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Chapter 2

Introduction

In the hot strip mill process in the iron and steel industry, r eheated slabs are rolled to the
required strip thickness and width at the roughing and �nish ing mill.
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SIZING PRESS
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DOWN
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Figure 2.1: Hot strip mill process

In de �nishing mill the strip thickness is reduced while the strip passes through each of
the 6 stands by controlling the gauge. Between each two stands there is a looper which is a
motor driven arm. The functions of the looper are to keep the strip at a reference tension
and to isolate the operation of the stand by absorbing any mass ow error. Keeping the
tension of the strip constant helps to maintain dimension accuracy of the strip gauge, width
and crown especially when higher grade steels are being rolled at high speed. Controlling
the looper angle, which is a measure of the strip mass ow prevents dangerous cobbles in the
strip forming and decoupling the gauge control of each standfrom another.

Due to the lack of space in the mill, the hostile environment and the high costs of a
x-ray meter, usually the strip tension and strip gauge cannot be measured directly. The
only measurements available are the rolling force and the looper angle which in conventional
control are used in two separate loops. Rolling force is usedto control the gauge (Auto-
matic Gauge Control) by manipulating the hydraulic capsules, the looper angle in used to
control the mass ow by adjusting the upstream stand's main drive motor. The strip tension
is controlled by use of an open loop model to supply the reference for the looper motor torque.
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Conventional control ignores the interactions between thestrip gauge, tension and the
looper angle. The looper angle and the strip tension are linked directly through the mechan-
ics of the looper system while the tension works as a disturbance on the stand gauge. Also
a change by the Automatic Gauge Control changes the massow at the entry and exit of the
stand producing a disturbance to the strip tension and looper angle. [1][2]

In conventional control the loops are not decoupled su�ciently to reach the demands for
increasing dimensional accuracy. Therefore in the last decades several successful attempts
have been made to design and implement MIMO controllers who can better deal with the
interactions.

In this paper the linear multivariable dynamic model of two stands and the intermediary
looper system of a hot strip �nishing mill is presented. Furthermore, a start has been made
in developing a MIMO controller. Quantitative Feedback Design (QFT) has been chosen as
the control technique. QFT is a powerful robust control technique developed by Horowitz [9],
it can deal with large uncertainties and provides a transparent design process. First a QFT
controller has been designed to control the angle of the looper. Moreover, the extension of
the control technique to a MIMO system is explained with the description of the 2� 2 MIMO
looper system case.



Chapter 3

System Modeling

In this section the linear multivariable dynamic model, of two stands and the intermediary
looper system of a hot strip �nishing mill as shown in �gure 3.1, is described. As a math-
ematical model the linearly approximated model around a set-up point is derived by using
the nonlinear static relations rolling process of a hot strip �nishing mill, and hence it is only
valid in steady state under small perturbations.

Stand
i

Stand
i+1

Material flow

Hydraulic
Capsule Back-up roll

Work roll

i-1

I+1

Figure 3.1: Two stands and the intermediary looper system ofa hot strip �nishing mill

3.1 Rolling Force

In this section the physical equations describing the rolling force and the corresponding pa-
rameters are explained.
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The rolling force [1] is given by:

P =
p

R0(H � h)[KwQ � m1� in � m2� o] (3.1)

with:

H = Entry strip thickness [mm]
h = Exit strip thickness [mm]
m1 , m2 = Strip tension e�ect factors related to entry and exit tensi on respectively [mm]
� in = Entry tension [ Kgf

mm 2 ]
� o = Exit tension [ Kgf

mm 2 ]
w = Strip width [mm]
R0 = Deformed roll radius [mm]
K = Yield stress [ Kgf

mm 2 ]
Q = Geometric factor [� ]

Hence, rolling force deviation from a set-up point is described as follows by the linear approx-
imation:

� Pi =
@Pi
@Hi

� H i +
@Pi
@hi

� hi +
@Pi

@�i � 1
� � i � 1 +

@Pi
@�i

� � i (3.2)

For the calculation of the partial derivative terms in expression 3.2 ,R0 and K are kept
constant for reasons of simplicity.

In the following subsections expressions for the deformed roll radius, geometric factor,
yield stress and strip tension e�ect factors are given

3.1.1 Deformed roll radius

The rolling force causes a deformation of the working roll. The expression for the deformed
working roll radius [3] is given by:

R0 = R[1 +
(16)(0:91)(1000)F

�E r w(H � h)
] (3.3)

with:

R = Undeformed roll radius [ in ]
P = Working force [ tonf ]
Er = E-modulus of working roll [ lbf=in 2]

Note that in this expression the parameters are in inche, tonf and poundforce,R0 is also
in inche. R0 is de�ned as the e�ective radius at the strip-roll contact poi nt. The roll force
used to calculateR0 is calculated with the undeformed roll radius.
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3.1.2 Geometric factor

The geometric factor [6] used in equation 3.1 is given by:

Q =
�
4

+
1
4

r
R0

h
(

r
1 � r

) (3.4)

with:

r = Reduction in pass = ( H � h)=H [� ]

3.1.3 Yield stress

No explicit expression for the yield stress in 3.1 with satisfying results is found. Therefore
the yield stress is calculated with 3.1 itself, this is possible because the value ofP is known
apriori. With 3.1 the expression for the yield stress becomes:

K =
P

p
R(H � h)wQ

+
(m1� i + m2� o)

wQ
(3.5)

3.1.4 Strip tension e�ect factors

In 3.1 m1 and m2 are de�ned as the strip tension e�ect factors related to entry and exit ten-
sion respectively. So these factors are proportionality constants for the inuence of the entry
and exit strip tension on the total rolling force. Although m1 and m2 are used in expressions
for the rolling force in di�erent literature, no expression for m1 and m2 is given in any of
these documents.

In some literature the expression for the rolling force is given without the strip tension
part. From this we may conclude that the inuence of the tension on the total rolling force is
low. From [3] we can see that the tension part is approximately 1% of the total rolling force.
Furthermore from [3] we can conclude thatm1 � m2. With these two assumptions, 3.1 and
the values ofR0, H , h, � in , � o and P, the values for m1 and m2 are calculated.

3.2 Strip thickness

3.2.1 Exit strip thickness

The exit strip thickness calculation [7] is based on the gaugemeter principle using the roll gap
deviation and the rolling force deviation.

� hi = � Si +
� Pi

M i
(3.6)

with:

� Si = Roll gap deviation [ mm]
� Pi = Rolling force deviation [ Kgf ]
M i = Mill modulus [ Kgf

mm ]
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Mill modulus

When a rolling force is applied on the working rolls, the mill housing will deform, causing a
increase in the gap. The relation between the applied rolling force and the corresponding gap
between the rolls is called the mill modulusM . It is determined by measuring the zero force,
which is the force when the gap is set to zero, on di�erent positions on a eccentric working
roll [3].

3.2.2 Interstand strip transport lag

The strip entry thickness of mill i + 1 is equal to the exit strip thickness of mill i with a
transport delay equal to the time it takes for the strip to get from stand i to stand i +1. This
delay is approximated with a �rst order lag element.

� H i +1 =
1

1 + s� Di
� hi (3.7)

with:

� Di = Strip transport time constant [ � ]

3.3 Slip

During the rolling process the strip will slip between the work rolls, this means the input/exit
velocity of the strip is not equal to the work roll peripheral velocity.

3.3.1 Forward slip

Forward slip [7] is de�ned as:

f ,
Vout � V

V
(3.8)

with:

Vout = exit strip velocity [ mm
s ]

V = work roll peripheral velocity [ mm
s ]

The equation for forward slip [3] is given by:

f =

 
2R0

h
cos(� n ) � 1

! 

1 � cos� n

!

(3.9)

� n is the angle with the neutral plane as de�ne in �gure 3.2

� n =

 r
h
R0

!

tan

"
�
8

r
h
R0 ln(1 � r ) +

1
2

tan � 1

 r
r

1 � r

!#

(3.10)

Hence, forward slip deviation from a set-up point is described as follows by the linear approx-
imation:
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Figure 3.2: Neutral angle

� f i =
@fi
@Si

� Si +
@fi
@Hi

� H i +
@fi

@�i � 1
� � i � 1 +

@fi
@�i

� � i +
@fi
@hi

� hi (3.11)

For the calculation of the partial derivative terms in expression 3.11,R0 is kept constant
for reasons of simplicity. This means the partial derivative terms @fi

@Si
, @fi

@�i � 1
, @fi

@�i
are zero and

� f i only depends on entry and exit strip thickness.

3.3.2 Backward slip

Backward slip [7] is de�ned as:

b ,
Vin � V

V
(3.12)

with:

Vin = entry strip velocity [ mm
s ]

The equation for backward slip [4] is given by:

b =
h (1 + f )

H
�

cos(
q

H � h
R0 )

� � 1 (3.13)

Hence, backward slip deviation from a set-up point is described as follows by the linear
approximation:

� bi +1 =
@bi +1

@Si +1
� Si +1 +

@bi +1

@Hi +1
� H i +1 +

@bi +1

@�i
� � i +

@bi +1

@�i +1
� � i +1 +

@bi +1

@hi +1
� hi +1 (3.14)

For the calculation of the partial derivative terms in expression 3.14, R0 is also kept
constant for reasons of simplicity. This means the partial derivative terms @bi +1

@Si +1 , @bi +1
@�i

, @bi +1
@�i +1

are zero and � bi +1 only depends on entry and exit strip thickness.
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3.4 Strip velocity

3.4.1 Exit strip velocity

Rewriting 3.8 gives the exit strip velocity:

Vout = (1 + f )V (3.15)

Hence, exit strip velocity deviation from a set-up point is expressed as follows

� Vout:i = (1 + f i )� Vi + � f i Vi (3.16)

3.4.2 Entry strip velocity

Rewriting 3.12 gives the exit strip velocity:

Vin = (1 + b)V (3.17)

Hence, entry strip velocity deviation from a set-up point is expressed as follows

� Vin:i +1 = (1 + bi +1 )� Vi +1 + � bi +1 Vi +1 (3.18)

3.5 Strip tension

The tension model [1] is based on longitudinal stress and strain as de�ned by Young's
modulus.

� (t) = E

"
L � (t) � L s(t)

L s(t)

#

(3.19)

where

L � = l1 + l2
l1 =

p
[(r l � y + l sin � )2 + ( a + l cos� )2] (3.20)

l2 =
p

[(r l � y + l sin � )2 + ( L � a � l cos� )2]

L s = L +
Z t

t0

(Vout:i (� ) � Vin:i +1 (� ))d� (3.21)

with:

� = Looper angle [rad]
E = Young's modulus [ Kgf

mm 2 ]
L = Distance between stands [mm]
r l = Looper roll radius [mm]
l = Looper arm length [mm]
y = Vertical distance between looper pivot and center betweenworking rolls [mm]
a = Horizontal distance between stand i and looper pivot [mm]



3.6 Looper mechanics 17

The strain depends on the amount of material in the interstand region which depends on
the velocity di�erence of the strip leaving stand i and entering stand i+1. The extension is
the di�erence between the geometric strip length and the length of the strip in the interstand.
The looper dimensions are shown in �gure 3.3

Figure 3.3: Looper system dimensions

Hence, strip tension deviation from a set-up point is described as follows by the linear ap-
proximation:

� � i =
E i

sL i

 

� Vin:i +1 � � Vout:i +
@L�:i
@�i

� ! i

!

(3.22)

with:

! = Looper angular velocity [ rad
s ]

3.6 Looper mechanics

The equations of motion for the looper is described by Newton's second law

J
d
dt

! + D! = Tm � Tload (3.23)

with:

J = Looper inertia [ Kgfmms 2]
D = Looper damping factor [Kgfmms ]
Tm = Motor torque [ Kgfmm ]
Tload = Load torque [Kgfmm ]

Hence, looper angular velocity deviation from a set-up pointis described as follows by the
linear approximation:

� ! i =
1

sJi

 

� Tm:i � D i � ! i �
@Tload

@�i
� � i �

@Tload

@�i
� � i

!

(3.24)

In the following subsections the expression for the load torque is given
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3.6.1 Load torque

The load torque [2] in 3.23 is described as:

Tload = T� + Ts + Tb + TLW (3.25)

where:

T� is the torque due to the tension in the strip

T� = �wh [lcos(� )f 1 + ( lsin (� ) + r l )f 2] (3.26)

with:

f 1(� ) = ( r l + lsin � � y)(
1
l1

+
1
l2

) (3.27)

f 2(� ) = (
L � a � lcos�

l2
�

a + lcos�
l1

) (3.28)

Ts is the torque to support the strip weight

Ts = lg�wh (l1 + l2)cos(� ) (3.29)

with:

� = Strip density [ Kgfs 2

mm 4 ]

Tb is the torque to bend the strip over the looper roll

Tb = lcos(� )
Kwh 2

4

 
1
l1

+
1
l2

!

(3.30)

TLW is the torque to support the looper arm and roller weight. Due to the existence of a
contra weight, the contribution of this part of the load torq ue can be neglected.

3.7 Actuators

The roll gap position regulators are approximated with �rst order lag elements.

� Si =
1

1 + s� G:i
� Sr:i (3.31)

and

� Si +1 =
1

1 + s� G:i +1
� Sr:i +1 (3.32)

The looper torque regulator is approximated in the same way with a �rst order lag element.
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with:
� G = Roll gap time constant [ � ]
Sr = Roll gap reference [mm]

� Tm:i =
1

1 + s� T i
� Tr:i (3.33)

with:

� T i = looper torque time constant [� ]
Tr:i = looper torque reference [Kgfmm ]

The Mill motor drive is also approximated with a �rst order la g element.

� Vi =
1

1 + s� Mi
� Vr:i (3.34)

with:

� Mi = Mill motor velocity time constant [ � ]
Vr:i = Mill motor velocity reference [ mm

s ]

3.8 Linear multivariable dynamic model

In the previous sections the linear multivariable dynamic model describing two stands and
the intermediary looper system of a hot strip �nishing mill a re given. This model is presented
as a block diagram in �gure 3.4.

The system inputs are all the inputs which can be controlled by an actuator which is part
of the 2 stand-looper system, these actuators are: the roll gap position regulator of the i-th
and the i+1-th stand, the looper torque regulator and the mill motor drive of the i-th stand.
The other inputs work as disturbances on the system.
The system inputs, disturbances and system outputs are shown in �gure 3.5.

The model as given in 3.4 is implemented in Matlab Simulink toverify the behavior and
to calculate the RGA given in 4.1.1. The conventional controllers as given in 4.1 are also
implemented. The system is simulated with small permutation around the nominal values of
the uncontrolled inputs (disturbances), the simulations showed the same behavior as the real
close loop system.
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Figure 3.4: Two stands model

PLANT
V

S

S +1 +1

H +1 -1 V +1

T

Figure 3.5: Inputs, disturbances and outputs of the system

3.9 system parameters

Most of the nominal values of the system parameters described in this chapter have been
directly obtained from data from Hylsa Steel company [3] andshown in Alma Obreg�on MSc
thesis. Some had to be calculated. The strip Youngs modulusE has been calculated by
extrapolating the curve of the steel Youngs modulus at high temperature given in [5]. The
value of the damping D is estimated. The looper inertia J wasn't know in advance. The
shape of the looper has been simpli�ed, this simpli�ed version is build up by some basic
cylinder and plate shaped elements. First the moment of inertia of the basic elements has
been calculated then the moment of inertia of the element with respect to the looper axle has
been calculated with the parallel axis theorem (Steiner's theorem).



Chapter 4

Hot strip �nishing mill control

Hot strip �nishing mill control is conventionally done by co ntrolling the separate loops, this
way ignoring the interaction between strip gauge, tension and looper angle. Due to this
insu�cient decoupling, the increasing demands for dimensional accuracy can not longer be
reached. Therefore in the last decades there's a growing request for MIMO �nishing mill
controllers, which can better deal with the interactions.

In this chapter �rst the conventional control is discussed, then the selection of a suitable
MIMO control strategy is explained.

4.1 Conventional control

In this section the conventional control of the hot strip �ni shing mill is described in detail.

The conventional way of controlling the strip thickness, tension and looper angle is shown
in �gure 4.1 The total control system exists of several separate SISO loops.

The strip thickness hi is controlled by the Automatic Gauge Control. The AGC uses force
feedback via the inverse of the mill modulus to adjust the hydraulic capsules. The exit strip
thickness deviation is given by 3.6, from this equation it can be seen that the ideal gain to
obtain a zero steady-state error isK = � 1

M i
. For a changing mill modulus the gain has to

decrease in order to insure stability. Therefor the AGC gainis a trade-o� between robustness
and thickness performance. X-ray monitor AGC adjusts the roll gap to control the absolute
strip thickness based on the measurements made by the X-ray thickness meter installed at
the exit side of the �nishing mill.

The looper angle is controlled using a PI controller which adjusts the upstream stand i mo-
tor speed. The massow control also contains a speed trim signal from the downstream stand
i + 1, the motor speed of stand i is adjusted with the deviation of the motor speed of stand
i +1 times a gain which is the proportion between the setup motor speeds of standi and i +1.

Strip tension is controlled using a static nonlinear model of the strip geometry and looper
load to estimate the torque which should be applied to the looper arm to achieve the reference
tension depending on the current looper angle.[1][7]
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Figure 4.1: Conventional Control

4.1.1 MIMO control

The �rst important factor in selecting the MIMO control stra tegy for a hot strip �nishing
mill is determining the amount of interaction in the system. This is done by calculating the
relative gain array (RGA) at di�erent frequencies. The RGA i s a measure for the amount of
interaction in the system [14].

RGA for ! = 1 [ rad=s]
in out hi hi +1 � i � i

Si 0.95 -0.06 0.11 0.00
Si +1 0.00 0.94 0.06 0.00
Vi 0.00 0.00 0.77 0.23
Ti 0.05 0.12 0.06 0.77

RGA for ! = 10 [rad=s]
in out hi hi +1 � i � i

Si 1.00 0.00 0.00 0.00
Si +1 0.00 1.00 0.00 0.00
Vi 0.00 0.00 0.96 0.04
Ti 0.00 0.00 0.04 0.96

RGA for ! = 50 [rad=s]
in out hi hi +1 � i � i

Si 0.91 0.00 0.09 0.00
Si +1 0.00 0.55 0.45 0.00
Vi 0.00 0.00 4.06 3.06
Ti 0.09 0.45 -3.60 4.06

RGA for ! = 100 [rad=s]
in out hi hi +1 � i � i

Si 1.00 0.00 0.00 0.00
Si +1 0.00 1.00 0.00 0.00
Vi 0.00 0.00 -0.35 1.35
Ti 0.050 0.01 1.34 -0.35

In a hot strip �nishing mill the most important disturbances lay in the low frequency
range [11]. At these frequencies there is interaction between the di�erent main channels of
the controlled system as can be seen above. In other words theclosed loop function T is
not diagonal. Therefore one should look for a controller which can somehow deal with this
interaction.
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Another important matter is determining the MIMO control st rategy is the amount of un-
certainty in the system. The uncertainty in the hot strip �ni shing mill is high. There are high
uncertain inputs (input disturbances) and the plant model used for designing the controller
is uncertain, both from variation in the plant parameters it self and from inaccuracies in the
modeling process. Because of these high uncertainty directdiagonalization of the open-loop
transfer function is impossible.

A design technique which can deal with both the high uncertainty and the interaction
is the Quantitative Feedback Theory (QFT). It is a robust design technique which works
with sequential loop shaping. The interactions between themain channels are limited by the
closed loop speci�cations [13]. An advantage of QFT compared to other robust techniques
as H1 is the fact that it's a transparent technique, the trade-o� be tween the complexity of
the controller and the performance can easy be made [11]. Because of the characteristics
mentioned above QFT is chosen to be the design technique for controlling the hot strip
�nishing mill.





Chapter 5

Quantitative feedback theory

Quantitative feedback theory (QFT) is a powerful robust control design technique developed
by Isaac Horowitz in the 1960's. The foundation of QFT is the fact that feedback is principally
needed when the plant is uncertain and/or there are uncertain inputs (disturbances) acting
on the plant. Uncertain plant does in this context not mean 'unknown' plant, the meaning of
quantitative in QFT is that the uncertainties of the plant ar e known 'quantitatively'. QFT
is a transparant control design technique which uses the uncertainty upfront and reveals the
trade-o� between complexity of the controller and the performance speci�cations.

The basic objective of QFT is to design a SISO controller which will have robust stability
and robust performance for parametric uncertainty and alsowill have a minimum complexity
and a minimum bandwidth. Minimum bandwidth controllers are a natural requirement in
practice in order to avoid problems with noise ampli�cation , resonances and unmodeled high
frequency dynamics.

In QFT the plant uncertainty is represented by a set of templates P on the Nichols chart,
within each template all possible frequency responsesP(j! k ) for some frequency! k are en-
closed. For each frequencyk the set P! consist of a �nite number of elements, therefore a
discrete grid of uncertain parameters should be used for obtaining P! . The performance spec-
i�cations consist of constraints W (! ) on the magnitude of a closed-loop frequency response
F (s). In QFT the main process is translating the frequency domain speci�cations W on the
uncertain feedback system into bounds in the Nichols chart within which the nominal loop
transmission (L 0 = P0C : P0� P) should lie.

A bound is obtained by determining all possible positions inthe Nichols chart on which
the uncertainty template of P(j! ) can be translated without being rotated, such that the
performance speci�cations F (s) satis�es its magnitude bounds of W (! ). In the past this
was a manual graphical task in Nichols chart which made it very di�cult. With the QFT
frequency domain control design toolbox for MATLAB calculating the bounds can now be
done much faster and more accurate.[11] [12]
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5.1 SISO QFT looper control

In this section the design of a QFT SISO looper controller is explained. This section can be
seen as an example of QTF in a real control case. It is also a preparation on the yet to be
designed QFT MIMO controller.

5.1.1 SISO looper modeling

First the linear dynamic model of the looper has been derived. This is done by isolating the
looper dynamics from the rest of the total system model described in 3. The input of the
SISO system is � Vr:i the output is � � i . This coupling is chosen because at low frequencies
this input and output have the strongest coupling as can be seen in 4.1.1. It's also the same
coupling as in conventional SISO looper control. All other signals work as disturbances on
the SISO looper system. The isolated SISO looper systemPtot is shown in �gure 5.1.

D

D2

D1

l

l

Figure 5.1: SISO looper system

In the SISO looper model 5.1 the disturbancesD1 and D2 don't enter the system as input
or output disturbances which is a problem because QFT can only work with disturbances on
the input or output of a system. Therefore the system has beensplit up in two subsystems.
The �rst subsystem is P1 with input Vr:i and output Vc:i in this subsystem the plant un-
certainty is neglected. In the second subsystemP2 plant uncertainty is taken into account
this part has input Vc:i and output � i . With this split up D1 becomes the input disturbance
of subsystemP2. Disturbance D2 would still enter P2 in the middle therefore D2 has been
moved to the input of subsystem P2 by multiplying it with Z . Z has been calculated with
Z � P2 equals the transfer function from D2 to � i . The uncertainty of Z has also been taken
into account. The new system is shown in �gure 5.2

The total SISO feedback system is shown in �gure 5.3. Reference disturbance and output
disturbance in the conventional way are not being considered here, while high frequency sensor
noise is being rejected according to the stability bounds inthe QFT toolbox, therefore a more
detailed characterization of the sensor noise is required for future work, furthermore sensor
dynamics H and pre-�lter F equal 1.
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Figure 5.2: split up SISO looper system

Figure 5.3: SISO feedback looper system

5.1.2 Plant Templates

As stated before a plant template P! is the collection of all possible uncertain plant's fre-
quency responsesP(j! k ) for some frequency! k . In QFT, plant templates can be obtained
from frequency response measurements or from speci�c parametric or non-parametric uncer-
tainty models. In this case a parametric uncertainty model is used.

In QFT plant templates are represented in the Nichols chart. The Nichols chart rep-
resents complex numbers in terms of their magnitudes and phases, the coordinates of the
Nichols chart are (�; 20log(r )) [12].

The transfer function P2 from Vc:i to � i is determined, the transfer function coe�cients
are expressed in the system parameters. The transfer function P2 is given by:

P2(s) =
� (B 2 )E i

J i L i

s3 + D i
J i

s2 + ( B 1
E i

+ B 2L 1E i
J i L i

)s
(5.1)
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with:

B1 = @Tload
@�i

B2 = @Tload
@�i

L 1 = @L�:i
@�i

The uncertainty variations around the nominal values of the system parameters are esti-
mated. Distance between standsL i � 1% , partial derivatives @Tload

@�i
, @Tload

@�i
, @L�:i

@�i
� 3%, looper

inertia J i � 5% and steel Youngs modulusE i and damping D i � 10%.
With these uncertainties the minimum and maximum values of the transfer function co-

e�cients are determined. A grid between these minimum and maximum values is formed.
This leads to the following uncertain plant.

P2 =

(

P(s) =
d1

s3 + d2s2 + d3s
d1 = [ d1:min ; ::; d1:max ]; d2 = [ d2:min ; ::; d2:max ]; d3 = [ d3:min ; ::; d3:max ]

)

(5.2)
It is important to look at the shape of the template while determining the number of

elements in the di�erent grids. Too many elements will lead to a template which will be
described by thousands of cases. Even with powerful computers, a solution may require unre-
alistic calculation time. Not enough elements will lead to atemplate which doesn't cover the
total respons of the uncertainty plant. So, the process in determining the number of elements
in each grid is, increasing the number of elements until there's no change in the shape of
the template anymore. The fact that for simply connected templates it is su�cient to only
look at the shape, which is the boundary of the template is related to a celebrated result in
complex variables. the maximum principle [12]. An example of determining the number of
elements ind3 is given in �gure 5.4

The �nal template P2 is described with 3 elements ind1 and d2 and 201 elements ind3. The
uncertain plant P2(s) is given in Bode in �gure 5.5, the �nal template P2 is given in �gure 5.6.

The template of Z is determined in the same way asP2

Frequencies

In QFT templates are calculated for a discrete number of frequencies. The basic rule in
determining these frequencies is that for the same speci�cation, the bounds will only change
with changes of the chape of the template, therefore, one should look for frequencies where
the shape of the template shows signi�cant variation compared to those of other frequencies.
This will become clear when the calculation of the bounds is explained in subsection 5.1.3.
For example, at high frequencies the shape of the templates becomes �xed. Therefore the
maximum frequency for calculating the bounds of a �xed speci�cation is the �rst frequency
for which this occurs. All bounds at higher frequencies willthen be the same as this one [12].

In this design case the speci�cations are not �xed for all frequencies which means the
bounds for frequencies with an equally shaped template can be di�erent. Therefore the
minimum and maximum frequencies for which templates are calculated equal the minimum
and maximum frequencies de�ned in the speci�cations.
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(a) Plant templates with d1 = 3, d2 = 3 and d3 = 3
elements
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(b) Plant templates with d1 = 3, d2 = 3 and d3 =
101 elements
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(c) Plant templates with d1 = 3, d2 = 3 and d3 =
201 elements

-360 -315 -270 -225 -180 -135 -90 -45 0

-120

-100

-80

-60

-40

-20 0.1

1

10
50

100

500

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

Plant Templates

0.1 rad/s
1 rad/s

10 rad/s

50 rad/s

100 rad/s

500 rad/s

(d) Plant templates with d1 = 3, d2 = 3 and d3 =
303 elements

Figure 5.4: Plant templates with di�erent number of element s for d3

Nominal plant

In order to compute bounds, one plant element from the uncertain set has to be chosen as
the nominal plant. This is required to perform QFT design wit h a single nominal loop. The
choice of the nominal plant is not important, from the way the bounds are calculated one can
see that the choice has inuence on the bounds but not on the resulting controller. In this
case the �rst element of the uncertainty set in chosen as nominal plant, which is not the same
as the plant with no uncertainty.
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r12 =
Zp12

1 + p22c2 + Zp11c1 + det(P)Zc1c2
(5.20)

In this case, speci�cations are only de�ned for the input disturbance D1 and not for D2.
For this reason the speci�cations on the 2nd loop cannot be used in an expression forc2.
Instead the extreme values ofc2 are used:

jr11j =
jZp11j

j1 + Zp11c1j
� � r: 11 (c2 ! 0) (5.21)

jr11j =
jZdet(P)j

jp22 + Zdet(P)c1j
� � r: 11 (c2 ! 1 ) (5.22)

jr12j =
jZp12j

j1 + Zp11c1j
� � r: 12 (c2 ! 0) (5.23)

jr12j =
jZp12j

jp22 + Zdet(P)c1j
� � r: 12 (c2 ! 1 ) (5.24)

With these speci�cations, the templates of P and the nominal open loop L 11:n = p11c1

the bounds can be calculated.

5.3.2 Bounds on 2nd loop

During the 2nd step in the sequential procedure the controller c1 is already known. Therefore
de�ning the closed loop functions for the 2nd loop is more straight forward. The speci�cations
for the 2nd loop are de�ned as:

jt21j =
jp21c1j

j1 + p11c1 + p22c2 + det(P)c1c2
j � � t:21 (5.25)

jt22j =
jp22c2j + jdet(P)c1c2j

j1 + p11c1 + p22c2 + det(P)c1c2j
� � t:21 (5.26)

js21j =
j � p21c1j

j1 + p11c1 + p22c2 + det(P)c1c2j
� � s:21 (5.27)

js22j =
1 + jp11c1j

j1 + p11c1 + p22c2 + det(P)c1c2j
� � s:21 (5.28)

With these speci�cations, the templates of P and the nominal open loop L 22:n = pe
22c2

the bounds can be calculated. pe
22 is the equivalent open-loop transfer function of the 2nd

channel assuming the 1st has been closed,pe
22 = p22 � p12 p21 c1

1+ p11 c1
.
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Appendix A

SISO QFT looper control m-�le

clear all
%
%
% % a continuous-time, siso feedback system
% %
% % | D1(s) | D2(s)
% % ---- ---- | ---- | ----
% % ------->|G(s)|--Vr--|A(s)|-->V---|P1(s)|--->T---> |P2(s)|--->theta---->
% % R(s) | ---- ---- ---- ---- | Y(s)
% % | --- |
% % -------------------------- -1 --------------------- ----
% % ---
% % PROBLEM DATA

% % % % % % % % % % % % % % %
% % % system parameters % % %
% % % % % % % % % % % % % % %

run('gains_MTYHSM')

% % uncertainty in +/- procent

uB1 = 3;
uB2 = 3;
uT6 = 5;
uT7 = 10;
uT8 = 1;
uL1 = 3;
uK7 = 10;

% % min , max values op system parameters
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