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Abstract

We study the strong dynamic input-output decou-

pling problent (SDIODP) for nonlinear systetls' It is

shown that, given a generically satisfied assumption,

the solvability of tlie SDIODP around an equilibriurn

point is equivalent to the solvability ofthc satne prob-

lem for the linearization of the system arourrd this

equilibrium point. We introduce the Singh compen-

sator, a dynamic state feedback of miuinral order that

solves the SDIODP. It is showu that, given the as-

sumption mentioned above' the linearization of the

Singh compensator around an equilibriutn point is a

Singh compensator for the linearization of the origi-

nal nonlinear system around this equilibrium poiut'

L Introduction

Since for output regulation tasks input-output de-

coupled systerns are relatively easy to hanclle, the so

called input-output decoupling problern has received

a lot of attention in the literature. Today, this prob-

Iem is quite well understood for nonliuear corttrol sys-

tems, see e.g. [16], [1]'[13] where a complete solution

is described in terms of a dynanric contpeusator' Au

important feature of the decoupling compensator we

consider in this paper' the so called Singh colnpen-

sator, is that it is a decoupling competlsator of mini-

mal dimension, see [9], and therefore it is intuitively

of minimal " complexitY" .
Control engineers are often led to handle a specific

control problern in a concrete nonlinear systeru by lin-

earizing the given model around an equiliblium point,

and afterwards solve, if possible, t\e given coutrol

problem for the liuearization. We show in the present

paper that at least in a local sense such au approach

may be successfully used, provided ihe syst,em ful-

fills a generically satisfied regularity assumption. In

particular it follows that the decoupling Singh com-

pensator for the nonlinear system beccmes, wheu lin-

earized around the equilibrium point, a decoupling

compensator for the linearization. I\rrtherrnore' we

have, again under the same regularity assumption, a

converse of the above result: for a decoupling Singh
compensator for the linearization of a nonlinear sys-

tem there exists a decoupling Singh compensator for
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the nonlinear sytem having the formentioned com-
pensator as its linearization. The practical conse'
quence of this is that, at least in a sufficiently small

neighborhood, the linear solution ofthe input-output

decoupling problem for the linearization of a nonlin-

ear system will act as a first order approximate solu-

tion of the decoupling problem for the original non-

linear system. In this sense, we consider this paper

as a justification of engineering practice. Of course it

rernains to be studied for each specific system what

an acceptable size of the region of applicability of this

result wil l be.
With the hereforementioned relation between non-

linear and linearized input-output decouplability in

mind, we conclude this paper with some remarks re-

lating algebraic and geometric structure at infinity
of the nonlinear system. These comments should be
considered as a complement to the work in [11].

2 Preliminaries

Consider a square nonlinear system P, given by equa-
tions of the forrn

p { i  =  Í @ ) + s ( t ) u
[ e  =  h ( r )  

( 1 )

with c - col(r1, " ',tn) € ft '  Iocal coordinates for
the state space manifold X, u e IR denoting the
controls, and y € ft- denoting the outputs. Fur-
thermore, rve assume all data to be analytic. Recall
that a meromorphic function q is a function of the
form 4 

- rf 0, where r and 0 are analytic functions.
Assume that the control functions u(Í) are n times
coutinuously differentiable. Then define s(0) ;= u,
u ( i+ l )  . -  

@ ld lu$ ) .  V iew  c ,  u , . . . , , r ( n -1 )  as  va r i -
ables and let f denote the field consisting ofthe set of
ratioual functions of (u,' .. ,u("-r); with coefficients
that are merornorphic in c. For the system (1) we
define in a natural way (with y(0) :- y)

y (L+ l )  -  O (k+ t ) ( c ,  u , .  .  .  , 2 ( t ) )  =

0Y&) ' 
" 

- ' '  
Ë-1 n"'í[)

filr\xt + g(r)ul+ 
,f, ffi"{'*'r

Note that  U, i , . . . ,y( ' )  so def ined have components
in the field K.
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For ,L = 1,
(c f .  [12]) :

ou

ou"t--*-
ou

i

0t) u[2 a2
d u  d u  A u ( 2 )

Then the rank p*(P) of P is defined by (see [3j)

p*(P) = ranks.I, - rank6.I,-r (2)

Note that we always have p*(P) 1nr. P is said to be
of full rank if P* (P) = m.

We next introduce Singh's algorithm for the systern
P. This algorithm has been introduced in [16] for
calculation of a left inverse of a nonlinear system. The
version of Siugh's algorithm preseuted here is taken
from [3].

Algorithm 2.1 Singh's algorithnr

Step 0 tei g[0) be void and define 050) ,= y.
Step k*l For r, s € Xy', let I," t= {r ', r+ 1, . . . , s}.

Suppose that  in  Steps 1 through k,  f r t , . . .  ,g íu) ,gf )
have been defined so that

i l ,  - à r ( " )+h1n)u

i
g |o)  -  á1, ( r , {g Í i )  l t .e  r tx- t ,  j  €Ttx} )

*6*@, taÍi) |  ;  e rt*-t,  j  e I;x-J)u

gf)  = t ín)@,{y[ i )  l t  1 i  €r .x , i  e t in11

Suppose also that the matrix 81, := lbl ,. . . , ifl1" h*
full rank equal to p3, where the rarrk is takeu nith
respect to the field of rational functions of lgfi) | f 3
i < k - I, i  < j < È - 1) with coefficir-.nts in the field
of meromorphic functions of c. Then calculate

o . ( È )  È  I  n . ( À . ). í f r+ r )  oYL '  ,  " .  ,  
t  q ( r \u l+  I -  I -  

dyÀ l iU+t tAi '  = 
l ;LI \x )  ' r  s\r  tuJ,  

k kW
and write this as

tu* t ,  =  ax+t ( t , tg Í i )  l t  € . I t x ,  j  e  Z ; r ,+ r ) )

*ór+r(e, Iali) | ;. e. r*, j e r;1,])u

Define 815a1 := LÉï,bï+rl', ancl ps11 :- rauliBl11
where the rank is taken with respect to the field ofra-
tional functions of {fji) | i e I11,, j eI;n} with coeffi-
cients in the field of meromorphic functions of n. Per-
mute, if necessary, the components of glfr+t) ,o thut

the first p*+r rows of ,86-,.1 are linearly independent.
Decompose..i[u*t) * i[n*t) = (Í$*rt)' glfir)';r,
where .![!+,1) consists of the first (px+, - pr) rows.
Since the last rows of Bp11 are linearly dependent on
the first pft+l rows, we can write

i l ,  =á {x )+ fu ( t1u

:
tÍ i l t)  = áx+r(r,taÍ i l  l ; ,e rtt , , i  et.,u*r11

* i1 ,ay( t , {g [ i )  l ;  €r rx , i  e  r , r11u

t Í i1') = i l l1')( ' ,  {gÍj) |  ;  €r*+r, i  et;u*r11

Finally, set ,Ép..1 := lÉ[ ,6T*], . I

\Ve associate a notion of regularity with Singh's
algorithm in the following way (see [2] for a relatecl,
but somewhat different notion of regularity).

Definition 2.2 Consider the nonlinear system p
and let a point to e X be given. We call (r,y) =
(c0,0) a strongly regular point for p if for each'ao_
plication of Singh's algorithm to p we have

rank6F l ( c6  , 0 )  =  h  ( f r  =  l ,  . . .  , n )  ( 3 )

I

. 
If (o,9) : (r0,0) is a strongly regular point for p,

the rank of P can be calculated by evalualing /, and
Jn-1 at a single point (cf. [6]):

p-(P)  = rankTqJ,(cs,0)  -  rank6, I "_1(ca,0)  (4)

3 The nonlinear SDIODp and
linearization

In this section a strong version of the dynamic input_
output decoupling problem is studied. For a non_
Iinear sysiern P, define the relative degrees 16 (i =
I,. . . ,m) as the smallest È € .0/ for which

oy[n) * n
a "  f u  ( 5 )

If all relative degrees are finite, define the decoupling
matrix ,4(r) wirh entries aij(t) - 

@y1,,)lTu)(r)
(i, j  € Ir,^). A system p is said to be input_outpat
decoupled if each of its inputs influences orr".od orrly
one of its outputs. The system is said to be sírongl.g
input-oulq,ut decoupled (see [1b]) ifall relative d.gr"e,
are finite, its decoupling matrix is an invertible áiag_
oual rnatnx, and

du!È)
# = 0  ( t -  1 , . . . , f f i . , j * í ; k ) r r * 1 )  ( 6 )

. . '  ,f l , introduce the Ji cobiau

J t  ( x , u ,  '  " ,  u ( ' t - t ) ;  -

0 0 0

0yQ)-ët-

ruatrices
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Definition 3.3 Consider a nonliuear system P and
Iet c6 € .t be given. Then the strong dynarnic input-
output decoupling problem (SDIODP) is said to be

solvable around ca if there exist an integer z, a dy-

namic state feedback Q on IR' of. the form

O  {  
2  =  a ( x , z ) + B @ , 2 ) a

-  
L u = l@, z)  - t  6(x,  z)u 

(7)

with z € R' , a € IR denoting the nelv coutrols
and c,8,7,6 analytic, a neighborhood U C,t of xs
and an open subset Z of IR' such that the systern
PoQ restricted to U x Z is stronfiy input-output
decoupled. r

In [3] it was shown that if (t0,0) is a strongly reg-
ular point for P, the SDIODP solvable around cq if
and only if p.(P) = m (see also [l], []31).

We now present a special sort ol dyuauric stabe
feedback that solves SDIODP arouud strongly reg-
ular points for P. This dynamic state feedback is
obtained via Singh's algorithm and lve call it a Singh
compensator. The Singh compensator is obtained as
follows (see [7] and also [16]). Consider the nonlinear
system P arrd let (es,0) be a strongly regular point

for P. F\rtherntore assume that p-(P) - m. Apply
Singh's algorithm to P. This yields at the n-th step:

í r^ -  Á,,(r ,  tE[ i )  |  t .  €Tn-t ,  j  €rr , , ] )
(8)

+Én(n , {y [ i )  l l  € rn - r ,  j  e  r ; ^ -1 ] )u

where Í, = (ff -- .g9-\')' and ,4,, is au rn-vector
with entries á1 . Moreover there exist a neighborhood
U C X of 16, and a neighborhood )'s of the point
(gÍí) le ïln-r,i exi^) = 0 such that É' is invertible
on [/ x Ys. Then on U x Yo (8) yields in particular:

u = É ; r 1 v ^ - Á ^ 1  ( 9 )

For i  = l , . . . , rn , le t  7;  be the lorvest  t ime-der ivat ive
and ói be the highest time-derivative of y; appearing
in (9). Then we can rewrite (9) as

u = ór(* , Iy [ i )  l t  e  I . t^ , i  eT.r ,o , - r11

+1 ,óz r ( r , {  v Í i )  I  i € rn , , i  eT - , , t , - r } )u Ío ' )
i = l

for certain vector-valued functiou:, Ót, ,irz; (t =
1 , . . . , - ) .  L e t  z ;  ( i  -  1 , .  . , r u , )  b e  a  v e c t o r  o f  d i -
mension 6; - 7; and consider the systenr:

2 ;  =  A ; z i * B ; u ;  ( i = 1 , . . . , r n )

1 t  =  ó t ( x , 2 1 , . . .  , z ^ ) *  ( 1 0 )

m

D ó r ; ( r , 2 1 , " ' , 2 ^ ) u ;

with (Á;, B;) in Brunovsky canonical form. Then (10)
is called a Singh compensator for P around ca. In-
spection of Singh's algorithm and the construction
of a Singh compensator (10) gives that for the com-

pensated system we have that  y ; ,  . . . ,a :o ' - t )  are in-

dependent of the new controls and that aÍo') = ,n
( i  = 1, . ' . ,  rn) .  Thus the decoupl ing matr ix  of  the
compensated system is given by Á(r) = 1-, and (6)
holds. Hence any Singh compensator (10) around a
strougly regular point c6 solves the SDIODP around
cs. In [9] it was shown that in fact a Singh compen-
sator is a dynamic state feedback of minimal order
solving the SDIODP.

Let rs € .t be an equil ibrium point for P, i.e.,

,f(ro) = 0. Assume (without loss of generality) that
À(rs) = 0. Let the (Jacobian) l inearization .LP of P
around es be given by

(  è  =  F € + G "L P l :  
-  

" ) ' ' -  

( l l )
L t i  =  H e

In the sequel lve make the following assumption:

Àssumption 3.4 (r, y) = (r0,0) is a strongly regu-
Iar point for P. I

\\'e investigate the connection between the solvabil-
ity of the SDIODP for P and LP. L first result is:

Proposition3.S Consii ler a square nonlinear sys-
tem P. Lel co € I an equil ibrium point for P thal
sal is f ,es Assumpl ion 3. / .  Then p.(LP):  p. (P) .

Proof By (a) we have that

p*  = rankn. / ' ( r0,0)  -  rank7q. l , - r (cs,0)  (12)

Analogously to Section 2, define Jacobian matrices "If
( / r  = 1,  . . . ,n)  for  the l inear ized p lant  .LP.  I t  is  easi ly
checked that

H G O O O
H F G  T I G  O  . . .  O

u  r - b - I r r  u  nh -2 r '
I t t  u  t t t  u

\ t r 'e  s l ro rv  tha t  .h ( rq ,0 )  =  J l  (&  =  1 , . . . ,
È  =  1 , '  " , D ,  I -  0 , . '  . , k -  |  w e  h a v e

)
(  13)

f^t

HG

n) ,  i .e

, ,  - (
" - -  

[ ,

ïsG) '
fitrr)@o,o)= 

gP*-t-t" (14)

Fi rs t  i t  i s  shown tha t  fo r  f r  =  0 ,  1 ,2 , . . .

f f@o,o)= HFk (1b)
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For fr = 0,1 (15) is immediate. Assume that (15)
ho lds  f o r  È  =  1 .  . . . . 1 -  1 .  Then

S@o,ol = &fW[/(') + e(z)u]+
t;. '  u r^u ;i '  "( '+r 

) )("o,0) =

"--u 

out'l 
'

Au(- l ) ,  ^ ,  ê  fY Y l t  @ o , o ) # ( " 0 )  
-  H F t - t F  =  I t F e

Hence (15) holds for À = 1,2, " '. Next we shorv that
f o r k = 1 , . . . , ? t r :

0s@) ': f i - ( ro ,o)= HFh- lG (16)

For ,b = 1 (16) is trivially satisfied. Assume that (16)
ho lds  f o r  k  =0 , . . . , 1 -  1 .  Then ,  us ing  (15 ) ,  r ve  have :

S{'o,o) = &(W[Í(') + s(c)u]+
tt ' uu^";!'"('*r)),,o,0; = (r?)
'"=t Au\r) 

*

6 r ( - r ) ,  ^ \w6r:@o,o)s(to) -  I l  Ft-LG

L e t , t €  { I , 2 , . . . , n } , l e  { 1 , . . . , ( c -  1 } .  T h e n :

0u&), ^\  6 a' ' (k- l )

ff i("0,0) = afu(T[/(,t + e(.u)u]+

Èqf Ao(t- t) 
",(r+l 

)\ _ }yft-t) , -.
E  a u \ r )  -  ' r ) ) ( " o , 0 )  =  

f f i ( " o ' o )  
=

A" ,$- t )w6o:@o,o)_  nrx_ t_r6  
( ts )

(17) and (18) establish that (14) holds for & =
! , 2 , . . . , n , l  : 0 , . . . , È - 1  a n d  h e n c e  f o r  À  =  I , . . . , f l
we  have  Jx ( *0 ,0 , . . ' , 0 )  =  " r f  .  Toge the r  r v i t h  (12 )
this establishes that p.(LP) = p*(P). r

As an imrnediate consequence of Proposition 3.5 we
have:

Theorem 3.6 Consid,er a sqaare nonlinear plant P.
Let es e I be an equil ibrium poinl lhat salisfies ;ls-
sumplion 3./1 for P. Denote lhe l inearizaLion of P
around xs bg LP. Then the SDIODI' is soluable for
P around xs if and. onig if i l  is soluuble for LP. r

Relrrark 3.7 The result of Theorem S.6 can be fouud
in [10]. It generalizes a result of [4], where a sirni-
lar result was obtained for the for the strong input-
output decoupling problem via static state feedback.
In this case, the Singh compensator reduces to a regu-
lar static state feedback that renders À*, the maximal
locally controlled invariant distribution in Iierd/l, in-
variant. The result is then established by showing
that Á*(c6) = V* (or rather: À-(ro) can be identif ied

with V*), where V* is the maximal controlled invari-
ant subspace iu I{er H for LP (cf. [4]). It seems likely
that also the result of Theorem 3.6 may be proved in
a similar way by employing the same techniques as in
Section a of [7]. Also the approximation result of [5]
is connected with ihe result of Theorem 3.6. I

We now investigate the connection between Siugh
compensators for P and LP. In what follows we use
the following lemma, which can easily be verified:

Lenrma 3.8 Consider the equation

t  = Á121+Ét1z1u
t = Àitl * ei2iu (1e)

whcre Á(Zs) = 0, À(Zo) = 0, É(Z) has full row
rank on a neighborhood of Zs, and each of lhe rows
o7 AQ) is l inearlg d,ependent on lhe rows of B(21.
Il loreouer,^ consider the l inearization of (19) around
( Z , L t , Y , Y )  =  ( 2 o , 0 ,  0 ,  0 ) :

i . t  =  Á tz t+É tu t
i,t = Àr* + BrUr 

(20)

Let É+Q) be a right inuerse of BQ) on a neighbor-
hood of Zt) where B(Z) has full row ranlc. Then (19)
and (20) yield:

u = a+1277í,_Áe)l
t = atàl i eg7È*'(211t - Á1271 (21)

gt = Ét+ Zrlilt _ Átztl

í,t = Àt z, i Êt Ét+ lí,; _ Át z\ 
(22)

where (22) cart. be oblained, by linearizing (21) around
( Z , U , Y , Y )  =  ( 2 s , 0 , 0 , 0 ) .  r

Lerrrma 3.9 Consider a square nonlinear plant P ot

full rank. Lel rs be a strongly regular equilibrium
poirtt satrsfying Assumption 3.1. Let Q be a Singh
com,pensalor  for  P around xs.  Then ( r ,z)  = ( "0,0)
is an equil ibriunr poinl for P o Q.

Proof See [6]. r

Proposition 3.10 Consider a square nonlinear sys-
lent P of full rank. Lel xg € X be an equilibriunt
point satisfging Assumplion 3./1. Apply Singh's aI-
gor i lhm lo P,  y ie ld ing a reorder ing l r , . . . , f in  of  the
oul.puls, such. that

g f )  :  áo ( * , { f r [ i )  l i  e111 , -1 , i  e r ; * ] )+

ío@,{ f r [ i )  l i .  € . r11, -1,  j  e  r ; r - ;  )u

g(o)  = 0Ío)@,{g[ i )  l t  I  i  1  k , i  s  j  í  È] )
(23)

Tlt,en lhere is an applicalion of Singh's algorilhrn to
LP íltal resuhs in lhe same reorilering of the oul-
puls and wherc the result of Singh's algorithm ap-
plied lo LP can alternaliuelg be obtained bg l ineariz-
ing IIre resull of Singh's algorithm applied lo P aroand
( " , u , { i l [ i )  l 1 <  t  1 n , i 1 j  S " ] ) =  ( c 0 , 0 , 0 , . . . , 0 ) .
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Proof We first consider È = 1. lVe have:

. a hg = 
f i ( r ) l Í@) + s(x)u): :  or(s)*  àr(c)u (24)

where rank;6ó1(c) = pr. By Assumption 3.4 there ex-
ists a neighborhood of c6 such that ra.uk6ór(c) = pt
on this neighborhood. After a possibie permutation
of the outputs (24) yields:

í 'r '  ) = ( i ' \ ' l* l ' Í ' i '  ) trt l
\ 0 , / - \ a ' ( c ) + 0 1 ( r ; u /

where 61 has full row rank h o\ _a ueighborhood of
cs. Let óf(o) be a right inverse ofós(c) on tl i is neigh-
borhood. Then (25) yields

i t t  =  à 1 ( r ) * 5 1 1 " ; ,
(26)

g, = à1(o) + 6,1' ;6f1' ;1i ,  --  a,(r))

Now consider .LP. We have:

i =  H F t - *  H G u : '  o \ 1 + b l u  ( 2 i )

where

"  , a h  " , ,  ,  ) u t ,
a ! =  H F =  * ( - f t ( r o ) =  -  ( s o )  ( 2 8 )-  o t o t  o r

b !  =  HG = 
{ r { ro )o@s)  

=  ó1( ro )  (29)

Employing the same permutation of the outputs as
for P, (27) yields

(í t  )=Ci ' , l i Í ; )(30)

We f ind f rom (26) , (31) , (32) , (33) :

^ L

atn = 9J1r = Gt, - alF =
ot

A -  q f r . ,  , , 4 f ,(ffi('o) - ffi(",))ffi('o) =
(34)

Lrt*t - *tr fríc^) =
dz r \  d l :  i J . t  ) t  ) \ * u ,  -

0 ,00 ,  " , ,  
A^

f i ; { f i }  ï )(xo1 = f f i@o)

oL" = %- = i161* = a,1co)af (co) = =34- =
dit  di l l *o)

^ . í : J )
o a i '  r . ^ t  -  d o r
;;?zttro/: ff i@o)o U t '  o A t

(35)
, t  A h ,  ̂be, = H?c = @1- át1)s@s) =

^ r  
(36)

r  O l l t  \( f f ioX"o) = óz(c0,0)

F\'oni (34),(35),(36) it follows that 712) can be ob-

tainecl by l inearizing g!') uro,-,rrd (c, u, gr,i l \ ')) =
(os,0,0,0) .  Then,  us ing Lemma 3.8,  i t  can be shown
that our clairn hold for À = 2. Proceeding as above,
it can be shorvn that the claim also holds for À =
3 , 4 , " ' , n '  r

Rerrrark 3.11 For nonlinear systems, an algebraic
structure at infinity ([11]) and a geomelric structure
at infinity ([14]) can be defined. For linear systems
both structures at infinity coincide ([11]). A conse-
queuce ofProposition 3.10 is that the algebraic struc-
ture at infinity of P coincides with that of trP. This
could lead to the conjecture that for a nonlinear sys-
tem P satisfying Assumption 3.4 the algebraic and ge-
ometric structures at infinity coincide. [Iowever, this
is not the case, a,s follows from the example iL = ur,
iz  = xe *  oqut ,  ie  = uzt  àq = us,  b6 = $6,  à7 = ug,

Ut 
-- rr, yz = Í2, As = x5. A straightforward calcu-

lation shows that this system has 3 geometric zeros
at iufinity of orders 2,2,1 respectively and it has 3
algebraic zeros at infinity of orders 3,2,1 respectively.

T

From Proposition 3.10 we may draw the following
conclusion:

Tlreorern 3.L2 Consider o, square nonlinear syslem
P of full rank. Let xo € I be an equilibrium point
satisfying 4ssumplion 3.4 and let LP denole the l in-
earization of P around xs. Then:

(i) The linearization of a Singh cornpensator for P
is a Singh compensator for LP.

(i i) Conaersely, euerg Singh compensalor for LP is a
firsl order approilmation of a Singh compensalor

where, by Assumption 3.4, 6{ nas full row rank p1 .
Note that by (28) and (29) á! = @arlA,uxos), á{ =

@a1/lx)(ag), i í .= 6r( 'o),  6{ = 61(eq).  Let 5f* be a
right inverse ofó!. Then (30) yields

frt  = ale +í1"
(3  1)

,tr = ale + E!íÍ" (,11 " à\e)

Then by Lemma 3.8, (31) can be obtained by l ineariz-
ing (26)  around ( r ,u, f r )  = (c0,0,0)  and hence our
claim holds for È = 1. Now consider the case k =2.
We have:

n).
t\4 = WV(c) + e(c)u 1fug(,') ='

oar (32)

az(r,  i  r , i l t ) )  + b2(x, f i  , )u

and

i\D = ïpVc+ Gul + W,ri'u 
=.

(33)

"tzo€ + a!rql2) + bt u
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for  P around rs.



Theorem 3.12 has the following practical implica-
tion. In engineering practice one often studies a spe-
cific control problem by addressing the problem on
the linearization around a given rvorking point. Of
course it then remains questionable if íhe control that
was designed to solve the control problem for the lin-
earization of the system is a approximate (first or-
der) approximation of a control that solves the coutrol
problem for the original nonlinear systern. In [4] an
example for the strong input-output decoupling prob-
lem via static state feedback was given 'rvhere indeed
this was not the case. However, frorn Theorern 3.12
it follows that any Singh comperrsator for LP (which
is a dynamic state feedback that solves the SDIODP
for LP) is a first order approximation of a dynamic
state feedback that solves the SDIODP for P.
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