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Abstract

We study the strong dynamic input-output decou-
pling problem (SDIODP) for nonlinear systems. It is
shown that, given a generically satisfied assumption,
the solvability of the SDIODP around an equilibrium
point is equivalent to the solvability of the same prob-
lem for the linearization of the system around this
equilibrium point. We introduce the Singl compen-
sator, a dynamic state feedback of minimal order that
solves the SDIODP. It is shown that, given the as-
sumption mentioned above, the linearization of the
Singh compensator around an equilibrium point is a
Singh compensator for the linearization of the origi-
nal nonlinear system around this equilibrium point.

1 Introduction

Since for output regulation tasks input-output de-
coupled systems are relatively easy to handle, the so
called input-output decoupling problem has received
a lot of attention in the literature. Today, this prob-
lem is quite well understood for nonlinear control sys-
tems, see e.g. [16], [1],[13] where a complete solution
is described in terms of a dynamic compensator. An
important feature of the decoupling compensator we
consider in this paper, the so called Singh compen-
sator, is that it is a decoupling compensator of mini-
mal dimension, see [9], and therefore it is intuitively
of minimal ” complexity”.

Control engineers are often led to handle a specific
control problem in a concrete nonlinear system by lin-
earizing the given model around an equilibrium point,
and afterwards solve, if possible, the given control
problem for the linearization. We show in the present
paper that at least in a local sense such an approach
may be successfully used, provided the system ful-
fills a generically satisfied regularity assumption. In
particular it follows that the decoupling Singh com-
pensator for the nonlinear system becomes, when lin-
earized around the equilibrium point, a decoupling
compensator for the linearization. Furthermore, we
have, again under the same regularity assumption, a
converse of the above result: for a decoupling Singh
compensator for the linearization of a nonlinear sys-
tem there exists a decoupling Singh compensator for
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the nonlinear sytem having the formentioned com-
pensator as its linearization. The practical conse-
quence of this is that, at least in a sufficiently small
neighborhood, the linear solution of the input-output
decoupling problem for the linearization of a nonlin-
ear system will act as a first order approximate solu-
tion of the decoupling problem for the original non-
linear system. In this sense, we consider this paper
as a justification of engineering practice. Of course it
remains to be studied for each specific system what
an acceptable size of the region of applicability of this
result will be.

With the hereforementioned relation between non-
linear and linearized input-output decouplability in
mind, we conclude this paper with some remarks re-
lating algebraic and geometric structure at infinity
of the nonlinear system. These comments should be
considered as a complement to the work in [11].

2 Preliminaries

Consider a square nonlinear system P, given by equa-
tions of the form

T

P{ o
with ¢ = col(zy,---,2,) € R" local coordinates for
the state space manifold X', u € R™ denoting the
controls, and y € IR™ denoting the outputs. Fur-
thermore, we assume all data to be analytic. Recall
that a meromorphic function 7 is a function of the
form n = n/8, where 7w and 6 are analytic functions.
Assume that the control functions u(t) are n times
continuously differentiable. Then define u(®) := w,
uGtD) = (d/dt)uD. View z,u,---,u(""1) as vari-
ables and let K denote the field consisting of the set of
rational functions of (u,--- ,u(""l)) with coefficients

that are meromorphic in z. For the system (1) we
define in a natural way (with y(® := y)

f(z) + g(z)u
h(z)

y(k+1) = y(k‘,’l)(a)’u,. ‘.’u(k)):

(k) E— »
an;_[f () + g(z)u] + g %%(é;u(m)

Note that y, 7, ---,y™ so defined have components
in the field K.



For k = 1, -+, n, introduce the Jccobian matrices

(cf. [12]):

9y 0 0 0
u
3§;(2) 6y(2) 0 o 0
u U
Su®)  Hy®) dyk) a“(k)
gu 51‘1 @ Sul*=1)

Then the rank p*(P) of P is defined by (see [3])

p"(P) = rankxJ, — rankgeJ,-1 (2)

Note that we always have p*(P) < m. P is said to be
of full rank if p*(P) = m.

We next introduce Singh’s algorithm for the system
P. This algorithm has been introduced in [16] for
calculation of a left inverse of a nonlinear system. The
version of Singh’s algorithm presented here is taken
from [3].

Algorithm 2.1 Singh’s algorithm
Step 0 Let 37((,0) be void and define gg") =y
Step k+1 Forr,s € IN, let Z,,, := {r,r+1,---,s}.
Suppose that in Steps 1 through k, 7,, - ,gﬁk),g}(ck)
have been defined so that

91 = au(2) +bi(z)u

78 = a(e, (39 i € Tipor,j € T })
(2, {39 | i € Tag—1,5 € Tip-1})u

i = @@ 1cierieTu))

Suppose also that the matrix By := [b7,-- -, E,Z']T has
full rank equal to p;, where the rank is take}l with
respect to the field of rational functions of {37,(] ) | 1<
1<k—1,1<j<k—1} with coefficicnts in the field
of 1 meromorphic functions of . Then calculate

gt

ay(") E ok
@z(cHl) — a_’;[f(x) + g(z)u] + EZ ~(j)

t=1 j=g 8!},

(41
gty

and write this as

G = (2, {79 | € Tur, € T )

o (z, {50 i € Tun, j € T Pu

Define Bp41 := [Bf,b{_i_l]T, and piy) := rank By
where the rank is taken with respect to the field of ra-
tional functions of{ggj) | 1 € Ik, j € Z;; } with coeffi-
cients in the field of meromorphic functions of z. Per-
mute, if necessary, the components of g),E_Hl) so that

174

the first pr41 rows of By; are linearly independent.

A(k+1 A(k+1 ~(k4+1)T . (k41)T
Decompose y,(c ) as y,(c ) = (y,(cﬂ) y,(c+-';) )7,
where g,ﬁ’fll) consists of the first (pr41 — pi) rows.

Since the last rows of By are linearly dependent on
the first pr41 rows, we can write

g1 = d1(z) + bi(@)u

AN émHuJﬁ”UEszeLHg)
+beg1(z, {ﬂfj) 1 €1k, j € Tt Pu
i/;(b}fll) = ﬁiﬁ,’i”(ax {# i€ Tip,je Zik41})
Finally, set By := (BT, I;Z_H]T. -

We associate a notion of regularity with Singh’s
algorithm in the following way (see [2] for a related,
but somewhat different notion of regularity).

Definition 2.2 Consider the nonlinear system P
and let a point zy € X' be given. We call (z,y) =
(%0,0) a strongly regular point for P if for each ap-
plication of Singh’s algorithm to P we have

1")

rankmBk(:ﬂo, 0=p (k=1,..- (3)

If (z,y) = (x0,0) is a strongly regular point for P,
the rank of P can be calculated by evaluating J,, and
Jn-1 at a single point (cf. [6]):

p"(P) = rankpJ,(z0,0) — rank g Jy_; (0, 0) (4

3 The nonlinear SDIODP and
linearization

In this section a strong version of the dynamic input-
output decoupling problem is studied. For a non-
linear sysiem P, define the relative degrees r; (i =
1,-+-,m) as the smallest k € IV for which

aytH)
du

£0 (3)
If all relative degrees are finite, define the decoupling
matrix A(z) with entries a;;(z) = (Byir‘)/auj)(:l:)
(4,j € I1,m). A system P is said to be nput-outpul
decoupled if each of its inputs influences one and only
one of its outputs. The system is said to be strongly
input-output decoupled (see [15)) if all relative degrees
are finite, its decoupling matrix is an invertible diag-
onal matrix, and

(?y(k)
3‘Uj

:O(i:l,-w,m;j;éi;er,--#l) (6)



Definition 3.3 Consider a nonlinear system P and
let zo € X be given. Then the strong dynamic input-
output decoupling problem (SDIODP) is said to be
solvable around zg if there exist an integer v, a dy-
namic state feedback @ on IR” of the form

Q{j

with z € IR”, v € IR™ denoting the new controls
and «, 8,7, 8 analytic, a neighborhood U C A of xg
and an open subset Z of R” such that the system
P o Q restricted to U x Z is strongly input-output
decoupled. -

alz,z)+ Bz, z)v @)
(z, z) + &{x, z)v

i

In [3] it was shown that if (xo,0) is a strongly reg-
ular point for P, the SDIODP solvable around x¢ if
and only if p*(P) = m (see also [1], [13]).

We now present a special sort of dynamic state
feedback that solves SDIODP around strongly reg-
ular points for P. This dynamic state feedback is
obtained via Singh’s algorithm and we call it a Singh
compensator. The Singh compensator is obtained as
follows (see [7] and also [16]). Consider the nonlinear
system P and let (zg,0) be a strongly regular point
for P. Furthermore assume that p*(P) = m. Apply
Singh’s algorithm to P. This yields at the n-th step:

Vo =A@, (i i€ Tin-1,j €Tin})
_ . (8)
+Bo(z, {59 | i € Tin-1,5 € Tin_1})u

where Y, = (§7 ---g,(,”‘”T )T and A, is an m-vector
with entries ;. Moreover there exist a neighborhood
U C X of zp, and a neighborhood Yj of the point
(57,%) |€ T1n—1,7 € Zin) = 0 such that By, is invertible
on U x Y. Then on U x Yp (8) yields in particular:

u= B[V, — Ag] (9)
Fori=1,---,m,let v4; be the lowest time-derivative

and §; be the highest time-derivative of y; appearing
in (9). Then we can rewrite (9) as

u = d)l(""a{yi(j) | 1€Iim,j€T i)ji“l})
5 () (4 ; (5)
+ E ¢2,‘(1§,{ yiJ | ? EIlmy] ezl ;6.—1})!!,' '
i=1

for certain vector-valued functions ¢1,¢2 (i =
1,---,m). Let z ({ = 1,---,m) be a vector of di-
mension §; — v; and consider the system:

zi = Ajzi + By (i:l,---,m)

u = ¢1((E‘,Zl, e ;Zm)‘{" (10)
E ¢2i($azl9 o ‘)Zm)vi
=1

with (4;, B;) in Brunovsky canonical form. Then (10)
is called a Singh compensator for P around zg. In-
spection of Singh’s algorithm and the construction
of a Singh compensator (10) gives that for the com-
pensated system we have that y;,- - -, yz-(é‘_l) are in-

dependent of the new controls and that yl@“) = v
(i = 1,---,m). Thus the decoupling matrix of the
compensated system is given by A(x) = I, and (6)
holds. Hence any Singh compensator (10) around a
strongly regular point & solves the SDIODP around
zo. In [9] it was shown that in fact a Singh compen-
sator is a dynamic state feedback of minimal order
solving the SDIODP.

Let zp € X be an equilibrium point for P, i.e.,
f(zo) = 0. Assume (without loss of generality) that
h(zg) = 0. Let the (Jacobian) linearization LP of P
around zg be given by

¢ = F&+Gu
LP{n _ m (11)

In the sequel we make the following assumption:

Assumption 3.4 (z,y) = (2p,0) is a strongly regu-

lar point for P. -

We investigate the connection between the solvabil-
ity of the SDIODP for P and LP. A first result is:

Proposition 3.5 Consider a square nonlinear sys-
tem P. Let g € X an equilibrium point for P that
satisfies Assumption 3.4. Then p*(LP) = p*(P).

Proof By (4) we have that

p* =rankrJn(zg,0) — rankpJ,—1(z0,0)  (12)

Analogously to Section 2, define Jacobian matrices Jf

(k=1,---,n) for the linearized plant LP. It is easily
checked that

HG 0 6 --- 0
HFG HG o -+ 0

J¢ = . . )
HF*'G HF*?*G ... ... HG

(13)
We show that Jg(z0,0) = J} (k=1,---,n), ie., for

k=1,---,n,£=0,---,k— 1 we have
ouytk)
-6—%(10,0):HF’““‘1G (14)

First it is shown that for k =0,1,2,---

dyF)
Oz

(z0,0) = HF* (15)



For k = 0,1 (15) is immediate.
holds for k =1,---,£—~ 1. Then

% (20,0 = (P2 (f(2) + gle)ul+

2oyt
ol e

r=0

—%“—)( 0,0)%(%) = HF'"'F = HF*

Hence (15) holds for k = 1,2, --
fork=1,.---,n

Assume that (15)

-. Next we show that

ay

= (20,0) = HF*"'G (16)

For k = 1 (16) is trivially satisfied. Assume that (16)
holds for k = 0,---,£— 1. Then, using (15), we have:

(&) (¢-1)

W (20,0) = L (P —[7(2) + g(2)ul+
=2 o (£-1) n
rz—:o QaLuGru(r+l))(l‘o,0) = (ll)
%D (24, 0)9(20) = HFE1G

Let k € {1,2,---,n},£€{1,---,k—1}. Then:

0) = 505 (A2 1) + g(2)ul+

E-1)

2 9y ,
E _5177_“( +1))(z0,0)

r=0

Ql(a';—'ﬁ(zg,m = HFF-1-1G
(18)

(17) and (18) establish that (14) holds for k& =
1,2,---n,£=0,---,k—1and hence fork=1,---,n
we have Ji(20,0,---,0) = Jf. Together with (12)
this establishes that p*(LP) = p*(P). -

As an immediate consequence of Proposition 3.5 we
have:

8y
8@
Sytk—1)

T (20,0 =

Theorem 3.6 Consider a square nonlinear plant P.
Let 2y € X be an equilibrium point that salisfies As-
sumplion 3.4 for P. Denote the linearizalion of P
around zg by LP. Then the SDIODF is solvable for

P around x¢ if and only if il is solvable for LP. g

Remark 3.7 The result of Theorem 3.6 can be found
in [10]. It generalizes a result of [4], where a simi-
lar result was obtained for the for the strong input-
output decoupling problem via static state feedback.
In this case, the Singh compensator reduces to a regu-
lar static state feedback that renders A*, the maximal
locally controlled invariant distribution in Ker dh, in-
variant. The result is then established by showing
that A*(2o) = V* (or rather: A*(zg) can be identified
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with V*), where V* is the maximal controlled invari-
ant subspace in Ker H for LP (cf. [4]). It seems likely
that also the result of Theorem 3.6 may be proved in
a similar way by employing the same techniques as in
Section 4 of [7]. Also the approximation result of [5]

is connected with the result of Theorem 3.6. -

We now investigate the connection between Singh
compensators for P and LP. In what follows we use
the following lemma, which can easily be verified:

Lemma 3.8 Consider the equation

Y A(Z)+ B(2)U
Y A(Z)+ B(zZ)U

(19)

where A(Zy) = 0, A(Zo) = 0, B(Z) has full row
rank on a neighborhood of Zy, and each of the rows
of B(Z) is linearly dependent on the rows of B( Z).
Moreover, consider the linearization of (19) around

(Z,U,Y,Y) = (Z,0,0,0):
y'l - AlZl +B£Ul
Vvt = Atzty Byt (20)

Let B+(Z) be a right inverse of B(Z) on a neighbor-
hood of Zy where B(Z) has full row rank. Then (19)
and (20) yield:

U = BV -42)] 1)
Y = A2)+B(2)B*(2)Y - A(Z)]

Ut = 1§£+Zl[}7‘~fi‘Z‘]

Yl A‘Z‘ + Btéﬁ- [?g _ ALZI] (22)

where (22) can be obtained by linearizing (21) around

(Z,U,Y,Y) = (Z,0,0,0). .

Lemma 3.9 Consider a square nonlinear plant P of
full rank. Let xoq be a strongly regular equilibrium
point satisfying Assumption 3.4. Let Q be a Singh
compensalor for P around zg. Then (x,z) = (zo,0)
s an equilibrium point for P o Q).

Proof See [6]. -

Proposition 3.10 Consider a square nonlinear sys-
tem P of full rank. Lel zy € X be an equilibrium
point satisfying Assumption 8.4. Apply Singh’s al-
gorithm to P, yielding a reordering §,,---,4, of the
oulputs, such that

35 = @, {39 |i € Ty, j € T )+
bi(e, {7 |6 € Tuemr,§ € Tixoa Du
i = PP 11<icki<i<ky

23
Then there is an applicalion of Singh’s aIgorz'tlug tc))
LP that results in the same reordering of the out-
puts and where the result of Singh’s algorithm ap-
plied 1o LP can alternatively be obtained by lineariz-
ing the re's\ult of Singh’s algorithm applied to P around

(2,0, {8 |1 <i<ni<j <n}) = (20,0,0,---,0),



Proof We first consider £k = 1. We have:

Oh
Y= - @)f (@) +g(2)u] =2 a1 (x) + by(2)u - (24)
where rankgb; () = p;. By Assumption 3.4 there ex-
ists a neighborhood of 2 such that rankgb; (z) = p;
on this neighborhood. After a possible permutation

of the outputs (24) yields:

where b, has full row rank p; on a neighborhood of

zo. Let bF () be a right inverse of b () on this neigh-
borhood. Then (25) yields

a(z)+ l:)l(z)u
d1(z) + by (z)u

¢
U1

(25)

i a(z)+ El(m)u
(26)

i = ai(@)+bi(2)b ()t
Now consider LP. We have:

- ay(x))

= HF{+ HGu=:d}¢ + biu (27)

where

C7a1

it = HF = (O )(a) =

5 (o) (28)

b= HG = g—:(xo)g(fo) = bi(xo) (29)

Employing the same permutation of the outputs as

for P, (27) yields
)= (i)

where, by Assumption 3.4, I;l has full row rank p1
Note that by (28) and (29) af (aal/a.b)(ao) i =
((9(11/6.’0)(120) bl = bl(:l:o) bl = bl(.’l}o) Let be be a
right inverse of 5. Then (30) yields

ate + btu

N ;
afe + btu

(k

i ajé + I;fu

(31)
. . ceTet s
i = af€+ b1l (7, - 65€)
Then by Lemma 3.8, (31) can be obtained by lineariz-
ing (26) around (z,u,¥;) = (0,0,0) and hence our
claim holds for £ = 1. Now consider the case k = 2.

We have:

)_.

! (32)

Lo.a
T

= Qi [£(2) + go)u+

o5
2

as(z, 31, 57) + ba(z, §;)u
and

Q,;

A = —azl[Fﬁ +Gu+ 5

(33)
afol + ‘12277(2) + bSu
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We find from (26),(31),(32),(33):
dby = —a%lF
(94 (2) - %‘%o))gﬁ (20) =

F:

A (34)
LG - %) i(a0) =
o Ja
5532 1)(w0) = G ao)
I T
. _,,l(m,,m_mn
a’,\(;!) as
(35)
bg—_-a’%G< ~ &)g(a0) =
(36)

(%9)(20) = ba(=o,0)

From (34),(35),(36) it follows that # ”(2) can be ob-
tained by linearizing ng) around (:c u yl,ylz))

(20,0,0,0). Then, using Lernma 3.8, it can be shown
that our claim hold for k¥ = 2. Proceeding as above,

it can be shown that the claim also holds for £ =

3,4,---,n .

Remark 3.11 For nonlinear systems, an algebraic
structure at infinity {[11]) and a geometric structure
at infinity ([14]) can be defined. For linear systems
both structures at infinity coincide ([11]). A conse-
quence of Proposition 3.10 is that the algebraic struc-
ture at infinity of P coincides with that of LP. This
could lead to the conjecture that for a nonlinear sys-
tem P satisfying Assumption 3.4 the algebraic and ge-
ometric structures at infinity coincide. However, this
is not the case, as follows from the example z; = uy,
Ty = 23+ Tauy, &3 = Uy, &g = Us, &5 = Tg, L7 = ug,
Y1 = 21, Y2 = T2, y3 = 25. A straightforward calcu-
lation shows that this system has 3 geometric zeros
at infinity of orders 2,2,1 respectively and it has 3
algebraic zeros at infinity of orders 3,2,1 respectively.

From Proposition 3.10 we may draw the following
conclusion:

Theorem 3.12 Consider a square nonlinear system
P of full rank. Let 2o € X be an equilibrium point
satisfying Assumption 3.4 and let LP denote the lin-
earization of P around xy. Then:

(i) The linearization of a Singh compensator for P
15 a Singh compensator for LP.

(#1) Conversely, every Singh compensator for LP is a
first order approzimation of a Singh compensator

for P around x;. -



Theorem 3.12 has the following practical implica-
tion. In engineering practice one often studies a spe-
cific control problem by addressing the problem on
the linearization around a given working point. Of
course it then remains questionable if the control that
was designed to solve the control problem for the lin-
earization of the system is a approximate (first or-
der) approximation of a control that solves the control
problem for the original nonlinear system. In [4] an
example for the strong input-output decoupling prob-
lem via static state feedback was given where indeed
this was not the case. However, frorn Theorem 3.12
it follows that any Singh compensator for LP (which
1s a dynamic state feedback that solves the SDIODP
for LP) is a first order approximation of a dynamic
state feedback that solves the SDIODP for P.
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