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This paper deals with the long term behavior of periodically excited mechanical
systems consisting of linear components and local nonlinearities. The number of

degrees of freedom of the linear components is reduced by applying a component
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mode synthesis technique. Lyapunov exponents are used to identify the character of

the long term behavior of a nonlinear dynamic system, which may be periodic, quasi-
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periodic or chaotic. Periodic solutions are calculated efficiently by solving a two-point
boundary value problem using finite differences. Floquet multipliers are calculated to
determine the local stability of these solutions and to identify local bifurcation points.
The methods presented are applied to a beam system supported by a one-sided linear

spring, which reveals very rich, complex dynamic behavior.

1 Introduction

Mechanical systems consisting of linear components with
many degrees of freedom and local nonlinearities are frequently
met in engineering practice. Examples of such systems are:
rotating mechanical systems with nonlinear bearings, mechani-
cal systems with dry friction and backlash phénomena in certain
connections, etc. From a spatial point of view, the local nonlin-
earities constitute only a small part of the mechanical system.
However, their presence can have important consequences for
overall dynamic behavior.

The subject of this paper is the long term behavior of mechan-
ical systems with many degrees of freedom and local nonlinear-
ities, excited by periodic external loads. The numerical determi-
nation of the long term behavior for a nonlinear model with
many degrees of freedom in general may require much computa-
tional time and offer computational problems. In this paper the
number of degrees of freedom of the linear compenents of
a system with local nonlinearities is reduced by applying a

period doubling route (Feigenbaum, 1983), intermittency (Po-
meau and Manneville, 1980) and a quasi-periodic—locked-cha-
otic route (Newhouse et al., 1978). All calculations in this
paper were carried out using a development release of the finite
element package DIANA (1994) (module STRDYN for nonlin-
ear dynamic analysis).

2 Reduction of the Number of Degrees of Freedom
The equations of motions of a linear elastic component ‘are:

Ms + Bi + Kx = f (2.1)

where M, B and K are the mass matrix, damping matrix and
stiffness matrix, respectively, all of size (7, n;); x = [x5,
x4]* is a n.-column with degrees of freedom (dof), which is
divided in a np-column x5 with loaded boundary dof (i.e., exter-
nally loaded dof and interface dof loaded by adjacent linear
components or local nonlinearities), and a n-column x; with
unloaded internal dof. On empirical grounds it has been con-

— - component-mode-synthesis-technique based on free-interface

eigenmodes and residual fiexibility modes (Section 2).

The long term behavior of a nonlinear dynamic system can
have a periodic, guasi-periodic or chaotic character. In Subsec-
tion 3.1 periodic solutions are calculated by solving a two-point
boundary value problem by applying a finite difference method.
How the periodic solution is influenced by a change in a so-
called design variable of the system is investigated by applying
a path following technique. In Subsection 3.2 the local stability
of a periodic solution is investigated using Floquet theory. On
the branches of periodic solutions three types of local bifurca-
tions can be found, namely the cyclic fold bifurcation, the flip
(or period doubling) bifurcation and the Neimark (or secondary
Hopf) bifurcation. The steady-state behavior is also investigated
by means of standard numerical time integration. In this case
the character of the long term behavior (periodic, quasi-periodic
or chaotic) is identified by calculation of the Lyapunov expo-
nents.

In Section 4 the methods outlined above are applied to a
harmonically excited discretized beam system supported by a
one-sided linear spring. The excitation frequency is taken as a
design variable. Superharmonic and Subharmonic resonances
are evaluated and the bifurcations mentioned above are met
frequently. In the system three routes to chaos are observed: a
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cluded in linear dynamics that the following Ritz-approximation
of the component displacement field in general offers a large
reduction of the number -of dof and consequently of the CPU-
time needed for analysis, whereas simultaneously the decrease
in accuracy of the system response is only small, if the fre-
quency spectrum of the n-column with loads f = [}, 071’
ranges from zero till some cut-off frequency f. = w /27 and if
the assumption of proportional damping is justified:

x=1Tp, T=[®& ®°1, p=Ipi psl' (22)

Here, the coluinns of the (n,, n;) matrix ®, with kept elastic
eigenmodes are the mass normalized solutions (¢;Mp; = 1) of
the undamped eigenproblem for w; € (0, w.] (i =1, ..., n):

(—wiM + K)p; =0 (2.3)

The (7., np) matrix &% with residual flexibility modes is defined
as follows:

®" = [K' — 8Qe’ @il 03]’ (24)

where € is a (i, n,) diagonal matrix with the kept angular
eigenfrequencies lower than or equal to w.. A residual flexibility
mode is defined for each boundary dof and guarantees unaf-
fected static load behavior of the reduced system model. The
above holds for a statically determinate component; if the com-
ponent can move as a rigid body, an alternative formulation
can be applied (Craig, 1985).
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Using transformation (2.2) the reduced component equations
become:

T'MTp + T'BTp + T'KIp = T'f (2.5)
Again using (2.2) the dof pp are replaced by the boundary dof xz
to permit simple coupling of the reduced component equations.
Subsequently the reduced system model is assembled by de-
manding compatibility of interface dof and equilibrium of inter-
face loads. The n,-column with independent system dof g con-
tains the modal dof p{” of components i (i = 1, ..., N.) and
a column y, containing all boundary dof of the system. Local
nonlinearities, which for simplicity are assumed to be only a
function of y and y, are added by means of the n,-column with
internal loads f; and external loads are collected in f,. The
equations -of motion of the reduced system are given by:

Mg+ B,g + Kg + fu=1 (2.6)
with:
g = [pi, ..., Y],
fr=108 ..., 00, L, (9, M1,
fi=107 ..., 00" F3]
If f,; = f, = 0 and B, = 0, eigenfrequencies of (2.6) below f.

Hz should be very accurate. In general, higher eigenfrequencies
will be inaccurate. These inaccurate eigenfrequencies may cause
superharmonic resonances in the nonlinear system in the low-
frequency range. The accuracy of the results obtained with the
reduced model can be checked by investigating the frequency
spectrum of the external load minus the internal loads caused
by the local nonlinearities, and by investigating the influence
of the deleted (higher) eigenmodes on this frequency spectrum
(de Kraker et al., 1989).

3 Steady-state Behavior

In our case the external load acting on the system is periodic
with period T, = 1/f,:
fo(0) = fy(t + 1/f) = ag + X [an cos me(2)

m=1

+ b, sin mp(1)], O(t) = 2xaft + .

The (bounded) steady-state behavior of thie system, i.e., the
attractor which is reached after the transient has damped out,
might be periodic, quasi-periodic or chaotic. Several steady-
states can coexist for a single set of Egs. (2.6). Which of these
steady-states will be reached, depends on the initial augmented
state s5,(2¢):

s.(1) 1= [s'(1), ¢(O], s(®) := [¢'(D), ¢'(D)Y

In case the solution is periodic with period T, and the response
is periodic with period T,, we call the solution harmonic if 7,
= T, = T, and subharmonic of order ri/er if T, = riI, = erl,
(rT S N, er € N\ {1}, rr < eT).

If the solution is quasi-periodic, the solution is a function
of two or more periodic signals, which have incommensurate
frequencies. ’

A chaotic solution is characterized by an extreme dependence
on the initial state. Consider a state s;(#,) on a chaotic solution
and a state s,(#;) = s(#;) + 6s(t;), 6s(¢#,) being an infinitesi-
mally small perturbation. Now the two trajectories starting from
both states will diverge for # = #,, on average of time, but
will eventually fill the same linear subspace, being the chaotic
attractor.

(3.1)

3.1 Periodic Solutions. Periodic solutions are calculated
by solving a two-point boundary value problem, which is de-
fined by (2.6) supplemented with the boundary condition s (#) =
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s(t + T,). Approximations of periodic solutions can be obtained
efficiently by using a finite difference technique The time is
discretized by n, equidistant points*s; = iT,/n, =: iAf in one
period T,. The following approximations g and §; are used for
the velocmes g; and accelerations §; respectively fori =0, .. .,
n, — 1(0(A#f?) central difference scheme, Q; is an abbreviation
for quantity Q(#;)):

éx = (Gis1 — Gi—1)/(2A1),
‘i. = (Gis1 — 24 + Gi-1)/ (AF?) (3.2)

Substitution of (3.2) in the two-point boundary value problem
leads to a set of n,*n, nonlinear algebraic equations:

hi(z,r) =0,

where r represents a design variable, for example the excitation
frequency. If r is given a value r,,, the discretized periodic
solution z,; can be solved from (3.3) using the iterative
(damped) Newton process. Naturally, the solution, which will
be found, depends on the initial estimate z,. If d°q/d?® and d*q/
dr* exist, the global discretization error of the 0( A#?) solution
can be estimated and the solution can be improved to a 0(A#*)
solution by applying a deferred correction technique (Pereyra,
1966).

By applying a path foltowing (pf) technique the designer of
a dynami¢ system is able to investigate how a periodic solution
is influenced by a change in . In essence the technique consists
of a predictor-corrector mechanism. Starting from a known solu-
tion z, ., 7 the prediction of pf-step k is chosen on the tangent
to the solution branch at the point z, 4, rx(he) 1= OR/0Q):

i’ + opl (R 11

z = [qto, ] q:t,—llt (3'3)

2pe Toul’ = [Zhk
(34)
where o, is a well-chosen step size. Subsequently this predic-

tion is corrected iteratively using the orthogonal trajectory
-method of Fried (1984) (Z. 41 = Zpss T o= Tpp)s

”Zc,k,mé'l—l _ [Zch]
U Tegmsr | L Vegom
~ [ (hey + "(r)(’*(z)h(r))’j_lh (3.5)
[(hle)h<r>)'(h(z) + hoy(h3hey)) 'k |

In (3.5) the correction is orthogonal to the solution space of
h(z, r) = h(Zegm» Yerm)- The correction process is stopped if
some convergence criterion is satisfied. More details about the
path following method can be found in Fey (1992).

3.2 Local Stability, Local Bifurcations and Lyapunov
Exponents. The local stability of a solution g(¢) is investi-
gated by linearizing the equations of motion (2.6) around the
solution and examining the evolution in time of an infinitesi-
mally small perturbation. Using- a first order formulation and
neglecting higher order terms, substitution of the perturbed solu-
tion g(t) + 6q(¢) in (2.6) gives: '

bs = A(t)ds,

0 I
Ay = [ " , - :l
“Mq_ (Ky + fuy(1))  —M7 (By + fuw(1))

(3.6)

with initial conditions §s(zy) = 6ss. The generai solution of
(3.6) is:

Oz, 10)6s0, O(2)
B(t, to) = I

bs(1) = = A(1)B(),

(3.7)
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Table 1 Situations just before and after bifurcation points. SP, UP: Sta-
ble, Unstabie Periodic solution. SPD, UPD: Stable, Unstable Periodic so-
jution with Double period. SQP, UQP: Stable, Unstable Quasi-Periodic
solution. Cases a are called supercritical; cases b are cailed subcritical.

name: cyclic fold or || flip or Neimark or
turning point | period doubling || secondary Hopf
7= r: || SPand UP a. SP a. SP
b. UP b. UP
r=roe || g =1 =1 p = fips [l =1
r = o || locally no 2 UPand SPD || a. UPand SQP
L periodic sol. || b. SP and UPD || b. SPand UQP

If the solution is periodic (A(f) = A(t + T,)), Floquet theory
(see for example Seydel, 1988) shows that the fundamental
matrix ©(z, t,) satisfies:

Ot + Tp, to) = O(t, 10)O(to + T, to) =: O(t, t0)®, (3.8)

where @, is the so-called monodromy matrix, which is assumed
to have a spectral decomposition ®, = 111,,1- p: 10" Using (3.8)
it can easily be shown that (t* =1t— 1t~ kT,, 0 = t* < T,
Kk €Z):

(t, to) = Oto + 1%, 1) 0] i 10 (3.9

So, if the solution is periodic, the long term behavior of ds(1)
is predestinated by the eigenvalues y; of 0, (I pis| = [ p: 1), the
so-called Floquet-multipliers. The following stability conditions
result:

s - (asymptotically) stable periodic solution, periodic at-
tractor (in figures ), ift ] < 1, Vi
marginally stable periodic solution, if: 1l =1

« unstable periodic solution, periodic saddle or repellor (in
figures u), if: i} > 1

In case the periodic solution is marginally stable for r = Tuif,

***mrhrﬁiﬁ{esimall%mﬂlyeﬁmbaﬁon of the design variable r

section 1.7593 10~* m’, second moment of area 1.7329 107°
m*), which halfway its length is excited by a periodic transver-
sal force f, = 39.386 cos (2nfit + ¢.) and supported by a one-
sided linear spring (spring force fuy = 0ify=0,fn = 39386y
if y < 0) and a linear damper with constant b = 233.22£ Ns/
m. The amplitude of the external load is nothing but a scaling
factor in this system. The quotient of the stiffness of the one-
sided linear spring and the stiffness of the beam is 6. Because
the excitation force and the rionlinear internal force both act on
the middle of the beam, it is sufficient to consider only half the
system, which is discretized using 25 beam elements (pure
bending). The four Jowest eigenfrequencies of the system with-
out support are 8.96 Hz, 80.6 Hz, 224 Hz and 439 Hz. Two
reduced models have been made to investigate the long term
behavior of the system: a single dof model and a four dof model,
in which the displacement field of the beam is approximated
by the first free-interface eigenmode and by the first three free-
interface eigenmodes plus one residual flexibility mode, respec-
tively. In the four dof model (f, = 300 Hz) the fourth eigen-
frequency is 538 Hz. The long term behavior of these two
models is investigated taking f. as the design variable.

- 4.1 Single Dof Model. Figure 1 shows the amplitude-
frequency plot of the single dof system for two values of the
damping. Unless stated otherwise, n, = 600. Harmonic 1eso-
nance occurs near the first bilinear eigenfrequency fo1 = 13 Hz.
For £ = 0.01 branches of 1/2 subharmonic solutions are found
in the frequency intervals 7.55-8.89 Hz and 20.64-38.50 Hz;
at the boundaries of these intervals flip bifurcations are found.
One closed branch with 1/3 subharmonic solutions is found in
the interval 36.06—48.65 Hz; the boundaries of this interval are
formed by cyclic fold bifurcation points.

Investigation of the stability of the branch with 1/2 subhar-
monics in the interval 7.55-8.89 Hz shows that the branch
contains quite a number of stable and unstable regions: flip as
well as cyclic fold bifurcations are met. In small frequency
intervals also 1/4, 1/8 (n, = 800) and 1/16 (n, = 1600) subhar-
monic branches were calculated, see the inset of Fig. 1. Numeti-

can change both the quantitative and the qualitative steady-sfate
behavior drastically: the system is not structurally stable. For 2
more exact definition of structural stability, see Guckenheimer
and Holmes (1983). The marginally stable periodic solution is
called a dynamic bifurcation point and Ty the bifurcation value.
Because we are varying only one design variable at a time, we
generically only meet one of the three types of (co-dimension
1) bifurcation points described in Table 1; these bifurcation
points are identified by p. .

In case a solution is calculated by solving an initial value
problem with an arbitrary initial augmented state s.(to), Lyapu-
nov exponents \; can be used to identify its character and its
stability. Let p1(£), - - -5 p2n (1) (Ip:] = |pina|) be the eigenval-
es of O(¢, o). Whenever the Timit exists, Lyapunov exponent
\; is defined by:

N o= hm%logz lo: i=1L..., 2n, (3.10)

An algorithm for calculating Lyapunov exponents in a numeri-
cally stable manner can be found in Fey (1992). The solution
2n

q
is an attractor if contraction outweighs expansion (2 N <0).
i=1

The character of an attractor is identified by the Lyapunov
exponents ;. In our nonautonomous case \; = (1/T,) logs | i
< 0, Vi reveals a periodic attractor, NE= e =N 0 an
attracting (g + 1)D-torus (or (g + 1_)-dimensiona1 quasi-peri-
odic attractor) and \; > 0 a chaotic attractor.

4 A Beam Supported by a One-sided Linear Spring

Consider a 2D pinned-pinned beam (length 3 m, mass density
7850 kg /m?, modulus of elasticity 2.1 10" N/m?, area of cross-
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cal integration (WnﬁKTxttad\'/fersormetho& so=0,- P, =
0, required precision: 10 significant digits, integration time:
100007.,) for f, = 8.196 Hz, f. = 8.193 Hz, 7. = 8.1905 Hz, fe
= 8.189 Hz and f, = 8.185 Hz showed 1/4, 1/8, 1/16, 1/32
subharmonic attractors and a chaotic attractor (N =~ +0.842,
X\, ~ —2.47), respectively. The results obtained strongly suggest
a Feigenbaum-route 0 chaos, i.e., an infinite cascade of period
doublings. If the damping is increased to & = 0.1 the subhar-
monic and chaotic solutions disappear and the harmonic solu-
tion becomes stable.

The frequency response calculated is similar to frequency
responses calculated by Shaw and Holmes (1983), Thompson
and Stewart (1986), and Natsiavas (1990). Compared to these
studies, here we find an additional branch with 1/2 subharmon-
ics and an extra period doubling Toute to chaos before the first
harmonic resonance peak.

The branch with 1/2 subharmonics in the interval 20.64—
38.50 Hz is stable. At f, = 22 Hz, three periodic solutions are
found:: one harmonic saddle and two 1/2 subharmonic at-
tractors. The two 1/2 subharmonic attractors merge into one
another, if one of them is shifted over T, s. Figure 2 shows the
Poincaré section (¢, = 0) of W* and W*, the stable and unstable
manifolds of the unstable harmonic at f.=22Hz. The Poincaré
section is defined as the 27, dimensional state space, stroboscop-
ically lighted at times 7 = (¢l 27f) + i £, (i integer). The
unstable manifolds connect the harmonic ‘saddle with the two
1/2 subharmonic attractors. The stable manifolds form the sep-
aratrices of the domains of attraction of the two 1/2 subhar-
monic attractors. In the calculation of the stable (unstable ) man-
ifolds of the unstable harmonic use is made of that eigenmode
of ®,, which corresponds with |p] < 1wl > D (Parker
and Chua, 1989, Van de Vorst et al., 1993).
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Fig. 1 Amplitude-frequency plot, 1 dof

4.2 Four Dof Model. Figure 3 shows the amplitude-fre-
quency plot of the four dof system (#, is 400 for the harmonic
solutions, 800 for the 1/2 subharmonic solutions and 750 for
the 1/3 subharmonic solutions). Globally, Fig. 3 is very similar
to Fig. 1. A closer look, however, reveals a number of differ-
ences.

First, a large number of superharmonic resonances with mod-
erate to small amplitudes are found in Fig. 3, which are cansed
by higher bilinear eigenfrequencies (f,» ~ 82 Hz). Superhar-
monic resonances near 1/2 f3,, 1/3 f;, and 1/4 f,, are clearly
recognized.

region near 32.5 Hz, where no periodic attractors are found

. using the finite difference method. For ¢ = 0.05 numerical

integration (variable order, variable step Adams’ method, 5o =
0, ¢. = —m/2, required precision: 9 significant digits, integra-
tion time: 100007,) is applied to investigate the steady-state
behavior in this frequency range. Firstly, the stable 1/2 subhar-

monics for f, = 32.6 Hz, f, = 32.58 Hz and f. = 32.56 Hz (just
outside the region) calculated with the finite difference method
were verified with numerical integration. All calculations re-
sulted in two points in the Poincaré section, indicating a 1/2
subharmonic solution. The points found with the finite differ-
ence method coincided with those found with the numerical
integration method. If f, is further reduced, a cyclic fold bifurca-
tion point is reached and the region without periodic attractors
is entered. Figure 5 shows the time history of y resulting from
numerical integration for f, = 32.55 Hz in the time interval ¢
= 60007, — 65007.. In a large part of this time interval the

suddenly, there appears a burst in the signal for a short period
of time, see inset 2 (8 excitation periods), after which the
signal recovers again. This type of chaotic behavior is called
intermittency. As the chaotic region is entered further, the time
intervals between two subsequent bursts become shorter. Even-
tually the intervals with almost periodic behavior will disappear.

. f,=22Hz £=0.01
y [m/s]
0.25
0.00
-0.25
-0.0010 -0.0005 0.0000 0.0005 0.0010 <
: y [m]
Fig. 2 Stable and unstable manifolds
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—Figure 4 shows for ¢ = 0.01 as well-as for € = 0.65a smatl —solution seemsto-be a—1/2-subharmonic; see inset 1 Then, ——+- ——
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1/3 subharmonic

W
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Fig. 3 Amplitude-frequency plot, 4 dof

For f, = 50 Hz there is a large relative difference between
the amplitudes of the single dof model (0.3 mm, Fig. 1) and
the four dof model (0.1 mm, Fig, 3). This is caused by the
anti-resonance near f, = 56 Hz in the four-dof model, which of
course does not exist in the single dof model. Before the anti-
resonance the branch with harmonic periodic solutions becomes
unstable via Neimark bifurcations in the interval 47.33—-49.53
Hz for ¢ = 0.05. In this interval a quasi-periodic = locked —
chaotic route is observed, which is described below. Again
numerical integration is used to investigate the steady-state be-
havior (Adams” method, same conditions as in the intermittency

periodic motion in a two dof system with a cubic stiffening
spring for excitation frequencies fo ~ (fi + £)12(f and f
being the eigenfrequencies of the system without the nonlinear
spring). In fact, this is also the frequency range under consider-
ation here. A reduction of f; to 49.05 Hz results in a subharmonic
solution of order 1/22 (not visible). This phenomenon, in which
the ratio of the forced frequency and the free frequency becomes
rational, is called frequency-locking or mode-locking. In fact,
in the frequency range 47733-49.53 Hz a very large number
of closed branches of subharmonic solutions (locked states),
appearing in very small frequency intervals, can be found. For

investigation). Figure 6 shows thePoincaré section for f, = f. = 48.70 Hz the attractor is quasi-periodic again, but the

4958 Hz, f, = 49.50 Hz, f. = 4840 Hz and f, = 48.15 Hz (¢
= 0.05). For f, = 49.58 Hz the solution is a stable harmonic
resulting in one point in the Poincaré section. If £, is reduced
to 49.50 Hz, the Poincaré section shows a closed curve (ie., a
transection of a 2D torus). Shaw et al. (1989) reported quasi-

transection of the 2D torus &Wto—dﬁfd'opwrhﬂdes{ﬂetfvish ——

ble). Wrinkles arise in the 2D torus if the onset of chaos is
approached (Thompson and Stewart, 1986). A further reduction
of £, to 48.40 Hz again resuts in a locked state (subharmonic
of order 1/10) and finally in a chaotic attractor for f,. = 48.15

—

V] e (M)

0.00125

0.00100

0.00075

s —@— & =0.10, harmonic

- ]

—&— £ =0.01, harmonic
—— .
¢ =0.01, 1/2 subharmonic

__D——
—@— & =0.05, harmonic
—0—,

g =0.05, 1/2 subharmonic
DS

—O— £ =0.10,1/2 subharmonic

--.-|.--.I-..-|-.-.

asp 323 324 325

32.6 327

Fig. 4 Gap without periodic attractors
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f, = 32.550 Hz

y [m] inset 1 ||y [m] inset 2
y [m] 1.0E-3 4 1.0E3 4 .
7564 ] 7584 ]
2.0E-3 -+ :
15054 3 5054 3
Ji2se4 ] 2554
1 5E-3 _- 5.8E-11 B.8E-11
Tleses 4 .2.564
] |-5.0E4 T T T T -5.0E-4 T T T T T
- 187.450 187500 187550 187.600 1 [51 189.350 189.400 . 189450 189.500 |5955ot [s]
1.0E-3 +

| 1'1kiilz|il‘l1"tll"’\' ‘!,‘

‘5-0E'4 T T T T T T
185 190 195 t[s]

Fig. 5 Intermittency

Hz (M = +3.65, \, = —3.05, \s =~ —397, M =~ —4.11, \s = model was approximately seven times higher than the CPU-
—5.01, g = =107, \y = —10.9, As = —1L.7). time needed for the four dof model.

An eight dof model was used to verify the results of the four- .
dof model. The differences between the results obtained with 5 Conclusions

neglectable, whereas the CPU-time needed for the eight dof with the path following method branches of periodic solutions
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Fig. 6 Quasi-periodic-locked-chaotic route
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can be followed for varying design variable. An important ad-
vantage of the finite difference method is the fact that stable as
well as (very) unstable solutions can be determined easily. By
combining these methods with the reduction method the steady-
state behavior of complex dynamic systems with Jocal nonlin-
earities can be analyzed very efficiently. CPU-time consuming
numerical integration techniques have to be applied only in
those regions of the design variable, where quasi-petiodic or
chaotic attractors are suspected, €.8., in regions where no stable
periodic solutions of a two-point boundary value problem can
be found.

The methods mentioned above were successfully applied in
the investigation of the long term behavior of a beam system,
supported by a one-sided linear spring. Super- and subharmonic
resonances were calculated and cyclic fold, flip and Neimark
bifurcations were found. In the single dof model, a period dou-
bling route to chaos was observed. In the four dof model in
addition an intermittency route and a quasi-periodic-locked-
chaotic route were detected. Differences between the steady-
state behavior of the four dof model and the eight dof model
were neglectable, so one may conclude the four dof model to
retain all the essential dynamic characteristics of the system
in the frequency range under consideration (say 4-50 Hz).
Moreover, a large amount of CPU-time is saved, if the four dof
model is used instead of the eight dof model. It seems as if
there exists a level of damping for which the single dof model
works quite well over the frequency range of interest. Only for
very small damping levels do the higher modes play a role, and
even then only the fine features of the frequency response are
changed. However, this is due to the fact that the eigenmodes
of this system are weakly coupled. In general this will not hold
for other systems.
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