
https://research.tue.nl/en/publications/e6c817ef-79aa-4fbb-aa49-8a829cdd9417

TUE-RC 74453

Eindhoven University of Technology

Computing Centre Note 41

A knowledge engineering logic for smarter,

safer and faster (expert) systems.

Jan Hajek

Eindhoven, February 1988

I'

TUE-RC 74453

MOTTOS;

2

Those long chains of reasoning, so simple and easy,
which enabled geometricians to reach

the most difficult demonstrations,
had made me wonder whether all things knowable to men
might not fall into a similar logical sequence.

(Rene Descartes)

Herein too may be felt the powerlessness of mere logic,
the insufficiency of the profoundest knowledge of the laws
of the understanding, to resolve these problems which lie
nearer to our hearts, as progressive years strip away
from our life the illusions of its golden dawn.

(George Boole)

Somebody has classified people into three categories:
into the uneducated, who see only disorder;
into the half-educated, who see and follow the rules;
and into the educated, who see and apppreciate the exceptions.
The computer clearly belongs to the category of half-educated.

(Heinz Zemanek, IBM Vienna, IFIP President 1971-74)

It is not reasonable to develop a new logic,
hut to be reasonable is for the simple-minded.

Je ne cherche pas, je trouve.
(Pablo Picasso)

(... I don't search, I find.)
(QuiXpert)

An expert is a man who has stopped thinking - he knows.
(Frank Lloyd Wright)

I know you bel ieve you know what I know,
but I don't know whether you know what I don't know.

(A private thought of every expert system)

Murphstadter's law: Whatever may go wrong it will,
even if you take into account Murfstadter's law.

(Murphy's law recursively Hofstadterhed by Raj ek)

Give me a fruitful error any time, full of seeds,
bursting with its own corrections. (Vilfredo Pareto)

TUE-RC 74453 6

embedding into other 'normal' programs. 99% of Which will never be
written in PROLOG or LIRP.

- It offers a choice of several kinds (.."levels") of logic.
- It offers a choice of new logical operators designed with their user.

the knowledge engineer. in mind. (S)he can think semi-intuitively.
concentrate on the task proper. without becoming a "logic freak".

- It is quick. QuiXpert doesn't search for rules. it knows Which to use
when. Its design has been inspired by Picasso's statement above.
No joke. It will run at top speed in PASCAL on your favorite PC.
It is fast enough for embedded real-time ES-applications. and if
necessary. I could make it beat even faster.

- It is strongly self-checking. QuiXpert checks "everything": itself,
the knowledge-rules. and consistency of user's answers.

- It decreases number of questions asked. QuiXpert has an omnidirect
ional conditional ("shadow") evaluation. It has also an internal
"think What to ask" phase. followed by an external "ask iff needed"
phase. Both phases do not necessarily alternate. They are activated
as reasonable. E.g. it makes no sense to run an internal phase
after a fresh restart. unless some facts have been loaded. On the
other hand it makes no sense to activate an external phase after
a restart with reuse of the earlier (sub)concluslons. if the newly
required hypothesis is one of the (sub)conclusions from the pre
vious round.

- It has carefully designed (self)debugging. errors reporting. testing
and printing facilities. All simple but effective.

- It is relatively simple. but not simplistic (re: KISS design rule).
- It is an expert system without tears: with less undetected bugs.

without PROLOG, without LISP. even without recursion.
PROLOG cannot derive negative conclusions. supports neither condi
tional evaluations nor any plausibilistic logic. is totally unsuit
ble for numeric computations t provides little syntactic and runtime
checking. and is hopelessly slow. LISP is somewhat better in some
respects. but provides no typechecking. PASCAL is a strongly typed
language Which reduces GIGO = garbage in t garbage out computing to
minimum, and it runs at top speed on any PC.

- It is implemented so that PASCAL compiler (and not some obscure tool)
delivers all the following goodies for free:

+ typing errors (cause undeclared identifiers);
+ type checking (of variables and functions);
+ missing rule-functions ("semantic" incompleteness via syn tax);
+ order of rules;
+ looped rules (hence 'forward' declarations are undesirable).

thus (in)directly mutually recursive rules are prevented;
+ split rules prevented by the compiler-enforced unique naming:

X: .. F and H; X := J and K is disallowed. we must
use X:" (F and H) or (J and K) Which prevents fragment-

ation & scattering of knowledge t gives good eye-checks.
It is a piquant detail that Horn clauses in PROLOG use split rules.

+ compiler checks all the remaining syntax (no work. no worries).
+ speed: very fast. compiled 'semantic net' generated, no scanning

and pattern matching of rules needed. We just utilize the hidden
and fast system-stack via PASCAL's function-parameter mechanism.
Recall Picasso's "I don't search. I find."

TUE-RC 74453

There are 2 basic kinds of rules in QuiXpert:

8

- Data-rules:
a) Ask-rule returns a logical value obtained by asking a user

an one-line question and reading his logical answer.
"Say" displays one line of text (Hke Ask does), but does not

wait for and returns no answer. hence is no rule. It
is useful for asking questions longer than one line.
E.g.: Say('" }; Say('" }; Ask('" }.

b} COM-rule returns a logical value obtained by some computation
and/or by comparison (<, >, a. etc).

- Inference-rules:
Infer-rule (the deductive rule proper) is a logical assignment

statement Which returns a logical value resulting from
the evaluation of Infer-rule"'s right-hand-side (rhs).

Any rule may contain an optional Show('") call, to show its result.
Besides the data-rules which are called on dynamically, static a priori
known facts may be loaded. The empty function FACTSINIT could be filled
with a code which reads some logic-valued facts from some fact-file.
During the internal phase Ask-ing of questions is blocked, but not the
COM- and Infer-rules. If and only if the required goal-hypothesis
cannot be deduced without Ask-ing some question(s). the external phase
will be activated, otherwise it will be skipped. Hypothesis is chosen
from a menu (which may stay hidden). A general "no-idea-hypo" is also
allowed, if on menu (which needs not to show everything).
After a "run" a user may choose to:

Quit: or Go on & reuse the answers; or Fresh run.

If no Quit then the user must choose a new goal-hypothesis to evaluate.
There is little point in describing QuiXpert or any ES in detail. Those
who only read or teach and never try or design. are like the philosoph
ers Who disputed about how many teeth a horse has. without openning its
mouth. However it is a must to describe in full detail how knowledge is
represented in an ES. For rule-based ESs like QuiXpert. the way how the
logic rules are written (with which logical operators) is what matters.

**
* ** While reading look at the examples at the end of this document. *
* Think about the semantics & logic, not about syntactic sugar. *
* *
**

TUE-RC 74453

RULES WITH MULTIPLE CONCLUSIONS:

Expert's rule has a general form: lhs := rhs.
E.g. :

A :- (Cl and C2) or C3 which is equivalent to:

if (Cl and C2) or C3 then A: "'true else A:-false.

9

More than often additional conclusions follow from the result. We need
a multiple assignment, something like (A, B, C) :- rhs, where B, C
are rules existing besides the rule A.
That would not be powerful enough to express multiple consequences like
e.g. :

if A then begin B:-true; C:-false; end
else begin D:=true: E:-false: end;

This is one of the important things which PROLOG does not offer.
Therefore in QuiXpert-like form (the fine syntactic sugar aside; see
the EXamples below) the complete rule from above looks very much like:

A :- (Cl and C2) or C3:
ThenTrue (0 of rule B);
ElseTrue (# of rule D);

ThenFalse(# of rule C):
ElseFalse(1 of rule E);

where THELSE's arguments must be the numbers(- 2nd names) of rules.

Q: What are these Then ••• , Else ••• (henceforth ftTHELSE"s) good for?
A: 1. THELSEs facilitate explicit expression of chunked knowledge as

multiple conclusions. That is very natural for people.
2. THELSEs prevent asking superfluous questions. and evaluations.
3. THELSEs are likely to speedup arriving to final conclusions,

especially if we want multiple Hnal conclusions.
4. THELSEs reach (sub)conclusions across the levels of a (multi)tree

of rules hierarchy (of calls); see the examples at the end.

Advice: The nearer to the root(s) in a (multi)tree, the more THELSEs
should be used. At the leaves !HELSEs will be rare.

The ability to express multiple conclusions is a must. not a luxury.
Otherwi se more rules would have to be written. all wi th the same rhs,
thus spoiling the chunking (= modularity) of knowledge.
As implemented, THELSEs do not propagate automatically. The pros & cons
are:
+ it is easier because there is no need to check & cut cycles; see the

QuiXnote #3 in the Appendix;
+ it is a "lazy" propagation, i.e. it does not propagate what may not

be needed, but also:
- it does not propagate what may be useful, hence extra evaluations may

take place, but this has an advantage that:
+ it causes more crosschecks among the conclusions caused by THELSEe

the conclusions caused by the primary lhs in the rules.

Note: For the 3 logical values True, Maybe, False it is easy to define

TUE-RC 74453 10

additional Thelses: ThenMay, ElseMay, MayTrue, MayFalse, MayMay.
Recalling Goethe's dictum "In del' Beschraenkung zelgt slch del'
Meister" we leave these new freedoms and responsibilities (!) to
those who will feel a real need for these Thelses.

KI NDS OF LOGIC IN QUIXPERT

Real world of real people is not a black-or-white, yes-or-no world.
Neither clean cut is the world of real numbers on real machines.
A nonconverging computation must be broken neither with the resul t
RootExists - true, nor with RootExists • false. Systems coupled to
the real world via sensors must be able to signal t1don't know" if
the vital sensors return strange values or are (known to be) damaged.
Hence an absolute minimum of real ism is to allOW for an answer 1Imaybe"
i.e. "don"'t know". Besides that there is a "to be (re)evaluated" value
(here shown as "1 U

) hidden from the users. Another line of extension
are new logical operators which allow to specify certain common
semantic or functional relations. Both lines of extension are synthe
sized so that their synergistic effects allow building (expert) systems
which are smarter, safer, faster and more self-documenting.
QuiXpert's users. have a choice from three kinds of logic: #1, 2, or 3.

Input:
#1 - Boolean: 0 / 1 #2 - from 0% to 100% #3'" 0 / 50 / 100%

Output:
#l-Boolean:O/1 #2 from 0 tol; #3- 0/0.5/1

Inside:
Internally used are only the proper "output" values plus a so called
uundefined" value. All kinds of illegality are checked at run time.
1 - uundefined" value (implemented as e.g. 2 or -22 or U1"), which

is also the virgin initial value of all logical (sub)express
ions and variables (e.g. in expert system's rules).

Users (human or inhuman) have nothing to do with the "1 11 , they cannot
enter it and it will never come out (exept from the debugger).
The 11?" allows an evaluator-algorithm (expression interpreter) to
look ahead and see if the value of a (sub)expression E is "defined".
If it is value c 1 then the evaluator may try to (re)evaluate E so that
a "defined ll value <> ? may result. If such an attempt fails, evaluator
asks for or computes a value of a (sub)term within E until E can be
evalua ted to -a "defined" value (0 ?).

There is no end in making an evaluator smarter:
semi-symbolic evaluations, which is my term for simplification
rules involving one variable only, e.g. 0 and A '" 0; 1 and A = A;
etc; full list further below. Heuristics for smarter evaluations are:
- the most repeated variable should be asked/evaluated first;
- key terms first: within «A or B) and K and (C or D» it is wise

to evaluate K as first, provided it is not a complex term!
- I have realized that:

if A -.5 - B in (A or (B and C», (A and (B or C», then C needs
not to be asked because the result'" .5 regardless of C's value.

TUE-RC 74453 11

- general symbolic simplification: ({A and B) or (A and non(B» is A,
so that B is never asked.

- discovery of tautologies: ((non(A) or B) or (A or non(B» is always
true, for all possible "definitive" interpretations (.. any mix of
assignments of True and/or False), hence nothing has to be asked:

- numero-Iogical tautologies: «N - N) .. 10g(1» is always true; this
looks simple, but there is no end to complexity and subtlety of
(in)equalities Which may be indentically true/false:

-etc.

But even a simple & fast "look left & right" evaluator asks less quest
ions than a classical conditional left-to-right evaluation, especially
when our new logical connectives are used.

Human answer is input as an integer so that the first nondigit (except
for the leading blanks) and Whatever follows it is truncated away.
Here we often use .5 instead of 0.5 for psycho-typographical reasons.

Logic-kinds #1 and #3:

"Indefinitive" values:

plus for logic #3:

"Definitive" values: 0
1

1 = "to be (re)evaluated"; for logic 11,2.3.

.5 .. maybe, don't know, unsure, possible, some,
sometimes. definitive value unavailable;
.5 is a result of asking/evaluation.

.. false. no, impossible, never, none;

.. true. yes, guaranteed, always. all.

"De fined" value s: 0, .5. 1. "Undefined" value: 1 •

A "definitive" value of a variable cannot be changed anymore.
An "indefinitive" value may be changed only if the "informativeness i",

defined as: 1(?) < i(.5) < i(O) .. i(l), will increase.
The "definitive" values are also "certain" values, While the "indefini
tive" values are "uncertain" values. The measure of "certainty" plays
a practically more important role for logic # 2.

Logic-kind 1 2: Plausibilistic threshold logic

A finer grained multivalued logic was mapped i.e. projected upon the
logic 13. A new problem appeared: The choice of a calculus to perform
and to retain meaningfully fine grain results of operations.

Again, the "1" is the "indefinitive" & "undefined" value.
Users are free to choose a threshold value (s pcMIN) beyond which
a "definitive" value is reached. and evaluation may stop.

TUE-RC 74453 12

Two plausibilistic thresholds are defined for conditional evaluations,
so that:

(0 (- pcMIN < 0.5 < pcMAX <- 1) and (pcMAX = 1 - pcMIN)
and

o <= false <- pcMIN < maybe < pcMAX <- true <= 1.

Hence pcMIN pc MAX
o ----!---------- 0.5 ----------!---- 1

false maybe maybe true

The terms" indefinitive", "definitivetf and "defined" are now clear too.
The "certainty" measure is defined as

cert(p) • abs(p - 0.5)
for "plausibilitt' p.
Thus the minimal certainty is 0 - cert(O.S) = cert(?),

the maximal certainty is 0.5 = cert(O) - cert(l),

which justify the following postulates for plausibilities:

.5 and

.5 and

.5 and

which added to
define:

Uand

.5 • .5 .5 or .5 = .5
0 • 0 .5 or 0 - .5
1 - .5 .5 or 1 - 1

the classical Boolean truth-tables almost forced us to

W - min(U, W) U or W - max(U, W).

From these we have developped more complex formulas for our new logical
operatprs (we shall not discuss these formulas here). Just remember:

non(V) = 1 - V
U and W = min(U.W)
U or W • max(U.W) for partly overlapping alternatives U, W.

The advantages of these simple formulas are:
+ they work well for logic #2;
+ they are correct for logic 13 (see the tables below) which was form

ally derived from Boolean logic and then crosschecked by several
methods as well as by common sense;

+ they are correct for Boolean logic:
+ they satisfy DeMorgan's laws:

U and W - non(non(U) or non(W»
U or W - non(non(U) and non(W»

proof:
U or W - 1 - mine (I-U) ,(l-W» - max(U,W) for 0 <- U, W <- I ;
U and W - I - max((I-U) ,(l-W» - min(U, W) for 0 <- U, W<- I.

+ they are easy to work wi th.

The mere e91llJllleK f9:E'1llYlsB fer lilyr t:I:@U 0p@J:'atorlil are BMWI' selew after,:""
tl:l.e operatQrs "ere l.ilu,laiAQcI

TUE-RC 74453

PROGRESSIVE REEVALUATION.

13

lIInformativeness ill is defined as: i(1) < t(.5) < 1(0) • 1(1), in
agreement with common sense.

lIProgressive" means nondecreasing informativeness, which must change
monotonically, i.e. it must not decrease but it may stay unchanged.

"MIll tipath" means that there may be more than one single path (of de
duction) via Which a (plausibility) value of a (logical) variable
may be inferred. Whether such a reevaluation will actually occur
depends on many unpredictable factors (e.g. the answers).

Oveview of progressive changes:
from to is defined as:

1 0 legal
1 .5 legal
1 1 legal

.5 0 legal, reported as interesting

.5 1 legal, reported as interesting
0 1 illegal, reported as CONTRA-diction error
1 0 illegal, reported as CONTRA-diction error
All other changes are "nonprogressive" and ski pped, i.e. not done.

How progressive changes occur:
O. Virgin initial state after a fresh start with all values set to

the 1 value. Thereafter facts, if any, may be read & loaded.
1. The 1 may change into any other value, but never vice versa.
2. A multipath evaluation may change lImaybe" to a "definitivell value.

Then repeated singlepath evaluations may propagate the correspond
ing changes (considered as legal and reported by QuiXpert).

As long as no multipath is executed (regardless of if it exists),
no "maybe" will change to a lIdefinitive" value.

A "definitive" value will not be changed to "indefinitive" value
(we do not let QuiXpert to report such a reevaluation).

3. A reevaluation to a different "definitive" value is reported as
an error (a CONTRA-diction).
In other words: it is illegal to change 0 to 1, or vice versa.

4. Any reevaluation to the same value (also? to ?) is allowed and
unreported. However it is impossible to finish with the final
reaul t • 1, but .5 is allowed.

Multipath evaluations may be present only implicitly, i.e. not by de
sign. EKplicit programming of multipath evaluations is possible by
means of the new n al tIt operator (see below). It provides an alternative
"path of knowledge". Any number of alternative paths is easily express
ed by fur ther "al t"-lng.

Users have nothing to do with u1", they cannot enter it, and will never
see it as an output (except of a debugger). The u1" allows the evalua
tor algorithm to look ahead at both U, Win any (sub)expression U op W.
The u1" allows the evaluator to try to evaluate a (sub)expreasion so
that a value other than 1 will resul t.
A smart evaluator would have to be a symbolic one. It would have to

TUE-RC 74453

Examples of definitions:
Separate:

male := man;
Coupled:

female :- woman;

15

{ neutral definition }

male :- man; female:= non(male); {macho definition }
female := woman; male := non(female); { feminist definition}

{ the use of none) preserves .5 (transsexuals) }

Cyclic (forbidden): male := non(female); female:- non(male);

Examples: guarantee := neg(RiskyBusiness);
clearance := yes(secure);
identifiable:= yes(Objectl or Object2 or Object3);
FireMissile := yes(EnemyAircraft); {nonagressive defense}
FireMissile := non(neg(EnemyShip»; { agressive defense}

Note that in the old Boolean logic there is no need for neg, may, yes.
Frankly speaking, I think that they will be used only on rather special
oeassions, because our new dyadic operators provide for typical use.

LOGICAL CONNECTIVES I.E. DYADIC OPERATORS:

First a concise overview. details and examples follow further below.
Mccarthy's (1960) classic conditional evaluation (in C, Madula and in
some Pascals) proceeds strictly from the left to the right as follows:

R :- U cand W;
R := U cor W;

works as:
works as:

if U then R :- WeIse R :- false;
if U then R := true else R := W ;

hence the 2nd operand Wis not always evaluated/asked, only if needed.
Our connectives ANDc, ORc (table below) are conditional too. But the
special value "?" makes it possible to "look ahead at both U, W" and
thus e.g. also to avoid asking for U, if Wis known and suffices:

If in the table result <> ? then U, Wwill not be asked anymore, else
if in the table result - ? then if U <> ? then ask W, else ask U.

However our logic is useful even for the left-to-right evaluation.
Our unconditionally evaluated ORu, ANDu are not shown in the table
simply because they yield the same results as their conditionally
evaluated cousins ORe. ANDe, except for the last 6 lines in the table
where ORu, ANDu produce the. result - ? only. The result - ? means that
at least one of the inputs U-? or W=? will be asked/evaluated.

Not only the value .5 (- don't know = maybe) begs for new operators.
New operators allow the knowledge engineer/programmer to specify his
or her knowledge/assumptions about certain semantic constraints between
the operands U, W. These common semantic constraints are best visual
ized by means of Venn diagrams for OR-like alternatives:

TUE-RC 74453 17

Summary:
ORc-like unifiers (all conditionally evaluated; Venn diagrams below):
orc .. "orll conditionally evaluated; the general unifier
Xal t .. "orll for "eXclusive al ternatives" U. W: a special case unifier

Xalt is NOT the Exclusive OR alias xor alias nonequivalencej
compare "Xal t" with ll xor" in the next two tables below.

alt .. "orll for "equivalent alternatives" U. W; a special case unifier
"alt" is NOT the classical "equivalence" operator "eqv"j
compare "alt" with "_" in the next two tables below.

Sal t .. "or" for U is "Superal tern!tive" to W; a special case unifier
altS - "or" for U is a "subalternative" to W; a special case unifier

Examples of ANDc-like intersects:

mUd
mild
mUd

right

:= non(cold) andc non(hot) { or: via DeMorgan's law: }
:- non(cold orc hot)
:- ('temperature> 10 deg (;') andc non('temperature> 30 deg C"')

:- a triangle Truethen «90 degrees angle) alt (A*A + B*B .. C*C»
{ Truethen is like ANDc except for one practically important

case: if U - "don't know" then W is not asked for. and
the resul t :- "don't know".

If a necessary precondition (- 'key') U <> true
then do not ask further details W(- what is in the house.
what kind of bug is in the machine, etc.) }

GoingOut :- ('she is ill"') Falsethen ('theater tickets available');
{ If he doesn't know if she is still ill he will not consider

the problematique of money. flowers, diamonds, etc. }
{ Like Truethen with inverted precondition, i.e. non(U).

Only if the necessary precondition (- 'key') U - false,
then it makes sense to ask/evaluate W }

for W:

W !)
W !!)
W !)
W !)

andc
andc
andc
andc

yes(U)
may(U)
neg(U)
non(U)

<>
I

<>
<>

(
(
(
(

W) and the (non(U) andc W) is
first yields .5 (marked by *)

The only difference between (U falsethen
for U -.5 & W = 1 , in which case the
and the last yields the "1".

Summary:
ANDc-like intersects: U is the necessary precondition (- 'key')
ande - "and" conditionally evaluated.
Truethen - "u is a positive-key to \I'
Maythen - "u is a doubtful-key to \I'
Falsethen - "u is an inverted-key to \I'

