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ABSTRACT 

In order statistics certain integrals involving the standard normal dis­

tribution play an important role. The asymptotic behaviour with respect to 

a large parameter is studied. 

1. INTRODUCT ION 

The expectation and variance of the maximum in a random sample of size n 

from the standard normal distribution involve some of the integrals 

(1) 

where 

(2) 

M. (n) := 
J 

-00 

1 \t>(x) := --

x 

e ds • J 
-82/2 

-00 

Integration by parts gives 

(3) 

where 

(4) 

00 

l1·(n) :; jM.(n) + J xj e-x2.12 dx 
J J I2TI 

11 • (n) 
J 

n := --

-00 

00 

J x j e-x2/2 \Iln-l(x)dx 

(n E IN, j ElN) 

(n E IN, j € IN) • 
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The problem posed by two colleagues *) of the author is to determine the 

asymptotic behaviour for n ~ 00 of ~.(n) for J = 1,2,3,4. Moreover, they 
J 

are interested especially in the asymptotic behaviour of 

We remark that the differences 

M. (n+l) - M. (n) = 
J J 

-00 

are just the integrals occurring in the coefficients of the asymptotic 

formulas in a previous paper [1] (where f is defined by f(x) = ~(x/:2». 

2. RESULTS 

Let the asymptotic series of (1 - ~(x»(~'(x»-l by denoted by A, i.e. 

00 

A:= L (-1)~(2~-1)!! 
.R.=O 

-2.e-l 
x (x ~ (0) , «-1)!! = 1) • 

Formal differentiations of A are denoted by A', A", etc. Let xl = xl (n) 
1 be defined by ~(xl) = 1 - - • Then ~.(n) has an asymptotic expansion in 

-1 n J 
powers of xl ' i.e. 

00 

\' -k 
ll· (n) R:S l.. C (j , k)x 1 

J k=-j 
(n ~ (0) , 

which can be computed as follows: x is considered to be a function of a 
dx 1 variable z and dz R:S 2A. Higher derivatives can be computed by means of 

. d2 x the chain rule. For 1nstance, dz 2 ~ !AA'. Then 

(n ~ (0) , 

where the subscript 1 means that the value at x = xl has to be taken. 

xl has the following asymptotic series: 

*) F.W. Steutel and D.A. Overdijk, Department of Mathematics, Eindhoven 
University of Technology, The Netherlands. 
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(n -+ 00) 

where z = Z log -~ and the qk's are polynomials of degree k. A few qk's rz:rr 
are 

1 1 2 
ql(t) = - 2 t, qZ(t)::: - 8 t + it - 1 , 

q3(t) ::: - 1~ t
3 

+ ~ t
2 

- i t + f . 
The coefficients e(j,k) have the property that e(j,-j+s) = 0 if s is odd 

and e(j,-j) = 1. A few more coefficients e(j,k) are: 

e(1,O ::: - f'(O , e(1,3) = r'(O - ~rU(1), 

e(t,5) ::: 3r'(O + Zr"(1) - ~ rUt(O ; 

e(2,O) = - zr'(1) , e(2,Z)::: 2f'(1) , e(2,4) = - 6r'(O + 2f"(1) , 

e(2,6) ::: 30f'(1) - l4f"(1) + ~ rUt(O ; 

e(3,-t) = - 3r'(1) , e (3, 1) = 3f' (1) + 1 r" ( 1) 
2 

eO,3) ::: - 9r' (1) + i r'" (1) , 

e (3,5) = 45f'(1) - ~ r"(1) _.1. r ftl (l) + 1 r(4)(1) 
2 Z 8 

e(4,-Z) = - 4r'(1), C(4,O) = 4r'(1) + 4r"(1) , 

e(4,Z) = - l2f'(O - 4r"(1) C(4,4) = 60f I (1) - ~ r til ( 1) 
3 

A routine computation shows that 

JJ 3 - JJ 1JJ Z -2 -4 
2 i ~ dO + d2 xl + d4 xl + ••• 

(JJ2 -JJ 1) 
(n -+ 00) 

2 i -2 -4 
(JJ4 - JJ 2) ~ eO + eZ xl + e4 Xl + ••• (n -+ 00) 

where 
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and 

3. PROOF OF THE RESULTS 

We transform the integral in (4) by putting 

(5) ~(x) = 1 
s - -n 

Then 

(6) dx rz:rr x2/2 
-= -- e ds n 

whence 

n 

(7) ll/n) = J xj(l_~)n-l ds • 

° 
We observe that x = xes) is monotonically decreasing on [0,(0), that 

xes) -+ 00 (5+ 0), xOn) = a and xes) -+ -00 (stn). 

Now we shall prove that 

(8) () 
( + r«10~2n»)\ llj n = 1 u 

Since 

n 
r j s n-1 
J x (1 - n) 

7f/2 

we can write 

(9) 

ds I 

log n 

J x j e -s ds 
-1 . /2 

+ den (log n)J ) 

a 

e-x2 / 2 dx 

-n ds + O(n2 ) (n -+ (0) • 

(n -+ (0) • 
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Using 

(10) 
00 

~(x) ~ 1 - __ 1 __ e-x2 / 2 I (-1)~(2 -1)!! 
I21T ~=O 

we derive easily that at s = log n 

( 11) x ,...., 12 log n (n -+ (0) • 

Hence 

n/2 

-2£.-1 
x 

n/2 

(x -+ (0) 

(12) J xj(l_~)n-l ds = a(oog n)j/2 J (1 - *) n-1 dS) = 
log n log n 

-1 . /2 = O(n (log n)J ) (n -+ (0) • 

From (9) and (12) it follows that 

( 13) 
-1 . /2 

ds + den (log n)J ) (n -+ (0) • 

Furthermore 

(14) (n -+ (0) 

since 

(15) 
s n-l -s log2n 

(1--) = e (1 + d( » 
n n 

(0 ~ s ~ log n, n -+ (0) • 

Clearly (13) and (14) imply (8). 

On the interval 0 ~ s ~ log n, corresponding with large values of x, we 

can use (10) ~n order to solve x from (5) as a function of s. 

Introduction of 

(16) n z = 2 log - - 2 log s 
I2TI 

transforms (5) into 

( 17) <i>{x) = 1 -!z 
- - e 

I2TI 
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Clearly z + 00 if n + co and 0 < s < log n. 

Using (10) and taking logarithms we get 

( 18) 2 2 
Z R$X + log(x ) 2 5 74/3 +---+--246 x x x 

By asymptotic iteration we find 

00 
( 19) 2 \' -k x R$ z - log z + L Z Pk(log z) 

k=l 

(x + 00) 

(Z + 00) 

where the Pk's are polynomials of degree k. A few polynomials Pk are 

(20) p 1 (t) = t-2 

PZ(t) 
1 Z = "2 t - 3t + 7 

P3 (t) 
1 3 3 Z 

17t 107 
= - t - - t + -3 3 Z 

The asymptotic expansions for xJ have the form 

(21) (z + 00) 

where the P
jk 

are polynomials of degree k. 

The individual terms in the asymptotic expansions (21) have the following 

property: Let fez) be such a term occurring in the right side of (21). 

Then fez) is of the form 

Let zl 

series 

(22) 

m -k+!j' f(z) = (log z)z 

:= 2 n Clearly log v'?"'TI ' 
2 'IT 

about z = zl 

zl 

co f(k)(z ) 
1 

f (zl + d I = 
9,=0 

9,! 

where m ;:;;; k , 

~ 2 if n ~ 7, Let n ~ 7. Then the power-

R, 
E 

is convergent for lEI < z1' Now it ~s easily seen that this powerseries 

has the property that for all N E IN, N ~ !j-k 

(23) 
N 

I 
9,=0 

t ri«l m ) -k+!j-N-1 N+l) 
E + v og z 1 z 1 E: 

2) • 
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Then it follows that upon substitution E = - 2 log s in (22) we get an 

asymptotic expansion for 0 < s < log n, n + 00, i.e. for all N ~ ij-k 

(24) 
N 

f(zl- 2 log s) = I 
.R.=o 

de (1 m ) -k+!j-N-1 (1 s)N+l) 
+ og z 1 zl og (0 < s < log n, n + 00) 

since 2 log log n < !zl for n sufficiently large. The hidden constant in 

the Q-term is independent of n. 

Further, for every .R. E :IN, 

00 

(25) J 
.Q, -s 

log s e ds (n + 00) • 

log n 

Therefore we can proceed as follows: In the asymptotic expansion (21) of 

xJ we substitute z = zl - 2 log s and we expand formally into a power­

series about zl' After multiplication with 

we get an asymptotic expansion for ~.(n). 
J 

Denoting the asymptotic expansion (21) of 

its formal derivatives we have proved that 

(26) ~. (n) 
J 

where we have used that 

ro 

(27) 
r -s k J e log s ds 

o 

-s e and integration over (0,00) 

x j by X. and writing x~k) for 
J J 

(n + 00) , 

If we carry out the above program then, for instance, we find 

(28) 1/2 1 -1/2 -1/2 1 -3/2 
~1 = z - 2 z log z + yz - 8 Z 10g2 z + 

+ -21 (1+y)z-3/2 log z _ (l-y-J. y2 __ 1 rr 2)z-3/2 + 
2 12 

-5/2 
+ O(z 10g3 z) (n + 00) 

where z = zl. We have used that r'(l) = y (Eulerts constant) and 

r tf (l) 2 12 =y +-1f 
6 
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Of course we can also find asymptotic results for ~2' ~3 and ~4' We will 

not do so since there is a more convenient way to obtain asymptotic 

expansions for ~.(n). We shall show that ~.(n) has an asymptotic power-
. J. -1 J . 

series expanS10n 1n powers of xl ' where xl 1S the value of x at 

Z = zl := 2 log ~ , i.e. there are sequences (C(j,k»~=_j of real num­

bers such that 

00 

(29) \' -k 
~.(n) ~ L C(j,k)x

1 J k=-j 
(n -+ (0) • 

Considering x as a function of z defined by (17) we can write the integral 

in (8) as 

(30) 

log n 

J x j
(z1 - 2 log s)e-sds • 

o 

We shall prove that we can find the asymtpotic expansion of (30) by term­

wise integration of the formal powerseries expansion of xJ (zl - 2 log s) 

about zl' We shall give the details of the proof for the case j = 1. 

The other cases j > 1 can be treated analogously. So for the moment being 

we suppose j = 1. Obviously we are done with the problem if we have 

proved that 

(31) 

(32) 

(33) 

-1 
has an asymptotic power series in xl 

(n -+ 00) 

x(zl - 2 log s) = xl + I (dkX) 
k=l dzk 

1 

( 2 1 ) k 
- og s + 

k! • 

(0 < s < log n, n > A) 

where the subscript 1 in ( )1 means the value at zl" 
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From (17) it follows that 

(34) dx !a(x) dz - , 

where 

(35) a(x) 1 - !p(x) 
<P t (x) 

From (10) we see that 

00 

(36) a(x) " (-1)~(2J1,-1)! ! -ZR,-1 (x -+ 00) s::::l X . ... 
)1,=0 

From (35) we derive that 

(37) da xa - 1 dx - . 
Clearly (36) and (37) imply that all derivatives dka/dxk have asymptotic 

powerseries in x- 1 which can be obtained by formal differentiation of the 

asymptotic series in (36). By means of the chain rule we can compute from 

(34) all derivatives dxk/dzk ; clearly, dxk/dzk is a sum of products 

involving a(x) and its derivatives d)l,a/d& , t = 1,2, ••. ,k-l. It follows 
k k -1 that d x/dz· has an asymptotic expansion in powers of x for x -+ 00. 

Using that 

(x -+ (0) 

we easily derive that for k ~ 2 

(38) (x -+ 00) • 

Thus we have proved (31) and (32). 

Let N E IN. Let hEIR. Then there u a number a E (0,1) such that 

(39) 

where 

(40) 
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Restricting ourselves to h > -!zl' we only have to prove that there is a 

number A > 0 and a number K > 0 such that for all z > A 

(41) (n > !z) • 

On account of (38) and the fact that x(z) ~ z! (z + 00), (41) is obviously 

true. Hence (33) holds, since z, - 2 log s > !z, for 0 < s < log nand n 

sufficiently large. 

Now using (33) in (30) for J 
-1 

Xl for ]J1(n). 

1 we get an asymptotic series 1n powers of 

Analogously we can find asymptotic series for ]J.(n), j = 2,3, •••• Only 
J 

small adaptations are necessary; for instance in (33) we have to change 

2 -! 2 ! 
REMARK. Especially for (]J3 - ]J1 ]J2) (]J2 - 11

1
) and (11

4 
- J.1) the computa-

tions are most easily done if one postpones the replacement of d~xj/dz~ 
by its asymptotic series as long as possible. For instance, 1n this way 

we get 

where 

A = - 2r' (1) , B = 2ftl ( 1 ) and C = - j r'" ( 1) , 

and x', x" denote first and second derivatives with respect to z. Now 

using the asymptotic series 

x' = 1 _ 

2x3 + ••• x" = 1 + _1_ + 
- 4x3 x5 

we see that 

We get 

2 x X f x" 3 + x (x' ) and 

2 2 2 -2 -4 
114 -].12 = dO - 2dO x + (1(x ) , 

from which we can easily derive the result in section 2. 
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