). For a
time of observation tf = 10 s this gives a range for �h/tf= 10−1−106. A high value for
�h/tf implies that the rheologist is probing timescales much smaller than the practical
time scale of interest and one should be careful of extrapolating conclusions from a
linear viscoelastic measurement over a limited frequency range or a single �rmness
measurement.

Finally we learn from Eq. (2.45) that the deformation of a cheese subjected to
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creep loading can be factorised in two parts. The �rst is an instantaneous deformation,
observed after a very brief period of stress-time loading. The scale of the instantaneous
deformation is set by �h/F: It is worth noting that the instrumental resolution of this
instantaneous deformation is restricted by the response time of the rheometer used.
The �nal deformation caused by the stress-time loading is obtained by multiplying
�h/F with the factor (�h/tf)

� : For a purely elastic material, � = 0 and this factor is
thus (�h/tf ) 0 = 1. For such a material, viscoelastic e�ects are absent and all contour
lines in Fig. 2.12 are horizontal. For a purely viscous material � = 1 the e�ect of the
elapsed time on strain is linear such that the iso-strain lines have a slope of -1 on this
logarithmic plot.

The plots in Fig. 2.12 and Fig. 2.4 are generated using expressions that are derived
from the canonical fractional constitutive equation of a single springpot or Scott
Blair element (SB). In section 2.4.1 and 2.4.4 we have shown that for cases where
the stress-time loading leads to a secondary relaxation process in the cheese, we are
still able to predict the �rmness, springiness, and rubberiness within the fractional
constitutive framework. All we require is the generalization of the constitutive model
with a second element in series, which yields the equation of the Fractional Maxwell
Model, Eq. (2.5). In section 2.4.4 we have shown that full-fat cheese begins to ow
when subjected to high stress-time loadings. This failure is proceeded by a secondary
relaxation processes caused by the propagation of microfractures in the material [103].
Such microscopic phenomena cannot be captured by a bulk phenomenological model
such as the FMM, but are described empirically by the second viscous-like springpot
element.

Design plots such as Fig. 2.11 and Fig. 2.12 reect graphical representations of
how rheology can, and should, be used in the context of structure-texture engineering.
The foundations for this approach were laid more than 60 years ago by Scott Blair
(1947, 1959) and Davis (1937), two pioneers in food rheology. They both combined
well-de�ned deformations of food-stu�s with a central question: which essential ma-
terial property gives rise to a speci�c texture attribute. We favour their approach
over the more undirected approach of statistically correlating large amounts of rheo-
logical data to the results from Quantitative Descriptive Analysis (QDA) of multiple
texture attributes. Our reservations to the latter approach are for two reasons. First
the deformations and observations in QDA that lead to the texture judgment are
ill-de�ned and may vary from panel to panel. This a priori weakens correlations with
the measurements obtained from the carefully designed rheological experiment. Our
second argument to favour the Scott Blair / Davis approach, is that material prop-
erties are intrinsic properties whereas texture attributes are extrinsic in nature [150].
This essential di�erence is clearly demonstrated by the plots in Fig. 2.11. Whereas
the coordinates of the markers that indicate the material properties of materials A
and B do not change from plot (a)-(d), the grade and orientation of the contours
that represent texture vary, depending on the attribute of interest and the timescale
of observation chosen. The extrinsic nature of such sensory texture attributes makes
it very hard, if not impossible, to make an unambiguous connection from a panel
judgment to material models representing the food microstructure, when a purely
statistical model is used as an intermediate. Once dynamic and quantitative relations
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between texture and the essential material properties are established (such as the
FSR-equations developed in this study), one can build on the long track record of
quantitative rheological testing for probing structure-property relations.

2.6 Conclusion

We have created a structure-texture engineering model which can help guide the ratio-
nal reformulation of semi-soft food gels while maintaining reference levels of �rmness
F , springiness S, and rubberiness R. The central features of the model are rheolog-
ical equations that de�ne these texture attributes in the linear viscoelastic regime.
Firmness is de�ned as the inverse of the compliance at the end of the creep regime,
springiness as the secant rate of change of the compliance during the �rst 0.1 seconds
of recovery, and rubberiness as the relative amount of strain recovered at the end of the
creep recovery period. The �rmness, springiness, and rubberiness (FSR) equations
are constructed using a fractional constitutive framework, which can be visualized
pictorially in terms of a mechanical element known as a springpot [97]. This frame-
work compactly and e�ectively captures the power-law relaxation and retardation of
complex multi-scale materials such as cheese.

The FSR-equations contain only two material parameters, the quasi-property G,
and the fractional exponent � [163], and the resulting stress or strain in the material
depends on an experimental time of observation tobs . These two material parameters
can be extracted measurement of any of the standard linear viscoelastic material
functions: complex modulus, G∗(!) , storage modulus, G′(!), loss modulus, G′′(!),
relaxation modulus, G(t) , and creep compliance, J(t) .

We have presented two modes of using the FSR-equations for product reformula-
tion. The �rst is to measure the linear viscoelastic response of a wide range of formu-
lations, extract the material parameters G and � of each formulation, and construct
three composition texture plots. This reveals the operating window for reformulation
when required levels for each texture attribute are available. Our analyses of di�erent
cheeses show that fat acts as the perfect �ller in modulating �rmness, springiness, and
rubberiness for optimal texture and processability. At storage temperature �lling a
cheese with fat raises G and reduces � compared to zero-fat cheese. Both changes lead
to an increase of �rmness, springiness, and rubberiness (Fig. 2.10), ideal for main-
taining shape. At eating temperature the melting of fat induces thermal softening,
which will make the oral processing a more pleasant experience. The second mode is
to create contour plots of the two material parameters for either �rmness, springiness
or rubberiness. These plots direct the developer towards the desired combination
of material properties instead of optimal composition. This is one step away from
structure-texture engineering for product reformulation: a guided modi�cation in the
cheese microstructure in order to maintain texture while changing composition.

Our FSR-equations are derived from linear viscoelastic theory and predict time-
dependent responses for the �rmness (as demonstrated by Scott Blair et al. [173]) and
for rubberiness. We have chosen to measure springiness at very short times of obser-
vation after the imposed shear stress is released, which results in a time-independent
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texture attribute. Firmness is linearly related with the quasi-property G, whereas
springiness is inversely related to G. This explains the anti-correlation between the
two texture attributes found experimentally. Rubberiness is not a function of the
quasi-property, but only of the fractional exponent �, the time of observation for
measuring �rmness, tf , and the elapsed recovery time for measuring rubberiness,
�tr. For the speci�c case where both times are equal, tf= �tr, time cancels out and
rubberiness is merely a function of the fractional exponent �.

The viscoelastic nature of �rmness implies that for speci�c pairs of power-law
materials, the experimental conditions of creep and recovery can be chosen such that
di�erent materials appear to be equally �rm. For values of the creep times that
are common in judging cheese texture, one material can be assessed as the �rmest,
whereas for creep times relevant to storage the same material may be regarded as the
softest. If one waits for the materials to recover from the stress for long times, both
power-law materials will fully recover from the applied stress and will be judged as
completely rubbery. For all three examples of viscoelastic time-dependency outlined
above, our FSR-equations can calculate if and when these transitions occur, provided
the material parameters G and � of two materials are known. The food engineer must
be aware of these temporal contributions before measuring texture using a rheological
test.

When a food gel is subjected to creep loadings, the �nal deformation of the gel
depends on its �rmness and the severity of the loading. Davis [37] introduced the
concept of ’stress-time’ to qualitatively discuss the e�ect of the severity of the loading
on cheese deformation. We have demonstrated that our equations for the �rmness F ,
springiness S, and rubberiness R, of food gels give correct quantitative predictions of
the e�ect of the stress-time loading on cheese deformation and the resulting values for
F , S and R. If the stress-time loading to which the cheese is subjected will cause the
cheese to reach its yield strain during the creep phase, the material will start to behave
in a viscoelastoplastic nature and our two-parameter FSR-equations (of Scott Blair
type) cannot predict the recovery phase correctly. Four-parameter FSR-equations
derived from the Fractional Maxwell Model appear to give much better �ts of the
post-yield, secondary creep response, and correctly predict the incomplete recovery
phase of the material in the case of irreversible ow contributions. The reason for
this correct prediction of the recovery phase is that both primary, Andrade creep,
and secondary creep (arising from the formation of microcracks in the material and
plastic ow), are two additional restructuring processes which both display power-law
time dependency in the strain evolution [103].

Although there has been a long outstanding promise for rheology to deliver quan-
titative structure-texture relations for foods, successful examples are rare. In this pa-
per we have implicitly formulated three prerequisites for a successful structure-texture
model for food gels, based on rheology. The �rst is selecting texture attributes that
can be measured with bulk rheology and thus are assessed at �rst touch or bite. This
holds for all three of the attributes �rmness F , springiness S, and rubberiness R,
de�ned here. The second is to have rheological de�nitions that leave no room for
selective interpretation and can be directly evaluated from well-de�ned rheological
experiments. We have done so by revisiting the early creep / recovery experiments
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performed by Davis [37] and argue that J(t) should be the standard rheological
curve for measuring and de�ning �rmness, springiness, and rubberiness. The third
prerequisite is to have a constitutive model which accurately describes the materials
response to a deformation with as few material parameters as possible and from which
the creep / recovery curve can be reconstituted. The model parameters should be
intrinsic material constants and thus be obtainable from an independent rheological
experiment, e.g. small amplitude oscillatory shear (SAOS). Fractional constitutive
equations, such as the Scott Blair and fractional Maxwell model, based on the ideas
of fractional calculus meet these requirements. Put succinctly: the key to a successful
structure-rheology-texture model is to determine material parameters that predict
complex, time-dependent, and subjectively-de�ned, properties such as texture which
are founded in the material structure; Scott Blair’s original ideas of quasi-properties
and fractional exponents [173] do just that.
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2.A Measured values of quasi-properties and frac-
tional exponents

Table 2.1: Overview of parameter values obtained by �tting either a single-element
fractional constitutive model (SB) or the two-element Fractional Maxwell Model
(FMM) to small strain linear viscoelastic data and used in subsequent predictions
(SB,FMM). For predictions of G∗(!) , G(t) and J(t) the model parameters are in-
dependently extracted from an alternative material function, indicated in the column
’Source’, which was measured using a new sample from the same batch of cheese. Pre-
dictions of the creep compliance in the recovery phase, J−(t) are obtained by �tting
either the SB or FMM model to the measured creep compliance of the creep phase,
J+(t) .

Fig. Function Model Source Fat T G/105 � V/105 �
[w%] [○C] [Pa s�] [-] [Pa s�] [-]

2.4 G∗(!) SB 0 10 0.45 0.18
SB 0 30 0.18 0.21
SB 30 10 1.3 0.16
SB 30 30 0.20 0.18

FMM G(t) 30 10 1.3 0.16 47 0.65
2.5(a) G(t) SB G∗(!) 0 10 0.45 0.18

SB 30 10 1.3 0.16
FMM 30 10 1.3 0.16 47 0.65

2.5(b) J(t) SB G∗(!) 0 10 0.45 0.18
SB 30 10 1.7 0.15

2.8 J−(t) SB J+(t) 0 10 0.38 0.19
SB 30 10 1.6 0.18
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From �rm to uid -
Structure-texture relations of
�lled gels probed under Large

Amplitude Oscillatory Shear

Abstract

Soft-solid foods show a transition from a viscoelastic solid to a owing uid when
subjected to a load. The processability and sensory texture of soft-solid foods de-
pend strongly on the rheological properties that characterize this transition. In this
paper we use Large Amplitude Oscillatory Shear (LAOS-)rheometry to quantify the
texture and uidization of emulsion-�lled food gels, and relate these properties to
the gel structure. We provide unambiguous rheological de�nitions for the �rmness,
rubberiness, brittleness and meltability of soft-solid food gels and distinct uidization
from softening and plasticizing. We propose a new measure for the load-induced,
solid-uid transition, the uidizing ratio, which quanti�es the progression of damage
and degree of plastic ow in the soft-solid gel. We use another dimensionless measure,
the thickening ratio, to reveal and characterize the resulting sequence of ow regimes.
We illustrate the applicability of our rheological de�nitions of texture, with measure-
ments on cheese, a prototypical example of an emulsion-�lled gel. Our data provides
evidence that the rate of two parallel physical processes, microcrack nucleation and
propagation, is steered by the amount of emulsion in the gel and governs the rub-
beriness and brittleness of semi-hard cheese. By translating texture terminology into
quantitative material properties measured using Large Amplitude Oscillatory Shear,

The contents of this chapter are based on: T.J. Faber, L.C.A. Van Breemen and G.H. McKin-
ley. From �rm to uid - Structure-texture relations of �lled gels probed under Large Amplitude
Oscillatory Shear. In preparation for Food Hydrocolloids.
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we have augmented the capabilities of LAOS as an analytical tool for structure-texture
engineering of soft-solid food gels.

3.1 Introduction

Product reformulation, the replacement or removal of ingredients from a product in
order to reduce caloric content, raw material costs, or carbon footprint, is a major
theme in the structured processed-food industry [4, 136]. Radical reformulation often
leads to de�cits in the sensory texture pro�le of the food product [152], but numerous
alternative structuring routes are available that potentially over-come this trade-o�
[45, 124, 182, 199]. Due to limitations in time and money a systematic and e�ective
approach is needed to choose between these structuring alternatives. Such a rational
approach requires models that relate the food microstructure to its sensory texture
pro�le [2].

Panel tests provide detailed and quantitative information on how formulation in-
uences the sensory texture pro�le [49], however the obtained datasets do not give any
clues on the relation between microstructure and texture. Rheological measurements
on the contrary, like the creep-recovery experiment, do provide information on the
material microstructure, as well as quantitative measures for the ‘�rmness’ and ‘rub-
beriness’ of soft-solid gels (Fig. 3.1(a,b), [60]). Hutchings and Lillford [87] state that
narrowing down a texture attribute to a point on a curve of an instrumented texture
measurement, is an over simpli�cation of the concept of sensory texture. They argue
that the perceived texture is the measurement of a process of breaking down struc-
ture, rather then the measurement of an equilibrium state. In previous work, we have
treated the �rmness of cheese, a soft-solid emulsion-�lled gel, as a time-dependent,
linear viscoelastic property [60] . The time-dependency of �rmness does justice to
the dynamic aspect of the perception of this texture attribute [168]. We developed
an equation of state for the �rmness containing two intrinsic material properties: the
�rst is a scale factor or \quasi-property", which sets the scale of the stress in the
material, and which magnitude is determined by the extent to which the structural
elements form a space-spanning network, the level of ’crowding’ in the material and
the sti�ness of the structural elements [13, 120, 142, 143, 182] The second material
property, the fractional exponent �, quanti�es the frequency and temporal response
of the cheese and its magnitude is determined by the rate of rearrangements of protein
colloids and aggregates [120, 202, 203].

Thus food materials belonging to the class of soft-solid, emulsion-�lled gels, a
structure-texture model is in place to keep the �rmness on a constant level while
change the food’s composition. Developing structure-texture relations for the rub-
beriness of these type of food products is a more challenging task though. In Faber
et al. [60] we de�ned rubberiness as the amount of strain recovered at the end of the
creep / recovery experiment, and as in our expression for the �rmness, we quanti�ed
rubberiness from the magnitude of G, � and time of the experiment. Our equation
predicted approximately equal rubberiness for all cheese compositions in the linear
viscoelastic regime, whereas panel tests show that reduced fat cheese is perceived as
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Figure 3.1: (a) Semi-hard cheese belongs to the material class of soft solids. It is
predominantly solid at rest and shows a transition to a uid when manipulated or
masticated. ‘Firmness’, ‘rubberiness’ and ‘smoothness’ are the typical textural terms
used to assess the solidity and (lack of) uidity of the cheese by hand or in-mouth.
(b) In previous work [60], we have de�ned linear viscoelastic rheological analogues for
�rmness and rubberiness that can be determined from creep / recovery experiments
in shear. Firmness is a linear viscoelastic property, whereas rubberiness is a measure
of the non-linear viscoelastoplasticity of the material. (c) For the simultaneous mea-
surement of �rmness and rubberiness in one test run, the Large Amplitude Oscillatory
Shear protocol is more suitable then the creep / recovery experiment. Experiments
may be performed with either a sinusoidal strain input (of amplitude 0) or a stress
input (of amplitude �0 ).
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more rubbery than full fat cheese [31, 214]. We showed that distinctions in the rubber-
iness where only revealed when the response became amplitude dependent, implying
that rubberiness is a measure for the non-linear response of the material. This is in
line with the antonym for rubbery, which is ‘moldable’, and which has connotations
to the plastic nature of cheese [37]. This suggests that a rheological measure for the
rubberiness of cheese, should be based on a test that probes the yielding and plastic
response of the material [9].

Large Amplitude Oscillating Shear (LAOS) experiments are very suitable for si-
multaneously probing the time-dependent and amplitude- dependent response of ma-
terials in one test protocol [88]. Furthermore, LAOS-data provides information on the
underpinning physical processes responsible for the collapse of microstructure [153],
which is a prerequisite for structure-texture modeling. In recent years, non-linear
material functions have been developed to facilitate the physical interpretation of
the large datasets that are generated by modern rheometers in LAOS experiments
[32, 46, 58, 59, 153]. Cho et al. [32] considered strain- and strain-rate as two indepen-
dent orthogonal inputs in the controlled-strain LAOS experiment (LAOStrain, [46]),
and additively decomposed the resulting stress into an elastic and a viscous contri-
bution. Ewoldt et al. [58] elaborated on the concept of stress decomposition, and
used Chebyshev polynomials of the �rst kind to quantify the inter-cycle and intra-
cycle evolution of elastic and viscous stresses. They showed that the coe�cents of the
Chebyshev polynomials are physically relevant non-linear material functions. They
developed an onthological framework that characterises and quanti�es the evolution
of the shape of the LissaJous plot, a curve that visualises the response of a material
to Large Amplitude Oscillatory Shear in the deformation domain. The framework
consists of geometrically de�ned dynamic moduli and viscosities, and descriptions of
elastic and viscous non-linearities in terms of strain hardening and softening, and
shear thinning and thickening. The onthological framework was recently extended
with de�nitions for the Large Amplitude Oscillatory Shear experiment in controlled
stress mode (LAOStress, [46, 59, 101]).

Rogers et al. [153] proposed to interpret the shape of the LissaJous curve of oscil-
latory sheared yield-stress uids, in terms of a sequence of physical processes (SPP)
that describe the transition of these type of materials from a \solid" to a \soft" state.
The dynamic aspect of this transition was denoted by active terms like \yielding",
‘shear melting" and \uidization" [82]. The underpinning physical processes were
described from the perspective of particles being trapped and escaping from cages,
and cages stretching and transitioning in anisotropic ows of clusters. [102, 126, 153].
In this paper we also interpret the LAOS response soft-solid gels in terms of physical
processes that lead to the progressive collapse of microstructure. However our inter-
pretation of the data di�ers in three aspect. First, we rather speak of a ‘solid-uid’
then a ’solid-soft’ transition to denote load-induced ow in elastic colloidal gels [208].
Second we not only interpret the onset and progression of ow physically in terms of
particle and cluster rearrangements, but also in terms of nucleation and propagation
of cracks in the gel phase. It has been shown by [103] that in brittle protein gels like
cheese, these physical processes occur in parallel rather then in a sequence. Therefore
we argue that in cheese, the emulsion-�lled, brittle gel under investigsastion of thie
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study, the observed sequence of ow regimes (SFR) emerge from the addition of two
physical processes (APP).

Numerous studies exists in which Large Amplitude Oscillatory Shear is used to
characterise food materials, here we discuss some typical examples and approaches
to derive structure-texture relations from LAOS data. Van der Vaart et al. [200]
systematically changed the microstructure of dark chocolate melt suspensions to study
the e�ect on the ow properties of the melts. These properties are a predictor for
both the processability as well as the �nal sensory texture of the chocolate. Ng et al.
[134] analyzed the rheological properties of the gluten gel phase of wheat-our dough.
It is widely believed that these properties have a strong inuence on the breadmaking
qualities. They used a constitutive model that describes the observed power-law
relaxation, �nite extensibility and progressive transition to a softer network. Melito
et al. [119] used statistical techniques to correlate panel test data to the magnitude of
the non-linear material functions of Cheddar. They compared the response to that of
Mozarrella, in which protein strands are anisotropic and American cheese, which has a
less compact and fused structure. All these three papers contain elements required for
building a structure-texture model. However none of these studies make an explicit
connection between a sensory texture attribute and the food microstructure.

In this paper, we use LAOStress and LAOStrain to quantify and characterize the
solid-uid transition of semi-hard cheese, a canonical example of a soft-solid, enulsion-
�lled, gel. We de�ne quantitative measures for the �rmness, rubberiness, brittleness
and uidization, of cheese and interpreted the magnitude of these measures in terms
of physical processes that lead to the collapse of the cheese microstructure. First we
show how �rmness and rubberiness are quanti�ed from �rst-harmonic moduli and
compliances. Then we demonstrate how the progression of damage and onset of
ow are quanti�ed from the evolution of the shape of the elastic LissaJous curve. We
quantify the extent of solid-uid transition with a new measure, the uidization ratio,
and characterise the resulting uid with a modi�ed thickening ratio. We conclude by
using these two measures to develop structure-texture relations for cheese. We show
that the presence of an emulsion in the gel, gives rise to a high non-linear response
and that fat content is the critical control parameter for the right level of �rmness,
rubberiness and brittleness.

3.2 Materials and methods

3.2.1 Cheese composition

Foil ripened Gouda rectangular cheeses (500×300×100 mm) were acquired at an age
of 3-14 days and kept at 5○C to minimise compositional changes due to protein break-
down or (de-)solubilization of minerals [109, 140] . Fat content was varied by using
cheese from three fat classes: zero-fat (≈ 0% fat in dry matter, �dm), low fat (≈ 20%
�dm) and full-fat (≈ 48% �dm). The cheese was analyzed for composition according
to international standards (standard in brackets): pH (NEN 3775, Netherlands Nor-
malisation Institute), l-lactic acid (ISO 8069, International Standard Organisation),
protein (through total nitrogen / soluble nitrogen / anhydrous nitrogen fractions
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[205]), ash (Association of O�cial Analytical Chemists 930.30), calcium (insoluble
calcium phosphate, AOAC 984.27), lactose (ISO 5762-2), water (=100-total solids
(ISO 5534)), fat (ISO 1735) and chloride (ISO 5943). Weight fractions of protein,
water and fat were converted to volume fractions according to the procedure outlined
by Yang et al. [213] taking the temperature dependent densities of these main cheese
constituents from Sahin and Sumnu [157].

3.2.2 Cheese hydration

Cheese slices of approximately 60 × 60 × 2:5 mm were cut from a block coming from
the core of the cheese. To provide cheese with di�erent water / protein ratios (w/w%,
denoted as w/p), the hydration procedure developed by Luyten [110] was followed,
with slight adaptations for shear rheometry. Part of the slices were hydrated in a salt
solution, which had equal concentration of calcium (Ca2+) and chloride (Cl−) as in
the moisture of the non-hydrated cheeses on a molar basis. For the fraction of soluble
calcium of total calcium a value of 20% was assumed [118]. Hydration was performed
by submersing a single cheese slice for 1, 2, 4, 8, 16 or 24 hours in 250 ml of the salt
solution. After this period, slices were taken from the liquid and excessive moisture
was carefully removed with tissue paper. Just before and after hydration the slices
were weighed. From the weight increase the new water/protein ratio was calculated,
assuming that the concentration of solubles in the cheese moisture remained the same
and that there was no net transfer of material from cheese to the liquid. Slices
were wrapped in alumina foil and kept in the refrigerator for 2-3 days to allow for
moisture equilibration [110]. From each cheese slice, three discs of 25 mm diameter
were punched for plate plate rheometry.

3.2.3 Large amplitude oscillatory shear rheology

Experiments were performed at 10○Cand 25○C. Measurements were performed with
a Physica MCR501 Rheometer (Anton Paar, Austria) with a parallel plate geometry.
To prevent slip, serrated upper and lower plates were used. The temperature of
the lower plate was controlled with a Peltier stage, and the upper plate and cheese
environment were thermally controlled with a cap hood. The upper plate was lowered
with a speed of 25 µm/min until a normal force of 2 N (8 kPa) was reached. The gap
width was recorded at that point and decreased by an extra 2% while keeping the
normal force constant at 2 N to ensure full contact with the cheese. While conducting
LAOStrain and LAOStress measurements, the gap distance was controlled by keeping
the normal force at a �xed level of 2 N. After loading the sample between the two
parallel plates it was heated at a heating rate of 0.5○C per minute until the desired
temperature was reached. The exposed surface area of the sample was covered with
sunower oil to minimise sample drying during the experiment. A maximum weight
loss of 0.5 w/w% was recorded.

LAOStrain Strain sweeps were conducted at a frequency != 5 rad/s and a loga-
rithmical increase of the strain amplitude 0 from 0.01 to 100 %, at temperatures of
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T = 10 ○C and T = 25 ○C.

LAOStress Stress sweeps were conducted at a frequency != 5 rad/s and a loga-
rithmical increase of the stress amplitude �0 from 10 to 105 Pa, at a temperatures of
T = 10 ○C and T = 25 ○C.

Frequency sweep To probe the time-dependency of the LAOStrain and LAOStress
response, strain sweeps and stress sweeps were repeated on di�erent samples of the
same test material, at a frequency ! = 0.2, 0.5, 1, and 2 rad s−1 and a temperature
T = 25 ○C.

Creep compliance A step stress �0 was imposed on the test specimen of �0 = 1000
Pa and held at this value for t 100 s at �xed measuring temperatures of either T = 10
○C or T = 25 ○C, while measuring the resulting strain (t). Subsequently the imposed
stress is released and the resulting strain recovery or recoil is measured for t = 100 s.

3.2.4 Confocal Scanning Laser Microscopy (CSLM)

A Leica inverted CSLM (TCS SP2, DM IRE2) was used. The water/protein phase
was stained with uorescent isothiocyanate (FITC) and the fat phase with nile red
(0.1%/0.01%). Staining occurred by placing a sample of approximately 1× 5× 5 mm3

in a solution of the dyes in a glycerol / water / polyethyleneglycol (PEG) (45/5/50 %)
mixture for 30 minutes. All cheese manipulations (cutting and staining) were done at
8 ○C in the cold room to prevent fat melting. Stained cheese was transported to the
confocal microscope in a Petri dish placed in a polystyrene foam box containing frozen
ice pack isolated by rubber foam. Image acquisition was done below 15 ○C using a
conditioned air ow. Single 2D images were obtained from the internal structure,
by imaging at about 10 µm2 below the surface generated with a razor blade. The
size frame of all images was 119:05 ×119:05 µm (1024 × 1024 pixels) obtained with
a water immersion objective (63×, zoom 2, NA = 1:2). Baseline adjustment and
auto-dye-�nding were applied to all images acquired using LEICA Confocal Software
(LCS).

3.3 Results and discussion

3.3.1 LAOStress-based texture de�nitions

Firmness

In previous work we argued that the �rmness F of a food gel, is a time-dependent,
linear viscoelastic property, which can best be measured in a controlled-stress exper-
iment [60]. In Fig. 3.2(c) we show the result of measuring the �rmness of cheese in
a creep / recovery experiment at a time tf = 100 s (circles), where the �rmness is
de�ned as the inverse of the creep compliance at the end of the creep phase,

F ≡ 1/J(tf) (3.1)
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Figure 3.2: CSLM images of zero-fat cheese (a) and full-fat cheese (b). The mi-
crostructure of full-fat cheese can be characterized as an emulsion-�lled gel. (c) Creep
/ recovery curves of zero-fat (blue) and full-fat cheese (red) at a stress amplitude �0

= 1000 Pa and two temperatures of T = 10 ○C(�lled squares) and T = 25 ○C(hollow
squares). Firmness is de�ned as the inverse of the maximum compliance F ≡ 1/J(tf)
(circles) at tf= 100 s. Rubberiness as the extent to which the material recovers from
the strain at the end of the experiment R ≡ 1 − J(tr)/J(tf) at tr = 200 s. (triangles
on the right-hand ordinate axis). (d) Values for the �rst-harmonic creep compli-
ance J∗1 (!;�0) in a stress-sweep of samples of the same test material as used for
Fig. 3.2(c). The �rmness is de�ned as the inverse of the magnitude of the shear
complex creep compliance ~F ≡ 1/∣J∗(!)∣ , and plotted as circles. The rubberiness is
de�ned as the yield-stress-amplitude ~R ≡ �0;y , and plotted as triangles. The gradient
of the shaded area to the left denotes the transition from �rm to soft, which we de�ne
as ‘softening’. The white arrow indicates a temperature-induced softening, which we
denote as ‘melting’. The gradient of the shaded area at the bottom indicates the
transition from rubbery to moldable, which we de�ne as ‘plasticizing’. The dashed
arrow indicates a stress-induced transition from solid to uid-like behaviour, which
we denote as ‘uidizing’.
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which has units of Pa.
In Fig. 3.2(c) whe show measurements of the �rmness of zero-fat cheese (blue

symbols), which is an un�lled gel (micrograph in Fig. 3.2(a)), and full-fat cheese (red
symbols), which is an emulsion-�lled gel (micrograph in Fig. 3.2(b)). Measurements
are performed at two temperatures of T = 10○C(�lled symbols) and T = 25○C(hollow
symbols). Fig. 3.2(c) shows two e�ects of dispersing fat in the gel phase. First,
at T = 10○C, the fat acts as a strong �rmness enhancer compared to the zero-fat
cheese. The compliance J(t) decreases by a factor of seven, and the �rmness F
thus increases by the same factor. Second, at T = 25○C, the full-fat curve shows
a clear inection point, marked with a cross, whereas the slope of the creep curve
of zero-fat cheese is continuously declining. We have shown in previous work that
this inection point, marks a transition from primary creep to tertiary creep and
ultimately fracture, caused by the formation and propagation of microcracks in the
gel phase [60, 103]. This non-linear response, should be avoided when measuring the
�rmness F , since the texture property is de�ned in the linear viscoelastic regime. This
implies, that when comparing �rmness of several materials, a combination of stress-
amplitude �0 and creep time tf must be chosen (the ‘stress-time’ [37, 60]), such
that none of the materials will display a non-linear response. This requires either
an iterative testing procedure, or very small stress-amplitudes and times. Both are
inconvenient, especially when a large amount of materials, varying over a wide range
of �rmness, need to be measured. A Large Amplitude Oscillatory Shear-experiment in
controlled-stress mode (LAOStress, [46]), does not have the limitation of imposing a
single loading condition per test-run. Instead, a range of stress-amplitudes �0 can be
imposed, where the lower-limit of �0 can be set such that for all the tested materials
the material response within in the linear viscoelastic regime is probed, regardless of
their �rmness. In the same test-run, the non-linear properties can be probed as well,
by choosing the appropriate upper-limit of the stress-amplitude range.

In the LAOStress experiment, a cosinusoidal oscillating stress �(t) is imposed,
de�ned by [59]:

�(t) = �0 cos!t (3.2)

where the time-scale of the oscillation is set by the frequency !. Fourier transforma-
tion of the strain response in the time domain, (t;!;�0), results in [59]:

(t;!;�0) = �0 ∑
n∶odd

{J ′n sinn!t + J ′′n cosn!t} (3.3)

where the n-th order Fourier-coe�cients, J ′n(!;�0) and J ′′n(!;�0), are n-th harmonic
non-linear material functions, called the dynamic elastic compliance and dynamic
viscous compliance respectively [59]. The �rst-harmonic compliances, J ′1(!;�0) and
J ′′1 (!;�0) are averages of the local compliance, over one period of oscillation [58]:

J ′1 =
!

��2
0

∮ �(t)(t)dt

J ′′1 =
1

��2
0

∮ �(t) _(t)dt
(3.4)
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where _(t) is the strain-rate. When the material response is linear, then no harmonic
higher than n = 1 exists, and the �rst-harmonic elastic and viscous compliance are
equal to the shear storage compliance, J ′1(!;�0)=J

′(!), and shear loss compliance,
J ′′1 (!;�0)=J

′′(!), respectively. From the �rst-harmonic compliances, we calculate the
magnitude of the �rst-harmonic complex compliance J∗1 (!;�0) , using:

∣J∗1 (!; 0)∣ =

√

J ′1
2
+ J ′′1

2 (3.5)

In the linear viscoelastic regime, the �rst-harmonic complex compliance J∗1 (!;�0) ,
is de�ned as the complex compliance J∗(!) . We de�ne the �rmness ~F , measured
using a LAOStress experiment at a frequency !f , as the inverse of the magnitude of
complex creep compliance,

~F ≡ 1/ ∣J∗(!f)∣ (3.6)

which has units of Pa, like the de�nition for the �rmness F presented in Eq. (3.1).
For soft-solid gels that display power-law stress relaxation over a broad range of time-
scales, such as cheese, the magnitude of linear viscoelastic material functions, such
as the creep compliance J(t) in Eq. (3.1), and the shear complex compliance J∗(!)
in Eq. (3.6), are readily inter converted through two intrinsic material properties.
[60, 89]. The �rst is a scale factor or ‘quasi-property’ G, that sets the scale of the
stress in the material, the second is the fractional �that quanti�es the temporal of
frequency response.

In Fig. 3.2(d) we show values of the �rst-harmonic complex compliance J∗1 (!;�0)

in a stress-sweep at a frequency !f= 5 rad s−1, of samples of the same test material as
used in Fig. 3.2(c). We have plotted the plateau value for the �rst-harmonic complex
creep compliances, J∗1 (!;�0) = J∗(!) , as circles on the vertical axis. The shaded
area on the left of the graph, with a gradient from bottom to top, is to show the
ranking of the samples from �rm to soft. In Fig. 3.2(c) the response of full-fat cheese
at T = 10 ○C (red, �lled) and zero-fat cheese at T = 10 ○C and T = 25 ○C(blue, �lled
and hollow) is predominantly linear viscoelastic. As a result, the order of ranking
from �rm to soft is identical for these sample in Fig. 3.2(c) as Fig. 3.2(d). Note
that, the timescales of the measurements in Fig. 3.2(c) and Fig. 3.2(d) vary widely.
However this does not inuence the ranking on �rmness, as the magnitudes for the
fractional exponent of the three samples, which quantify the temporal e�ect on the
�rmness measurements F and F̂ , show a small variation from 0:15 < � < 0:19. In the
linear viscoelastic regime the ranking on �rmness is thus governed by the di�erence
in magnitude of the quasi-property G. The �rmness measurement of full-fat cheese
at T = 25 ○C is based on a non-linear response Fig. 3.2(c), whereas in Fig. 3.2(d)
the �rmness measurement is based on a linear viscoelastic response. As a result the
full fat cheese at T = 25 ○Cis ranked �rmer than the zero-fat cheese at T = 10
○Cin Fig. 3.2(d) whereas in Fig. 3.2(c) the ranking between the two cheeses types
is reversed. This shows that the propensity for a material to yield, has a signi�cant
e�ect on the measurement of the magnitude of the �rmness in a creep / recovery
experiment.
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Rubberiness

In previous work we have de�ned ‘moldability’ as the antonym for ‘rubberiness’ [60].
Moldability refers to the plastic nature of cheese [37]: if the loading of the cheese is
severe enough, part of the strain is irrecoverable, and deformation remains permanent.
In the stress-strain curve of a ductile plastic material loaded in tension or compression,
the strain beyond which deformation will be permanent is clearly visible as a local
maximum in the stress. This maximum is referred to as the ‘yield-point’, and the
coordinates give the yield-stress and yield-strain respectively. Reiner and Scott Blair
[151] de�ne yielding as an abrupt event, which marks the beginning of ‘ow’ in a
material, where ‘ow’ is de�ned as non-recoverable deformation proceeding in time.
These de�nitions show that the concepts of rubberiness, plasticity, ow and yielding,
ae strongly interrelated.

In the creep phase of the creep / recovery experiment, the yielding event is marked
by an inection point in the compliance-time curve, de�ned by

min
dJ(t)

dt
= �0 min

d(t)

dt
= �0 _(t)min (3.7)

where _(t)min is the minimum of the strain rate. The yield-point in the creep /
recovery experiment, is thus the point in time where the strain-rate in the material
reaches a local minimum value. In Fig. 3.2(c) the yield-point for full-fat cheese at T =

25○C(hollow red squares) is clearly visible, and denoted with a cross. The time t at
which yielding occurs, the yield-time ty, has a magnitude of ty = 40 seconds. For times
t < ty the deformation is predominantly viscoelastic, and for materials that display
power-law relaxation, such as cheese, the strain-rate decreases exponentially in time,
_(t)∝ t�−1, where �is the fractional exponent. This regime is denoted as ‘primary
creep’ or ‘Andrade’ creep [6]. The yield-time ty, marks the transition from ‘primary’
creep to a deformation regime where the strain-rate _(t) diverges as (ty − t)

−1, as a
result of �nal growth of fractures [103]. This regime is denoted as ‘tertiary’ creep.
The transition regime of ‘secondary’ creep, is the phase of plastic ow. If the stress is
released from the sample during the secondary creep regime, the amount of plastic ow
can be measured as unrecoverable strain (t), or unrecoverable compliance, ()J(t) =
(t)/�0) in the recovery phase of the creep / recovery experiment. The overall material
response is then called viscoelastoplastic.

In the previous chapter we have de�ned rubberiness as the relative amount of
recovered compliance,

R ≡
J(tf) − J(tf +�tr)

J(tf)
(3.8)

where �tr is the elapsed time of recovery �t at which we measure the rubberiness
R. In Fig. 3.2(c) the absolute amount of unrecovered compliance of each of the four
samples, is depicted by the squares at the end of each creep / recovery curve, at
time t = �tr+ tf = 200 s. The magnitude of the rubberiness R of each sample is
plotted as a triangle on the right-hand ordinate axis, using a coloring scheme that
correspond to the colors used for the samples of the curves. The three samples that
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do not yield during the creep phase, all have similar values of the rubberiness R.
We have shown previously that the magnitude of R is governed by the magnitude
of the fractional exponent �, not by the quasi-property G, and that the recorded
unrecovered compliance is merely a time-e�ect [60]. For times �tr ≫ tf , the amount
of strain will asymptotically approach zero and the rubberiness R ≈ 1.

Various sources report that reduced-fat cheese is perceived as more rubbery than
full-fat cheese [31, 214], a discrimination we do not �nd for the three samples discussed
above. The measurement of the rubberiness of the full-fat cheese at T = 25○C in
Fig. 3.2(c) shows that it requires a yielding event to make the discrimination between
zero-fat and full-fat cheese. As a result of the yielding ans subsequent plastic ow, the
rubberiness of the full-fat cheese at T = 25○C is a factor of 2.5 lower than non-yielded
samples. This suggest that ‘the resistance to yield’ is a more suitable de�nition for
rubberiness then ‘the extent to which a sample return to its original shape’ used in
Faber et al. [60].

In order to measure the resistance to yield in the creep / recovery experiment,
a stress-time loading must be chosen that leads to yielding of all the samples in the
creep phase. This requirement for the loading condition is exactly the opposite of
what we required for the �rmness measurement in the previous section, and implies
that �rmness and rubberiness cannot be measured in a single creep / recovery experi-
ment. Furthermore, if we want to use Eq. (2.35) to quantify rubberiness, the imposed
load must lead to a deformation that is viscometric (i.e. viscoelastoplastic) for the
complete duration of the creep phase, fracture of the sample is not allowed. These two
constraints on the loading conditions again require an iterative testing procedure, and
are nearly impossible to meet when the �rmness and yield-strain of the samples vary
widely. We can conclude that for the measurement of the rubberiness, the LAOStress
experiment, in which we can set a range of stress-amplitudes, is favored over the creep
/ recovery experiment as well as for the measurement of the �rmness.

To allow for the quantitative measurement of rubberiness in LAOStress, we need
a measure for the resistance to yield obtained from the experiment. For the stress-
sweep of the �rst-harmonic complex creep compliance J∗(!;�0) in Fig. 3.2(d), there
is no inection point from which we can derive an unambiguous de�nition of the yield-
point. Instead we use a generic criterion for the transition of the linear viscoelastic,
to the non-linear viscoelastoplastic response, which is

∣
∣J∗1 (!;�0)∣ − ∣J∗(!)∣

∣J∗(!)∣
∣ > y (3.9)

where y is the arbitrarily chosen measure for non-linearity. In this paper we use y =
0.001, which is a value proposed by Ewoldt and Bharadwaj [57] to demarcate the Small
Amplitude Oscillatory Shear (SAOS) regime from the Large Amplitude Oscillatory
Shear regime (LAOS). We de�ne the maximum of the range of stress-amplitudes that
satis�es this criterion as the yield-stress amplitude �0;y , and de�ne rubberiness as

~R ≡ �0;y (3.10)

which has like �rmness, units of Pa. Note that the units in ~R deviate from the units
of R, which are dimensionless. We elaborate on the implication of this change in
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units on the magnitude of the rubberiness in section 3.3.3. In Fig. 3.2(d) we have
plotted the magnitude of the rubberiness ~R, as triangles on the stress-amplitude axis.
This measure clearly discriminates full-fat cheese from zero-fat cheese on rubberiness,
irrespective of measurement temperature; the full-fat cheese (red) and zero-fat (blue)
at T = 10 ○C(�lled triangles), di�er in rubberiness over a factor of ten.

3.3.2 Softening, Melting, Plasticizing and Fluidizing

Fig. 3.2(d) shows three strategies to raise the �rst harmonic complex compliance
J∗1 (!;�0) of a full-fat cheese at T = 10○C(red squares): 1) removing all the fat (from
�lled red circle to �lled blue circle); 2) increasing the temperature T (indicated by
the white arrow), and 3) increasing the stress-amplitude �0 (indicated by the dashed
arrow). A popular term for compliant is ‘soft’ [56], which has connotations with
’pleasant touch’ [55]. This suggests that ‘softening’ of the cheese, i.e. raising the
compliance, is always favorable to increase the liking of the cheese, and that any of
the three softening strategies are suitable.

Strategy 1, removing fat, makes the cheese less-caloric, and less �rm, but more
rubbery. Calorie reduction is an incentive for cheese reformulation, however an in-
crease in rubberiness is undesired [214]. Furthermore, we have shown in the previous
section that the reduced �rmness of the zero-fat cheese will lead to sagging of the
cheese blocks during storage, which is a second undesired side-e�ect of the cheese
reformulation. Strategy 2, increasing the temperature T , decreases the �rmness and
has only a minor e�ect on the rubberiness. By storing the cheese T = 10○C sagging
will be no issue. Increase of the cheese temperature in the mouth will induce the
transition from �rm to soft as indicated by the white arrow in Fig. 3.2(d). Strategy
3, increasing the stress-amplitude �0 , does not a�ect the caloric content, nor the
�rmness, nor the rubberiness of the cheese, but transitions the full-fat cheese from a
more solid to a more uid state, as indicated by the dashed arrow in Fig. 3.2(d).

The example above demonstrates that ‘softening’ can have very di�erent origins
from a rheological perspective, and is not always favorable from a liking or processing
perspective. It is therefore too much a container term to build structure-property
relations on, and we propose to use three separate terms to describe a raise in the
compliance of the cheese. We de�ne ‘softening’ as decreasing the �rmness, i.e. by
changing the composition or the temperature of the material. We thus reserve the
term ‘softening’ for modi�cations of the intrinsic, linear viscoelastic properties of the
food gel. In Fig. 3.2(d), softening is depicted by the vertical gradient in the shaded
area to the left. We further specify temperature-induced softening as ‘melting’, which
for the full-fat cheese at T = 10○C, is indicated by the white arrow.

For the stress-induced softening, which does not change the intrinsic material prop-
erties of the cheese, we use the term ‘uidizing’. This term is commonly used in the
study of granular materials [100], to indicate the transition from a static solid-like to
a dynamic uid-like state. Recently the term gets foothold in LAOS studies on yield-
stress uids, to separate the event that marks yielding, from the subsequent process
progression of irreversible ow [102, 126, 154]. In Fig. 3.2(d) we have marked yielding
by a point on the curve (triangles) and use it to quantify rubberiness. Fluidization of
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the full-fat cheese at T = 10○C, is indicated by the dashed arrow to demonstrate it is
a process rather than an event. Fluidization covers a range of stress-amplitudes that
is either broad, like for the full-fat cheese in Fig. 3.2(d) (red squares), or small like
for the zero-fat cheese (blue squares). Fig. 3.2(d) shows that the broadness of the u-
idizing regime, is correlated to the yield-stress amplitude �0;y , and thus rubberiness
~R. We de�ne strategies that reduce the rubberiness, such as adding fat to zero-fat
cheese, as ‘plasticizing’. Like ‘softening’, plasticizing changes the intrinsic properties
of the cheese.

3.3.3 LAOStrain-based de�nitions for �rmness and rubberi-
ness

Firmness

De�nitions for the cheese �rmness F̂ , and rubberiness R̂, measured with Large Am-
plitude Oscillatory Shear experiment in the controlled-strain mode (LAOStrain), are
derived analogous to the LAOStress-based de�nitions for F and R. In the LAOStrain
experiment, a sinusoidal oscillating strain (t) is imposed, de�ned by [59]:

(t) = 0 sin!t (3.11)

where the maximum strain (t) is set by the strain-amplitude 0, and the time-
scale by the frequency !. Fourier transformation of the non-linear strain response,
(t;!; 0), gives [59]:

�(t;!; 0) = 0 ∑
n∶odd

{G′

n sinn!t +G′′

n cosn!t} (3.12)

where the non-linear material functions G′

n(!; 0) and G′′

n(!; 0), are the nth har-
monic dynamic elastic and viscous moduli respectively. The �rst- harmonic dynamic
elastic and viscous modulus {G′

1(!; 0),G
′′

1(!; 0)}, are average measures for the dy-
namic modulus over one full cycle [58]. In the linear viscoelastic regime, these moduli
are equal to the shear storage modulus G′

1(!; 0)=G
′(!), and shear loss modulus

G′′

1(!; 0)=G
′′(!) respectively. From G′

1(!; 0) and G′′

1(!; 0) we calculate the mag-
nitude of the �rst-harmonic complex compliance, G∗

1(!; 0) , using

∣G∗

1(!; 0)∣ =

√

G′

1
2
+G′′

1
2 (3.13)

where G∗

1(!; 0) = G∗(!) in the linear viscoelastic regime. Substituting the relation
[64]

∣J∗(!)∣ ∣G∗
(!)∣ = 1 (3.14)

in the LAOStress-based de�nition of the �rmness F , Eq. (3.6), gives

F̂ ≡ ∣G∗
(!f)∣ = ~F (3.15)

which is the LAOStrain-based expression for the �rmness, which has units of Pa. This
equation states that, at the frequency !f , and temperature T , the magnitude of the
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Figure 3.3: (a) Strain-sweep of the �rst-harmonic complex shear modulus G∗

1(!; 0)

measured using LAOStrain, of samples from the same zero-fat cheese (blue) and full-
fat cheese (red) as in Fig. 3.2(c,d), and measured at the same temperatures of T = 10
○C (�lled symbols) and T = 25 ○C(open symbols). The magnitude of the �rmness of
the samples, is equal to the magnitude of the complex shear modulus and equal to
the magnitude measured in LAOStress mode F̂ ≡ ∣G∗(!)∣ = ~F . The magnitudes are
plotted as circles on the vertical axis. The rubberiness is de�ned as the magnitude of
the yield-strain amplitude and equal to the magnitude of the rubberiness measured
using LAOStress, normalised by the �rmness, R̂ ≡ 0;y= ~R/ ~F , and plotted as triangles
on the horizontal axis. (b,c) The LAOStrain and LAOStress experiments measure
the same ratios of maxima in the stress and maxima in strain, de�ned by �max/0

and �0/max respectively. However the LAOStrain measurements more readily allow
probing the material response deeper into the uid regime. The numbers along the
curves in (b) and (c) correspond to the LAOStrain cycles examined in more detail
in Fig. 3.6.
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�rmness F̂ of a material measured using LAOStrain, is equal to the magnitude of the
material’s �rmness ~F measured using LAOStress.

In Fig. 3.3(a) we show values of the �rst-harmonic complex modulus G∗

1(!; 0)

in a strain sweep, performed on samples of the same test materials used to construct
Fig. 3.2(b). The magnitudes of the �rmness F̂ of zero-fat (blue) and full-fat cheese
(red), measured at two temperatures of T = 10 ○C (�lled symbols) and T = 25 ○C(open
symbols), are plotted as circles on the vertical axis, similar as in Fig. 3.2(b). Note
that in Fig. 3.3(a) the direction of the gradient that indicates the transition from
�rm to soft, is reversed compared to Fig. 3.2(b). The ranking of the samples on the
�rmness F̂ in Fig. 3.3(a), is the same as the ranking on the �rmness ~F measured in
LAOStress in Fig. 3.2(b) Averaging the ratio ~F /F̂ of the four samples, results in a
mean of 0.9 and a standard deviation of 0.1. This proves that the LAOStress and
LAOStrain measure for the �rmness indeed are interchangeable.

Rubberiness

Analogous to the rubberiness ~R measured in LAOStress, we de�ne the rubberiness R̂
measured in LAOStrain as the magnitude of the yield-strain amplitude 0;y:

R̂ ≡ 0;y: (3.16)

When measured using LAOStrain, rubberiness is a dimensionless quantity, just as
the rubberiness measured with the creep / recovery experiment ( Eq. (3.8)). The
magnitude of the yield-strain amplitude 0;y is determined using the relation

∣
∣G∗

1(!; 0)∣ − ∣G∗(!)∣

∣G∗(!)∣
∣ > y (3.17)

where we use y = 0:001 as the measure for yielding. Since we use a very small value
for y, the material response of the material is near-linear at the yield-point, and the
magnitude of the non-linear complex modulus is approximated by the magnitude of
the shear complex modulus, G∗(!; 0;y) ≈ G

∗(!); The magnitude of the yield-stress
�y measured in LOAStrain, is calculated from the yield-strain amplitude 0;y, using

�y ≈ 0;y ∣G
∗
(!)∣ = R̂F̂ (3.18)

Using the same arguments of near-linearity of the response at the yield-point, we
can approximate the magnitude of the yield-stress measure in LAOStrain, by the
magnitude of the yield-stress amplitude measured in LAOStress, which is equal to
the LAOStress de�nition of the rubberiness:

�y ≈ �y;0 = ~R (3.19)

Substituting Eq. (3.19) and the relation ~F = F̂ from Eq. (3.15) in the equations for
the yield-stress �y (Eq. (3.18)), gives:

R̂ = ~R/ ~F (3.20)
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This equation states that the magnitude of the material rubberiness R̂ measured
using LAOStrain, is equal to the magnitude of the rubberiness ~R measured using
LAOStress, normalized by the �rmness of the material. The magnitudes of the rub-
beriness R̂ of zero-fat (blue) and full-fat cheese (red), at the two temperatures of
T = 10 ○C (�lled symbols) and T = 25 ○C (�lled symbols), are plotted as triangles
on the horizontal axis in Fig. 3.3(a). Note that the full-fat cheese at T = 10 ○Cand
T = 25 ○C, have swapped position in the order of ranking on rubberiness compared
to Fig. 3.2(b). The same holds for the zero-fat cheese measured at T = 10 ○Cand
T = 25 ○C. This is what we predict when we normalize the magnitudes of the rubber-
iness ~R (triangles), to the corresponding magnitudes of the �rmness ~F (circles) from
Fig. 3.2(b).

Choosing between LAOStress and LAOStrain

In the previous two sections we have shown that one can interchangeably use the
LAOStress- or LAOStrain-method to measure the �rmness of a food gel. However
the two shearing protocols result in di�erent magnitudes for the rubberiness both
in relative and absolute sense. We thus have to chose between the two methods for
quantifying rubberiness. We prefer the LAOStrain-measure for the rubberiness R̂ over
the LAOStress-measure ~R. The �rst argument is that LAOstrain provides a measure
for the rubberiness that is independent of the �rmness of the material the LAOStress
method is not. The second argument is that R̂ has the dimensionless units of strains,
just like in the de�nition of the rubberiness R, whereas ~R has units of stress. In food
rheology, it is common practice to reserve units of Pa for quantifying the sti�ness,
hardness or �rmness of food materials [37, 52, 176].

A �nal argument in favour of LAOStrain measurements, is that they more readily
allow probing the material response deeper into the uid regime, which we demon-
strate in Fig. 3.3(b,c). We have plotted the intra-cycle maximum of the stress for
the LAOStrain measurement, �max (un�lled squares), as a function of the strain-
amplitude, 0, for zero-fat (blue, Fig. 3.3(b)) and full-fat cheese (red, Fig. 3.3(c)).
The intra-cycle maxima are calculated using Eq. (3.12). In Fig. 3.3(b,c) we have also
plotted the intra-cycle maxima of the strain max (�lled squares), as a function of the
stress-amplitude �0 , using Eq. (3.3). The combination of the stress-induced rise in
the compliance J∗1 (!;�0) , and the simultaneous increase in the stress-amplitude �0

in LAOStress, results in a self-catalyzed, abrupt failure the material which is absent in
LAOStrain. As a result, the range of stress-amplitude �0 over which deformations can
be controlled in LAOStess, is smaller than the range of measured intra-cycle maxima
in the stress �max obtained in LAOStrain.

3.3.4 Brittleness, crumbliness and smoothness

To visualize the uidization of cheese, we plot the material response to the sinusoidal
oscillating strain in the deformation domain, the so-called ‘Bowditch-Lissajous’ rep-
resentation of the material response, from here on referred to as Lissajous plots. In
Fig. 3.4(a)-(c) we show Lissajous plots for a selection of strain-amplitudes 0 from
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(d) ! = 5 rad s−1, Viscous perspective

Figure 3.4: (a,b) Measurements (blue line) and model prediction (circles) of the
stress response of zero fat cheese subjected to LAOStrain loading. Our model is
based on a fractional constitutive framework, with only two material properties: a
fractional exponent of �= 0.19, quantifying the frequency dependency of the response
and a ‘quasi-property’ G= 1.4 ×104 Pa s� , which quanti�es the scale of the stress in
the material. Our model correctly predicts the shape of the ellipse as a function of
the strain-amplitude 0 and frequency !. (c) In the non-linear regime, the Lissajous-
Bowditch curve becomes ‘banana-shaped’ (solid blue line) and the plot of the elastic
stress (solid red line) becomes curved, a characteristic typical for damaged elastomers.
The linear viscoelastic model (dashed line, hollow symbols) cannot not predict this
curvature and over predicts both the maximum of the elastic stress (squares) and
viscous stress (circles). (d) Same data as in (c), plotted from a ‘viscous’ perspective.
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strain-sweeps performed on zero-fat cheese (blue lines) at T = 10 ○C, and at frequen-
cies of (a) ! = 1 rad s−1and (b,c) ! = 5 rad s−1. The elliptical shapes of the curves
in Fig. 3.4(a) and (b) indicate that the material response is linear viscoelastic for
strain amplitudes 0< 0.2. The curvature of the ellipse is described by [134]

�2
− 2�G′

+ 2
(G′2

+G′′2
) = G′′20

2 (3.21)

We have shown previously that within the range of 1 rad s−1 < ! < 5 rad s−1, zero-
fat cheese displays power-law relaxation, and the magnitude of the storage and loss
modulus fG′(!);G′′(!)g is described by the two material properties � and G[60, 89]

G′
(!) = G!� cos (��/2)

G′′
(!) = G!� sin (��/2)

(3.22)

By performing a strain-sweep of the �rst-harmonic dynamic moduli G′

1(!; 0)

and G′′

1(!; 0) at != 1 rad s−1, reading out the magnitude of the phase angle tan �
reported by the rheometer software in the linear viscoelastic regime, and using the
relation tan(�) = G′′(!)/G′(!) = tan (��/2) , we obtain the magnitude of �= 0.19.
The magnitude of the quasi-property G= 1.4 ×104 Pa s� is readily obtained by reading
out the magnitude of the �rst-harmonic complex modulus G∗(!; 0) in the linear
viscoelastic regime, and using the relation ∣G∗(!)∣ = G!� [89].

Fig. 3.4(a) and (b) show that the model described by Eq. (3.21) and Eq. (3.22)
(circles), correctly predicts the shape of the ellipses as a function of strain-amplitude
0 and frequency ! in the linear viscoelastic regime. In Fig. 3.4(c), the strain-
amplitude exceeds the yield-strain amplitude of zero-fat cheese 0 > 0;y ≊ 0.3 and the
response is viscoelastoplastic. The curvature of the Lissajous plot changes from the
elliptical shape predicted by the model (dashed blue line), to a ‘banana-shaped’ curve
(blue continuous line), which is a sign of a non-linear material response and typical
for damaged elastomers [122]. The ‘banana-shape’ is also encountered when loading
rubbery food materials like dough [133] and Mozarrela cheese [119] in LAOStrain
mode.

In order to facilitate the characterization and quanti�cation of the of the intra-
cycle non-linearities such as shown in Fig. 3.4(c), Cho et al. [32] proposed to additively
decompose the total stress in an elastic (′) and a viscous (′′) part,

�TOTAL = �′(a) + �′′(b) (3.23)

where the arguments a and b are the normalised strain and normalised strain-rate
respectively

a ≡ (t)/0 = sin!t

b ≡ _(t)/ _0 = cos!t
(3.24)

The magnitude of the elastic stress �′ and viscous stress �′′ are related to the Fourier
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decomposition of the stress-signal in Eq. (3.12) by [32, 58]

�′ ≡
�(; _) − �(−; _)

2
= 0 ∑

n∶odd

G′

n(!; 0) sinn!t

�′′ ≡
�(; _) − �(;− _)

2
= 0 ∑

n∶odd

G′′

n(!; 0) cosn!t

(3.25)

The dashed red line in Fig. 3.4(c) shows the model prediction of the intra-cycle evo-
lution of the elastic stress �′ , which is described by the linear relation �′(!; ) =

G!� cos (��/2): The measured response of �′() shows curvature, a signature of
non-linearity [57]. The predicted maximum in the elastic stress of the linear viscoelas-
tic model is given by �′max(!; 0) = G!� cos (��/2)0; (hollow square) and deviates
from the measured magnitude of �′max (�lled square). This deviation is a second signa-
ture of non-linearity of the material response. The same two features of non-linearity
are observed in Fig. 3.4(d) where we have plotted stress against the strain-rate, the
so-called ‘viscous perspective’ on the Lissajous plot [58]. The predicted evolution
of the viscous stress as a function of strain rate is given by �′′(!; _) = G′′(!) _/! =

G!�−1 sin (��/2) _ and plotted as a red dashed line. The predicted maximum in the
viscoelastic stress is given by �′′max(!; 0) = G

′′(!)0 = G!� sin (��/2)0 and plotted
as circles in Fig. 3.4(c) and (d).

Fig. 3.4(c) shows that in the viscoelastoplastic regime, the viscoelastic constitu-
tive model over predicts the maximum in the elastic stress; the damage accumulating
in the gel cause a loss of strength in the elastic network. In Fig. 3.5(a) we visualize
the inter-cycle progression of damage in zero-fat cheese, by plotting the measured
response �′max(0) (squares), and compare these to the prediction of the viscoelastic
constitutive model (solid line). The cycles denoted with roman numbers correspond
to the cycles highlighted in Fig. 3.3(b) and depicted in Fig. 3.6(a). Up to the yield-
point at cycle I, the maximum elastic stress grows with strain-amplitude at a rate
predicted by the model: G!� cos (��/2) = F̂ cos (��/2) (Eq. (3.22),(3.15)), where F̂
is the frequency-dependent �rmness measured in LAOStrain. For strain-amplitudes
below the yield-strain amplitude 0 < 0;y, with 0;y= R̂, the magnitude of the rub-
beriness measured in LAOStrain, all the strain is recoverable, even though there is
viscous dissipation as denoted by the circles. The rate of recovery is governed by
the magnitude of the fractional exponent �, and the time-scale of the deformation
! [60]. Between cycle I and II, at strain amplitudes 0 > 0;y, the formation of mi-
crocracks cause a viscoelastoplastic response [60, 103], which leads to a decrease in
the inter-cycle growth rate of the maximum elastic stress �′max(0) and an increase
in the amount of irrecoverable strain. At cycle II a global maximum in �′max(0) is
reached, which we denote as the elastic failure stress �′f of the material. The failure
strain at this point has a value of 0;f ≈ 0.7. Beyond the failure point, the elastic
stress declines, as a result of microcracks percolating into fractures [103].

The response of the maximum elastic stress �′() of full-fat cheese, the emulsion-
�lled gel (subscript F ), is remarkably di�erent from zero-fat cheese, the un�lled gel
(subscript Z). Fig. 3.5(b) shows that the initial growth-rate of �′max(0) is larger
than for zero-fat cheese, as a result of the higher �rmness, F̂F > F̂Z . However since
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Figure 3.5: (a,b) Evolution of the intra-cycle maxima of the elastic stress �′max(0)

(hollow squares) and viscous stress �′′max(0) (hollow circles) as a function of the strain
amplitude 0 for zero-fat (blue) and full-fat (red) cheese measured at T = 25 ○Cand
a frequency ! = 5 rad s−1. The continuous and dashed line represent the predictions
of the linear viscoelastic constitutive model. Both zero-fat and full-fat cheese display
an inter-cycle maximum of the elastic stress �′f in cycle number II at a failure strain-
amplitude f ≈ 0.7. We de�ne this inter-cycle maximum as the failure criterion for the
food gel. (b) The full-fat cheese curve displays a plateau in the maximum elastic stress
�′max and a small decrease beyond the failure point. By contrast, the zero-fat cheese
(a), displays a strong peak in the �′max curve. (c) Magnitude of the elastic stress
of zero-fat cheese, at a frequency of != 5 rad s−1(hollow) and !=0.2 rad s−1(�lled).
The magnitude of �′max(0) is normalised by the factor !� cos (��/2) (a,b,c) From
these �gures we derive the rheological analogues for ‘brittleness’, ‘crumbliness’ and
‘smoothness’.
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the magnitude of the rubberiness of full fat cheese is smaller, R̂F < R̂Z , the material
displays a viscoelastoplastic response prior to cycle I. The probable cause for the shift
of the plastic response towards lower strain-amplitudes is localisation of strains in the
gel phase, caused by the presence of the micron-sized spherical fat globules, which
promotes local crack growth [79, 178]. Both zero-fat and full-fat cheese fail at the same
strain-amplitude of 0;f F = 0;fZ ≈ 0:7. However full-fat cheese displays a plateau in
the elastic stress prior to failure, and as a result the amount of plastic deformation
in prior to failure is signi�cantly larger than in zero-fat cheese. According to Reiner
and Scott Blair [151] the amount of plastic deformation prior to failure is a measure
for brittleness, as they de�ne ‘brittle’ as \tending to break under the condition of
minimal previous plastic deformation". Using this de�nition, zero-fat cheese is more
brittle then full-fat cheese. Shah et al. [174] base the de�nition of ‘brittle’ on the
stress-response to a deformation after the peak stress. In a brittle material, the stress
suddenly drops to zero whereas in ‘ductile’ materials the stress stays at a constant
level. In ‘quasi-brittle’ materials, like rock, concrete and clay, the stress gradually
decreases after the peak stress is reached. Using these de�nitions from Shahand co-
workers, the zero-fat cheese is quasi-brittle, whereas full-fat cheese is ductile.

Jowitt [93] de�nes brittle food materials as \posessing the textural property man-
ifested by a tendency to crack, fracture or shatter without substantial prior deforma-
tion on the application of force" Van den Berg et al. [198] distinguish between ‘brittle’
and ‘crumbly’ food materials; both may show similar fracture behaviour, however
crumbly failure requires a higher failure strain and thus higher work at fracture. In
the Quantitative Descriptive Analysis (QDA-)performed in the study, panelists de-
�ned crumbly as \sample falls apart in pieces upon compression between tongue and
palate". Jowitt [93] also refers to the size of the fractures as a typical feature for
crumbly materials: \possessing the textural property manifested by a tendency to
break down easily into small irregular pieces". Van den Berg et al. [198] showed a
negative correlation between the crumbliness score of food gels and the rate of de-
crease of the stress beyond the peak stress measured in uniaxial compression. This
suggests that ‘crumbly’ and ‘quasi-brittle’ describe the same material response un-
der high loadings. They also showed that the magnitude of crumbliness is positively
correlated to the amount of recoverable (elastic) energy stored during deformation.

Based on these correlations and the response of zero-fat and full-fat cheese, we
propose that the brittleness B̂ is quanti�ed in LAOStrain through the magnitude of
the elastic failure stress �′f , which has units of Pa. In Fig. 3.5(c) we provide extra
support for this measure of the brittleness of food gels. In this �gure we show the
inter-cycle evolution of �′max(0) of zero-fat cheese, at two oscillation frequencies of
1) != 5 rad s−1(hollow) and 2) !=0.2 rad s−1(�lled). The magnitude of �′max(0)

is normalised by the factor !� cos (��/2) from Eq. (3.22), resulting in a normalised
maximum in the elastic stress ~�′max(0)with units of Pa s� . The two curves initially
have a slope with a magnitude G= 1.4 Pa s� and coincide up till the failure point
f0;f ,~�′fg. At this point the unscaled failure stress for the highest frequency �′f1 is

a factor of 25� = 1:9 higher than �′f2, leading to a more brittle response beyond the
peak stress. The rate dependency of the mode of failure is in line with the �ndings of
Van den Berg et al. [198]. From the data presented in Fig. 3.5 we can conclude that
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a combination of high �rmness F̂ , which is rate dependent, and a high rubberiness
R̂, favours a high elastic failure stress �′f and thus a more brittle response. The

brittleness B̂ is thus related to the �rmness and rubberiness by

B̂ ∝ F̂ (!)R̂ (3.26)

To conclude we propose to use ‘smoothness’ as the antonym for ‘brittleness’. Jowitt
[93] de�nes smoothness as ‘possessing the textural property manifested by an ab-
sence of detectable solid particles’. In this line of thought, brittleness, crumbliness,
and smoothness are macroscopic observations of the characteristic length scale of the
damage or cracks in the under-pinning microstructure of the food gel, that cause the
ultimate failure and break-down. In material science an equivalent scaling of brittle,
quasi-brittle and ductile is used to describe such observations.

3.3.5 Quantifying and characterizing uidization

An alternative approach to characterizing the evolution of damage and the onset of
ow in soft-solid gels, is through geometrically de�ned dynamic moduli that quantify
the non-linearity of the material’s response [58]. In Fig. 3.6(a) we have plotted the
curves for the elastic stress �′() for the cycles I, II and III for-zero fat cheese at
T = 25 ○C(blue lines). The maxima of the curves represent the maximum elastic stress
�′max(0) (squares, plotted for all cycles in Fig. 3.5(a)). The dashed lines represent the
dynamic tangent moduli of the elastic stress curve G′

K at maximum strain  = 0 and
minimum strain rate _ = 0. In the linear viscoelastic regime, at cycle I in Fig. 3.6(a),
the magnitude of this tangent modulus is equal to the magnitude of the storage
modulus G′

K=G′(!), and the dashed line coincides with the blue curve of the elastic
stress. In the non-linear regime, the tangents rotate clock-wise, indicating that the
magnitude of G′

K decreases. Both for zero-fat cheese, Fig. 3.6(a), and full-fat cheese,
Fig. 3.6(b), we interpret the decline in G′

K as a measure of damage accumulating in
the gel phase, leading to a loss of strength of the gel. In full-fat cheese, the dashed
line does not coincide with the elastic stress at cycle I. This is another signature of the
rubberiness R̂ of full-fat cheese being lower than the rubberiness of zero-fat cheese.

A major bene�t of decomposing the oscillating stress response in an elastic and
viscous stress curve, is that these two curves are single-valued functions of the strain.
This facilitates the quanti�cation of the non-linearity of the material response by �t-
ting a polynomial function to the curve [32]. To this end, the Chebyshev polynomials
of the �rst kind are the most suitable [1, 58]. These polynomials satisfy the criteria of
orthogonality over a �nite domain, symmetry arround x, a bounded range for higher
order contribution, and direct relation to time-domain Fourier Transform rheology
[58]. By satisfying these criteria, the magnitude of the Chebyshev polynomial coef-
�cients, the harmonics, are unique and have a physical basis. The Chebyshev basis
functions Tn(x) are de�ned by the recurrence relation

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x) − Tn−1(x)

(3.27)
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Figure 3.6: The solid-uid transition of zero-fat (blue) and full-fat (red) cheese at
T = 25 ○Cdepicted using the Lissajous representation. (a,b). The continuous lines
represent the intra-cycle evolution of the elastic stress �′. The hollow squares are the
intra-cycle maxima �′max of the elastic stress as a function of strain amplitude 0.
The dashed lines are the tangent modulus G′

K to the curve of the elastic stress at
 = 0 and are a measure of the loss of strength of the elastic network. (c,d) Lissajous
plots of the total stress response at three strain amplitudes 0. The hollow circles
are the intra-cycle maxima in the viscous stress �′′max. The dashed line through these
points are the tangent modulus Gg at maximum strain rate _ = _0. The slope of
these tangents represent the resistance of the material to plastic ow. (e,f) Lissajous
plots of cycle II from the viscous perspective (blue and red curves) with the viscous
stress plotted as black continuous lines. The dashed lines represent the minimum and
maximum strain rate dynamic viscosity �′M and �′K respectively. (f) Full-fat cheese
displays a �fth-order non-linearity. A third-order de�nition of �′K (dot-dashed line)
over-predicts its magnitude
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The equations for the elastic stress �′ and viscous stress �′′ expressed in terms of
these basis functions are given by

�′ = 0 ∑
n∶odd

en(!; 0)Tn(a)

�′′ = _0 ∑
n∶odd

vn(!; 0)Tn(b)
(3.28)

where en and vn are the n-th order harmonics, that quantify the materials stress
response to the normalised strain a and strain- rate b respectively. The relation-
ship between the Chebyshev coe�cients and the Fourier coe�cients for n-odd from
Eq. (3.12) is [58]

en = G
′

n(−1)(n−1)/2

vn =
G′′

n

!

(3.29)

The maximum strain elastic tangent modulus G′

K is readily calculated from the mag-
nitude of the elastic Chebyshev harmonics en:

G′

K =
d�′

d
∣
=0

= e1 + 9e3 + 25e3 + ::: (3.30)

Equations (3.30) and (3.29) show us that for cycle I in Fig. 3.6a, for which the response
is fully described by the �rst-harmonic n = 1, we have, G′

K = e1 = G
′

1 = G
′(!).

In Fig. 3.6(c) and (d) we depict the dynamic elastic tangent modulus Gg at
minimum strain  = 0, and maximum strain rate _ = _0 = !0 (dashed lines). The two
�gures show the elastic LissaJous curves for cycle I, II and III for zero-fat cheese ((c),
blue) and full-fat cheese ((d), red). The tangents that represent Gg (dashed lines),
are plotted through the maxima of the viscous stress �′′max (circles). Again we see a
clockwise rotation of the tangents, indicating an inter-cycle decrease of the minimum
strain modulus Gg. The magnitude of Gg is calculated from the elastic Chebyshev
coe�cients en by

G′

M =
d�′

d
∣
=0

= e1 − 3e3 + 5e5 + ::: (3.31)

Dimitriou et al. [46] suggest that for yielding materials, like cheese, the decrease
in the material function Gg is a measure for the onset of plastic ow in the material,
as it probes the material response at maximum strain rate. In combination with G′

K ,
which we interpret as a measure of the accumulation of damage in the elastic network,
we thus have two material functions that together quantify the solid-uid transition
of soft-solid gels under dynamic loading. First the material is strained up to a strain
amplitude of 0 and the total loss of strength as a result of the accumulating damage
is quanti�ed by G′(!)-G′

K . Then the direction of motion is reversed, and the material
is sheared at a rate _ = !. At the point of maximum shear rate 0! the propensity
to ow is measured as G′(!)- Gg. The level of uidization, i.e. the extent to which
the elastic solid is transitioned into a owing uid is quanti�ed by the ratio

� ≡
G′

K −G′

M

G′

K

=
12e3 + 20e5 + :::

e1 + 9e3 + 25e5 + :::
(3.32)
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where � is the uidizing ratio. This ratio is de�ned in anology to the hardening ratio
H as de�ned by Ewoldt et al. [58], however we use a tangent modulus G′

K instead
of secant modulus G′

L to characterise the material response at maximum strain.
A secant modulus averages the contribution of both straining and shearing to the
material response and is thus not a proper measure for the loss of strength of the gel.

Fig. 3.6(a)-(d) show that the magnitude and rate of decrease of the maximum
strain-rate modulus Gg is larger then for G′

K , which results in positive values of the
uidizing ratio �. In Fig. 3.7(a) we have plotted the magnitude of � of zero-fat cheese
(blue) and full-fat cheese (red) measured in a strain-sweep at a temperature of T = 25
○C. The strain at which uidization sets is a measure for the rubberiness R̂of the
cheese, the plot thus show at a glance that zero-fat cheese is an order of magnitude
more rubbery than low-fat cheese. The ultimate magnitude of �of both cheese types
is equivalent, suggesting that in full-fat cheese uidization is dominated by structural
changes in the gel phase.

In analogy to the material function � that quanti�es uidization from an elastic
perspective, we de�ne the thickening ratio �, which tracks the evolution of the solid-
uid transition from the viscous perspective:

� ≡
�′K − �′M
�′K

=
12v3 + 20v5 + :::

v1 + 9v3 + 25v5 + :::
(3.33)

where �′M and �′K are the dynamic tangent viscosities at maximum strain, and max-
imum strain rate respectively. These viscosities are calculated from the Tchebyshev
harmonics vn by

�′K =
d�

d _
∣

_= _0

= v1 + 9v3 + 25v5 + :::

�′M =
d�

d _
∣

_=0

= v1 − 3v3 + 5v5 + :::

(3.34)

Also here we have taken the original de�nition of the thickening ratio T from [58]
and replaced the dynamic secant viscosity by a tangent viscosity. We keep the term
‘Thickening’ ratio however and the use of the antonyms ‘thick’ and ‘thin’ to describe
the resistance and propensity to ow respectively, as this terminology is common in
the texture pro�ling of uid food materials [93]. By using the symbol � instead of T
we indicate that measure is calculated using only tangent viscosities.

In Fig. 3.6(e) and (f) we have plotted the LissaJous plot for cycle II for zero-
fat cheese (blue) and full-fat cheese (red) from the viscous perspective. The black
solid lines represent the viscous stress �′′(). For full-fat cheese the curve of positive
viscous stress displays one convexity and one concavity. If we calculate �′K using
only the Chebychev coe�cients, v1 and v3, we do not capture the concave part of the
viscous stress curve and calculate a magnitude for the maximum strain-rate viscosity
(dot-dashed line) that is larger than the minimum strain-rate viscosity �′K> �

′

M . This
results in a positive value of the thickening ratio. If we include the �fth harmonic,
which has a magnitude of v5 ≈ −v3, we do capture the concave part and the response
is characterized as intra-cycle shear thinning. For zero-fat cheese, the leading order
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Figure 3.7: Strain sweeps showing the evolution in the (a) the Fluidizing ratio �,
and (b) the Thickening ratio �, of zero-fat cheese (blue) and full-fat cheese (red)
measured at a temperature T = 25 ○C. (a) Both cheese formulations show equivalent
ultimate magnitudes of the Fluidizing ratio, however the rise of � of full-fat cheese sets
in at lower strains. (b) The uid properties of full-fat and zero-fat cheese are char-
acterized by the evolution of the Thickening ratio, which reveals three ow-regimes
A, B and C. Zero-fat cheese displays continuous inter-cycle thinning, whereas full-fat
cheese shows a sequence of thinning, thickening and thinning. Beyond cycle II the
sample of full-fat cheese is no longer homogeneous, indicated with a dotted line in (a)
and (b)).

non-linearity is third-order v5 ≈ v3/10, and addition of the �fth harmonic does not
have a signi�cant on the magnitude of �′K .

Fig. 3.7(b) shows the evolution of the Thickening ratio � measured in a strain-
sweep. Whereas Fig. 3.7(a) quanti�es the (rate of) uidization, Fig. 3.7(b) char-
acterises the response of the resulting uid. We identify a sequence of ow regimes
(SFR), and from the characteristics of these three regimes A, B and C, we infer the
sequence of physical processes (SPP, [153]) by which microstructure collapses. For
our physical interpretation of the zero-fat cheese curve (blue), we make use of the
microrheological studies on un�lled, brittle protein gels from Leocmach et al. [103],
and treat the three regimes as being analogues of the primary, secondary and tertiary
creep identi�ed in their controlled stress-experiments. In regime A, the response of
zero-fat cheese is predominantly linear viscoelastic and � ≈ 0. In this regime all de-
formations are recoverable and no plastic ow exists. In regime B, uidization sets
in as microcracks nucleate and propagate. The energy released caused by the frac-
turing, results in a shear thinning response. In regime C, the percolating cracks form
fractures, which results in the ultimate failure of the gel.

The response of full-fat cheese (red curve) in Fig. 3.7(b) is remarkably di�erent.
First we observe mild inter-cycle shear thinning, starting at low strain-amplitudes in



84 Chapter 3

regime A. We attribute this response to an increased rate in microcrack formation
promoted by strain localization in the gel, induced by the present emulsion. In regime
B, the shear-thinning stops, and the response changes into inter-cycle shear thickening.
We propose that the propagation of of cracks is hindered by the presences of the at
globules, and that instead clusters of �lled gel fragments start owing. This causes
the micron-sized fat globules to slide along each other, and the energy required raises
the viscosity, hence the inter-cycle shear thickening. In parallel, the process of crack
propagation continues, which ultimately leads to percolation of cracks through out
the samples and the extreme shear thinning in regime C. Beyond cycle II the response
becomes unstable, therefore we have connected the three points in this interval with
a dashed line, both in Fig. 3.7(a) as well as in Fig. 3.7(b).

The comparison of the breakdown path of zero-fat and full-fat cheese demonstrates
that the addition of the fat emulsion to the gel, also adds one level of complexity to
the breakdown path of the cheese microstructure. Exposing the higher-order com-
plexity in the uidization of emulsion-�lled soft-solid gels, requires visualization of
the breakdown path from the viscous perspective: Fig. 3.5(b) shows an inection
point in the curve of the maxima of the viscous stress; Fig. 3.6(f) demonstrates the
signi�cant contribution of the �fth-harmonic to the shape of the intra-cycle evolution
of �′′ ; and Fig. 3.7(b) makes the ‘waxing and waning’ [153] of non-linear dynamic
viscosity most pronounce, through the appearance of local minimum and maximum
in the thickening ratio.

3.3.6 Comparing formulations on of the basis of the evolution
of � and �

In the �nal part of the result section, we demonstrate that plotting the uidiza-
tion ratio �, alongside the re-de�ned thickening ratio �, augment the capabilities
of LAOS as an analytical tool for structure-texture engineering of soft-solid gels,
thereby making reformulation studies more e�ective. In Fig. 3.8(a,b) we have plot-
ted the magnitudes of (a) �, and (b) �, of zero-fat (blue), low-fat (green), and
full-fat (red) cheese, at T = 10 ○C. These cheese types contain a fat volume fraction of
�f = 0v/v%; �f = 12v/v%; and �f = 30v/v% respectively. The plots with the �lled
symbols represent a decrease of �T = 15○Cwith respect to the measurements from
Fig. 3.7, which we have replotted in Fig. 3.8 using shaded and hollow symbols. All
the plots in Fig. 3.8 are truncated such that only two ow regimes are visible, regime
A of mild uidization caused by microcrack nucleation and propagation, and regime
B of strong uidization arising from owing gel fragments.

We propose that the magnitude of the slope of the plots of the uidization ratio
in regime A in Fig. 3.8(a), is a measure of the rate of microcrack formation and
propagation _c. The �gure shows that for the samples measured at a constant temper-
ature of T = 10 ○C(�lled symbols), there is a plausible, negative correlation between
the magnitude of _c and the strain amplitude 0 at which the ow regime transitions
from regime A to regime B. The three plots with �lled symbols also reveal a negative
correlation between �ller volume fraction �f and the magnitude of the rate of crack
formation _c, which con�rms our hypothesis of strain localisation being the driver for



From �rm to uid - Structure-texture relations of �lled gels probed using LAOS 85

10
�2

10
�1

10
0

�0.2

0

0.2

0.4

0.6

0.8

1

strain amplitude, �
0
 [�]

F
lu

id
iz

in
g 

ra
tio

, �
 [�

]

A

B

zero fat
low fat
full fat

(a) Temperature e�ect

10
-2

10
-1

10
0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

strain amplitude, g
0
 [-]

T
hi

ck
en

in
g 

ra
tio

, Q
 [-

]
(b) Temperature e�ect

10
-2

10
-1

10
0

-0.2

0

0.2

0.4

0.6

0.8

1

strain amplitude, g
0
 [-]

F
lu

id
iz

in
g 

ra
tio

, F
 [-

]

(c) Hydration e�ect

10
-2

10
-1

10
0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

strain amplitude, g
0
 [-]

T
hi

ck
en

in
g 

ra
tio

, Q
 [-

]

(d) Hydration e�ect

Figure 3.8: (a,c) Fluidizing ratio � and (b,d) Thickening ratio � of cheese varying
in fat content: 0 v/v% (blue), 12v/v% (green), 30v/v%(red). The measurements from
Fig. 3.7 are replotted in using shaded and hollow symbols. All plots are truncated
such that only the two ow regimes A and B are visible. (a,b) Temperature decrease
of from T = 25○C (hollow) to T = 10○C (�lled). (a) Both a temperature reduction and
increase of fat content increase the rate of uidization. (b) Temperature reduction
changes the response of zero-fat cheese from shear thinning to shear thickening. (c)
Increasing the water / protein ratio from w/p= 1.8 (hollow) to w/p= 2.4 (�lled) does
not have a signi�cant e�ect on the rate of uidization in regime A. (d) However
it changes the uid characteristics of full-fat cheese from shear thickening to shear
thinning.
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enhanced uidization in emulsion-�lled gels. We de�ne a critical strain amplitude c
as the strain amplitude 0 for which the uidizing ratio �> 0:07. Above this cut-o�
value for �, all �ve samples in Fig. 3.8(a) show a stable response. The magnitude of
c is a factor of 12.5 lower for full-fat cheese then for low-fat cheese, whereas the �ller
volume fraction of full-fat cheese is a factor of 2.5 higher. This points at a relationship
between the critical strain and the �ller volume fraction c ∝ 1/�3

f , which suggests
that the uidization scales linear with surface to surface inter-particle distance of the
�ller [210].

The critical strain c of full-fat cheese at T = 25 ○C(red hollow symbols) is a factor
of 3.75 higher then at T = 10 ○C(red hollow symbols). This is only partly explained
by the temperature-induced increase of c of the gel phase, which is a factor of 1.25 at
a temperature increase of �T = 15○C(blue hollow vs �lled symbols). Two third of the
temperature-induced increase in critical strain of full-fat cheese, must come from the
melting of the fat particles, which leads to a decrease in shear modulus in the order of
factor 200 Yang et al. [213]. This results in a signi�cant fraction of the macroscopic
strain accumulating in the fat globules at T = 25 ○C, whereas for the rigid particles
at T = 10 ○C this fraction is negligible.

In Fig. 3.8(c,d) the water content of the gel, expressed as the water / protein ratio
w/p with units of g/g, is raised with 25% from w/p= 1.8 to w/p= 2.4. Fig. 3.8(c)
shows that the hydration of cheese does not e�ect the rate of microcrack formation.
However Fig. 3.8(d) demonstrates that hydration has a signi�cant e�ect on the char-
acteristics of the uid properties of full-fat cheese (red) in regime B. The response of
� changes from shear thickening (hollow symbols) to shear thinning (�lled symbols).
A probable cause is that in the hydrated samples the voided regions produced by the
crack formation, are rapidly invaded with water (as shown for diluted casein gels by
Leocmach et al. [103]), which acts as a lubricant when the fat globules on the surface
of the owing gel fragments slide along each other. A second explanation is that hy-
dration makes the gel softer and therefore more pliable, which reduces the frictional
forces between two neighboring gel fragments. Supporting evidence for the hypothesis
that the gel �rmness a�ects friction, comes from the change in the response of zero-fat
cheese from thickening to thinning when increasing the temperature of from T = 10
○Cto T = 25 ○C, which reduces the �rmness F̂ by a factor of 2.4.

The plots of the modi�ed Thickening ratio � in Fig. 3.8(b,d), show that the
emulsi�ed fat plays a pivotal role in modulating the solid-uid transition of cheese.
Full-fat cheese shows strong response function to (b,d) shear, (b) temperature in-
crease, and (d) hydration, the three most important processes occurring the mouth.
Reduction of fat content signi�cantly reduces the strength of these response functions.
Our microrheological analysis above, deducted from the strain-sweeps of the uidizing
ratio � and thickening ratio �, show that alternative structuring routes for low fat
cheese should be aimed at reducing the surface to surface inter-particle distance, and
enhancing the temperature-induced softening of the �lled gel.
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3.4 Conclusions

In this paper, we used Large Amplitude Oscillatory Shear (LAOS) in controlled-stress
and controlled-strain mode (LAOStress and LAOStrain, respectively), to quantify and
characterise the solid-uid transition of semi-hard cheese, a soft-solid, enulsion-�lled,
gel. We de�ned quantitative measures for the �rmness F , rubberiness R, brittleness
B, and uidization �, of cheese and interpreted the magnitude of these measures in
terms of physical processes that lead to the collapse of the cheese microstructure.

We de�ned �rmness as a resistance to deformation and quanti�ed the texture at-
tribute as the inverse of the magnitude of the complex creep compliance in LAOStress
1/∣J∗(!)∣ , or the magnitude of the complex shear modulus in LAOStrain ∣G∗(!)∣
, which are interchangeable measures. We de�ned rubberiness as a resistance to
ow, which is quanti�ed as either the magnitude of the yield-stress-amplitude �0

in LAOStress, or the yield-strain-amplitude 0in LAOStrain. The yield-point is the
point where the complex creep compliance, or complex shear modulus, departs from
its plateau value, and the material response changes from linear viscoelastic to non-
linear viscoelastoplastic. The magnitude of the rubberiness of a sample, measured us-
ing LAOStrain, is equal to the magnitude of the rubberiness measured in LAOStress,
normalised by the �rmness that same sample: R̂= ~R/ ~F . The LAOStrain protocol for
measuring the �rmness F̂ and rubberiness R̂ are preferred over the LAOStress mea-
sures ~F and ~R, since the former protocol results in rubberiness and �rmness being two
independent quantities. Furthermore LAOStrain allows for larger controlled loadings
in the non-linear, more uid, viscometric regime.

We proposed a set of de�nitions to distinct between alternative routes to ‘soften’
a cheese. We de�ned ‘softening’ as decreasing the �rmness, by changing the intrinsic,
linear viscoelastic, material properties. Melting is a speci�c form of softening, where
the decrease in �rmness is caused by an increase in the temperature of the material.
Plasticizing, also encompasses a change in the intrinsic property, however it results
in a decrease of the rubberiness instead of the �rmness, i.e. it shifts the yield-strain
amplitude to lower values. Fluidisation is the load-induced transition of the cheese
from a more solid to a more uid state. A cheese that is less rubbery starts to uidize
at lower strain-amplitudes. A cheese that is less �rm, but has equal rubberiness, start
to uidize at lower stress amplitudes. In full-fat cheese the rubberiness is reduced by
a factor of 15 compared to zero-fat cheese, as a result of strain localisation in the gel
caused by the emulsi�ed fat. Furthermore the meltability of full-fat cheese is a factor
of 2 higher over the range of T = 10 ○Cand T = 25 ○C, which is caused by the larger
temperature sensitivity of the shear modulus of fat compared to the gel phase.

Fluidisation of a soft-solid gel can be abrupt or gradual. We have visualised the
graduality of the solid-uid transition by plotting the magnitude of the intra-cycle
maximum in the elastic stress �′max(0) as a function of strain-amplitude. Zero-fat
cheese shows linear viscoelastic deformation over a broad range of strain-amplitudes,
followed by a pronounced peak in the elastic stress, which we de�ned as the failure
point of the gel. Failure in zero-fat cheese is followed by a rapid decline in the intra-
cycle maximum of the elastic stress �′max(0). Full-fat cheese displays viscoelasto-
plastic deformation at small strain-amplitudes and has a peak and subsequent decline



88 Chapter 3

in the elastic stress that is less pronounce. We have argued that the rate of decline in
�′max(0) is an indicator of the brittleness of the sample and that the magnitude of
the elastic stress at the failure point �′f is positively correlated to this rate of decline.
Therefore we propose to treat the magnitude of �′f as a predictive measure for the

brittleness B̂ measured in LAOStrain. We have argued that the proper antonym for
‘brittle’ is ‘smooth’ and that in between lies ‘crumbly’, for which material scientist use
the term ‘quasi-brittle’. We proposed that brittleness, crumbliness, and smoothness
are macroscopic observations of the characteristic length scale of cracks formed in the
food gel, at the point of ultimate failure. Our analysis shows that a high �rmness F̂ in
combination with high rubberiness R̂ will favour a large brittleness B̂ of the sample.

We elaborated on the onthological framework for LAOS developed by Ewoldt et al.
[58] to quantify the progression of damage and onset of ow in soft-solid gels. We
have de�ned two ratios based on tangent lines to the elastic and viscous LissaJous
curves, that probe the materials modulus and viscosity at zero and maximum strain
and strain-rate respectively. The �rst is the uidization ratio � which quanti�es the
extent and rate of uidization. The second is the rede�ned thickening ratiov � that
characterises the response of the resulting uid. Our measurements show that fat not
only increases the strength of the response functions of cheese to temperature and
shear, but also increases the level of complexity of the breakdown path. We provided
evidence that the progressive collapse of cheese microstructure is governed by two
parallel physical processes: crack nucleation and propagation. The emulsi�ed fat in-
creases the rate of crack nucleation, but decreases the rate of propagation. This results
in a reduction of the characteristic lengthscale of the fractures at ultimate failure of
the gel and thus an increased smoothness. Furthermore the two counteracting e�ects
give rise to an intermediate regime of ows of �lled gels fragments, prior to ultimate
failure. We argued that inter-particle surface to surface distance of the emulsi�ed
�ller is the structure parameter that controls the crack nucleation and propagation.

When removing fat from cheese, the texture pro�le is negatively a�ected. Our
LAOS-based de�nitions for �rmness, rubberiness, brittleness and uidization not only
quantify the de�cit in the texture pro�le, they also provide the structure parameters
that need to be changed to counter-act these de�cits. With our example of the refor-
mulation of semi-hard cheese, we have shown that we have augmented the capabilities
of LAOS as an analytical tool for structure-texture engineering of soft-solid food gels.
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Micromechanics of the
�rmness and rubberiness of

emulsion-�lled gels

Abstract

The uniaxial compresssion experiment is a standard test for the instrumented tex-
ture measurement in food reformulation studies. It is common practice to arbitrarily
choose compression rates, and to condense the resulting stress-strain curves into a se-
cant modulus and a peak stress. This practice does not provide the mechanism of col-
lapse of the food microstructure, whereas this knowledge is essential for e�ective food
reformulation without texture de�cits. Here we integrate uniaxial compression exper-
iments with macroscopic and microscopic modeling of the stress state of semi-hard
cheese under compressive loading. We quantify the compressive �rmness, meltability,
and rubberiness, of zero-fat and full-fat cheese and relate the observed variations to
di�erences in the under-pinning microstructure. We show that the large-strain, non-
linear viscoelastic stress response of zero-fat cheese is described by a two-parameter
constitutive model. We deploy the material properties of zero-fat cheese in compu-
tations on representative volume elements (RVE’s) of the microstructure of full-fat
cheese, i.e. a �lled gel. We show that fat plays a pivotal role in controlling the texture
and processing properties of semi-hard cheese. At storage temperature fat provides
the rigidity necessary for handling and slicing. The strong temperature-dependence of
the shear modulus of this �ller gives full-fat cheese the meltability that zero-fat cheese
lacks. Finally, dispersing fat in the gel reduces the rubberiness through mechanisms of
strain ampli�cation and local gel failure. Our hybrid computational-experimental ap-
proach to clarify structure-texture relations is generally applicable for the broad class
of emulsion-�lled food gels, and maximizes the output of the uniaxial compression

The contents of this chapter are based on: T.J. Faber, H.E.H. Meijer, G.H. McKinley, and L.C.A
Van Breemen. Micromechanics of the �rmness and rubberiness of emulsion-�lled gels. In preparation
for Journal of Rheology.
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Figure 4.1: A semi-hard cheese has to keep its shape when stored on a shelf, and fail
rapidly when squeezed or eaten. Put in terms of sensory texture attributes: it should
be �rm but lack rubberiness. Full fat cheese meets those requirements, whereas low-
fat cheese does not. In the present work we give a micromechanistic explanation for
these di�erences. (a) The �rmness and rubberiness of cheese is assessed using mouth
or hands. (b) In this chapter we quantify the �rmness and rubberiness of cheese, by
performing uniaxial compression experiments. We develop a structure-texture model,
using data from the monotonic compression experiment, and test the model on creep
experiments.

experiment. The method is used in the next chapter to reveal texture-morphology
relations and to derive guidelines for new, improved cheese designs and formulations.

4.1 Introduction

Raw material cost price and caloric content drive the need for continuous cheese
reformulation. This comes at the cost of reduced �rmness and increased rubberiness.
These two sensory texture attributes correlate well with intrinsic rheological material
properties, and have their origin in the cheese microstructure (Chapters 2 and 3 and
Faber et al. [60, 63]). Redesigning the microstructure may help to overcome texture
de�cits in reformulated food products. Such redesign requires rheological models that
relate food-texture properties to (underlying changes in) the microstructure. Here we
present such a model for semi-hard cheese, an emulsion-�lled gel, applying a two-scale
hybrid-experimental-computational approach.

The �rmness of a food material is de�ned as its resistance to deformation, and
rubberiness as its resistance to ow [63, 93]. The texture attributes can be assessed



Micromechanics of the �rmness and rubberiness of emulsion-�lled gels 91

0 0.2 0.4 0.6 0.8 1.0 1.2
0

1.0

2.0

comp. true  strain [�]

co
m

p.
 tr

ue
  s

tr
es

s 
[P

a]
x 105

T = 10 oC
�  = 10 �1  s�1

zero fat
full fat

.

(a)

0.2 0.4 0.6 0.8 1.0 1.2
0

1.0

2.0

comp. true  strain [�]

co
m

p.
 tr

ue
  s

tr
es

s 
[P

a]

x 105

T = 25 oC
�  = 10 �1  s�1

zero fat
full fat

.

0

(b)

0.2 0.4 0.6 0.8 1.0 1.2
0

1.0

2.0

comp. true  strain [�]

co
m

p.
 tr

ue
  s

tr
es

s 
[P

a]

x 105

T = 25 oC
�  = 10 �3  s�1

zero fat
full fat

.

0

(c)

Figure 4.2: Results of uniaxial compression experiments on samples of a zero-fat
cheese (blue) and full-fat cheese (red), under three di�erent conditions: a temperature
of T = 10 ○C (a) and (b,c) T = 25 ○C and at strain rates of (a,b) _" = 10−1 s−1, and
(c) _" = 10−3 s−1. It is common practice to condense data in an initial secant modulus
(slope of the dashed lines), and a fracture stress (stress at the crossess) for further
analysis. Such practice does not give any clues on structure-texture relations. Note
the strong temperature-dependence in the response of full-fat cheese, (a) vs (b), and
the strong rate-dependence of zero-fat cheese, (b) vs (c) and the swaps in the order
of ranking of the magnitude of the secant modulus from (a) to (c).

using mouth, or hands, or be measured in a rheological experiment (Fig. 4.1(a)). In
Chapters 2 and 3 we developed measures for �rmness and rubberiness, measured in
simple shear, using either a creep-recovery experiment (Chapter 2 and Faber et al.
[60]) or Large Amplitude Oscillatory Shear for quanti�cation (Chapter 3 and Faber
et al. [63]). However, the uniaxial compression experiment, depicted in Fig. 4.1(b),
better mimics the manipulation of squeezing and depressing involved in the texture
assessment by hand. There are two main modes of uniaxial compressive loading:
either monotonically increasing the strain ", or imposing a step in the stress � (creep).

The monotonic compression experiment is mostly used in the instrumented texture
measurement of solid food materials. [70, 78, 189]. It is common practice to arbitrarily
chose a strain rate and measurement temperature. And when analyzing the data, the
stress-strain response of the material is often condensed in an initial secant modulus
E0,

E0 =
�

"
∣
"=0:01

; (4.1)

and a peak stress or fracture stress �f ,

�f = max�: (4.2)

Subsequently the two descriptors for the stress-strain curve are statistically correlated
to quantitative texture pro�les coming from panel tests [51]. One of the results of this
method is that both secant modulus and fracture stress are reported to correlate well
to the texture attribute �rmness. On the basis of the correlation, structure-texture
relations are drawn.
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In Fig. 4.2 we demonstrate that the practice described above has serious aws.
We show the stress-strain curves of two formulations of a semi-hard cheese, zero-fat
cheese (blue), and full-fat cheese (red), generated under three di�erent measurement
conditions: (a) a temperature of T = 10 ○C and a strain rate of _" = 10−1 s−1, (b)
an increase in temperature from T = 10 ○C to T = 25 ○C, and (c) a reduction in
the strain rate from _" = 10−1 s−1to _" = 10−3 s−1. Fig. 4.2(a) shows a secant modulus
of full-fat cheese that is larger than the secant modulus of zero-fat cheese, whereas
the fracture stress is identical for both cheese types. Fig. 4.2(b) shows a strong
temperature-dependent stress response for full-fat cheese. As a result, the order of
ranking of moduli is reversed. The fracture stress is clearly lower. In Fig. 4.2(c)
we observe a strong rate-dependent stress response for zero-fat cheese and, with the
range of strain amplitude chosen, we don’t observe any failure. The peak stress is
therefore the stress at the end of the experiment. These examples show that ranking
of two cheese types on �rmness based on compression data depends strongly on either
the measure or measurement conditions chosen. A single measurement per cheese
type and condensation of the curve in two geometrically de�ned parameters, will not
generate the information required to establish structure-texture relations.

From a rheological perspective the plots in Fig. 4.2(a) show a number of intrigu-
ing material responses. We observe a strong temperature-dependent stress response
for full-fat cheese, a strong rate-dependent stress response for zero-fat cheese and a
rate- and composition-dependent failure mechanism. In this chapter we show how
to establish structure-texture relations for cheese from these observation. We com-
bine the hybrid-experimental-computational approach to unravel structure-property
relations of solid polymers, developed in the Polymer Technology group of the TU
Eindhoven, with the rheological measures for �rmness F and rubberiness R de�ned
in Chapters 2 and 3 and Faber et al. [60, 63]. In the next section we outline our
modeling approach in more detail. We derive a macroscopic constitutive model for
the monotonic uniaxial compression of cheese, which we subsequently use to measure
the �rmness and rubberiness of full-fat cheese and zero-fat cheese in compression. We
explain the di�erence in F and R of the two formulations, using a micromechanical
model for compressed full-fat cheese, based on Finite Element Analyses. We conclude
with validating the modeling approach by predicting the response of full-fat cheese in
shear creep and compressive creep.

4.2 Modeling approach

Fig. 4.3 shows a graphical abstract of our approach to building a structure-texture
model for cheese. The model is based on rheological principles combining experiments
and computations on two length scales. The model relates the magnitudes of the
texture attributes �rmness F , and rubberiness R, to the structure and composition
of cheese, and the conditions under which F and R are measured. We de�ne �rmness
as a resistance to deformation, and treat it as a viscoelastic property. We de�ne
rubberiness as a resistance to ow, and treat it as a property that quanti�es the load
a food material can bare without departing from the viscoelastic regime.
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Figure 4.3: Graphical abstract of the steps in our two-scale, hybrid-computational
experimental modeling approach. 1) We use the data from zero fat cheese to develop
a macroscopic non-linear viscoelastic constitutive model for the monotonic uniaxial
compression of cheese. 2) We use the macromodel to develop quantitative measures for
the compressive �rmness and rubberiness of cheese of any composition. 3) We use the
material properties of zero-fat cheese in computations on loaded representative volume
elements (RVE’s) of the microstructure of full-fat cheese, the micromodel. 4) We give
a micromechanistic explanation for the observed di�erences in the macroscopic stress
response of full-fat and zero-fat cheese using our micromodel.

In step 1 we derive a constitutive model for the macroscopic stress response
of semi-hard cheese under monotonic uniaxial compression. In the text we refer to
this model as the macromodel. We only consider non-linear viscoelastic responses,
and leave plastic deformation or damage evolution out of the macroscopic material
description. The stress response is described with only two material parameters: a
power-law exponent that quanti�es the temporal response, and a factor that quanti�es
the scale of the stress in the material. For the model development we use rheological
data from uniaxial monotonic compression, and Small Strain Amplitude Oscillatory
Shear experiments.

In step 2 we use the macromodel to derive an expression for the compressive
�rmness of cheese. We quantify the attribute in terms of the material properties
and the compressive strain rate _". We quantify the compressive rubberiness from the
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strain " at which model and measurement diverge and the material starts to show a
viscoelastoplastic response. Both methods of translating assessable texture attributes
in measurable rheological properties have been applied previously in shear (Chapter
2 and Faber et al. [60], and Chapter 3 and Faber et al. [63], respectively). We use the
quantitative measures for the compressive �rmness F and rubberiness R to establish
the texture gap between zero-fat and full-fat cheese, and to quantify the temperature-
composition-dependence of F and R. This quantitative information forms the basis
of the validation of the micromechanical model we develop next.

In step 3 we model the response of the microstructure of full-fat cheese, subjected
to uniaxial compression. We refer to this model in the text as the micromodel. Full-
fat cheese is modeled as an emulsion-�lled gel in which the material description of
the gel phase is given by the non-linear viscoelastic material model of zero-fat cheese
derived in step 1. The local stress and strain states of the deformed microstructure are
computed using Finite Element Analyses. We relate the evolution and distribution
of local stress and strains to, �rst, the macroscopic stress response and, second, the
magnitudes of the �rmness and rubberiness of full-fat cheese.

From this analysis we arrive at step 4, where we deduct the micro-scale mecha-
nisms that are responsible for the di�erences in �rmness and rubberiness of full-fat
and zero-fat cheese.

4.3 Materials and Methods

4.3.1 Cheese composition

Foil-ripened Gouda rectangular cheeses (500 × 300 × 100 mm) were acquired at an
age of 3-14 days and kept at 5○C to minimize compositional changes due to pro-
tein breakdown or (de-)solubilization of minerals [109, 140] . Fat content was varied
by using cheese from three fat classes: zero-fat (≈ 0% fat in dry matter, �dm), low
fat (≈ 20% �dm) and full-fat (≈ 48% �dm). The cheese was analyzed for composi-
tion according to international standards, the standard is speci�ed in brackets: pH
(NEN 3775, Netherlands Normalization Institute), l-lactic acid (ISO 8069, Interna-
tional Standard Organisation), protein (through total nitrogen / soluble nitrogen /
anhydrous nitrogen fractions [205]), ash (Association of O�cial Analytical Chemists
930.30), calcium (insoluble calcium phosphate, AOAC 984.27), lactose (ISO 5762-2),
water (=100-total solids (ISO 5534)), fat (ISO 1735) and chloride (ISO 5943). Weight
fractions of protein, water and fat were converted to volume fractions according to the
procedure outlined by Yang et al. [213] taking the temperature-dependent densities
of these main cheese constituents from Sahin and Sumnu [157].

4.3.2 Compression

Bars with dimensions of 40×40×25 mm were cut from the core of a cheese block using
a knife and wire cuttter. Subsequently, cylindrical samples with a height and diameter
of 25 mm were cut from a bar, using a borer attached to a cutting press, while the
bar was enclosed from 5 sides. To eliminate friction, the borer was designed such
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that contact area between sample and borer was minimal, and the inside and outside
surface area of the borer was lubricated with silicon oil. The cylindrical samples
were covered with vaseline, and stored in plastic tubes together with a hydrated
cotton to prevent drying during storage and measurement. Samples were stored at
T = 10 ○C, and left to equilibrate to the measurement temperature for one hour
prior to measuring. Compression experiments were performed using a Zwick-Roell
Proline Z010 universal testing machine (Zwick Testing Machines Ltd), extended with
a climate chamber. Prior to the tests, the platens of the probe were lubricated with
silicon oil to eliminate friction between the specimen and the platen [28].

Uniaxial monotonic compression Experiments were performed at strain rates
of _" = 10−1 s−1, 10−2 s−1, and 10−3 s−1, and a temperature of T = 10 ○C and T =25 ○C,
respectively. From the force-displacement data, true stress �, and true strain ", were
calculated assuming incompressibility of the material [77].

Uniaxial creep compression A step stress was imposed on the test specimen of
�0 = 20 kPa and held at this value for t = 1000 s at �xed measuring temperatures of
T = 25 ○Cwhile measuring the resulting strain "(t).

4.3.3 Tension

Slabs with dimensions of 200×100×5 mm were cut from a cheese block using a knife
and a wire cutter. A tensile bar was cut from the slab, using a cutting press to which
a punch was attached. The dimensions of the punched test specimen were derived
from the ASTM D 638 03 standard, using the Type III specimen dimensions. The
tensile bars had a gauge length 110 mm, a width of the narrow section of 19 mm,
and a thickness of 5 mm. While cutting, the bar was single notched in accordance
with standards ASTM D 256, with a radius of the notch root of 0.25 mm, and a
notch angle of 45○. The width of the tensile bar at the tip of the notch was 12 mm.
The cutting procedure was designed such that the location from which the tensile
bar was cut, was furthest from the rind and closest to the core of the cheese. Slabs
were left to rest in a cooling chamber wrapped in plastic foil, and covered on the two
large sides with a light-weight, rigid plastic cover sheet, to avoid drying, wrinkling,
and fracture of the sample prior to the tensile test. The wrapped samples were
stored in a cooling chamber at T = 10 ○C for at least one hour, to equilibrate to the
measurement temperature, and to assure relaxation of the stress in the sample that
accumulated from handling. Uniaxial tensile tests were performed at constant strain
rate on a Texture Analyser TA-XT plus (Stable Micro Systems LTD, Surrey, UK),
placed in a climate chamber. From the force-displacement data the engineering stress
�, and stretch ratio � were calculated. Experiments were performed at a strain rate
of _" = 10−1s−1 and _" = 10−2 s−1 at a temperature of T = 10 ○C.
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4.3.4 Shear rheology

Cheese slices of approximately 60× 60× 2:5 mm3 were cut from a block coming from
the core of the cheese using a knife and wire cutter. From each cheese slice, three
discs of 25 mm diameter were punched for plate-plate rheometry. Measurements were
performed with a Physica MCR501 Rheometer (Anton Paar, Austria) with a parallel
plate geometry. To prevent slip, sandblasted upper and lower plates are used. The
temperature of the lower plate was controlled with a Peltier stage, the upper plate and
cheese environment were thermally controlled with a cap hood. The upper plate was
lowered with a speed of 25 µm/min until a normal force of 1 N (4 kPa) was reached.
The gap width was recorded at that point and decreased by an extra 2% while keeping
the normal force constant at 1 N to ensure full contact with the cheese. Gap settings
were then switched from �xed normal force to �xed gap width. No signi�cant e�ect
of normal pressure on storage and loss modulus was found in the range of 0.5-20 kPa.
After loading the sample between the two parallel plates it was heated at a heating
rate of 0.5○C per minute until the desired temperature was reached. The exposed
surface area of the sample was covered with sunower oil to minimize sample drying
during the experiment. A maximum weight loss of 0.5 w/w% was recorded.

Storage and Loss Modulus (G′(!), G′′(!)) Frequency sweeps were performed
at a strain amplitude 0 = 0:1%, which lies within the linear viscoelastic regime for
all samples. The frequency was decreased logarithmically from ! = 100 Hz to ! = 0:1
Hz at �xed measuring temperatures of either T = 10 ○C or T = 25○C.

Creep compliance (J(t)) A step stress was imposed on the test specimen of �0 =

1000 Pa and held at this value for t = 100 s at a �xed measuring temperature of
T = 25○C, while measuring the resulting strain (t).

4.3.5 Confocal Scanning Laser Microscopy (CSLM)

A Leica inverted CSLM (TCS SP2, DM IRE2) was used in the experiments. The
water/protein phase was stained with uorescent isothiocyanate (FITC) and the fat
phase with nile red (0.1%/0.01%). Staining occurred by placing a sample of approxi-
mately 1×5×5 mm3 in a solution of the dyes in a glycerol / water / polyethyleneglycol
(PEG) (45/5/50%) mixture for 30 minutes. All cheese manipulations (cutting and
staining) were done at 8○C in the cold room to prevent fat melting. Stained cheese
was transported to the confocal microscope in a Petri dish placed in a polystyrene
foam box containing a frozen ice pack isolated by rubber foam. Image acquisition
was done below 15○C using a conditioned air ow. Single 2D images were obtained
from the internal structure imaging at about 10 µm below the surface generated with
a razor blade. The size frame of all images was 119:05 ×119:05 µm2 (1024 × 1024
pixels) obtained with a water immersion objective (63×, zoom 2, NA = 1:2). Baseline
adjustment and auto-dye-�nding were applied to all images acquired using LEICA
Confocal Software (LCS).
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4.4 Results

4.4.1 Macromodel

Our aim is to develop a constitutive model describing the macroscopic stress-response
of a semi-hard cheese of any composition under monotonic uniaxial compression. We
refer to the macroscopic constitutive model as the macromodel, and it serves two
purposes; �rst we use it to quantify the �rmness F and rubberiness R of cheese mea-
sured in compression (Section 4.4.2). In Chapters 2 and 3 we have shown that to this
end a viscoelastic constitutive model su�ces, [60, 63]. Second we use the magnitudes
of the material properties of zero-fat cheese in Finite Element Analyses (FEA) of a
micromechanical model of full-fat cheese under uniaxial compression (Section 4.4.3).
We refer to the micromechanical model as the micromodel.

Multi-mode Zener model

In solid mechanics it is common practice to construct a constitutive model from
mechanical analogues. In Chapter 2, Faber et al. [60], we have shown that the spring-
pot, [97], depicted as an inset in Fig. 4.4(a), e�ectively describes the viscoelastic
response of cheese in shear. The spring-pot is the mechanical analogue of the Scott
Blair (SB-)model which constitutive equation is given by

�spingpot = G
d�

dt�
(4.3)

The equation contains a fractional derivative and two material properties: a frac-
tional exponent �, quantifying the frequency and temporal response of the material,
and a ‘quasi-property’ G, which interpolates between a shear modulus G and a shear
viscosity � and quanti�es the scale of the stress in the material. The magnitudes of
the two material properties are obtained from linear viscoelastic material functions
(Chapter 2 and Faber et al. [60]). The equation for the storage and loss moduli
{G′(!);G′′(!)} is given by [89]

:
G′

(!) = G!� cos (��/2)

G′′
(!) = G!� sin (��/2)

(4.4)

In Fig. 4.4(a) we show the �t of the Scott Blair model for G′(!) and G′′(!) (lines)
using the data of a Small Strain Oscillatory Shear (SAOS-) experiment of zero-fat
cheese at T = 25 ○C (blue squares). The Scott Blair model captures the typical
power-law behaviour of a critical gel [209]: a line of constant slope on a log-log plot
over a wide range of frequencies for both the storage and loss modulus, with both
curves nearly parallel. We extrapolate the �t to frequencies ! beyond and below the
range of measurements, to the extent that the model describes the material functions
over a range of frequencies of != 10−3 − 103 rad s−1. The extrapolation is necessary
as we are interested in both the short-term and long-term response of cheese under
uniaxial compression, with true compressive strain rates varying from _" = 10−1 s−1 to
_" = 10−3 s−1.
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Figure 4.4: (a) Magnitudes of the storage and loss moduli {G′(!);G′′(!)} of zero-
fat cheese (blue) at T = 25 ○C. The black lines represent a �t and extrapolation of the
two-parameter Scott Blair model, which is pictorially respresented by a spring-pot,
see inset. (b) In order to implement the material properties of zero-fat cheese in
Finite Element Analysis, we need to convert the two-parameter Scott Blair model to
the twelve-parameter multi-mode Maxwell (MM-)model, see inset for the mechanical
analogue. Through the six-mode Maxwell model, the relaxation of zero-fat cheese
is described by six pairs of spring- and time-constants (circles). The magnitude of
the slope d logGi/d log �i

−1 is equal to the magnitude of the fractional exponent � of
the Scott Blair model. Summation of the spring-constants ∑

i=6
i=1Gi of the MM model

replaces the function of the stress-scale factor G in the SB model. The prediction
of (b) the MM model approximates the �t and extrapolation of (a) the SB model,
and in this chapter we treat the six-mode Maxwell model as an approximation of the
two-parameter SB model.

For the implementation of the Scott Blair model in Finite Element Analyses of
our micromodel (Section 4.4.3), we need to approximate the power-law response with
a multi-mode Maxwell model (MM). The mechanical analogue of the Maxwell model,
the Maxwell element, is a spring and dashpot in series. The mechanical analogue
of the multi-mode Maxwell model consists of n Maxwell elements or ‘modes’ placed
in parallel (inset in Fig. 4.4(b)). In the multi-mode Maxwell model the scale of the
stress in the material is quanti�ed by the summation of the magnitudes of the spring-
constants ∑

i=n
i=1 Gi. The temporal response is prescribed by the ratio of the magnitudes

of the spring-constants and shear viscosities �i,

�i =
Gi
�i

(4.5)

where �i is the time-constant of mode i. The expression for the storage and the loss
moduli of the multi-mode Maxwell model are given by [64]
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G′
(!) =

i=n

∑
i=1

Gi
!2�2

i

1 + !2�2
i

G′′
(!) =

i=n

∑
i=1

Gi
!�i

1 + !2�2
i

(4.6)

We �t Eq. (4.6) to the Scott Blair description of the storage and the loss moduli
of zero-fat cheese depicted in Fig. 4.4(a)), to obtain values for the sets {Gi; �i}. We
apply constraints of equidistant time-constants and approximately one time-constant
per decade of frequency !. The resulting magnitudes of the sets {Gi;1/�i} are plotted
as circles in Fig. 4.4(b)) and show that twelve parameters are required to describe
the power-law relaxation over a range of frequencies of != 10−3 − 103 rad s−1. The
magnitude of the slope of logGi vs log 1/�i in Fig. 4.4(b) quanti�es the temporal
response, and equals the fractional exponent �.

Conversion of the Scott Blair model to the multi-mode Maxwell model approxi-
mation expands the number of viscoelastic material parameters of cheese from two to
twelve over the frequency range of != 10−3 − 103 rad s−1. Furthermore the accuracy
of the zero-fat cheese model decreases: the prediction of the storage and loss moduli
{G′(!);G′′(!)} of the multi-mode Maxwell model in Fig. 4.4(b) oscillates around the
�t and extrapolation of the Scott Blair model in Fig. 4.4(a). However for the purpose
of developing a structure-property model, the accuracy of the multi-mode Maxwell
approximation su�ces. Furthermore we will treat the twelve material properties of
the six-mode multi-Maxwell model as if they where two: a stress-scale factor, ∑

i=6
i=1Gi;

and a power-law exponent, � = −d logGi/d log �i:
We derive the expression of the stress response of the multi-mode Maxwell model

under monotonic uniaxial compression, by starting with the Boltzmann integral [64]:

�(t) =

t

∫
−∞

G(t − t′) _(t′)dt′ (4.7)

where t′ is the past time variable running from −∞ to time t, t−t′ is the elapsed time,
_(t) is the strain rate, and G(t−t′) the relaxation modulus. For the latter variable we
substitute the expression of the relaxation modulus of the six-mode Maxwell model:

G(t − t′) =
n=6

∑
i=1

Gie
−

t

�i (4.8)

Solving Eq. (4.7) and Eq. (4.8) for a step in the strain-rate _(t) = _0H(t), where H(t)
is the Heaviside step function [1], gives

�(t) = _
n

∑
i=1

�i

⎛
⎜
⎜
⎝

1 − e
−

t

�i
⎞
⎟
⎟
⎠

(4.9)
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Figure 4.5: Measurement, model �t and prediction of the stress response of zero-fat
cheese (blue) at a temperature of T = 25 ○C, under uniaxial monotonic compression.
(a) At a strain rate of _" = 10−1 s−1, the six-mode Maxwell model (green) under-
predicts the stress. Therefore we add a neo-Hookean spring (red) in parallel to the six
Maxwell elements (see inset). This results in the 6-mode Zener (MZ-)model (black).
(b) Whereas the measurements (blue) show a strong rate-dependency of the stress-
response, the MZ-model of zero-fat cheese is a weak function of the the strain rate _".
Furthermore the model does not correctly predict the location of the inection point
in the stress-strain curve of zero-fat cheese.

We convert Eq. (4.9) to an expression for unaxial compression in two steps. First we
replace the shear viscosities �i by an extensional viscosity �+i using

�+i = 2(1 + �)Gi�i (4.10)

We assume the material to be incompressible, which implies a magnitude of the
Possoins ratio � = 0:5. Second we replace the shear strain rate _(t) by a compressive
strain rate _", and substitute the time t by the relation

t =
"

_"
(4.11)

where " is the true compressive strain. The expression for monotonic uniaxial com-
pression for the six-mode Maxwell model then becomes

�MM("; _") = _"
n=6

∑
i=1

�+i (1 − e
−
"

_"�i ) (4.12)

In Fig. 4.5(a) we show the prediction of the multi-mode Maxwell model in green,
using the magnitudes for the spring- and time-constants from Fig. 4.4(b). The cor-
responding measured stress response of zero-fat cheese is depicted in blue. The MM
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model under-predicts the stress for all strains. Furthermore the measurements dis-
play an inection-point in the stress-strain curve at a strain "≈ 0:2, whereas the model
predicts no inection-point at all. To account for these two short-comings, we expand
the mechanical analogue of the cheese material model by adding a spring in parallel.
The spring represents Hooke’s law which states that the stress in a material is linear
proportional to the strain

� = G (4.13)

The model expansion results in the ‘multi-mode Zener’ model (MZ), and one addi-
tional material parameter, the stress scale factor G. The mechanical analogue of the
single-mode Zener model consists of a spring in parallel with a Maxwell element and
is referred to as the standard linear solid model. As we treat the six-mode Maxwell
model description of zero-fat cheese to as an approximation of the Scott Blair model,
the corresponding six-mode Zener model is an approximation of the Fractional Zener
model [115], which contains three material parameters, G, �, and G.

For uniaxial extension of incompressible materials Hooke’s law takes the neo-
Hookean (NH) form

� = G(�2
− �−1

) (4.14)

where �(t) = h(t)/h0 is the stretch ratio, with h and h0 the height of the deformed
and undeformed sample respectively. The stretch ratio is related to the true strain "
by

� = e−" (4.15)

Substituting Eq. (4.15) in Eq. (4.14), and using positive values for the compressive
strain and stress gives

�NH = �(") = G(e−" − e−2"
) (4.16)

Equation (4.16) shows that the stress � in the neo-Hookean spring, is a non-linear
function of the strain �. The multi-mode Zener model for the stress response for
cheese under compression is thus a non-linear viscoelastic model.

We distract the prediction of the multi-mode Maxwell model (green in Fig. 4.5(b))
from the measured stress response (blue), which gives a residual stress

�residual = �measurement − �MM (4.17)

We obtain the magnitude of G by �tting Eq. (4.16) on the residual stress while
applying the constraint �NH < �residual: This yields a value of G = 30 kPa for the
shear modulus G of the neo-Hookean model and the �t result is depicted by the red
curve Fig. 4.5(a). As the spring is placed in parallel with the mechanical analogue of
the multi-model Mawell, we add the stress-contributions of the two models to obtain
the stress response of the multi-mode Zener model

�MZ = �MM + �NH (4.18)

At a strain-rate of _" = 10−1 s−1, the MZ model under-predicts the stress at large strains
only. The model also predicts an inection point in the stress-strain curve. However,
this point is located at a strain of " ≈ 0:5, where we measure an inection strain of "



102 Chapter 4

10
�3

10
�2

10
�1

10
0

10
1

10
2

10
3

10
�2

10
�1

10
0

time constants, �
i
 [s]

no
rm

al
is

ed
 m

od
ul

i, 
g

i [�
]

{g
i
,�

i
}

guide to the eye

���E

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

�  = 10�1  s�1

�  = 10�2  s�1

zero fat
fit
zero fat
prediction

comp. true  strain, �  [Pa]

co
m

p.
 tr

ue
  s

tr
es

s,
 �

 [P
a]

x 105

.

.

(b)

Figure 4.6: Improvement of the model description of zero-fat cheese through time-
strain factorization (TSF). (a) Normalization of the modes of the six-mode Maxwell
model from Fig. 4.4(b). The resulting six sets of moduli and time-constants, {gi; �i},
quantify the temporal response through, d log gi/d log �i = − �. The twelve model
parameters e�ectively represent one material property. In our improved macromodel
of zero-fat cheese, the normalized Maxwell model is multiplied by a non-linear stress-
scale factor that arises from the neo-Hookean model. (b) Fit and prediction of the
resulting, non-linear viscoelastic macromodel for zero-fat cheese (blue) at T = 25
○C. The model correctly predicts the rate-dependency of the stress response and the
location of the inection point in the stress-strain curve.

≈ 0:2. In Fig. 4.5(b) we further evaluate the quality of the model by comparing the
prediction of the stress response at a strain rate of _" = 10−2 s−1(black dashed line)
against the corresponding measurement (blue dashed line). The quality of the model
prediction is unsatisfactory, and shows almost no rate-dependency of the stress.

For rubber-like materials, it is standard practice to improve the prediction of
the stress-response at large strains by deploying a hyper-elastic function [113], which
involves the addition of an additional elastic material parameter, like the second term
in the two-term Mooney-Rivlin model. Such a model expansion potentially improves
the prediction of the inection point in the stress-strain curve also. However, tuning
our macromodel through the expansion of the elastic part of the stress response,
does not improve the rate-dependency of the prediction. Instead we will apply time-
strain factorization, using the same multi-mode Maxwell and neo-Hookean model
components.
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Time-strain factorization

The general notation for time-strain factorization (TSF) is given by

� = g(t)f(") (4.19)

which shows that TSF comprises the multiplication of a time-dependent relaxation
function g(t) with a strain-dependent function f("). We take the two parts of the
six-mode Zener model developed in the previous section, and subsitute the multi-
mode Maxwell model, Eq. (4.12), for g(t), and the neo-Hookean model, Eq. (4.16),
for f("). The multiplication of the stress-response of the two models requires us to
cancel out the stress-scale factor in the multi-mode Maxwell model. This is achieved
by normalizing the spring constants Gi through

gi =
Gi

i=n

∑
i=1

Gi

(4.20)

which gives ∑
i=n
i=1 gi = 1: The corresponding normalized relaxation function g(t − t′)

for the multi-mode Maxwell model is given by

g(t − t′) =
i=n

∑
i=1

gie
−

t

�i (4.21)

In Fig. 4.6(a) we have plotted the sets {gi; �i} that result from normalization of the
six modes describing the relaxation of zero-fat cheese in Fig. 4.4(b). The magnitude
of the slope of log gi vs − log �i is equal to the magnitude of the fractional exponent
�; the twelve parameters of the normalized six-mode Maxwell thus only prescribe the
rate of relaxation, � ∝ t−� , and e�ectively represent one material property.

To derive an expression for monotonic uniaxial compression using the principle of
time-strain factorization we reformulate the Boltzmann equation to

�(t) =

t

∫
0

g(t − t′)
df(")

dt′
dt′ (4.22)

Substituting Eq. (4.21) for g(t − t′), Eq. (4.16) for f(") and subsequently solving
the integral in Eq. (4.22) for a step in the compressive strain rate _" gives

�("; _") = 2 _"
n

∑
i=1
gie

−
"

_"�i

⎛

⎝

G�i
1+2 _"�i

[e2" − e
−
"

_"�i ] +
G�i

1− _"�i
[e−" − e

−
"

_"�i ]

⎞

⎠

(4.23)

where the time t is replaced by t = "
_"
: Equation (4.23) is a non-linear viscoelastic de-

scription of the stress-response of cheese in uniaxial compression, using e�ectively two
material parameters. A power-law exponent, which quanti�es the temporal response
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and is approximated by the six sets of {gi; �i}, and a stress-scale factor G. From here
we refer to Eq. (4.23) as the macromodel.

Fig. 4.6(b) shows the macromodel �t and prediction using the same experimental
data as in Fig. 4.5(b). For the normalized spring-constants and time-constants we
substituted the magnitudes plotted in Fig. 4.6(a). The magnitude of G is obtained by
�tting Eq. (4.23) to the compression curve of zero-fat cheeseat a strain rate of _" = 10−1

s−1. The �t result is denoted by the black solid line in Fig. 4.6(b). The stress-response
is correctly described up till a strain of " ≈ 0:6. The model also predicts the inection
point at " ≈ 0:2. Further proof for the high quality of the model is obtained from
the accurate prediction of the stress response at a strain rate of _" = 10−2 s−1 (dashed
black line).

Thus with respect to the multi-mode Zener model, the number of e�ective ma-
terial parameters in macromodel is reduced from 3 to 2, the prediction of the rate-
dependency is signi�cantly improved, and the prediction of the inection point in
the stress-strain curve is correct. Our non-linear viscoelastic macromodel for cheese
under compression over-predicts the stress at large strains. This corresponds to what
we observed in Chapter 3, Faber et al. [63], where we compared the prediction of a
viscoelastic model to the measured stress-response in Large Amplitude Oscillatory
Shear. We ascribed the model over-prediction to progression of damage in the ma-
terial which results in loss of elasticitiy and ultimately leads to failure. We are thus
now able to locate the damage- or yield-point in a monotonic uniaxial compression
experiment. In the next section we will use the macromodel to develop a measure for
the compressive �rmness and rubberiness of cheese.

4.4.2 Compressive �rmness and rubberiness

Firmness

Jowitt [93] de�nes the �rmness of food materials as a ‘high resistance to deformation’.
The initial secant modulus de�ned in Eq. (4.1) in Section 4.1, is also referred to as the
modulus of deformation [78], and is thus an appropriate measure for the compressive
�rmness F :

F ≡ E0 =
�

"
∣
"=0:01

(4.24)

which has units of Pa. When we substitute the de�nition for the �rmness, Eq. (4.24),
in the macromodel, Eq. (4.23), we get

F ( _") = 200 _"
n

∑
i=1
gie

−
0:01
_"�i

⎛

⎝

G�i
1+2 _"�i

[e0:02 − e
−

0:01
_"�i ] +

G�i
1− _"�i

[e−0:01 − e
−

0:01
_"�i ]

⎞

⎠

(4.25)

for the expression of the �rmness F , in terms of intrinsic material properties. In
Fig. 4.7 we show the prediction of F for full-fat cheese at T = 10 ○C and T = 25 ○C
as a function of the strain rate _". The corresponding measurements at three strain
rates of _" = 10−1 s−1, _" = 10−2 s−1, and _" = 10−3 s−1 are plotted as red symbols. The
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Figure 4.7: Plot of the measured (red) and predicted �rmness (black, Eq. (4.25)) of
full-fat cheese at a temperature of T = 10 ○Cand T = 25 ○C. The rate-dependency of
the �rmness is quanti�ed by the exponent �.

material parameters for full-fat cheese are obtained following the procedure outlined
in the previous section; the six sets of normalized moduli and time-constants {gi; �i},
describing the exponentially decaying rate of stress relaxation in full-fat cheese, are
obtained from a Small Amplitude Oscillatory Shear experiment; a uniaxial monotonic
compression experiment at a strain rate of _" = 10−1 s−1 provides the magnitude of the
stress scale-factor G.

The model prediction of the �rmness F , Eq. (4.25), coincides with the measure-
ments. The slight up-and-down curvature of the model, is the result of the approxi-
mation of the Scott Blair model by means of only a six-mode Maxwell model. From
Fig. 4.7 we can conclude that the compressive �rmness is a viscoelastic property, where
the rate-dependency (or time-dependency) is described by a power-law, with expo-
nent �. The scale of the stress in the material is determined by a single stress-scale
factor. These �ndings agree with our previously introduced description for cheese
�rmness measured in shear creep (Chapters 2 and 3 and Faber et al. [60, 63]). Both
model and measurements show a decrease in �rmness by a factor of 3, when raising
the temperature from T = 10 ○C to T = 25 ○C. In Chapter 2, Faber et al. [63], we
de�ned the temperature-induced decrease in �rmness as ’meltability’. The meltability
measured in compression in Fig. 4.7, is of the same order of magnitude as previously
measured in shear.

Rubberiness

In Chapter 3, Faber et al. [63], we de�ned the rubberiness R of soft-solid gels as ’the
resistance to ow’. We argued that the yield strain is a proper measure to quantify
this resistance, and therefore the proper measure for the compressive rubberiness is
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Figure 4.8: Locating the yield-point. Stress-strain curves (solid lines) and plots
of the strain dependent tangent modulus E′(dashed lines), of zero-fat cheese (blue)
and full-fat cheese (red) at T = 25 ○C (blue solid line) and a compressive strain rate
_" = 10−1 s−1. (a) The measured curve of E′ (blue dashed line) reveals �ve landmarks
in the stress-strain response, denoted by the �ve di�erent �lled and hollow symbols
respectively, and de�ned and visualized in images (i)-(v). The yield-point is marked
by the diamond-shaped symbol, which represents both the point where model and
measurement start to diverge, as well as the inection point in the curve of the
measured tangent modulus E′. (b) For full fat cheese the yield-point is not found by
locating the inection point (red �lled diamond), but by identifying the point where
the model starts over-predicting the stress response (red open diamond).

R ≡ "y; (4.26)

which has dimensionless units and where "y is the yield strain measured in com-
pression. The stress-strain curves of semi-hard cheese under uniaxial monotonic com-
pression show a clear failure point, �f = max (�); however unlike for polymers, they
do not reveal a clear yield-point of the material. In Chapter 3, Faber et al. [63],
we de�ned the yield-point as the point where the material response changes from
viscoelastic to viscoelastoplastic, and we used a viscoelastic constitutive model de-
scription of cheese loaded in shear, to identify this transition. We follow the same
procedure to locate the compressive yield-point "y.
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In Fig. 4.8 we show the measured (blue) and modeled (black) stress-strain curves
of (a) zero-fat cheese at T = 25 ○C. The blue and black dashed lines are plots of the
measured and predicted strain-dependent tangent modulus E′ respectively, which is
de�ned by

E′
(") =

d�

d"
∣
"

(4.27)

The measured tangent modulus reveals �ve landmarks in the stress-strain response,
denoted by the �ve di�erent �lled symbols. The landmarks are mapped onto the
stress-strain curve using corresponding hollow symbols, and described and visualized
in images (i) - (v). The plot of the modulus E′ predicted by the viscoelastic macro
model, Eq. (4.23), (black dashed line) coincides with three of the �ve landmarks: (i)
the maximum (triangle), (ii) the local minimum (square), and (iii) the inection
point (diamond). The viscoelastic regime is thus demarcated by point (i) and point
(iii). Between point (i) and (ii) the time-dependent part g(t) of the macromodel
dominates the stress response and the magnitude of E′ declines. From point (ii)
onwards, the strain-dependent function f(") dominates the model stress response.
The non-linearity of the function f("), as described in Eq. (4.16), causes the model
tangent modulus E′ to increase unbound with increasing strain.

The inection point in the measured tangent modulus point (iii), anounces the
failure of the zero-fat cheese. Beyond this point the model prediction of E′ (black)
diverges from the measurement (blue) and the vertical distance between model and
measurement is a measure of the progression of damage and loss of elasticity in the
sample (Chapter 3 and Faber et al. [60]). As a result of the damage accumulation,
the measured tangent modulus goes through a maximum at point (iv), and decreases
to zero at the failure point (v).

From the analysis above we deduct two criteria for identi�cation of the yield strain
"y:

criterion (1): �model > �experiment; (4.28)

to locate the strain where the macromodel starts to over predict the stress, and

criterion (2):
dE′

measured

d"
=
d2�measured

d"2
= 0; (4.29)

to locate the strain at the inection point in the curve of the measured tangent
modulus E′.

For zero-fat cheese the two criteria above are interchangeable and give equal results
for the yield strain and thus rubberiness, R. Fig. 4.8(b) shows that application of the
two criteria to full-fat cheese, however, gives two unequal results for the yield strain.
Criterion (1) results in a yield strain of "y= 0.03 (open symbol), whereas criterion (2)
gives "y= 0.65 (closed symbol). We explain the inequality using the results from our
Large Amplitude Oscillatory Shear-study on the load-induced failure of �lled gels.
In this work we presented evidence that the failure mechanism in cheese is governed
by two parallel physical processes, microcrack nucleation and crack propagation. In
full-fat cheese, the emulsi�ed fat promotes microcrack nucleation, which results in
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a larger rate of crack formation in full-fat cheese compared to the one in zero-fat
cheese at identical macroscopic strain. This explains the smaller initial decline in the
measured magnitude of E′ in zero-fat cheese then in full-fat cheese (blue dashed line
in Fig. 4.8(a) vs red dashed line in Fig. 4.8(b)). The enhanced microcrack formation
in full-fat cheese also shifts the start of the viscoelastoplastic regime to smaller strains,
which explains the early divergence of the model prediction and measurement of E′

in full-fat cheese. The fat globules in full-fat cheese also hinder crack propagation. As
a result, the inection point in the tangent modulus, which announces the ultimate
failure of the material, is located at lower strains in zero-fat cheese ("=0.45, blue
�lled diamond in Fig. 4.8(a)) then in full-fat cheese ("=0.65, red �lled diamond in
Fig. 4.8(b)).

From this analysis we conclude that criterion (1), Eq. (4.28), gives us the proper
value for the magnitude of the yield strain and thus rubberiness. In order to have less
sensitivity to experimental noise at small strains, we reformulate the criterion to

�model − �experiment

�experiment
> 0:1 (4.30)

In Fig. 4.9 we apply Eq. (4.30) to measure the rubberiness of full-fat cheese (red)
and zero-fat cheese (blue) at (a,c) T = 10 ○C and (b,d) T = 25 ○C. The sub�gures
are ordered from lowest to highest rubberiness, i.e. full-fat cheese at T = 10 ○C
(Fig. 4.9(a)) is the least rubbery. This order of ranking in rubberiness corresponds to
what we measured in our LAOS-study (Chapter 3 and Faber et al. [63]). The relative
increase in rubberiness of full-fat and zero-fat cheese when increasing temperature
from T = 10 ○C to T = 25 ○C, by a factor of 3 and 1.75 respectively, also corresponds
to what we found in Chapter 3, Faber et al. [63].

Thus our macromodel for the viscoelastic behaviour of cheese under monotonic
uniaxial compression, allows us to quantify both the compressive �rmness and rub-
beriness. Our measurements of the �rmness and rubberiness of cheese show that the
full-fat variant displays a high meltability and a strong viscoplastic response and thus
low rubberiness. In the next section we develop and deploy a micromodel of semi-hard
cheese to give a micromechanistic explanation for these observations.

4.4.3 Micromodel

Modeling approach and typical output

In Fig. 4.10 we give a graphical abstract of the modeling approach. The top-row
images of the cheese microstructure are taken with a Confocal Scanning Laser Micro-
scope (CSLM). The bottom-row images are the corresponding models of the morphol-
ogy of the microstructure. Figs 4.10(a) and (b) are images of the microstructure of
zero-fat cheese and full-fat cheese respectively. In image (c) the gel phase of full-fat
cheese, which consists of protein and water, is separated from (d), the fat phase.
On a microscopic level we treat zero-fat cheese as (e) a homogeneous, un�lled gel,
and full-fat cheese as (f) an emulsion-�lled gel or �ller composite [45, 110, 213]. We
separate the contributions of (g) the continuous gel phase and (h) the �ller to the
macroscopic stress response.
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Figure 4.9: Magnitudes of the rubberiness R of full-fat cheese (red) and zero-fat
cheese (blue) at (a,c) T = 10 ○C and (b,d) T = 25 ○C. The sub�gures are ordered
from smallest to largest rubberiness. The magnitudes of R equals the magnitudes of
the strain at the diamond markers.
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Figure 4.10: Set-up of the micromodel. Top row: images of the microstructure from
Confocal Scanning Laser Microscopy (CSLM), below these images the corresponding
representative volume elements (RVE’s). The RVE’s are loaded in compression at
strain rates _" equal to those chosen in the experiments. The load cases are numerically
solved in 2D, using �nite element analysis. The �ller volume fraction of full fat cheese
has a magnitude of �f= 30 v/v%. The fat globules are assumed to behave as an
incompressible hyperelastic solid. The magnitude of the shear modulus of the fat
globule Gf , is obtained through calibration of the homogenized model response to
the measurements, see Section 4.4.3.



Micromechanics of the �rmness and rubberiness of emulsion-�lled gels 111

For the constitutive relation of (e) the un�lled gel, and (g) the gel phase of the
�lled gel we use the macromodel derived in section 4.4.1, Eq. (4.23), and the material
properties of (a) zero-fat cheese. We assume perfect adhesion between gel and �ller.
The stress response of (g) the �ller is represented by the neo-Hookean model and
thus non-linear elastic. The shear modulus of the fat globule, Gf , is a �t parameter,
for which the magnitude is obtained by calibrating the predicted �rmness to the
measured �rmness at T = 10 ○C and T = 25 ○C respectively (see Section 4.4.3 for plots
of the �rmness. This results in a magnitude of the shear modulus Gf = 10.000 kPa
at T = 10 ○Cand Gf = 500 kPa at T = 25 ○C. The decrease in magnitude of Gf with
a factor of 200 from T = 10 ○C to T = 25 ○C represents the melting of fat.

Our modeling approach contains computations on periodic representative volume
elements (RVE’s) of the microstructure. We assume global periodicity, implying that
the microstructure of cheese is described by one representative morphology. The size
of the test specimens used in the compression experiment, compared to the dimensions
of the cheese block from which the specimen is taken, justi�es the assumption that
no signi�cant gradients of fat, protein, or water are present over the dimensions of
the test specimen. The morphology of the RVE of full-fat cheese is generated using
a procedure from [79] and [178]. The volume element is �lled with a volume fraction
of �f = 30 v/v% of monodispersed spheres, which are randomly placed in a cube.
To account for statistical variations in the system, the dimensions of the volume
element are chosen such that in a planar cross-section parallel to two opposite faces
of the cube at least 30 circles are present. We select the cross section in which the
magnitude of the area fraction described by the circles approximates the magnitude
of the set �ller volume fraction. The generated morphology is transformed to a mesh
of approximately 50.000 quadrilateral elements, assuring that at least three elements
separate two neighboring �ller particles.

The model representative volume element of the microstructures of zero-fat and
full-fat cheese, Fig. 4.10(e) and (f) respectively, are loaded in compression at strain
rates _" equal to those chosen in the experiments. Nodes in the representative volume
elements are kinetically tied, such that opposite boundaries retain identical shape,
and the magnitude of the stress that acts upon each opposite boundary is equal but
opposite in sign. The boundary conditions at the corner nodes of the RVE prescribe
the displacement that corresponds to the uniaxial monotonic compression experiment.
Two-dimensional plane strain deformation is assumed. The load cases are numerically
solved using the Finite Element Analysis software package MSC.Marc 2013.

Fig. 4.11 shows examples of contour plots generated from the output data of the
uniaxial monotonic compression simulations. The top row images are contour plots
of the von Mises stress, or equivalent tensile stress, �̂, at a macroscopic compressive
strain of "=0.02. The von Mises stress is de�ned by

�̂ =

√
1

2
[(�1 − �2)

2
+ (�2 − �3)

2
+ (�3 − �1)

2
] (4.31)

where �i is the normal stress. The contour plot of (a) zero-fat cheese shows as
expected a homogeneous distribution of the stress in the RVE. In (b), the RVE of
full-fat cheese at T = 10 ○C, on average the stress is highest in the �ller, which is valid
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zero-fat, T=10 oC full-fat, T=10 oC full-fat, T=25 oC

Figure 4.11: Contour plots of the von Mises stress �̂ (top row), and equivalent
elastic strain "̂, (bottom row), in a selection of Representative Volume Elements, at a
macroscopic strain of "= 0.02 (top row) and "= 0.20 (bottom row). The plots show
that in full-fat cheese at T = 10 ○C (middle column), the stresses and strains localize
and amplify in the gel phase, which respectively signi�cantly increases the magnitude
of the �rmness, and decreases the magnitude of the rubberiness, compared to zero-fat
cheese.

for rigid �llers being dispersed in a much softer gel phase. However, stress localizes
in the gel phase at the interface of two neighbouring �llers, leading to bands of high
stress percolating through the RVE. We thus expect an increased �rmness for RVE
(b) compared to RVE (a). In (c), the RVE of full-fat cheese at T = 25 ○C, we
conclude that the magnitude of the local von Mises stress does not exceed �̂≤ 100
kPa, and the variation in the magnitude of �̂ over the RVE is a factor of 1.5. The
near homogeneous stress-distribution is caused by the decrease in the magnitude of
the shear modulus of the �ller, to a level that it approxminates the magnitude of
the shear modulus of the gel phase Gf ≈Gg. At T = 25 ○C we thus expect similar
magnitudes for the �rmness of zero fat and full-fat cheese, respectively.

In the bottom row contour plots in Fig. 4.11, the macroscopic compressive strain
imposed on the RVE’s has a magnitude of "=0.20. The contours are magnitudes of
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the local equivalent elastic strain "̂, which is de�ned by

"̂ =

√
1

2
[("1 − "2)

2
+ ("2 − "3)

2
+ ("3 − "1)

2
] (4.32)

where "i is the normal strain. Again we get the expected homogeneous response for
(d) zero-fat cheese. The contour plot of the equivalent elastic strain "̂ of (e) full-fat
cheese at T = 10 ○C, gives an inverse picture of what we see for the equivalent stress �̂
in (b); the strain concentrates in the gel phase, whereas the �ller is hardly deformed.
As a consequence, the strain in the gel phase of (e) the �lled gel is higher then the
strain in (d) the un�lled gel. We call this phenomenon strain ampli�cation, and we
previously argued that this e�ect of the presence of a �ller is the main cause for the
low rubberiness of full-fat cheese. At (f) T = 25 ○C, the spherical �ller is signi�cantly
deformed into an elliptical shape, which we for reasons of visibility, have highlighted
with a white contour. The variation in the magnitude of the equivalent elastic strain
is small, however the strain localizes and is ampli�ed at the poles of the ellipse.

We conclude this section by providing two examples of stress-strain curves gener-
ated by the micromodel. We calculate the reaction force in the tied, top-left corner
node in the direction of compression (see Figs 4.10(e) and (f)), and divide the force
by the magnitude of the perpendicular surface area. This gives us the homogenized
stress response of the RVE. In Fig. 4.12 we plot the micromodel stress-strain curves
of full-fat cheese (black curve) at a strain rate of _" = 10−1 s−1and temperatures of (a)
T = 10 ○C and (b) T = 25 ○C. We correct the magnitude of the model stress response
for the under- and over-prediction of the initial sti�ness compared to the measure-
ment (red curve). The shapes of the stress-strain curves generated by the micromodel,
resemble the shapes of the macromodel curves in Figs 4.12(a) and (b) including the
presence of an inection point. A second similarity is the over-prediction of the stress
at large strains. This is an expected result, the micromodel does not contain any pa-
rameters that model failure or plasticity. However, for a mechanistic explanation for
the di�erences in the rubberiness of zero-fat cheese and full-fat cheese, quanti�cation
of the evolution of the strain ampli�cation in the gel phase su�ces (see section 4.4.3).
In the next section we calculate the �rmness of the RVE’s from the stress response
at small strains. The micromodel thus provides us with su�cient information for
structure-texture relations.

Firmness

The magnitude of the �rmness of the RVE’s depicted in Figs 4.10(e) and (f) is
determined by calculating the initial secant modulus, Eq. (4.24), of the homogenized
stress-strain curve. Fig. 4.13(a) shows plots of the relative �rmness F ′ of full-fat
cheese (red) and zero-fat cheese (blue) at (a) T = 10○C and (b) T = 25○C, as a
function of the strain rate _". All data is normalized to the �rmness F of full-fat
cheese at T = 25 ○C and a strain-rate of _" = 10−3 s−1. The black and blue lines
are double logarithmic �ts of the micromodel predictions of the �rmness of full-fat
cheese and zero-fat cheese, respectively, at three compression rates of _" = 10−1 s−1,
_" = 10−2 s−1, and _" = 10−3 s−1. As a result of this �t, the two curves describing
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Figure 4.12: Measurement (red) and micromodel prediction (black) of the stress
response of full fat cheese, under monotonic compression at a strain rate _" = 10−1

s−1at (a) T = 10 ○C and (b) T = 25 ○C. The prediction is multiplied by the factor of
(a) 1.2 and (b) 0.7 to correct for the under- and over prediction respectively of the
initial sti�ness.

the rate-dependency of the �rmness, do not show the up-and-down curvature like in
Fig. 4.7. Recall that the material properties and constitutive model of the micromodel
description of zero-fat cheese (blue), are equal to the constitutive model and material
properties of the macromodel description. The markers in Fig. 4.13 represent the
measurements of the relative �rmness F ′ of full-fat cheese.

For a temperature of T = 10 ○C, Fig. 4.13(a), the micromodel (black line) cor-
rectly predicts the magnitude and rate-dependency of the �rmness of full-fat cheese.
The magnitude of the �ller shear modulus is Gf = 10:000 kPa, which is two orders of
magnitude larger than the shear modulus of the gel Gf ≫ Gg. Thus the microstruc-
ture of full-fat cheese at T = 10 ○C is adequately described as a suspension-�lled gel.
Suspending 30 v/v% of rigid fat particles, results in a predicted �rmness enhancement
of a factor of three, compared to the to zero-fat cheese (blue), at constant strain-rate
_". This is similar to what we previously measured in small amplitude oscillatory shear
at constant frequency !(Chapter 3 and Faber et al. [63]). In the previous section we
showed that the �rmness enhancing e�ect of the �ller is a combined e�ect of the high
�ller modulus, and stress concentrating at the interface of two neighboring particle,
leading to bands of elevated stress percolating through the RVE.

The nearly parallel black and blue line show that for full-fat cheese at T = 10
○C, the rate-dependency of the �rmness is determined by the rate of stress relaxation
in the gel phase. At T = 25 ○C however, Fig. 4.13(b), we predict and measure a
decreasing rate-dependency of the �rmness of full-fat cheese. At this temperature
Gg ≈ Gf = 500 kPa, and the magnitude of the �rmness of zero-fat cheese (blue)
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Figure 4.13: Plots of the relative compressive �rmness F ′ of full-fat cheese (red)
and zero-fat cheese (blue) at (a) T = 10○C and (b) T = 25○C. All data is normalized
to the �rmness of full fat cheese at T = 25 ○C and a strain-rate of _" = 10−3 s−1. The
black and blue lines are logarithmic �ts of the micromodel predictions of the �rmness
at three compression rates of _" = 10−1 s−1, _" = 10−2 s−1, and _" = 10−3 s−1, of full-fat
cheese and zero-fat cheese respectively. The markers represent measurements on full-
fat cheese. (a) Our model correctly predicts the relative �rmness between zero-fat
and full-fat cheese at T = 10 ○C. (b) At T = 25 ○C the model predicts the decrease in
the rate-dependency of the �rmness, caused by the presence of the elastic �ller. As
a consequence the order of ranking on �rmness between zero-fat and full-fat cheese
is rate-dependent, see also Fig. 4.2(b) vs Fig. 4.2(c) in the introduction. (c) The
combination of the measurements and predictions of full-fat cheese from (a) and (b)
provides a plot of the meltability of full-fat cheese. Predictions by the micromodel
coincide with the measurements and correspond to the predictions of the meltability
by the macromodel.

and full-fat cheese (red) is similar. At T = 25 ○C, the microstructure of cheese is
adequately described as an emulsion-�lled gel. The deformability of the elastic �ller
a�ects the rate of stress relaxation and as a result, the order of ranking on �rmness
between full-fat and zero-fat cheese becomes strain-rate dependent. This explains
why we measure a shift in the order of ranking of �rmness when decreasing the strain
rate from _" = 10−1 s−1 to _" = 10−3 s−1 in Figs 4.2(b) and (c).

In Fig. 4.13(c) we combine the two micromodel predictions for the relative �rmness
F’ at T = 10 ○C and T = 25 ○C from Figs 4.13(a) and (b) respectively. This results
in a �gure that is almost identical to Fig. 4.7 constructed from predictions of the
micromodel, Eq. (4.25), from which we deducted the meltability of full-fat cheese
over a temperature range of T = 10 ○C to T = 25 ○C. This implies that next to
the magnitude and rate-dependency of the �rmness, the micromodel also correctly
predicts the magnitude of the meltability as a function of the cheese microstructure.

Rubberiness

In section 4.4.3 we introduced the phenomenon of strain ampli�cation, and showed
that in the RVE of full-fat cheese at T = 10 ○C, Fig. 4.11(e), strains were signi�cantly
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Figure 4.14: Evolution of the (a) global strain ampli�cation ration A′ (b) and
local strain ampli�cation ratio A′′ in the gel phase of the RVE’s of the �lled gel
depicted in Fig. 4.11, at T = 10 ○C (dashed lines) and T = 25 ○C (solid lines). (a)
At T = 10 ○Cthe global strain ampli�cation is largest, at this temperature the rigid
at globules are hardly deformed. At T = 25 ○C strain �rst concentrates in the �ller,
but as compression continues it concentrates in the gel. (b) Both at T = 10 ○C and
T = 25 ○C the strain instantaneously localizes. The subsequent decline in A′ denotes
delocalization, followed by localization. (c) Plot of the yield ratio calculated from
the strain ampli�cation and the yield strain of zero-fat cheese. At a yield ratio of
Y = 1, the gel phase of the �lled gel yields. The micromodel correctly predicts the
temperature-dependence of the rubberiness of full fat cheese. However, the absolute
magnitude of the rubberiness predicted by the micromodel, is an order of magnitude
larger then measured,
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ampli�ed. We argued that this is the main cause for the low rubberiness of full-
fat cheese. There are two physical explanations for the strain ampli�cation. First,
30v/v% of space is occupied by undeformable �ller, resulting in an accumulation of
all of the macroscopic imposed strain in the softer gel phase. We call this global strain
ampli�cation. Second, the strain localizes at the interface of two neighbouring parti-
cles, leading to an inhomogeneous distribution of the total strain that accumulates in
the gel phase. We call this local strain ampli�cation. We introduce two dimensionless
ratios, that quantify the evolution of global and local strain ampli�cation in the gel
phase of the �lled gel RVE, while it is being deformed. We de�ne the global strain
ampli�cation ratio as

A′
(") ≡

"̂fg − "̂ug

"̂ug
(4.33)

where "̂fg and "̂ug are the average equivalent of the �lled and un�lled gel respectively.
The local ampli�cation ratio is de�ned by

A′′
(") ≡

max{"̂fg} − "̂fg

"̂fg
(4.34)

where max{"̂fg} is the maximum of equivalent elastic strain in all elements. The
maximum strain ampli�cation is de�ned by

A(") ≡
max{"̂fg}

"̂ug
= (A′

+ 1)(A′′
+ 1) (4.35)

In Fig. 4.14(a) we plot the evolution of the global strain ampli�cation ratio for the
RVE of the �lled gel, deformed at a strain rate of _" = 10−1 s−1, and at two temperatures
of T = 10 ○C (dashed lines) and T = 25 ○C(solid lines). At T = 10 ○C the strain in the
gel is instantaneously ampli�ed. The magnitude of the global ampli�cation ratio is
A′= 0.7 which is equal to the magnitude of the volume fraction of the gel, i.e. the �ller
remains undeformed at initial loading. As macroscopic deformation progresses, the
global ampli�cation increases exponentially. At T = 25 ○C (dashed line), the global
strain ampli�cation ratio is negative for values of the strain 0 < " < 0.1, and thus
for times 0 < t < 1 s. At these short times, the magnitude of the time-dependent
shear modulus of the gel phase is larger then the shear modulus of the elastic �ller,
Gg(t) > Gf . At times t > 1 s the situation is reversed and we have Gg(t) < Gf . As
a consequence global strain ampli�cation sets in.

The e�ect of localization on strain ampli�cation is depicted in Fig. 4.14(b), where
we plot the evolution of the local strain ampli�cation ratio A′′. At a temperature
of T = 10 ○C the strain instantaneously localizes at the interface of the two particles
with the smallest surface-to-surface distance, resulting in magnitude of A′′= 2.5.
The localization leads to a local increase of the strain-rate and, as a result, the
gel sti�ens at the interface of the two particles and resists to further localization
of the strain. These two counteracting mechanisms of localization and delocalization
of strain, explain the two discontinuities in the plot, which separate three distinct
regimes of (1) delocalization, (2) decreasing rate of localization, and (3) increasing
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rate of localization. At T = 25 ○C (solid line) the strain is also locally ampli�ed, and
we observe a process of delocalization followed by localization. The transition is more
smooth and occurs at the strain where the global ampli�cation ratio takes positive
values.

The rubberiness of the RVE of the �lled gel is the macroscopic strain " at which the
gel phase fails locally. As a failure criterion for the gel phase we take the magnitude of
the compressive yield strain "y of zero-fat cheese (see section 4.4.2). The RVE yields
if the following criterion is satis�ed:

" > "y/A (4.36)

which we reformulate as

Y (") ≡
A"

"y
> 1 (4.37)

where Y is the yield-ratio. In Fig. 4.14(c) we plot the magnitude of Y for the two
RVE’s of the �lled gel for the temperatures of T = 10 ○C and T = 25 ○C. The predicted
temperature dependence of the rubberiness corresponds to the measurement: at T =

10 ○C the rubberiness of full-fat cheese is a factor of 3 higher then at T = 25 ○C.
However the absolute magnitude of the rubberiness predicted by the model is an
order of magnitude larger then measured. There are two probable causes for the over
prediction. First, in 2D calculations of �lled systems the magnitude of local strains
are systematically underestimated. Second, we used an inappropriate failure criterion.
We investigate the latter in the next section.

Failure criterion

To determine a failure-criterion for the gel phase of the �lled gel, we use a hybrid
experimental-computational approach, which is depicted by the graphical abstract
in Fig. 4.15. We perform a monotonic uniaxial tensile experiment on (a) a notched
tensile bar of a test specimen of zero-fat cheese and determine (b,c) the macroscopic
failure point. We simulate the experiment using the same geometry and boundary
conditions. For the material description, we use the macromodel, Eq. (4.23), and
the material properties of zero-fat cheese obtained from the uniaxial compression
experiment (see section 4.4.1). At the macroscopic failure point measured in the
experiment, we calculate (e) the magnitude of the equivalent elastic strain at the tip
of the notch using the data from the simulation. At this location in the tensile bar,
strains localize and are maximal, and failure commences.

Fig. 4.16 shows the results of the experiments (blue), and model (black), at a
temperature of T = 10 ○C and a strain rate of (a) _" = 10−1 s−1, and (b) _" = 10−2

s−1. On the horizontal axis we plot the stretch ratio � = l(t)/l0, where l0 and l(t) are
the length of the deformed and undeformed sample, respectively. On the vertical axis
we plot the engineering stress, � = f/a0, with f the imposed force on the sample in
the direction of displacement, and a0 the initial area of a planar cross section of the
tensile bar, at the notched region.

Initially the simulation at a strain rate of _" = 10−1 s−1, Fig. 4.16(a), fully coincides
with the measurements. At a small stretch of � = 1:01, a minor damage event takes
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Figure 4.15: Set-up of the hybrid-computational experimental approach for deter-
mination of the local failure criterion. Notched tensile tests on zero-fat cheese are
performed in vivo and in silico using identical geometries and loading conditions.
At the macroscopic failure strain determined in the experiment, the local maximum
strains and stress are determined in the simulation.

place in all samples leading to a temporarily decrease of the stress response. As a
result of the local failure, the measured stress-strain curves do not coincide, the failure
stress varies signi�cantly from sample to sample, and the simulation over predicts
the stress response. However, the variation in the failure stretch ratio �f is small,
indicating that the ultimate failure of zero-fat cheese is strain-induced. This is in line
with the �ndings of Leocmach et al. [103], who measured a constant failure strain
of f = 0.9 for casein gels subjected to shear creep loadings at a range of stress
amplitudes. Van den Berg et al. [198] performed uniaxial compression experiments
on a wide variaty of polysaccharide-whey protein gels at a rate of _" = 0:8, and found
fracture strains "f varying a factor of 1.3, while fracture stress varied a factor of 6.

From the experiments, we calculate a mean macroscopic failure stretch ratio of
(a) �f = 1:19, and (b) �f = 1:13, at a strain rate of _" = 10−1 s−1 and _" = 10−2

s−1, respectively. This corresponds to an equivalent failure-strain for the un�lled gel
of (c) "̂f;ug = 1.3, and (d) "̂f;ug = 0.8. The failure strain is thus rate-dependent,
which is plausible if the two physical processes of crack nucleation and propagation
responsible for the failure of the gel, [103], each have their own characteristic time-
scale. The order of magnitude of the failure criterion is similar to what we used in the
previous section to calculate the rubberiness of the RVE of the �lled gel. The main
cause for the over-prediction of the rubberiness is thus the under-estimation of local
strains in 2D computations.
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Figure 4.16: Measured (blue) and modelled (black) macroscopic stress-response of
the notched tensile bars of zero-fat cheese from Fig. 4.15 at T = 10 ○C and at a strain
rate of (a) _" = 10−1 s−1 and (b) _" = 10−2 s−1. The analysis gives a rate dependent
equivalent elastic failure strain for the un�lled gel of (c) "̂f;ug= 1.3 and (d) "̂f;ug=
0.8 for a strain rate of _" = 10−1 s−1 and _" = 10−2 s−1, respectively.

4.4.4 Compressive vs shear rubberiness

We conclude the result section by showing how the micromodel supports the interpre-
tation of the measurement of the �rmness and rubberiness of cheese in other loading
scenarios then monotonic uniaxial compression. In Chapter 2, Faber et al. [60], we
measured the �rmness and rubberiness of cheese in a shear creep-recovery experiment.
The �rmness F was de�ned as the inverse of the compliance at a time of observation
tf , F ≡ 1/J(tf). The rubberiness was measured at the end of recovery and we showed
that its magnitude depends on the presence or absence a macroscopic yielding event.
In Chapter 3, Faber et al. [63], we argued that it requires a yielding event, to draw
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Figure 4.17: (a),(b) Measurement and (c) simulations of the strain response of
full-fat cheese in a creep experiment at T = 25 ○C. The measured yield strains are
indicated by the squares. (a) In shear it requires a stress-amplitude of 1 kPa to
measure a yield strain of y=0.1 within 10 seconds of creep for samples of the same
cheese. The mode of deformation thus signi�cantly a�ects the magnitude of the yield
strain and thus the rubberiness. (b) In compression it requires a stress-amplitude
of 20 kPa and 50 seconds of creep to measure a yield strain of "y≈0.6. (c) Creep
simulations in compression and shear, applying a load of �0 = 1 kPa on the same
RVE. The model qualitatively explains why we observe the di�erences in Fig. (a) and
(b): the local strains in shear are higher at the same time t.

any conclusions on the rubberiness of cheese. Within the time of creep , the severity
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of the loading must thus be large enough to induce failure.
In Fig. 4.17 we show the result of a creep experiment of full-fat cheese at T = 25 ○C

in (a) shear and (b) compression. The yield-point is located at the inection point
in the creep curve, and is indicated by the square symbol. In shear, Fig. 4.17(a), it
requires a stress amplitude of �0 = 1 kPa, for a time of t = 5 s, to induced yielding.
The yield strain is  = 0.1. In compression the required loading is more severe:
a stress-amplitude �0 = 20 kPa and a time of creep of t =50 s. The yield strain
has a magnitude of "y≈ 0.6. The mode of deformation thus signi�cantly a�ects the
magnitude of the measured rubberiness.

We use the micromodel to explain the di�erent response. We simulate a creep
experiment in shear and compression, using the RVE of full-fat cheese at T = 25
○C, and imposing a stress-amplitude of �0 = 1 kPa for both modes of deformation.
Fig. 4.17(c) shows the contour plot of the equivalent elastic strain "̂ after a time of
t = 5 s of creep, which is equal to the time the cheese yields in shear. From the
displacement at the top-left corner node we calculate the strain (t) at t = 5 s for the
sheared RVE. We calculate a shear compliance of J(t) ≡ (t)/�0 = 6 10−5 Pa −1. This
corresponds to the measured magnitude of J(t) . For creep in compression the model
predicts J(t) = = 1:6 10−5 Pa−1, at t = 5 s , where we measure J(t) = = 1:3 10−5 Pa−1.
The model thus correctly predicts the magnitude of the �rmness for both modes of
deformation.

In compression the cheese is a factor of 4 �rmer. It thus requires a more severe
creep loading to yield a sample in compression then in shear, if the magnitude of the
yield strain would be identical. At t = 5 s, the magnitude of the average equivalent
elastic strain, "̂fg, and the maximum equivalent elastic strain, max{"̂fg}, are factor
of 2.0 and 2.3 higher in shear then in compression, respectively. This is smaller then
the di�erence in the �rmness, thus we do not predict an additional local e�ect that
explains the more severe loading required for yielding in compression.

4.5 Conclusion

We developed a structure-texture model for cheese, a soft-solid emulsion-�lled gel, by
adopting a two-scale, hybrid-experimental-computational approach. First we devel-
oped a macroscopic non-linear viscoelastic constitutive model, the macromodel, that
allowed us to obtain quantitative values for the compressive �rmness F , meltability
M , and rubberiness R of cheese from uniaxial monotonic compression data. Second
we developed a microscopic model of deformed full-fat cheese, the micromodel, which
provided a micromechanistic explanation for the measured di�erences between the
�rmness, meltability and rubberiness of zero-fat and full-fat cheese, respectively.

We de�ned compressive �rmness as the small strain, initial secant modulus of the
stress-strain curve. Our two-parameter macromodel correctly predicts the magnitude
of the �rmness of cheese, and con�rms our earlier �ndings that it is a time-dependent
texture attribute, that is described by two material properties: a stress-scale factor,
and a power-law exponent � which quanti�es the temporal response (Chapter 2 and
Faber et al. [60]).
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We de�ned rubberiness as the magnitude of the yield strain "y, measured in
monotonic uniaxial compression. The yield strain de�nes the transition from the
viscoelastic to the viscoplastic regime. We used the point of divergence between the
macromodel and the measurement to reveal the transition, which without a model
would be intraceable. We showed that comparison of measurement and model predic-
tion of the strain-dependent modulus E′ also allowed for tracking and describing the
damage progression in cheese. Our plots con�rm earlier �ndings that full-fat cheese
shows a strong viscoelastoplastic response, in which damage progression is governed
by micro-crack nucleation and crack propagation. Zero-fat cheese on the contrary
behaves viscoelastic up to large strains, followed by a rather abrupt failure through
percolating macrocracks. Our measuring method for compressive rubberiness gives
relative magnitudes for the temperature-dependent rubberiness of zero-fat and full-fat
cheese, that correspond to earlier measurements of the rubberiness in shear (Chapter
3 and Faber et al. [63]).

We developed a micromodel of full-fat cheese treating the material as a �ller com-
posite. The morphology of the microstructure was modelled as spherical fat globules
dispersed in a continuous gel phase. The material response of the �ller was asssumed
to be neo-Hookean, and the melting properties were represented by a decreasing mag-
nitude in shear modulus with increasing temperature. For the continuous gel phase
we deployed the material parameters of the macromodel of zero-fat cheese in a mi-
cromodel of full-fat cheese. Representative volume elements (RVE’s) of the full-fat
cheese microstructure were loaded under monotonic uniaxial compression. The local
stress and strain states where obtained through �nite element analyses.

Through homogenization of the stress response in the RVE, we obtained magni-
tudes of their �rmness. Our micromodel correctly predicts the rate-dependent magni-
tude of �rmness and meltability as a function of the fat content of semi-hard cheese.
We developed measures to quantify the evolution of global and local strain ampli�-
cation in the gel phase of the RVE’s. We showed that large di�erences between the
magnitude of the modulus of �ller and gel phase, and a small inter-particle surface
to surface distance of the �ller, both favour strain ampli�cation and damage in the
continuous gel phase, and thus reduce rubberiness. This con�rms our earlier stated
hypothesis (Chapter 3 and Faber et al. [63]).

The micromodel correctly predicts the temperature-dependence of the rubberiness
of full fat cheese. However, the absolute magnitude of the rubberiness predicted by
the micromodel is an order of magnitude larger then measured, when using a local
failure criterion derived from the compression experiment. Veri�cation of the failure
criterion of the gel through a hybrid-computational notched tensile experiment on
zero-fat cheese showed that the order of magnitude of the strain-based failure criterion
is correct.

Based on the knowledge that 2D computations on �ller composites intrinsically
underestimate the actual magnitude of local strains and stresses, and the satisfactory
prediction of the relative magnitudes of �rmness and rubberiness of full-fat cheese,
we state that our hybrid-computational experimental approach to building structure-
texture relations proves highly valuable. The value of the model was further con�rmed
by the micromechanistic explanation we were able to give for the large di�erence in
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the magnitude of the rubberiness of full-fat cheese, when measured in shear versus
when measured in compression.

The results in this chapter justify the use of our structure-texture model in a
design context. In the next chapter we use the method to reveal texture-morphology
relations and to derive guidelines for new improved cheese designs and formulations.
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Structure re-design of low-fat
cheese

Abstract

E�ective, radical, reformulation of food products, requires models that relate the mi-
crostructure to the sensory texture pro�le. We used the structure-texture model for
soft-solid �lled gels developed in Chapter 4, and applied it to the e�ective reformula-
tion of full-fat semi-hard cheese. We designed a low-fat cheese microstructure with 15
v/v% fat, that has the �rmness, meltability, and rubberiness characteristics of the full-
fat, 30 v/v%, reference. Our structure-texture model reveals that in low-fat cheese,
the inter-particle surface to surface distance of the fat phase should be reduced, in
order to keep the �rmness, meltability and rubberiness at a desired level. We eval-
uated three low-fat cheese micro-structures, which complied to this structure design
rule: a close packing of fat particles, a phase-inverted microstructure and a phase-
inverted structure that contained additional soft, water-rich, microgels. The latter
structure is the most promising: it has a higher �rmness and meltability than full-fat
cheese, and a lower rubberiness. Furthermore not only calories are reduced compared
to full-fat cheese, but also the amount of resources required for cheese production.
The presented approach to structure-texture engineering is generally applicable to
structured food products, and is a powerful add-on to product-driven process design
methodologies.

The contents of this chapter are based on: T.J. Faber, H.E.H. Meijer, G.H. McKinley, and L.C.A
Van Breemen. Structure re-design of low-fat cheese. In preparation for Food Hydrocolloids.
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5.1 Introduction

Product reformulation, the replacement or removal of ingredients from a product in
order to reduce e.g. caloric content or carbon footprint, is a major theme in the
processed-food industry [4, 136, 152]. Consumers have strong references for the sen-
sory texture attributes of food products, and when removing or replacing ingredients
like fat, sugars, proteins, or salt, this sensory texture can be negatively a�ected [152]
and the resulting product disliked. It is the task of the food engineer to deliver
technological solutions that overcome these trade-o�s.

Cheese is a canonical example of a structured processed-food product. Structured
products are complex multiphase materials, with microstructures on a scale of 0.1
- 100 µm. Non-food examples of structured products [85] are household products
(e.g. laundry detergents), and beauty or personal care products (e.g. skin creams).
The macroscopic properties of structured materials are primarily determined by their
microstructure and, in second instance, by their formulation [2, 4, 85]. The term
’processed-food’ implies that the microstructure of the food is man made through a
manufacturing process, opposed to natural structured foods such as raw milk or raw
vegetables. When reformulation of processed-food products leads to de�cits in the
sensory texture pro�le, the manufacturing process should be adapted to the extent
that a microstructure is created that o�-sets these de�cits.

A wealth of engineering solutions is available to modify food microstructures based
on knowledge from soft matter and colloidal science [45, 123, 124, 135, 182, 196, 199]
as well as from process technology [4, 24, 65, 92]. Jumping between the micro- and
the macro-scale and dealing with a multitude of constraints requires a rational and
integrated product and process design approach [4, 53, 85, 136]. There is a need for
models that quantitatively relate food formulation and processing to structure and
sensory texture [24, 92].

In food industry most of the modeling involved in product and process design,
arises from applying the chemical engineer’s toolbox to food production processes
[85]. Since the large capital investments involved in chemical industry do not allow
for a complete overhaul of the production process, the chemical engineering toolbox
is process-oriented. The tools equip the food engineer to tweak and �ne-tune the
unit operations that make up the process. Within these boundaries, process-driven
product innovation takes place which is in most instances incremental. For radical
reformulation , e.g. a step-change in the weight ratios of protein, water, and fat in
the cheese formulation, a reverse engineering approach is required. It is now widely
recognised that for structured products, chemical engineering should shift towards
product-driven process design [4, 53, 85], i.e. those unit operations are selected that
give the microstructure which meets the product requirements. The design method-
ologies that evolve from this notion, still leave room for empirical recipe making, albeit
that the process-formulation combinations are screened in an early stage of design.
Deliberate food product design, however, requires structure-property models, which
relate the food microstructure to the product property of interest [92] making use of
the principles of physics. Materials science has a long history and strong reputation
of putting the property of the product central and drive both product- and process
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innovation using structure-property models [3, 48, 179].
In the previous Chapters 2, 3, and 4, [60, 61, 63], we applied the principles of rhe-

ology, a branch of materials science that studies the ow and deformation of complex
multiphase materials, to develop and validate a structure-texture model for cheese.
Our modeling approach is based on two pilars. First we de�ne a set of unambigu-
ous, macroscopic rheological measures for texture attributes that become apparent
at �rst touch and �rst bite: �rmness, meltability, rubberiness and smoothness. The
magnitude of these attribute determine the liking and handling properties of cheese
to a large extent [37, 66]. Second we built a model of a representative volume el-
ement of the cheese microstructure, and used �nite element analyses to study both
the macroscopic and local stress- and strain-states when the structure is subjected to
load.

Is this chapter, we show that our modeling approach �ts in, and is the start
of, product-driven process design. We treat the case of reformulating full-fat semi-
hard cheese into a low-fat, low-caloric variant, while remaining the texture-pro�le
of the full-fat reference. To meet this objective, a re-design of the current low-fat
cheese microstructure is necessary. First we use our objecti�ed measures for �rmness
F , meltability M , and rubberiness R, to quantify the texture gap between low-fat
cheese and full-fat cheese. The gap analysis provides us the speci�cations for the
performance of the re-designed microstructure. We then use the micromodel to give
a physical explanation for the e�ect of fat content on F , M , and R and derive a
principal structure design-rule: the inter-particle surface to surface distance of the
dispersed fat phase should be decreased signi�cantly. Finally we work out this design
rule in three alternative structure designs, and use the micromodel to select the design
that meets the required �rmness, meltability, and rubberiness, best.

5.2 Materials and Methods

5.2.1 Cheese composition

Foil-ripened Gouda rectangular cheeses (500 × 300 × 100 mm) were acquired at an
age of 3-14 days and kept at 5○C to minimize compositional changes due to pro-
tein breakdown or (de-)solubilization of minerals [109, 140] . Fat content was varied
by using cheese from three fat classes: zero-fat (≈ 0% fat in dry matter, �dm), low
fat (≈ 20% �dm) and full-fat (≈ 48% �dm). The cheese was analyzed for composi-
tion according to international standards, the standard is speci�ed in brackets: pH
(NEN 3775, Netherlands Normalization Institute), l-lactic acid (ISO 8069, Interna-
tional Standard Organisation), protein (through total nitrogen / soluble nitrogen /
anhydrous nitrogen fractions [205]), ash (Association of O�cial Analytical Chemists
930.30), calcium (insoluble calcium phosphate, AOAC 984.27), lactose (ISO 5762-2),
water (=100-total solids (ISO 5534)), fat (ISO 1735) and chloride (ISO 5943). Weight
fractions of protein, water and fat were converted to volume fractions according to the
procedure outlined by Yang et al. [213] taking the temperature-dependent densities
of these main cheese constituents from Sahin and Sumnu [157].
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5.2.2 Uniaxial monotonic compression

Bars with dimensions of 40×40×25 mm were cut from the core of a cheese block using
a knife and wire cuttter. Subsequently, cylindrical samples with a height and diameter
of 25 mm were cut from a bar, using a borer attached to a cutting press, while the
bar was enclosed from 5 sides. To eliminate friction, the borer was designed such
that contact area between sample and borer was minimal, and the inside and outside
surface area of the borer was lubricated with silicon oil. The cylindrical samples
were covered with vaseline, and stored in plastic tubes together with a hydrated
cotton to prevent drying during storage and measurement. Samples were stored at
T = 10 ○C, and left to equilibrate to the measurement temperature for one hour
prior to measuring. Compression experiments were performed using a Zwick-Roell
Proline Z010 universal testing machine (Zwick Testing Machines Ltd), extended with
a climate chamber. Prior to the tests, the platens of the probe were lubricated with
silicon oil to eliminate friction between the specimen and the platen [28].

Experiments were performed at strain rates of _" = 10−1 s−1, 10−2 s−1, and 10−3

s−1, and a temperature of T = 10 ○C and T =25 ○C, respectively. From the force-
displacement data, true stress �, and true strain ", were calculated assuming incom-
pressibility of the material [77].

5.2.3 Frequency sweeps in shear

Cheese slices of approximately 60× 60× 2:5 mm3 were cut from a block coming from
the core of the cheese using a knife and wire cutter. From each cheese slice, three
discs of 25 mm diameter were punched for plate-plate rheometry. Measurements were
performed with a Physica MCR501 Rheometer (Anton Paar, Austria) with a parallel
plate geometry. To prevent slip, sandblasted upper and lower plates are used. The
temperature of the lower plate was controlled with a Peltier stage, the upper plate and
cheese environment were thermally controlled with a cap hood. The upper plate was
lowered with a speed of 25 µm/min until a normal force of 1 N (4 kPa) was reached.
The gap width was recorded at that point and decreased by an extra 2% while keeping
the normal force constant at 1 N to ensure full contact with the cheese. Gap settings
were then switched from �xed normal force to �xed gap width. No signi�cant e�ect
of normal pressure on storage and loss modulus was found in the range of 0.5-20 kPa.
After loading the sample between the two parallel plates it was heated at a heating
rate of 0.5○C per minute until the desired temperature was reached. The exposed
surface area of the sample was covered with sunower oil to minimize sample drying
during the experiment. A maximum weight loss of 0.5 w/w% was recorded.

Frequency sweeps were performed at a strain amplitude 0 = 0:1%, which lies
within the linear viscoelastic regime for all samples. The frequency was decreased
logarithmically from ! = 100 Hz to ! = 0:1 Hz at �xed measuring temperatures of
either T = 10 ○C or T = 25○C.
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5.3 Results

5.3.1 Design objective and requirement speci�cations

Our design objective is to provide a microstructure of low-fat cheese, with a fat volume
fraction of �f = 15%, that matches the texture-pro�le of a full-fat cheese, with �f =
30%. In this section we translate the design objective in requirement speci�cations,
using the texture measures developed in Chapter 2, 3, and 4, [60, 61, 63].

In Fig. 5.1 we show the monotonic uniaxial compression curves of (a) full-fat
cheese (red), and (b) low-fat cheese (blue) at two temperatures. The initial secant
lines of the stress-strain curves at T = 10 ○C and T = 25 ○C are depicted as solid and
dashed black lines, respectively. In Chapter 4, Faber et al. [61], we de�ned compressive
�rmness F as the magnitude of the initial secant modulus E0,

F ≡ E0 =
�

"
∣
"=0:01

(5.1)

where � is the compressive stress and " the compressive strain, respectively. We
measure a magnitude of �rmness of full-fat cheese at T = 10 ○C and T = 25 ○C of
F10○C= 500 kPa and F25○C= 160 kPa, respectively. In Chapter 3, Faber et al. [63],
we de�ned the meltability M as the magnitude of the temperature-induced reduction
in �rmness, which we quantify here by the ratio

M ≡
F10○C

F25○C
(5.2)

This results in a magnitude of M = 3:1 for full-fat cheese. For low-fat cheese, depicted
in Fig. 5.1(b), we measure a magnitude in �rmness of F10○C= 230 kPa and F25○C=
140 kPa, and meltability M = 1:7.

In Chapter 4 we de�ned the rubberiness R as the magnitude of the yield-strain:

R ≡ "y (5.3)

and quanti�ed the yield-strain using a non-linear viscoelastic constitutive model for
cheese under monotonic uniaxial compressive loading. We de�ned the yield-point
as the point where the model prediction of the stress response, �model, exceeds the
measured response, �experiment, by more than 10%:

�model − �experiment

�experiment
> 0:1 (5.4)

The model stress-response is given by the equation

�model("; _") = 2 _"
6
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(5.5)

in which the six sets of time-constants �i, and normalized spring-constants gi, approx-
imate a power-law that quanti�es the temporal response of cheese. The magnitudes
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Figure 5.1: Measurement of (a,b) the �rmness and meltability and (c,d) the rub-
beriness of full-fat cheese (red) and low-fat cheese (blue). The stress-strain curves
are obtained from monotonic uniaxial compression experiments at a strain rate of
_" = 10−1 s−1.
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of �i and gi are obtained by �tting the solution for the storage and loss moduli
fG′(!);G′′(!)g of a 6-mode Maxwell model, to the data of a small strain oscilla-
tory shear experiment. The stress-scale factor G is obtained by subsequently �tting
Eq. (5.5) to the compressive stress-strain curve, while applying the constraint

�model ≤ �experiment (5.6)

Fig. 5.1(c) shows the result of the model prediction (black) and the measurement
(red) of full-fat cheese at T = 10 ○C. Application of the yield-criterion de�ned in
Eq. (5.4), and the de�nition of the rubberiness, Eq. (5.3), results in a magnitude of
rubberiness R = 0.03 at T = 10 ○C (open symbol). For (d) low-fat cheese we measure
a rubberiness of R = 0.33 at the same temperature.

We thus arrive at the following requirement speci�cations for the design of a low-
fat cheese microstructure: both �rmness F at T = 10 ○C, as well as the meltability
M , must be increased by a factor of 2, whereas the rubberiness R must be decreased
by a factor of 11.

5.3.2 Design rule

To obtain guidelines for the re-design of the low-fat cheese microstructure, we analyze
the e�ect of fat content on �rmness, meltability and rubberiness using the micromodel
developed in Chapter 4, Faber et al. [61]. Our micromodel is based on �nite element
analyses of representative volumes elements (RVE’s) of the cheese microstructure.
The stress response of the gel phase of the RVE’s is described by the macromodel
given in Eq. (5.5). The material properties of the gel phase are obtained from SAOS
experiments, and uniaxial monotonic compresssion experiments on zero-fat cheese.
The stress response of the �ller is desribed by a neo-Hookean model, in which we
substitute the shear moduli Gf = 10:000 kPa and Gf = 50 kPa at temperatures T = 10
○C and T = 25 ○C, respectively. These values are found through a �tting procedure
described in Chapter 4.

The top-row images in Fig. 5.2 show a series of RVE’s of cheese microstructures,
varying in fat content from 0-30 v/v%, and structured using the classical production
method described in Chapter 1. We impose a monotonic uniaxial compressive loading
at a strain rate of _" = 10−1 s−1, and calculate the �rmness F by homogenizing the
stress response and using Eq. (5.1). We take the �rmness of full-fat cheese at a
temperature of T = 10 ○C as the reference �rmness Fref , and de�ne a dimensionless
relative �rmness F ′ by

F ′
≡

F

Fref
(5.7)

The result of the evaluation of the �rmness of the RVE’s from Fig. 5.2 is depicted in
Fig. 5.3, where we plot the relative �rmness F ′ as a function of �ller volume fraction
�f . The dashed lines are guides to the eye.

The micromodel predicts a �rmness of low-fat cheese at T = 10 ○C (blue �lled
symbol), that is a factor of two lower than that of full-fat cheese (red �lled symbol),
which is equal to what we have measured. The predicted �rmness at T = 25 ○C is
nearly constant for all RVE’s, as a consequence of the approximately equal magnitude
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Figure 5.2: Compression simulations on a series of representative volume elements
(RVE’s) of cheese microstructures, varying in �ller volume fraction. The top-row
images show the undeformed RVE’s, with the fat (red) randomly dispersed in the
gel phase of protein and water (green). The middle-row and bottom-row images are
contour plots of the von Mises stress �̂, and equivalent elastic strain "̂, respectively,
at a macroscopic compressive strain of "= 0.02.
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full fat

30%20% 25%

low fat

15%

Compression simulations on a series of representative volume elements (RVE’s) of
cheese microstructures, varying in �ller volume fraction. The top-row images show
the undeformed RVE’s, with the fat (red) randomly dispersed in the gel phase of
protein and water (green). The middle-row and bottom-row images are contour plots
of the von Mises stress �̂, and equivalent elastic strain "̂, respectively, at a macroscopic
compressive strain of "= 0.02.
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Figure 5.3: (a) Relative �rmness F ′ of the RVE’s from Fig. 5.2, at T = 10 ○C and
T = 25 ○C. (b) Magnitudes of the global strain ampli�cation ratio A′ of the same
RVE’s, at a macroscopic strain of " = 0.35 and a temperature of T = 10 ○C.

of �ller and gel phase shear moduli, Gf ≈ Gg, at a strain rate of _" = 10−1 s−1. The
e�ect of the �ller volume fraction on the magnitude of the meltability M of the RVE’s,
is therefore determined by the �ller volume fraction dependency of the �rmness F at
T = 10 ○C. We predict a magnitude of M of low-fat cheese that is a factor of two lower
than the meltability of full-fat cheese, which also corresponds to our measurements.

The middle-row plots in Fig. 5.2 are contours of the local von Mises stress �̂ in
the RVE’s, at a macroscopic strain of "= 2 % and a temperature of T = 10 ○C. On
average the stress is highest in the �ller, which is valid for rigid �llers being dispersed
in a much softer gel phase. As the �ller volume fraction increases, and the inter-
particle surface to surface distance decreases, two e�ects are observed that enhance
the �rmness of the RVE: �rst the average stress in the �ller increases, and second the
stress localizes in the gel phase at the interface of two neighbouring �ller particles. On
a macroscopic level both e�ects result in an exponential increase in relative �rmness
with increasing fat content at T = 10 ○C.

A non-linear e�ect of the �ller volume fraction on the shear modulus of suspension-
�lled gels is also predicted by analytically solvable �ller composite models, which
are widely applied in food-science since the 1980’s [45]. Yang et al. [213] tested
twelve variations of these models for their ability to �t through storage modulus
versus Cheddar cheese composition data. All of the tested models originate from
the Einstein equation for the viscosity of suspensions of dilute mono disperse and
rigid spherical inclusions. The models vary on the extent to which they account for
viscoelasticity, interactions, compressibility and maximum packing of the inclusions.
For Cheddar cheese the Palierne model [143, 144] modi�ed by Pal [141, 142] and
Kerner’s model [95] modi�ed by Lewis and Nielsen [104] gave good �ts. Although
these analytically solvable �ller composite models allow for calculation of the �rmness
and meltability of emulsion-�lled gels, there are several arguments why we favour our
modeling approach based on �nite element analyses of representative volume elements.
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First our micromodel provides insight in the mechanisms underlying the �ller volume
fraction dependency of �rmness. This gives us the clues for structure re-design that
leads to �rmness enhancement at low �ller volume fraction. Second, our model allows
for an unlimited variation in morphology and amount of phases that built up the
food microstructure, enabling us to test a variety structures. Third, we are able to
evaluate the rubberiness of a deformed microstructure using the information of the
local strain states, as we will show below.

The bottom-row plots in Fig. 5.2 show contours of the equivalent elastic strain "̂,
at a macroscopic strain of "=2 % and a temperature of T = 10 ○C. The plots show that
on average the largest part of the imposed strain accumulates in the gel phase, with
local maxima of the equivalent elastic strain of "̂ = 10%. This phenomenon is called
strain ampli�cation, which explains the reduced rubberiness of a �lled gel compared
to an un�lled gel, as we showed in Chapter 4, [61]. In that chapter we quanti�ed the
average strain ampli�cation in the gel phase of a �lled gel through the global strain
ampli�cation ratio, de�ned as

A′
(") ≡

"̂fg − "̂ug

"̂ug
(5.8)

where "̂fg and "̂ug are the average equivalent strain in a �lled and un�lled gel, re-
spectively. In Fig. 5.3(b) we plot the magnitude of the global strain ampli�cation
ratio A′, as a function of the �ller volume fraction of the series RVE’s depicted in
Fig. 5.2. The magnitude of A′ is measured at a macroscopic strain of "= 0.35. The
plot reveals an exponential growth in strain ampli�cation with �ller volume fraction.
We assume that the magnitude of the yield-strain, and thus rubberiness, is inversely
proportional to the magnitude of the global strain ampli�cation, R ≡ "y ∝ 1/A′; and
de�ne the relative rubberiness R′ by

R′
=
A′

ref

A′
(5.9)

with A′

ref the magnitude of the global strain ampli�cation ratio of full-fat cheese
as T = 10 ○C. This results in a micromodel prediction of the relative rubberiness of
low-fat cheese of 3.5, whereas we measured a relative rubberiness of a factor of 11.
In the previous chapter we argued that the under prediction of the rubberiness of
the micromodel is caused by an underestimation the magnitude of local strains in
two-dimensional (rather than 3D-) analyses of representative volume elements.

However, the simulations provide us with a physical explanation for the plasticizing
e�ect of fat in cheese. The series of bottom-row contour plots in Fig. 5.2 show that
strain ampli�cation is favored by a low inter-particle surface to surface distance of
fat particles. For a cubic lattice packing of spheres with diameter D, the normalized
mean surface to surface inter-particle distance d is given by [210, 211]

d/D = (
�

6�f
)

1/3

− 1 (5.10)
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This suggest an inverse cubic relation between fat content and rubberiness, which
results in a relative rubberiness of low-fat cheese of (0:3/0:15)3 = 8. This approximates
the relative rubberiness of R′ = 11 measured in Section 5.3.1.

We can conclude that our micromodel correctly predicts the gap in �rmness F ,
and meltability M , between full-fat and low-fat cheese, and qualitatively explains
the observed di�erences in rubberiness R. The correlation between the fat content
and the magnitudes of F , M , and R, have their origin in the same morphological
parameter: the inter-particle surface to surface distance of the �ller. This implies
that we have identi�ed the principal design rule for the redesign of the low-fat cheese
microstructure: a signi�cant reduction of the inter-particle distance of the fat phase,
without changing the fat content.

5.3.3 Design analysis and evaluation

The representative volume elements A, B and C in Fig. 5.5, represent three designs of
low-fat cheese microstructures, that meet the principal design rule formulated in the
previous section: a signi�cant reduction of the inter-particle surface to surface distance
of the fat dispersion. The morphology of these two-dimensional microstructures is
created by the following algorithm that is inspired by the microstructures of (multiple
generations of) stone-�lled concrete. First a set of circles is created, using a normally
distributed random number generator. The circles are de�ned by a mean diameter
�D, a standard deviation � = 0:1 �D, and the randomly generated coordinates of their
centre point. The circles in the set are sorted from largest to smallest diameter, and
then placed in the area element, with the constraints of periodicity, no overlap, and
a prescribed total area fraction a bounded by the circles. In morphology A, two
sets of circles are used to create the morphology, which di�er in mean diameter �D
by a factor of 10. First the circles with the largest mean diameter are placed in
the RVE, bounding a total area fraction of a = 0.55. Then the smaller circles are
distributed over the remaining area bounding an area fraction of a = 0:15. The fat
phase is assigned to the area bounded by the smaller circles, the gel phase is assigned
to the remainder of the total area of the element. Morphology B is created using
three generations of circles, varying in mean diameter �D by the factors 10:3:1, and
bounding a total area fraction of a =0.4, 0.3, and 0.15, respectively. The fat phase is
assigned to the area not bounded by circles. Morphology C is identical to morphology
B, however a third material is assigned to the area fraction bounded by the circles of
the middle set, with a magnitude of a = 0:3.

In Fig. 5.4 we evaluate the relative �rmness F ′, and meltability M , of the three
structure designs. The circles represent the data set also depicted in Fig. 5.3(a). The
blue squares, triangles and diamonds represent the relative �rmness of microstruc-
tures A, B and C respectively. At a temperature of T = 10 ○C, the relative �rmness
of microstructure A, representing a close packing of fat particles, is only slightly in-
creased compared to the classical low-fat microstucture II. The contour-plots of the
equivalent elastic stress show bands of elevated stress in microstructure A, but appar-
ently the zones of low stress that percolate through the structure via the larger and
softer structure elements, dominate the homogenized stress response. In microstruc-
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Figure 5.4: Same plot as is Fig. 5.3(a), rescaled and with the realtive �rmness F ′ of
the three low-fat cheese structure designs from Fig. 5.5 included. The shapes of the
blue symbols correspond to the shapes of the symbols below the respective RVE’s in
Fig. 5.5.

ture B, representing a phase-inverted structure with the rigid fat phase forming a
stress-carying network, the softer structure elements consisting of protein and water
are disconnected. As a result, zones of elevated stress percolate through the mi-
crostructure via the fat phase, reaching levels of the von Mises stress of �̂ ≥ 20 kPa.
This leads to an increase in relative �rmness F’ of a factor of 2.8 compared to classical
low-fat cheese. When temperature is increased from T = 10 ○C to T = 25 ○C, the shear
modulus of the protein gel, and the shear modulus of fat, are approximately equal,
Gg ≈ Gf , and the e�ect of morphology on a structure solely consisting of these two
material vanishes. As a result, both the classical low-fat microstructure II, as well as
the phase-inverted microstructure B, are equally �rm at T = 25 ○C. The meltability of
structure B however, is a factor of 2.8 larger than the meltability of a classical low-fat
cheese microstructure.

Compared to the classical full-fat cheese microstructure I in Fig. 5.5, the relative
�rmness of the phase-inverted structure B is a factor of 1.8 larger at T = 10 ○C. This
excessive �rmness F ′ of structure B gives the opportunity to incorporate a soft water-
rich phase in the microstructure, for the purpose of a reduction in raw material use.
The blue phase in the representative volume element C, represents 30 v/v% of soft
microgels [177], with a shear modulus that is independent of temperature and has a
magnitude of Gmg= 1 kPa, which is a factor 50 smaller than the shear modulus of
fat at T = 25 ○C. The relative �rmness of structure C at T = 10 ○C(�lled diamond
shaped �lled symbol in Fig. 5.4) is reduced compared to structure B, however F’ is
still a factor of 1.5 higher than full-fat cheese, structure I. When the temperature is
increased from T = 10 ○C to T = 25 ○C, the magnitude of the relative �rmness F’
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Figure 5.5: Compression simulations on representative volume elements of the mi-
crostructure of I classical full-fat, and II classical low-fat cheese, and three alternative
designs A, B and C of low-fat cheese microstructures. The top-row images show the
undeformed RVE’s, with fat (red), protein and water (green), and a third water-rich
phase (blue). The middle-row and bottom-row images are contour plots of the von
Mises stress �̂, and equivalent elastic strain "̂, respectively, at a macroscopic compres-
sive strain of "= 0.02.
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A - close packing C - micro gelsB - phase inversion

Compression simulations on representative volume elements of the microstructure of
I classical full-fat, and II classical low-fat cheese, and three alternative designs A, B
and C of low-fat cheese microstructures. The top-row images show the undeformed
RVE’s, with fat (red), protein and water (green), and a third water-rich phase (blue).
The middle-row and bottom-row images are contour plots of the von Mises stress �̂,
and equivalent elastic strain "̂, respectively, at a macroscopic compressive strain of
"= 0.02.



140 Chapter 5

0.05 0.15 0.25 0.35
0

1

comp. true  strain, e [-]

gl
ob

al
 a

m
pl

ifi
ca

tio
n 

ra
tio

, A
' [

-]

(a)

0.05 0.15 0.25 0.35
1

2

3

4

5

6

7

8

9

10

comp. true  strain, e [-]

lo
ca

l a
m

pl
ifi

ca
tio

n 
ra

tio
, A

'' 
[-

]

(b)

Figure 5.6: Evolution of (a) the global and (b) the local strain ampli�cation in the
protein gel phase of the RVE’s from Fig. 5.5. The shapes of the symbols corresponds
to the shapes of the symbols below the respective RVE’s in Fig. 5.5.

is signi�cantly lower than for both classical low-fat and classical-full fat cheese, as a
result of the presence of the microgels which are softer than the fat phase and the
protein phase, Gg ≈ Gf = 0.02 Gmg. As a result of the low �rmness at T = 25 ○C,
the meltability of structure C containing microgels is larger than the meltability of
structure B, and exceeds the meltability of full-fat cheese by a factor of 2.8

In Fig. 5.6(a) we evaluate the rubberiness of the three structure designs, on the
basis of the magnitude of the strain ampli�cation A′ in the protein gel phase, as a
function of the macroscopic strain ". The global ampli�cation in the closed packed
microstructure A (un�lled square), is slightly larger than in classical low-fat cheese
structure (blue), but much smaller than in full-fat cheese. The global strain ampli-
�cation in the gel phase of structure B (un�lled triangle), and structure C (un�lled
diamond), is smaller than in the gel phase of the classical low-fat cheese microstruc-
ture. If we assume the rubberiness to be proportional to the global strain ampli�cation
ratio only, than all three structures do not meet our requirement of a rubberiness equal
to the rubberiness of full-fat cheese.

However, locally, the strain in the three structure designs is ampli�ed signi�cantly,
as we demonstrate in Fig. 5.6(b). Here we plot the local strain ampli�cation ratio,
introduced in Chapter 4, Faber et al. [61], and de�ned by

A′′
(") ≡

max{"̂fg} − "̂fg

"̂fg
(5.11)

where max{"̂fg} is the maximum of equivalent elastic strain in the protein gel
phase of the RVE. The plot reveals a localization of strains in all three structure
designs, that is signi�cantly larger than in full-fat cheese. In structure A (square),
the evolution of A′′ follows the same trend as in full-fat cheese (red), whereas the
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localization in classical low-fat cheese (blue) levels o�. In structures B and C, the
local strain ampli�cation is that large, that computations do not converge beyond
a macroscopic strain of "≈ 0.05. The large local strain ampli�cation in the three
structure designs implies initiation of local damage at a small macroscopic strain
", which could trigger a cascade of damage events upon further compression. This
suggest that the magnitude of the rubberiness of structures A, B and C is signi�cantly
reduced compared to the classical low-fat cheese microstructure.

5.4 Conclusion

Radical reformulation of food products without deterioration of the texture pro�le,
requires structure-texture models. In this work we demonstrated a modeling approach
based on unambiguous rheological de�nitions of key texture attributes of cheese, a
soft-solid emulsion-�lled gel, combined with analyses of the local stress- and strain-
states in deformed representative volume elements of the cheese microstructure. We
treated a reformulation casus with the following objective: to re-design the structure
of low-fat, semi-hard cheese containing 15 v/v% fat, such that the magnitude of
�rmness F , meltability M , and rubberiness R, reaches the level of that of a full-fat
cheese with 30 v/v% fat.

We measured the stress-response of di�erent semi-hard cheeses in monotonic uni-
axial compression, and showed that �rmness and meltability of low-fat cheese are a
factor of 2 lower than that of the full-fat reference, whereas the rubberiness is a factor
of 11 higher. The quanti�ed texture-gap served as the requirement speci�cations of
the re-designed structure. To obtain preliminary guidelines for the structure design,
we provided a micromechanical explanation for the measured texture gap. Simulations
on a series of representative volume elements of the cheese microstructure, increasing
in fat content, showed that �rmness, meltability, and rubberiness are governed by the
same morphological parameter: the interparticle surface-to-surface distance of the
particles forming the fat phase. To improve the texture pro�le of low-fat cheese, the
magnitude of this parameter must be reduced signi�cantly.

We generated three low-fat cheese micro-structures, that complied to this design
rule: a structure with a close packing of fat particles, a phase-inverted microstructure,
where the fat phase is almost continuous, and a variant with water-rich microgels in
the almost continuous-fat phase. We used �nite element analyses, to evaluate the
�rmness, meltability and rubberiness of these structures. These revealed that a low-
fat cheese with an almost continuous fat-phase, outperforms a classical full-fat cheese
in �rmness and meltability. Meltability is further increased when adding microgels
that are softer than the fat phase at consumptions temperatures. Such a water-rich
phase results in a reduction of resources use, which is an additional bene�t besides
calorie reduction. In all three structures the reduction of the inter-particle distance
of the fat phase led to local strain ampli�cation that was signi�cantly larger than
in full-fat cheese. This suggest that the rubberiness of the three structures is on an
adequate level.
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The presented approach to structure-texture engineering is generally applicable to
structured food products. It is a powerful add-on to product-driven process design
methodologies, that guides the rational selection within the wealth of structuring
options.
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Conclusions and
recommendations

6.1 Conclusions

In this thesis, we developed a structure-texture model for semi-hard cheese using the
principles of rheology. We demonstrated the usefulness of such a structure-texture
model in the context of radical product reformulation.

Rheological de�nitions for sensory texture attributes

First we translated two assessable texture attributes, �rmness and rubberiness, into
measurable quantities making use of bulk rheology. The creep-recovery experiment
most closely resembles the observations and manipulations involved in assessing �rm-
ness and rubberiness by hand and vision. In this controlled experiment, �rmness is
de�ned as the inverse of the compliance at the end of the creep regime; rubberiness
is the relative amount of strain recovered at the end of the creep recovery period.
We generalized the de�nitions of �rmness and rubberiness to allow for their mea-
surement in alternative rheometric set-ups. Firmness is a resistance to deformation
and measures the linear viscoelastic properties of the food material. Rubberiness is
the resistance to ow and is a measure for the propensity of the material to show a
non-linear viscoelastoplastic response when subjected to a load.

143
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Firmness, springiness and linear viscoelastic response

A minimum level of �rmness is required to name a cheese semi-hard: a product that
can be portioned in large self-supporting loafs and be sliced and grated prior to con-
sumption. Cheese displays a power-law relaxation, which is typical for materials with
self-similar microstructures. We showed that we can describe the viscoelastic response
of cheese in oscillatory shear, creep, stress-relaxation, and uniaxial compression using
a constitutive model with only two material properties: a fractional exponent �, which
quanti�es the frequency and temporal response, and a scale factor or quasi-property
G, which sets the magnitude of the stress in the material. Using the de�nitions of
�rmness and rubberiness based on points on the creep-recovery curve, we derived
expressions that quantify these attributes in terms of the two intrinsic material prop-
erties and time. We also quanti�ed springiness, which is de�ned as the secant rate
of recovery after 0.1 s of stress release. Firmness and rubberiness are time-dependent
properties, whereas springiness is not. We proved that the magnitudes of �rmness
and springiness are inversely related, and showed that in the linear viscoelastic regime
rubberiness is a function of the fractional exponent only.

Rubberiness and non-linear viscoelastoplastic response

A linear-viscoelastic measurement does not su�ce to distinct between the rubber-
iness of food gels with similar fractional exponents, and does not do justice to its
de�nition. The proper measurement of rubberiness requires a yielding event, and in
Large Amplitude Oscillatory Shear (LAOS-) experiments rubberiness is de�ned as
the strain-amplitude at which the material response becomes viscoelastoplastic. A
similar measure for rubberiness is used when the material is deformed under mono-
tonic uniaxial compression. In LAOS the onset of non-linearity, and thus the yield
point, is easily identi�ed. In compression the identi�cation of the yield point requires
a comparison of the measurement to the prediction of a two-parameter constitutive
model. At the yield strain, the model starts overpredicting the stress, since in the
experiments damage events in the form of nucleation and propagation of small cracks
start to occur inside the material. These physical processes are not included in the
model.

Fluid properties of cheese - brittleness and thickness

Under continuous loading cheese ultimately transitions from an elastic solid to a ow-
ing uid, which we de�ne as uidization. We quanti�ed and characterized uidization
with two new measures for LAOS, the uidisation ratio and the revised thickening
ratio, respectively. We used LAOS to measure the evolution of the elastic stress in the
material at increasing strain amplitude, and deducted the rheological pro�le for brit-
tle and smooth failure from the material response beyond the peak stress. We showed
that a cheese that is more �rm and rubbery, displays a more brittle response. We
proposed that brittleness, crumbliness, and smoothness are macroscopic observations
of the characteristic length scale of cracks formed in the food gel, prior to failure.
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Structure-texture relations for cheese

We implemented the two-parameter constitutive model of the gel consisting of pro-
tein and water in computations on loaded representative volume elements of �lled
gels, to derive structure-property relations for semi-hard cheese. These relations were
veri�ed by experiments in shear and compression. Filling the gel phase with emulsi-
�ed fat, increases the response functions of cheese to temperature and loading. The
magnitude of the shear modulus of the fat globule is a factor of 100 more sensitive to
changes in temperature than the magnitude of the quasi-property of the gel phase.
This increases the meltability of full-fat cheese, de�ned as the temperature-induced
decrease in �rmness, by a factor of 4. The dispersed fat also serves as a plasticizer:
it reduces the rubberiness, the strain at which the material yields, by a factor of 15.
The presence of fat increases the rate of crack-formation, which is attributed to the
ampli�cation of strain in the gel phase. The increased rate of crack formation, and
the hindrance of crack propagation by the presence of �llers, reduces the character-
istic lengthscale of the fractures at the ultimate failure of the gel. This results in a
more smooth failure of full-fat cheese. Cheese �rmness, meltability and smoothness
increase exponentially with the �ller volume fraction. We showed that this scaling is
governed by the same morphological parameter: the interparticle surface-to-surface
distance of the �ller particles.

Design of the microstructure of a reformulated cheese

Finally, we treated the case of reformulating full-fat cheese, by reducing the fat content
with 50% to the level of low-fat cheese, while maintaining the �rmness F , meltability
M , and rubberiness R, of the full-fat reference. We quanti�ed the texture gap between
low-fat cheese and full-fat cheese using our objecti�ed measures for F , M and R.
The reduction in fat content by 50% caused a decrease in �rmness and meltability
by a factor of 2 and an increase in rubberiness by a factor of 11. We designed three
alternative low-fat cheese microstructures in which the interparticle surface-to-surface
distance of the fat particles was signi�cantly reduced. We virtually evaluated the
texture pro�le of the three structures and predicted that a phase-inverted structure
that contains an almost continuous fat phase and additional soft, water-rich microgels,
has a higher �rmness and meltability than full-fat cheese, with the additional bene�t
of a lower rubberiness. Therefore a further reduction in fat content, or alternatively,
an increase in water content, without loosing the texture properties of full-fat cheese,
is possible. Furthermore, the optimized structures lead to a signi�cant reduction in
resource use in the production of semi-hard cheese.
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6.1.1 Main results

To conclude the research on semi-hard cheese, as presented in this thesis, we can
summarize the two main results as follows:

1. The use of advanced rheological methods and tools, like fractional derivatives
and LAOS experiments, allows for a fast and objective evaluation of food texture
attributes that are otherwise only obtained by time-consuming subjective panel
tests.

2. The micromechanical RVE approach applied results in quantitative structure-
texture models with su�cient local detail to provide useful guidelines on how
to create optimized (e.g. low-fat, water-rich) products, without introducing
de�cits in the handling properties and texture attributes.

The presented approach to structure-texture engineering is generally applicable to
structured food products. It is a powerful add-on to product-driven process design
methodologies, that guides the rational selection within the wealth of structuring
options.

6.2 Recommendations

In the �nal section of this thesis we suggest some potential next steps in the product-
driven process design of low-fat, low calorie cheese with low environmental impact.
1) Evaluate the texture of structures using the rheological measures and techniques
described in this thesis. 2) Select the appropriate structuring route based on the
requirement speci�cations from Chapter 5, and make tangible prototype structures on
a lab-scale. 3) Optimize novel structures based on a micromechanistic understanding
of the measured macroscopic response.

For the rheological analysis of new structures, shear experiments are recommended
and preferred over uniaxial compression experiments. Large Amplitude Oscillatory
Shear allows for a more thorough material analysis in only one test run, and without
the necessity of �tting a model to interpret the response in terms of texture attributes.
Furthermore there is no lower limit in the �rmness of the measured sample, whereas
for compression experiments the sample needs to be able to hold its own weight during
the time of the experiment. We propose the following protocol that generates the data
for providing leads for further �netuning of the structure, and for building hypotheses
for the physical mechanism underlying structure collapse. Fi rst measure the storage
and loss modulus in a temperature sweep from T = 10 ○C to T = 25 ○C at a frequency
of != 1 rad s−1, and a strain amplitude in the linear viscoelastic regime. Using the
appropriate equations from Chapter 2, the data is easily converted to a temperature
dependent quasi-property and fractional exponent, which in turn give a time- and
temperature dependence of the �rmness, springiness, rubberiness, and meltability of
the structure. Subsequently, in the same run, measure the stress in a strainsweep
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at T = 25 ○C, and use the measures from Chapter 3 to determine the amplitude-
dependent rubberiness, the brittleness, and the extent of thickening or thinning in
the uid regime.

In Chapter 5 [62] we showed that we should aim for structures in which the inter-
particle surface-to-surface distance of the fat globules is signi�cantly reduced, and
in which a third, dispersed, water-rich phase is included. The following structuring
methods obey the design principles formulated in that chapter.

Michalski et al. [125] uses micro�ltration to separate the large fat globules from
cheese milk, creating a cheese with relatively small fat globules. Eq. (5.10) from Wu
[211] shows that this reduces the interparticle- surface to-surface distance at a constant
volume fraction of fat. Mosca et al. [130] create structures with an inhomogeneous
distribution of fat by stacking layers of gels varying in fat content. Poortinga and
Faber [148] describe a process in which a small amount of polysaccharide is added to
a concentrated dispersion of protein and fat particles, causing depletion occulation
of the protein colloids, thereby inducing local phase separation. Perry et al. [146]
produce low-fat Mozarella using an exo-polysaccharide producing starting culture.
The cheese had a signi�cant higher water content than the reference as a result of
the in-situ development of exo-polysaccharide microcapsules. Luyten et al. [111] use
a suspension of microgels created from either a protein or polysaccharide source,
that have a larger water-retaining capacity than the gel phase of standard semi-hard
cheese. These methods should, and could, be optimized towards meeting the design
speci�cations of the microstructures proposed in Chapter 5.

The water-rich phase in the structure proposed by Luyten is spongy of nature. This
implies that locally and temporarily, the constitutive description of the stress-response
of the protein gel phase of the RVE’s in Chapter 3 and 4 is inadequate, as it is based on
the assumption of a constant water-protein ratio. For structures containing multiple
hydrogels, the constitutive framework should incorporate ’poro-elasticity’, which is
the term used to describe the coupling between uid ow and solids deformation
within a porous medium.

On the use of model systems in food research: food materials are often thought to
be too complex for unraveling structure-texture relations. It is therefore common
practice to build food material model systems from a strongly reduced amount of
constituents, often with a well described architecture on the molecular level. One
could call this a bottom-up approach to the process of unraveling complexity. In this
thesis we adopted a top-down approach allowing to maximally retain the complexity
of the food material. We have shown that by merely changing the fat content and
water content of cheese, produced according to commercial speci�cations, we were
able to generate a dataset with a large, but systematic variation in constitution and
properties. The challenge was to �nd the proper physical models and analytical tools
to interpret the texture characteristics resulting from this variation. We here want to
argue that this top-down approach to unraveling structure-texture relations is more
fruitful, as only a complex multiphase material displays the strong response function
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that clarify large variations in texture when changing composition. Research on the
microstructural origin of macroscopic food properties should be conducted following
this approach.
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Samenvatting

De juiste kaastextuur
gerealiseerd met structuur-textuurmodellen

Half-harde kaas bestaat voor 30 % uit vet, gedispergeerd in een gel van water en eiwit.
Steeds vaker wordt de receptuur van dit soort gestructureerde levensmiddelen radicaal
aangepast, met als hoofdargumenten het terugdringen van de kosten, de milieubelast-
ing en de calorische waarde van het product. Radicale receptuurwijzigingen leiden
vrijwel altijd tot ongewenste veranderingen in de textuur, ofwel het mondgevoel. De
textuur van levensmiddelen wordt bepaald door de microstructuur: de hoeveelheid
van de aanwezige nutri�enten en de wijze waarop ze op kleine schaal, 10−6 meter, door
het product verdeeld zijn. Om tekortkomingen in de textuur te repareren moet op de
schaal van de microstructuur worden ingegrepen. Zelfs als de samenstelling vastligt,
zijn er meerdere combinaties van structurerende processtappen mogelijk, waarvan
slechts enkele het beoogde e�ect sorteren. In dit proefschrift laten we zien hoe met
behulp van reologische modellen richting gegeven kan worden aan de zoektocht naar
de juiste structureringstechnologie.

Reologie is het vakgebied dat het stromingsgedrag van complexe, gestructureerde
materialen beschrijft. Reologische experimenten en textuuronderzoek kennen over-
eenkomsten: een materiaal wordt belast door een kracht of een verplaatsing op te
leggen, en vervolgens wordt de respons van het materiaal bestudeerd. Echter, re-
ologische experimenten zijn zeer nauwkeurig gede�nieerd terwijl textuuronderzoek
gebaseerd is op gevoel en de complexe interactie van een levensmiddel tussen mens en
product. Dit heeft tot gevolg dat modellen, die de microstructuur van een levensmid-
del kunnen koppelen aan het reologisch materiaalgedrag, een grotere voorspellende
waarde hebben ten opzichte van modellen direct gekoppeld aan panelgegevens. Om
toch de stap van microstructuur naar textuur te maken, hebben we allereerst de ter-
men ‘stevigheid’ versus ‘zachtheid’ en ‘rubberachtigheid’ versus ‘kneedbaarheid’ naar
reologische begrippen vertaald. Deze termen bepalen in grote mate de waardering en
industri�ele verwerkbaarheid van half-harde kaas.

De stevigheid van kaas, ofwel de weerstand tegen een vervorming, is geen con-
stante, maar blijkt afhankelijk van de tijd die nodig is om een oordeel te vormen. In
eerste instantie verzet het materiaal zich tegen een belasting die wordt opgelegd, en
vertoont het een hoge stevigheid. Echter als de tijd verstrijkt verdwijnt de weerstand
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en wordt het materiaal als zachter ervaren. De tijdsafhankelijkheid in de stevigheid
van complexe materialen werd in de jaren 30 van de vorige eeuw ontdekt en met
een materiaalmodel met twee parameters beschreven. De waarde van die parameters
wordt bepaald door de microstructuur en met een reologisch experiment gemeten.
In dit proefschrift laten we zien dat met de twee modelparameters ook de rubber-
achtigheid, de mate waarin een kaas terugveert tot zijn oorspronkelijk vorm, kan
worden bepaald. Ook hier geldt weer een tijdsafhankelijkheid: als de beoordelaar
maar lang genoeg wacht, keert elk type kaas terug naar zijn oorsponkelijke vorm en
worden alle kazen als even rubberig beoordeeld. Om onderscheid te maken tussen
de rubberigheid van kazen is het noodzakelijk om een dermate hoge belasting op te
leggen, dat de kaas de vloeirek bereikt en gaat vloeien. Ons model helpt het vloeipunt
te bepalen.

De reologische metingen in dit proefschrift laten zien dat vetloze kaas rubberiger en
zachter is, terwijl volvette kaas stevig en vervormbaar is. Deze variatie komt overeen
met beoordelingen uit de praktijk. Met een tweede model verklaren we de samen-
stellingsafhankelijke variatie in de textuur vanuit verschillen in de microstructuur. Bij
koelkasttemperatuur zijn de vetbollen in volvette kaas gestold en stijf. De stijfheid
wordt via de gelfase doorgegeven aan de gehele kaas, waardoor deze stevig aanvoelt.
Bij samendrukken van de kaas, komt de rek voor een onevenredig groot deel in de
gel fase terecht, een fenomeneen dat rekversteviging wordt genoemd. Als gevolg van
de grote locale rekken, ontstaan er wijdverspreid haarscheurtjes in de gel die ervoor
zorgen dat de kaas nauwelijks terugveert en kneedbaar wordt. Als de temperatuur
stijgt tot waarden zoals in de mond, smelt het vet in de kaas en worden de vetbollen,
en daarmee de kaas, zacht. Deze door warmte ge��nduceerde stevig-zacht overgang in
de kaas noemen we ‘smelten’, en vertegenwoordigt het derde attribuut dat bepalend
is voor de beoordeling van de kaastextuur.

Het doorgeven van de stijfheid en smelteigenschappen van vet door de gelfase,
alsmede het ontstaan van rekversteviging, vindt alleen plaats als de gemiddelde af-
stand tussen de oppervlakten van twee naburige vetbollen klein genoeg is. In de
standaard bereidingswijze van kaas schaalt deze afstand met de volumefractie vet
tot de derde macht. Dit verklaart de tekortkomingen in het textuurpro�el van kaas
waarvan het vetgehalte is gehalveerd. Ons structuur-textuurmodel laat zien dat deze
wetmatigheid kan worden doorbroken, en wel als er een structureringsproces wordt
gebruikt waarbij de fasen inverteren. Dit heeft als resultaat dat de continue fase
wordt gevormd door de fase die het minst aanwezig is, de 15 vol% vet, terwijl de
disperse discontinue fase wordt gevormd door de in grote meerderheid aanwezige gel
van water en eiwit. De stevigheid en smeltbaarheid van deze laagvette kaas neemt
dan zelfs toe ten opzichte van de klassieke volvette kaas. Dit biedt de additionele
mogelijkheid om het watergehalte in de kaas te verhogen, wat leidt tot een reductie
in het grondstofverbruik en verdere verlaging van de calorische waarde.

In dit proefschrift hebben we laten zien hoe geavanceerde modellen en methoden uit
de reologie, geschikt worden gemaakt voor productgestuurde procesinnovatie in de
levensmiddelenindustrie. De beschreven werkwijze is generiek toepasbaar voor alle
gestructureerde levensmiddelen.
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Hof en Peter Nossin van het Dutch Polymer Institute, met de vraag of we onderzoek
naar kaas mochten doen in jouw groep. Wij wilden weten hoe we met minder eiwit
en minder vet toch lekkere, stevige kaas kon maken. Je hebt ons warm en gastvrij
ontvangen en reageerde direct enthousiast. Je maakte ons duidelijk dat kaas eigenlijk
veel weg heeft van beton. Beton? Nooit, aan gedacht, toen wisten we dat we goed
zaten. Je stelde �e�en vraag: ’Kunnen jullie de eigenschappen van het kaaseiwit en
het kaasvet apart meten?’ Ja, dat konden we, en met die ene vraag, in die eerste
ontmoeting, heb je ons direct op het goede spoor gezet. Het heeft de aanpak en het
succes van het onderzoek in dit proefschrift bepaald.

Zo ging het daarna vaker. Ik kwam met een stuk werk en je luisterde aandachtig.
Daarna kwam je met een scherpe analyse en was je niet te beroerd om mij te doceren
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liet zien dat het rheologisch gedrag van kaas wel erg leek op dat van het deeg waar
Gareth metingen aan deed, was je resoluut. Ik moest naar MIT.
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teamwork maakt, en je feilloze intuitie om de mensen op de juiste plek te zetten en in
hun kracht te laten werken. Je hebt met Polymer Technology een groep opgebouwd
met de ideale mix van experimenteel werk en modelleren, en van diepgang en toepas-
baarheid. Met jouw aanpak van het ophelderen van structuur-eigenschappen relaties
kan de levensmiddelen wereld nog jaren vooruit. Alhoewel je van je hart geen moord-
kuil maakt (ik vond dat wel prettig, een goede tegenhanger van mijn beleefheid), ben
je een echte verbinder. Dit blijkt niet alleen uit het feit dat je geen moment hoefde
na te denken om iemand van FrieslandCampina in je groep op te nemen, maar ook
uit je nalatenschap van samenwerkingsverbanden als MaTe, Eindhoven Polymer Lab-
oratories en de AG bijeenkomsten. Het is een eer om je een-na-laatste promovendus
te zijn, en ik heb genoten van de intensiteit waarmee we in de laatste maanden een
geheel van dit proefschrift hebben gesmeed. Dank je.

Gareth, we �rst met at the Food Rheology Symposium in Zurich in 2012, where you
chaired the session in which I presented my rudimentary work. Let me be honest,
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up till then I never heard of you; I was a newbie in the �eld of rheology. How little
did I know? Only one year later I was standing with you in Montreal with a glass of
Champaign in my hand, only a few hours before one of the most prestigious awards
in the �eld of rheology would be handed to you: the Bingham medal. Together with
you and your (former) pupils, we celebrated this acknowledgement. In your speech
you said that of all the people in the room, only two had not published a paper yet
with you. I was one of them. Now, two years later, you are co-promoter of my thesis
and your name is on �ve joint papers in preparation. How fast things can change.

As I mentioned earlier, I think back nostalgically about my two visits to MIT and
the discussions we had together with Adi (thank you Adi!) to crack the code of what
you call the language of \ness": �rmness, rubberiness, springiness and smoothness.
In Zurich you told me that you might have a good model description for my data,
based on fractional calculus. You directed me towards the work of George William
Scott Blair and I became, like you, a fan of his work. Scott Blair is the embodiment of
an industrial rheologist: a deep interest in real materials and industry’s big problems.
Fully naturally, whilst in the process of solving challenges, he also developed the �eld
of rheology. I feel you and Han fall in the same category, and I am truly honored
having you both as promoters of my thesis. Whilst studying his publication I found
out that Scott Blair was one of the founding fathers of texture studies, then called
‘psychorheology’. I learned that he postulated the constitutive equation containing
the quasi-property and a fractional derivative after studying the �rmness of cheese!
What a coincidence. Or was it faith?

I feel privileged getting a masterclass in scienti�c writing from you, teaching me to
be formal and complete in my writing, and that less is more - \Timo, you are putting
everything in but the kitchen sink!". With your passion for language you have enriched
our work and helped me catch the right words: ‘squishy’ as the antonym for ‘springy’
and certainly not ‘runny’ ! I am looking forward to seeing you again in Eindhoven.

De Materials Technology groep bleek een snoepwinkel voor iemand van Food Struc-
turing: wat zijn er veel raakvlakken tussen onderzoek naar synthethische materialen
en onderzoek naar levensmiddelen, en wat heeft MaTe een goede infrastructuur.

Piet, bedankt dat je mij hebt geholpen om de eerste microstructuren van kaas in
Marc Mentat te bouwen, je bent een geweldige leermeester.

Lamb�ert, je hebt me in het gareel gehouden als ik weer een pad zag om in te
duiken. Als all-round wetenschapper leerde je me zowel mijn RVE’s te ver�jnen als
een gedegen compressie experiment en trekproef uit te voeren. We beleefden een
doorbraak toen we ontdekten dat kaas-eiwit geen Eindhoven Glassy Polymer is maar
een relaxerend rubber, alles viel op zijn plaats. Samen hebben we een winnende poster
gemaakt en nu dit proefschrift. Enorm bedankt.

Cleem, in 2007 stapte ik je kamer binnen, met de mededeling dat ik graag een pro-
motieonderzoek wilde gaan doen voor Campina. Je hebt persoonlijke ontwikkeling
hoog in het vaandel staan (Dromen Durven Doen!) en je steunde me dan ook volledig.
Terwijl we samen met Toon van Hooijdonk naar een geschikt onderwerp zochten kwam
de fusie met Friesland Foods tot stand, een buitenkans voor mij, want zo kwam ik in
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contact met Hannemieke, zelf in 1988 op de rheologie en breukeigenschappen van kaas
gepromoveerd. Hannemieke, je stelde voor om Han te benaderen voor een samenwerk-
ing, en via Gerard zijn contacten bij het DPI ben ik uiteindelijk in Eindhoven terecht
gekomen. Tjeerd en Gerard, jullie hebben allebei je nek uitgestoken om mijn over-
steek van Development naar Research mogelijk te maken, dank daarvoor. Gerard, ik
kijk uit naar hernieuwde, geanimeerde, gesprekken over innovatie. Laten we samen
nadenken over welke talenten ik nu verder ga ontplooien. Je bent van alle markten
thuis, op het laatst kon je het zelfs niet laten de spelfouten uit mijn proefschrift te
halen. Marcel en Hans N., samen met Hannemieke hebben we mijn promotieonder-
zoek tot het Say Cheeese project uitgebouwd, een heus onderzoeksprogramma naar
gezonde, lekkere en kostene�ectieve plakjes kaas, gesubsidieerd door NanoNext en
het DPI. Hans, toen het Bene�t Platform Functionality werd opgericht heb je mijn
project meteen onder je hoede genomen, en al die tijd door dik en dun gesteund. Ik
kijk er naar uit mijn eiwitkennis naar andere productgroepen te vertalen. Hanne-
mieke, Gerard, Hans, Cleem, Tjeerd, Marcel, Hans N. en Toon, ik ben jullie enorm
dankbaar voor de steun en ruimte die jullie mij gaven om dit werk te volbrengen en
er mijn eigen invulling aan te geven.

Hans W., Markus, Atze-Jan, Frank, Monica en Jorien, ik heb me even moeten
terugtrekken om dit proefschrift af te ronden, maar nu is er weer ruimte om de
resultaten uit onze samenwerking met elkaar te delen. Let’s squeeze out those spongy
particles!

Anno, Mirjam, Antoinette, Yves, en Anne, met jullie hebben we kennis en kunde
uit Eindhoven en Wageningen naar binnen gehaald en in de praktijk gebracht. Soms
liep het op niets uit, maar we hebben er altijd veel geleerd. Bedankt hiervoor.

Anne, de laatste twee jaar bleven jij en ik alleen over in Say Cheeese. Samen
hebben we het maximale uit de texture analyser en de rheometer gehaald, dat gaf me
enorm veel energie. Je hield me op de hoogte van het reilen en zeilen in Wageningen
en de Groep, en praatte me moed in als ik het even niet meer zag zitten daar alleen
in de Bibliotheek. Dames en heren van de Co�eestar van de TU Bieb in Delft, ik ga
jullie croissantjes missen! Nu weer ko�eleutjes in Wageningen.

Albert, nadat ik Hans Wyss aan je had geintroduceerd heb je ook de oversteek
naar Eindhoven gemaakt. Als duo hebben we aan het fasescheidingspatent gewerkt,
jij de structurer van ProcesTechnologie, ik de procestechnoloog van Food Structuring.
Ik vind het prachtig dat je nu in mijn promotiecommissie plaats neemt.

Lieve Papa, Mama, en Branda. Een boek schrijven is een a-sociale bezigheid, jullie
hebben mij weinig gezien de afgelopen tijd. Het was een ontdekking van mijn talent
dat ik van jullie gekregen heb, maar nu kijk ik er naar uit om weer meer tijd met
elkaar door te brengen. Rachid, Justin, Gerard, dat geldt ook voor jullie. Biertje?

Lieve Pelle, Sieb en Max. Papa heeft zijn boek eindelijk af. Pelle en Sieb, wat zijn
jullie groot geworden in die vijf jaar. Gaandeweg kregen jullie door waar ik mee bezig
was, en groeide ook jullie vermogen om mij, in niet mis te verstane bewoordingen,
duidelijk te maken dat jullie het helemaal niets vonden dat ik zo vaak weg was. Pelle,
ik stond versteld van het gemak waarmee je gisteren een stuk uit een boek aan opa
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en oma Alisa voorlas, ik had duidelijk iets gemist het laatste jaar. Sieb, je kwam
s’nachts bij mijn bed staan als ik die avond laat thuis was gekomen: ’Papa, je hebt
me geen knu�el gegeven.’ E�en omhelsing en het was weer goed en ging je terug je
bed in om weer lekker verder te slapen. Max, gelukkig, kaas is voor jou een lekkernij,
zelfs de Zwitserse van oma Ida. Je begint klinkers en medeklinkers te ontdekken en
zingt ons s’ochtends wakker, waarna je mij met een grote glimlach begroet als ik je
kamer binnenkom. Ik geniet intens van je.

En nu gaan we met zijn allen stoeien!
Nora mijn lieve schat, ik ben weer thuis. Tijdens de periode van mijn promotie

hebben we twee kinderen gekregen, zijn we verhuisd, zijn we drie verbouwingen aange-
gaan en ben je van baan gewisseld. Deze zomer ben je alleen met de jongens op
vakantie gegaan, wat bij mij gemengde gevoelens van grote bewondering en diepe
schuld opriep. Je bent mijn prachtige, krachtige vrouw, zonder jouw steun was dit
niet gelukt. Ik hou van je.

Timo.
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