Critical evaluation of the interpretation of AFM stiffness measurements on living cells

Citation for published version (APA):

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 28. Feb. 2020
Introduction
In blood vessels, shear stress is an important factor for the behavior of endothelial cells (ECs) covering the internal vessel wall. When ECs are subjected to varying shear stress, their mechanical properties change due to cytoskeletal actin fiber remodeling which influences the signaling function towards smooth muscle cells.

Objective
To investigate changes in mechanical properties of ECs subjected to a varying fluid shear stress and to correlate those changes to adaptation of the actin cytoskeleton.

Methods
As a first step, we investigated a model cell, i.e. a cardiac myoblast (H9c2), which has an abundant actin cytoskeleton comparable to that in ECs subjected to shear stress. Local mechanical properties of H9c2 cells were investigated with an Atomic Force Microscope (AFM) and correlated to the actin cytoskeleton, as visualized with confocal scanning microscope (CLSM).

Hertz model
The Young’s modulus E can be calculated using the linear Hertz model that gives the relationship between the indentation δ and the loading force:

$$F = \frac{3}{4} \tan(\alpha) \delta \left(\frac{E}{(1 - \nu^2)}\right) \delta$$

The first part of the equation accounts for the contact stiffness, the second part for the sample stiffness. When interested in cell stiffness, the contact stiffness should be kept constant, meaning that the indentation should be constant.

Results
The left figure below shows a combined AFM (top) and CLSM actin (bottom) image of a fixed cardiac myoblast. The right figure shows an elasticity map of an area on top of a living myoblast. Differences in elasticity may be caused by underlying cytoskeletal structures.

Hertz model

Besides stiffness also characteristic mechanical behavior can be measured with AFM. For example, force curve 1 and 2 (see opposite) are equal up to an indentation of 600nm, at higher indentation depths, curve 2 shows a more compliant behavior.

Conclusions
F-actin filaments of cardiac myoblasts can be visualized with CLSM and AFM. AFM indentation experiments yield information about stiffness and mechanical behavior. However, the interpretation of the data needs great care because of the non-linearity of cells and of the cell-AFM tip contact.

Future
To perform combined shearing and AFM indentation experiments on living ECs.