

Bird's-eye view of logic programming

Citation for published version (APA):
Geldrop, van, H. P. J. (2004). Bird's-eye view of logic programming. (Computer science reports; Vol. 0408).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 03. Dec. 2021

https://research.tue.nl/en/publications/a9983fc8-c896-494a-8ff5-928170bc90c9

Bird’s-eye view of Logic Programming

Rik van Geldrop

Contents

1 Preface 2

2 The logical game 3

3 Overview of logical systems 6
3.1 Subtask 2: Unification . 7
3.2 Subtask 1: Selection . 8
3.3 Subtask 3: No resolution step possible . 10

4 Syntax and semantics of logic programs 12
4.1 Skolemization . 13

5 Horn clauses in Prolog 18
5.1 From clausal syntax to Prolog . 18
5.2 Some typical Prolog issues . 18

6 Design of logic programs 24
6.1 Predicate logic as guidance . 24
6.2 Function design . 24

6.2.1 Functions over the naturals . 25
6.2.2 Functions over Lists . 26
6.2.3 Functions over trees . 27
6.2.4 Logical versus functional programs 29

6.3 Query design . 31
6.3.1 Databases, represented logically . 31
6.3.2 Database retrieval . 32

7 Application: Logical acceptors 37
7.1 Context-free grammars, logically implemented 37
7.2 Attribute grammars, logically implemented 40

8 Appendix: A unification algorithm 44
8.1 Unification by example . 44
8.2 Definition of the unification algorithm . 46

2 1 Preface

1 Preface

This note gives a quick overview of logic programming. In general, no specific implemen-
tation is intended, but in concrete examples we use SWI-Prolog for which free software is
available from http://www.swi-prolog.org .

The note is primarily aimed at readers who are familiar with 1st-order predicate logic.
Because a main part of the note is concerned with the design of logical programs some
additional knowledge of functional programming and/or database query design will be
helpful.

The note is organized as follows. In section 2 we introduce the logical paradigm by
way of an example in predicate logic and we show how one can “program” with a specific
form of predicates. In section 3 we give an overview of a logical system and discuss the
several tasks of such a system in order to automate the programming style mentioned in
section 2. The syntax and the semantics of logic programs is subject of section 4. In a
subsection we will explain how any 1st-order predicate formula can be converted into the
logical syntax. Section 5 contains some details about the Prolog implementation of logical
programs. In our opinion these details are sufficient to make a start with any Prolog-like
system. Section 6 is concerned with the design of logical programs. Predicate calculus is an
obvious construction means, but functional programming and database query design may
be fruitfully exploited too. For each of these formal ways we give some examples. A larger
and more generic example of program design is given in section 7. There it is shown how a
problem that is modelled by an attributed context free grammar can be written as a logical
program in a systematic way. We conclude this note with some words on unification, a
process that is at the heart of each logical system.

Acknowledgements
I would like to thank Jaap van der Woude, Wim Feijen and Eugen Schindler for their
constructive criticism on earlier versions of this note.

Rik van Geldrop

Eindhoven University of Technology
March 2004

3

2 The logical game

The primary goal of Logic Programming is to create a formal universe that enables us to
answer certain questions about a “real” world. To that end this real world is modelled
through a number of postulates stating facts of that world. The postulates take the form
of logical expressions and may contain information about constants and about relations
between variables. Thus the system of postulates forms a mathematical abstraction of
certain facts in a real world, and it acts as a starting point for deducing new facts -
“theorems”- of that world through logical reasoning.

A logical system -which has to perform the deduction in an automated way- puts its
own demands on the shape of the postulates, the number of deduction rules and the shape
of the theorems that can be deduced.

In the kind of logical systems that we are interested in, postulates take the shape of

[〈
∧
i :: pi〉 ⇒ q](1)

where
∧

stands for a -usually- finite conjunction and the square brackets are a shorthand
for universal quantification over the anonymous variables.
A postulate of shape (1) is called “clause”.

Only one deduction rule is allowed in deriving new theorems, i.e.

[P ⇒ Q] ∧ [Q⇒ R] ⇒ [P ⇒ R](2)

called “resolution1”.
A theorem is a clause too, as might be clear by the end of this section. A typical

question -“query”- to be posed is whether or not the closed formula

G: 〈∃x :: g.x〉

is a theorem in this system of postulates. Here g may be one of the predicates pi in one of
the antecedents, or one of the consequents q in the system. Dummy x is a specified list of
anonymous variables.

The logical game that will be played with this limited set of tools is a constructive
one, i.e. an answer to the query (either “No” or “Yes, x = .. is a witness”) is constructed
during the deduction process. Below we will illustrate the game by an example, but first
we take a closer look at the resolution rule, the only means to draw conclusions w.r.t. the
validity of G in the context of a given set of postulates. We see that the resolution rule
may conclude to implications only. To enable a conclusion like G, G must be transformed
into implicative form in, for instance, one of the following two ways

1The formulation of the resolution rule mentioned here is adapted to our forthcoming use. The proper
formulation is [P ∨Q] ∧ [¬Q ∨R] ⇒ [P ∨R]

4 2 The logical game

(i) true⇒ G

(ii) (G⇒ false) ⇒ false

If we choose strategy (ii) we observe for its antecedent

〈∃x :: g.x〉 ⇒ false

≡ { predicate calculus }
〈∀x :: g.x⇒ false〉

≡ { shorthand }
[g.x⇒ false]

i.e. ¬G is a clause just as the postulates. Whatever strategy is chosen, a query can be
“resolved” constructively.

Example We consider the following system of postulates in which a, b, .. are constants and
x, y, .. are variables:

(p0) [q.(x, y) ∧ r.y ⇒ p.x]

(p1) [s.y ⇒ q.(c, y)]

(p2) [true⇒ q.(a, b)]

(p3) [true⇒ s.c]

(p4) [true⇒ r.c]

We are heading for resolving the query

〈∃x :: p.x〉
In order to use strategy (ii), we rewrite the query to the equivalent

[p.x⇒ false] ⇒ false

We observe

for strategy (i) for strategy (ii)

〈∃x :: p.x〉 [p.x⇒ false]

⇐ { (p0) and (2) } ⇒ { (p0) and (2) }
〈∃x, y :: q.(x, y) ∧ r.y〉 [q.(x, y) ∧ r.y ⇒ false]

⇐ { (p1), •x = c; (2) } ⇒ { (p1), •x = c; (2) }
〈∃y :: s.y ∧ r.y〉 [s.y ∧ r.y ⇒ false]

⇐ { (p3), •y = c; (2) } ⇒ { (p3), •y = c; (2) }
true ∧ r.c true ∧ r.c⇒ false

5

⇐ { (p4); (2) } ⇒ { (p4); (2) }
true ∧ true true⇒ false

≡ { pred calc } ≡ { pred calc }
true false

�

Remarks.
• In both derivations a witness to the query, viz. x = c, is constructed. Note that the

intermediate y = c is not part of the witness.
• The two derivations are mathematically the same. A human being may prefer strategy

(i), our logical system takes the strategy (ii) approach because the starting point, i.e. ¬G,
is a clause and so are all the derived expressions.

• In the second step of the above deductions we could have appealed to (p2) as well,
with x, y = a, b, which would result in r.b and r.b⇒ false respectively. Since our postulates
contain no such information, the query cannot be resolved in this way.

• A similar derivation may be given for a query with “subqueries”, viz. 〈∃x :: p.x∧s.x〉
�

We conclude this section with some more terminology used by logical programmers:
The “goal” of a derivation is the clause ¬G. The “empty clause” -the clause true ⇒ false-
is the final clause in a successful derivation. A successful derivation is a “proof of the goal”.
(Note that there may exist several proofs for a given goal, even several proofs for a given
goal with the same witness. See the first remark above.)
The terminology w.r.t. an application of the resolution rule will be introduced on the basis
of an example. Consider the second step of the above derivation:
The resolution rule is applied to the (derived) goal [q.(x, y) ∧ r.y ⇒ false] and (p1), i.e.
[s.y ⇒ q.(c, y)]: “the two clauses are resolved against each other”. In this resolution
step predicate q is eliminated: “the clauses are resolved upon q”. By the substitution
θ = [x := c, y := y] the two occurrences of q are made textually equal: “the two occurrences
of q are unified”. The result -“resolvent”- of this resolution step is [s.y ∧ r.y ⇒ false].

6 3 Overview of logical systems

3 Overview of logical systems

Logical systems are designed to generate proofs like the above in a mechanical way.
Let us summarize the previous proof for a global view of a logical system and its behaviour.
We were given:

1. a set S of clauses each of which has exactly one predicate in its consequent, a “definite”
clause.

2. a goal G of shape 〈∃x:: g.x〉. Note that the negation of a goal is a clause.

The truth of G, being equivalent to the falsity of ¬G, is proven by

• adding the clause ¬G to the “model”

• showing the inconsistency of the augmented “model”

In each derivation step the goal is resolved against one of the clauses of S selected by us,
resolved upon a subgoal again selected by us, and replaced by the resolvent. By making
appropriate choices we finally derived the empty clause while on the fly a counterexample
to ¬G was constructed.

This approach of solving queries is known as “SLD-resolution”, a special kind of “res-
olution refutation”. The term resolution refutation refers to the strategy to strive for
falsification of the negated goal. The abbreviation SLD stands for:
- S : selection, viz. a selection rule determines the predicate upon which will be resolved.
- L : linear, viz. in each resolution step a subgoal of the former step is involved.
- D : definite, viz. only definite clauses participate in the resolution process.
SLD-resolution is implemented in the so-called “proof procedure” of many logical systems.
The proof procedure acts as an automated theorem prover; in logic programming this is
expressed as: the proof procedure “executes program S on input G”.

Remark. The derivation that we gave in the previous section is usually depicted as an
SLD-tree in logic programming:

3.1 Subtask 2: Unification 7

?p.x

?q.(x,y) /\ r.y

(p1), x := c

?s.y /\ r.y

?r.c

(p3), y := c

(p0)

(p4)

To see that an SLD-tree shows a same derivation as the one in the previous section:
- read ”?p.x” as p.x⇒ false,
where the prefix operator ”?” has a lower priority than conjunction.

- an underlining indicates the predicate upon which will be resolved.
- the symbol ”�” denotes the empty clause, i.e. a successful derivation.
�

The proof procedure takes care of:
1. Selection of the ingredients of a resolution step, viz. a program clause and a subgoal.

(In SLD-resolution the goal and the program clause are resolved upon the subgoal.)
2. Execution of the resolution step, viz. unification of the two occurrences of the subgoal

and computation of the resolvent.
3. Handling situations in which no resolution step is possible.

Below we will give some insight in each of these subtasks and in the consequences of
the design decisions that are taken in Prolog-like implementations. Since the unification
algorithm is at the heart of the proof procedure we start with subtask 2.

3.1 Subtask 2: Unification

Whether two given postulates can be resolved against each other and which substitution of
the variables is appropriate is seen by humans in the blink of an eye. Unification formalizes
this insight.

Consider, for instance, the following postulates with constants a, b and variables x, v, w

[p.x⇒ q.(x, b)]
[q.(a, v) ∧ s.(v, w) ⇒ t.(a, w)]

8 3 Overview of logical systems

the two occurrences of q are made textually equal by a suitable substitution/unifier θ,
where θ = [x := a, v := b], and the resolvent is [(p.x)θ ∧ (s.(v, w))θ ⇒ (t.(a, w))θ], viz.
[p.a ∧ s.(b, w) ⇒ t.(a, w)].

When we were given the postulates

[p.x⇒ q.(b, x)]
[q.(a, v) ∧ s.(v, w) ⇒ t.(a, w)]

the two occurrences of q could not be made textually equal because of the different constants
a and b. Consequently these postulates cannot be resolved against each other.

Applying a substitution to an expression can be done systematically, an implemen-
tation is straightforward. For finding a suitable substitution the literature gives several
systematic ways. In the appendix we outline Robinson’s approach and define his version
of a unification algorithm.

For further use we draw attention to the fact that, in a resolution step, a unifier is
substituted in both clauses which are resolved against each other. As we will see in section
[6.2.4] it is this “non-directionality” (or “bi-directionality”) of substitutions that gives a
logic program its expressive power.

Warning Because unification is a prominent operation in logic programming, many
logical systems claim the ”=” sign for it. “Equal” in logic programming means: textually
equal, which may be very confusing. E.g. the expression 2 * 2 = 4 evaluates to true in
non-logical systems while in logical systems it evaluates to false (because the expressions
in the LHS and the RHS cannot be unified). Of course logical systems support other
equalities than unification be it in sugared equality signs.
�

3.2 Subtask 1: Selection

In order to prepare a resolution step two choices have to be made:
1. which of the subgoals will be replaced in the next resolution step
2. which of the clauses of S will be used in the next resolution step
The first choice is irrelevant: in Lloyd [9] it is proven that independent of the selected
subgoal a successful proof of G will be found when this is possible in the context of S. The
second choice is important: an arbitrary selection of an S-clause may lead to an unprovable
resolvent while another selection may lead to a provable one. To circumvent this problem
logical systems construct all possible ways to find proofs for a goal.

It is common to represent this construction by means of search trees. As an illustration
we give a search tree for the example from the previous section

3.2 Subtask 1: Selection 9

p.x

q.(x,y) /\ r.y

(p1), x := c

s.y /\ r.y

r.c

(p3), y := c

(p0)

(p4)

(p2), x := a, y := b

r.b

where the black box denotes failure.
�

In Prolog-like systems the above choices 1 and 2 are filled in as follows:

for choice 1: always take the leftmost subgoal.
for choice 2: in order to enable the construction of all possible proofs:

(i) the program clauses are sequentially searched (in textual order)
for their ability to participate in the resolution step.

(ii) a ”backtracking” mechanism is added, i.e.
the construction falls back to its previous point and
will be continued via a sequential search in textual lower clauses.

The back-part of backtracking is activated when
- no program clause is found which can participate in the resolution step
- the empty clause has been derived
As a consequence, the proof procedure terminates when all possible paths in the search
tree are explored.

At this point a Prolog programmer has to be warned: In Prolog the ordering of clauses
is important. Consider for instance the following program

(S1) brother(x, y) ⇒ brother(y, x)
(S2) true ⇒ brother(john, peter).

The query brother(peter, john) will never be answered by the system. To see this we draw
the SLD-tree

10 3 Overview of logical systems

?brother(peter, john)

?brother(john, peter)

(S1)

?brother(peter, john)

(S1)

which means that Prolog will not explore all possible ways to find a proof.
Change the order of (S1) and (S2) and the system confirms the query in two steps.
For reasons of efficiency and termination, in Prolog programs facts -like (S2)- are textually
higher than rules about them -like (S1).

3.3 Subtask 3: No resolution step possible

Now that we have seen how resolution can be done in a mechanical way it is time to
envisage the situation in which no resolution step is possible. If all possible ways to find a
proof are explored (e.g. via backtracking) we may conclude that alle possible solutions to
a query are constructed. It might be the case that the set of solutions is empty. Clearly,
in such case, program S contains no evidence about the query’s validity. This raises the
question whether this means that in the real world which is formalized by S, the query
holds or not. There are two approaches to this question

the Open World Assumption This says that the query is neither true nor false. In
this approach a query might have three possible truth values: true, false and
unknown. If a query evaluates to unknown the system might take special actions,
e.g. consulting an alternative source of information.

the Closed World Assumption This says that the query is false. In this approach the
real world is restricted to the information that is contained in S. Everything outside
this information does not hold.

Prolog-like systems take the Closed World Assumption approach. Consequently they adopt
an implicit implementation of negation: “negation by failure”, viz. If query G fails to hold
in the context of S, then ¬G holds.

Warning Prolog-like systems support a standard predicate not which is defined in terms
of failure: not(p.x) holds whenever goal p.x fails, i.e. not(p.x) means ¬〈∃x :: p.x〉 which
is equivalent to 〈∀x :: ¬p.x〉. Although the meaning of not differs from the negation oper-
ation in predicate calculus it still is a useful means in achieving negations, see section 5.

3.3 Subtask 3: No resolution step possible 11

�

Citing [10], another consequence of taking the Closed World Assumption is that a
predicate p is determined as the least solution to the equation p :: p⇐ q for some suitable
q, which means that p ≡ q. That is the reason why in logical programming predicates are
defined by one half of an equivalence only.

12 4 Syntax and semantics of logic programs

4 Syntax and semantics of logic programs

In Logic Programming the knowledge about a problem is expressed by a set of predicates
of a particular, restricted shape -called Horn clauses. But this restriction on the shape
does not impair its expressive power: quoting Kowalski [8]

”any problem which can be expressed in logic can be re-expressed by means of
Horn clauses.”

Horn clauses are defined by the following syntax in a BNF-like notation.
Suppose we have mutually disjoint sets of constants, variables, function symbols and pred-
icate symbols . Each function symbol and each predicate symbol has its own arity. Then
clauses are generated according to the following syntax.

term := variable | constant | f(t1, ..., tk)
where
f is a k-ary function symbol
ti, 1 ≤ i ≤ k, is a term

atom, or := p(t1, ..., tk)
atomic formula where

p is a k-ary predicate symbol, and
ti, 1 ≤ i ≤ k is a term

clause := ψ ⇐ ϕ
where
ψ is a finite disjunction of atoms
ϕ is a finite conjunction of atoms

Horn clause := clause with at most one atom in its consequent

In order to formulate a problem in ”clausal form” we have to understand the meaning of
a set of clauses.

The meaning of a set of clauses is the conjunction of the meaning of the individual
clauses. Hence such a set corresponds to a logical formula in conjunctive normal form, i.e.
a conjunction of a collection of formulae each of which is the disjunction of positive and
negative atoms (when eliminating the follows-from symbols).

The meaning of
- a constant is a named individual in the problem domain
- a variable is an arbitrary individual
- a clause is a universally valid relationship between predicates

Example. Consider the set of clause (p0)..(p4) with constants a, b, c, variables x, y and
predicate symbols p, q, r, s:

4.1 Skolemization 13

(p0) p(x) ⇐ q(x, y) ∧ r(y)
(p1) q(c, y) ⇐ s(y)

(p2) q(a, b) ⇐
(p3) s(c) ⇐
(p4) r(c) ⇐

Its meaning is the following. The problem is concerned with three given individuals, named
a, b, c, four given properties named p, q, r and s, and five relationships that are relevant
to the problem.
The real world grants the validity of the expression

〈∃a, b, c, p, q, r, s ::
〈∀x, y ::

(q.(x, y) ∧ r.y ⇒ p.x)
∧ (s.y ⇒ q.(c, y))
∧ (q.(a, b) ∧ s.c ∧ r.c)
〉

〉
�

In the above we see that the real world problem is modelled by a formula in the ∃∀-shape.
But, what if the model requires properties of the ∀∃-shape ?

In such case the model hides some functional relationship between individuals, as we
shall see shortly. By introducing additional function symbols this functional relationship
can be made explicit and the problem will be modelled by a ∃∀-formula. This explains the
presence of the syntactical construct f(t1, ..., tk) as a term.
Below we will be more concrete about the transformation of a ∀∃-formula into a ∃∀-formula,
a process which is known as “Skolemization”. Using Skolemization each first order predi-
cate formula can be brought in clausal form.

Remark. Besides their use in a clausal formulation of 1st order predicates, function
symbols can als be exploited to model elements of inductive datatypes as terms. Con-
sequently, relations over inductive datatypes may be described by logic programs. For
examples see section 6.2.
�

4.1 Skolemization

Its is well-known that -in general- the quantifiers ∀ and ∃ may not be interchanged, so the
question is how and when the interchange of those quantifiers is permissible. The answer
is ”Skolemization”, a process based on the axiom of choice:

14 4 Syntax and semantics of logic programs

Skolem rule

〈∀x :: 〈∃y :: ϕ.(x, y)〉〉
≡S { ⇒ axiom of choice; ⇐ y := f.x }
〈∃f :: 〈∀x :: ϕ.(x, f.x)〉〉

�

The axiom of choice relies on a constructive interpretation of ∀∃-formulae. To say 〈∀x ::
〈∃y :: ϕ.(x, y)〉〉 means that for each x there is a way of constructing y related to x by ϕ.
The Skolemization of the formula gives the construction a name -f here- guaranteed to
exist by adopting the axiom of choice. If this f potentially depends on certain variables
then the naming has to reflect this by taking those variables as parameters.

So, if the problem modelling results in a ∀∃-shaped formula, it can be rephrased in
a ∃∀-shaped formula containing an external ”f”. The external “f” represents a function
from individuals to individuals and is specified by

y = f.x such that ϕ.(x, y) holds for all x.

∗ ∗ ∗

For practical reasons we add two more Skolem-like rules to our repertoire of logical
laws, namely for the particular cases where the modelling results in

(i) 〈∀x :: 〈∀y :: p.(x, y)〉 ⇒ q.x〉
(ii) 〈∀x :: p.x⇒ 〈∃y :: q.(x, y)〉〉

Re (i)
In this case the formula 〈∀x :: 〈∀y :: p.(x, y)〉 ⇒ q.x〉 can be rewritten as follows:

〈∀x :: 〈∀y :: p.(x, y)〉 ⇒ q.x〉
≡
〈∀x :: ¬〈∀y :: p.(x, y)〉 ∨ q.x〉

≡
〈∀x :: 〈∃y :: ¬p.(x, y)〉 ∨ q.x〉

≡
〈∀x :: 〈∃y :: ¬p.(x, y) ∨ q.x〉〉

≡
〈∀x :: 〈∃y :: p.(x, y) ⇒ q.x〉〉

Skolemization of the last formula yields 〈∃f :: 〈∀x :: p.(x, f.x) ⇒ q.x〉〉 and by the above
calculation we have established SK0.

4.1 Skolemization 15

SK0: 〈∀x :: 〈∀y :: p.(x, y)〉 ⇒ q.x〉
≡S

〈∃f :: 〈∀x :: p.(x, f.x) ⇒ q.x〉〉
�

The Skolem function that is introduced here is specified by

y = f.x such that p.(x, y) ⇒ q.x holds for all x.(3)

�

Re(ii)
In this case the formule 〈∀x :: p.x⇒ 〈∃y :: q.(x, y)〉〉 can be rewritten as follows:

〈∀x :: p.x⇒ 〈∃y :: q.(x, y)〉〉
≡
〈∀x :: 〈∃y :: p.x⇒ q.(x, y)〉〉

Skolemization of the last formula yields 〈∃f :: 〈∀x :: p.x ⇒ q.(x, f.x)〉〉 and by the above
calculation we have established SK1

SK1: 〈∀x :: p.x⇒ 〈∃y :: q.(x, y)〉〉
≡S

〈∃f :: 〈∀x :: p.x⇒ q.(x, f.x)〉〉
�

The Skolem function that is introduced here is specified by

y = f.x such that p.x⇒ q.(x, y) holds for all x.
�

Equipped with our extended repertoire of logical laws, a conversion from logical for-
mulae to clausal form has become straightforward: a machine could do the job. Indeed,
algorithms exist that convert any first order logical formula to clausal form, but an experi-
enced programmer can usually obtain the result much more effectively by his manipulative
agility in logic.

Below we give an example of how the conversion would be achieved by a machine -
supplying the steps in the hints- and how it would be achieved by a programmer who
masters the predicate calculus.

Example. Convert the following formula to clausal form

〈∀x :: empty.x ≡ ¬〈∃y :: y ∈ x〉〉
Solution 1 { using a general algorithm, [7] }

〈∀x :: empty.x ≡ ¬〈∃y :: y ∈ x〉〉

16 4 Syntax and semantics of logic programs

≡ { step 1: eliminate ≡ }
〈∀x :: (empty.x⇒ ¬〈∃y :: y ∈ x〉) ∧ (¬〈∃y :: y ∈ x〉 ⇒ empty.x)〉

≡ { step 2: eliminate ⇒ }
〈∀x :: (¬empty.x ∨ ¬〈∃y :: y ∈ x〉) ∧ (〈∃y :: y ∈ x〉 ∨ empty.x)〉

≡ { step 3: distribute ¬ towards atoms }
〈∀x :: (¬empty.x ∨ 〈∀y :: y 6∈ x〉) ∧ (〈∃y :: y ∈ x〉 ∨ empty.x)〉

≡ { step 4: distribute ∨ towards atoms }
〈∀x :: 〈∀y :: ¬empty.x ∨ y 6∈ x〉 ∧ 〈∃y :: y ∈ x ∨ empty.x〉

≡ { step 5: distribute ∀ over conjunctions }
〈∀x :: 〈∀y :: ¬empty.x ∨ y 6∈ x〉〉 ∧ 〈∀x :: 〈∃y :: y ∈ x ∨ empty.x〉〉

≡S { step 6: Skolemize, intro f such that f.x = y }
〈∀x, y :: ¬empty.x ∨ y 6∈ x〉〉 ∧ 〈∃f :: 〈∀x :: f.x ∈ x ∨ empty.x〉〉

≡ { ∧ over ∃ }
〈∃f :: 〈∀x, y :: ¬empty.x ∨ y 6∈ x〉 ∧ 〈∀x :: f.x 6∈ x⇒ empty.x〉〉

Adding f to the function symbols we obtain the clauses

y 6∈ x ⇐ empty(x)
empty(x)⇐ f(x) 6∈ x

�

Remark. The general algorithm terminates when all ∀∃-formulae are eliminated. In other
examples this will require some more steps 5 & 6, because conjuncts may start with a mixed
string of ∀ and ∃ quantifiers.
�

Solution 2 { using the extended repertoire of logical laws }
〈∀x :: empty.x ≡ ¬〈∃y :: y ∈ x〉〉

≡ { distribute ¬ }
〈∀x :: empty.x ≡ 〈∀y :: y 6∈ x〉〉

≡ { eliminate ≡ }
〈∀x :: (empty.x⇒ 〈∀y :: y 6∈ x〉) ∧ (〈∀y :: y 6∈ x〉 ⇒ empty.x)〉

≡ { distribute ∀ }
〈∀x :: empty.x⇒ 〈∀y :: y 6∈ x〉〉 ∧ 〈∀x :: 〈∀y :: y 6∈ x〉 ⇒ empty.x〉

≡S { pred. calc on 1st conjunct
SK0 on 2nd conjunct: intro f such that f.x = y }

4.1 Skolemization 17

〈∀x, y :: empty.x⇒ y 6∈ x〉 ∧ 〈∃f :: 〈∀x :: f.x 6∈ x⇒ empty.x〉〉
≡ { ∧ over ∃ }
〈∃f :: 〈∀x, y :: empty.x⇒ y 6∈ x〉 ∧ 〈∀x :: f.x 6∈ x⇒ empty.x〉〉

Adding f to the function symbols we obtain the clauses

y 6∈ x ⇐ empty(x)
empty(x)⇐ f(x) 6∈ x

�

The Skolem function f that is introduced in this example can be given according to the
following precept, see (3)

f.x= if x = ∅ → “choose arbitrary y”
[] x 6= ∅ → “choose some y ∈ x”
fi

18 5 Horn clauses in Prolog

5 Horn clauses in Prolog

In this section we will show:
(i) how clauses are to be expressed in a Prolog implementation. It is only a conversion
from the syntax given in section 4. (For those who want to become familiar with Prolog
as an expression means we recommend the text-books of [2] and [10].)
(ii) Although we think that our conversion is sufficient for a first introduction to Pro-
log we will summarize some items which deserve attention because of a typical Prolog
implementation.

5.1 From clausal syntax to Prolog

In order to convert the clausal syntax of section 4 into Prolog clauses note that

• constants, predicate names and function names are rendered by lower-case letters.

• variables are rendered by capitals

• conjunction is written by “,”

• “⇐” is written by “:-”

• a clause is terminated by “.”

• a line contains only one clause

In a clause “p :- q.” , p is called the “head”, q is called the “body”.
A clause with an empty body is called a “fact” and it is rendered by p. .
A program clause has a nonempty head.
The set of clauses with the same predicate name p in their head is called the “definition”
of p.

5.2 Some typical Prolog issues

A conversion of a (well-designed) logical program to Prolog is not guaranteed to behave
as expected because of the design decisions in Prolog implementations. Below we will
summarize some items. This list is not exhaustive, additions are welcome!

• Facts about a predicate have to textually precede its further rules. Recall the
brothers-example in section 3.

• ”=” means textual (syntactical) equality, not an arithmetic (semantic) one. See the
warning in section 3.

5.2 Some typical Prolog issues 19

• The built-in predicate not takes a query as an argument, evaluates it and then
reverses its truth value. The witness information is lost. As an example consider the
following Prolog program

p(1).

p(3).

r(X):-not(p(X)).

On input r(1). the answer is No.
On input r(2). the answer is Yes.
On input r(X). the answer is No.

The not-predicate should be used carefully.
Firstly, the standard interpretation of a query as a witnessed existential quantification
cannot be given anymore: where a query like ?p(X). meant ”give the truth value of
〈∃x :: p.x〉 and provide a witness if it exists”, a query like ?r(X). asks for the value
of 〈∀x :: ¬p.x〉, no witness is provided even if the answer is ”No”.
In a system with ”not’s” universal quantifications are lurking and witnesses are not
guaranteed since the answer to a “negative” query is either ”Yes” or ”No”, and a
possible witness will not be given because the binding to the variables is lost

Secondly, the meaning of not varies with its position in the body of a clause, the
reason being the execution mechanism of Prolog. When we have to assign a meaning
to a query we must consider its complete search tree. In the above we saw a not

occurring on the first (and unique) position in the body, below we will explore some
other cases.

1. For r defined by

r(X):-not(s(X)),t(X).

the meaning of ?r(X). is 〈∀z :: ¬s.z〉 ∧ 〈∃x : t.x〉, or, moving the first conjunct
into the domain of the existential quantification, 〈∃x : 〈∀z :: ¬s.z〉 : t.x〉.
Note that the arguments of s and t are treated independently. The argument of
s is ”removed” by universal quantification, while the argument of t is still open
for witnesses, but only after the first conjunct is found valid. Here, as before,
not(s(X)) refers to negative information about all s-instantiations.

2. For r defined by

r(X):-t(X),not(s(X)).

the meaning of ?r(X). is 〈∃x : t.x : ¬s.x〉 plus a possible witness. The in-
terpretation of the query still has an existential form and not(s(X)) refers to
negative information about those s-instantiations that satisfy t. In Prolog this is
implemented by first finding a witness, say x0, for t and then exploring whether
¬s.x0 holds. As an illustration we give the search tree for ?r(X). assuming that
the following facts about t and s are known: t(1)., t(3)., s(1). en s(2).

20 5 Horn clauses in Prolog

? r (X)

? t (X) , n o t (s (X))

? n o t (s (1))
s (1)

X = 3

? n o t (s (3))
- s (3)

X = 1

3. For r defined by

r(X,Y):-t(X),not(s(X,Y)),u(X,Y).

the meaning of ?r(X,Y). is 〈∃x : t.x : 〈∀z :: ¬s.x.z〉 ∧ 〈∃y :: u.x.y〉〉.
In Prolog this is implemented by :
1. find a witness, say x0, for t,
2. explore whether 〈∀z :: ¬s.x0.z〉 holds,
3. if so, then find a witness for u.x0.y
In each failing (sub)goal backtracking is activated.

4. For r defined by

r(X,Y):-t(X),u(X,Y),not(s(X,Y)).

the meaning of ?r(X,Y). is 〈∃x : t.x : 〈∃y : u.x.y : ¬s.x.y〉〉.
In Prolog this is implemented by:
1. find a witness, say x0 for t
2. find a witness for u.x0.y, say y = y0

3. explore whether ¬s.x0.y0 holds.

From the above it might be clear that each (call to a) subgoal introduces a domain
restriction. When a subgoal of shape not(p(--)) is called in a context where all
variables of p are restricted then not acts like logical negation on the instantiation.
Since all restrictions to the left form the restricted context it is advisable to maximize
the restriction by placing a ”negative” predicate in the rightmost position (if it is
necessary at all).

• Given a Prolog program and a goal the interpreter constructs all solutions via a
traversal of the search tree. Sometimes we know that certain branches are doomed
to fail and that efficiency would be improved when those branches were cut off. Other
circumstances are that we are interested in some solutions not in all. Prolog enables
us to prune branches via the built-in predicate “cut” (written as !). The “cut” has
no clear declarative meaning (i.e. it is always true) but it instructs the interpreter
not to try other alternatives beyond the point at which it occurs. This pruning of
the search tree is not only determined by the clause in which it occurs but also by

5.2 Some typical Prolog issues 21

the other clauses.

As an example consider the step function

f.x = 0 if x < 3
f.x = 2 if x ≥ 3

In Prolog this can be written as

f(X,0):-X<3.

f(X,2):-X>=3.

The search tree for query ?f(1,Y),Y>2. is

? f (1 , Y) , Y > 2 .

X = 1 , Y = 0 X = 1 , Y = 2

? 1 < 3 , 0 > 2 . ? 1 > = 3 , 2 > 2 .

? 0 > 2 .

In the left preferent unification the f-term is reduced first. There are only two alter-
natives. It is useless to explore the second alternative because the first alternative
succeeds and the two alternatives are mutually exclusive. We prune the right branch
as follows:

f(X,0):-X<3,!.

f(X,2):-X>=3.

The search tree for query ?f(1,Y),Y>2. is given below, the shaded rectangle in-
dicates the pruned branch. Once the first alternative for f has succeeded no other
f-alternatives are explored anymore.

22 5 Horn clauses in Prolog

? f (1 , Y) , Y > 2 .

X = 1 , Y = 0 X = 1 , Y = 2

? 1 < 3 , ! , 0 > 2 . ? 1 > = 3 , 2 > 2 .

? ! , 0 > 2 .

? 0 > 2 .

As another example consider the program

p(X,Y):-q(X,Y).

p(X,Y):-r(X,Y).

q(X,Y):-s(X),!,t(Y).

r(1,3).

s(1).

s(2).

t(3).

t(4).

The search tree for query ?p(X,Y). is given below, the shaded rectangle indicates
the pruned branch.

? p (X , Y)

? q (X , Y) ? r (X , Y)

? s (X) , ! , t (Y)
X = 1 X = 2

? ! , t (Y) ? ! , t (Y)

? t (Y) ? t (Y)
Y = 3 Y = 4 Y = 3 Y = 4

X = 1 , Y = 3

5.2 Some typical Prolog issues 23

Be aware “cut” should be used with care because it can disrupt the execution of a
program in unexpected ways. For detailed information about cut, see [2], [10] and
[4].

24 6 Design of logic programs

6 Design of logic programs

A logic program is a set of Horn clauses (with exactly one atomic formula in its antecedent)
which forms a mathematical abstraction of a real world problem.

In order to achieve such an abstraction we may be guided by (at least) three formal
methods:

1. Predicate logic
2. Function design
3. Query design

Below we will explain how these formal methods can be employed to obtain a logic program.

6.1 Predicate logic as guidance

Predicate logic is widely accepted as a universally applicable tool to formalize a problem.
How a logical formalization may lead to a logic program is described in section 4.

6.2 Function design

Functions are a special kind of relations. Since clauses define relations and atomic formulae
represent (a special form of) k-ary relations, it may be expected that it is not too difficult
to implement a function by a logic program. Designing a logic program via a function
definition has two advantages

1. For its correctness we can rely on the correctness of the function definition.

2. All programming techniques known from imperative and functional programming
can be exploited to achieve a function definition.

How do we obtain a logic program for a given function f?
We start with a general observation.
A function f :: α → β -where β 6= B- defines a relation, say rf , on α × β, i.e. a unary
function f translates into a binary predicate rf . The additional argument in rf is needed
to denote the result values of f and it is common usage in logic programming that the
function argument textually precedes the result value, i.e. we will specify rf by

rf(x, y) ≡ (f.x = y)

Next we have to give a clausal definition of rf which, among others, means that arguments
to rf are terms. In a functional environment, arguments can be given by patterns (which
are supported by the system) and results by suitable expressions (which can be evaluated
by the system). In a logical environment however, this is not always the case. Thus a
clausal definition for rf may require more effort than is expected on first sight. As an
illustration we give some examples.

6.2 Function design 25

6.2.1 Functions over the naturals

Derive a clausal definition for the factorial function.
The factorial function fac is defined by

fac :: N → N
fac.0 = 1
fac.(n+ 1) = (n+ 1) ∗ fac.n

Its relational version rfac is specified by

rfac(x, y) ≡ (fac.x = y)

An inductive definition for rfac :: N× N → B may be constructed in the usual way:

case(0) rfac(0, 1)

case(n+1)

Construction hypothesis (CH): rfac(n, y) ≡ (fac.n = y)

rfac(n+ 1,m)

≡ { spec rfac }
fac.(n+ 1) = m

≡ { def fac }
(n+ 1) ∗ fac.n = m

⇐ { intro y }
(n+ 1) ∗ y = m ∧ y = fac.n

≡ { CH }
(n+ 1) ∗ y = m ∧ rfac(n, y)

Thus we have derived

rfac(0, 1)
rfac(n+ 1,m) ⇐ (n+ 1) ∗ y = m ∧ rfac(n, y)

Now we have to bring rfac into clausal form.
The base case is a fact (and thus already in clausal form) and the overall shape of the
composite case agrees with the clausal syntax too. The argument n + 1 of rfac and the
conjunct (n+ 1) ∗ y = m need further investigation.

Let us start with the argument n+1. It is required to be a term, but, unfortunately, it
is not (and most logical systems do not support any means to use this pattern as a term).
The problem can be remedied by a global substitution n := n− 1, i.e. the composite case
can be written as

rfac(n,m) ⇐ n ∗ y = m ∧ rfac(n− 1, y) for n > 0

26 6 Design of logic programs

Now the argument n − 1 appears in the RHS. Again not a term, but RHS’s may contain
an arbitrary number of conjuncts so we add one

rfac(n,m) ⇐ n ∗ y = m ∧ n1 = n− 1 ∧ rfac(n1, y) for n > 0

Next we investigate the conjuncts n∗y = m and n1 = n−1. They have to be expressed
in atomic formulae. One would hope that this can be done with standard atoms like
”∗(n,y,m)”, but alas!. However most logical systems admit a (limited) form of arithmetic
and in Prolog-like systems a kind of assignment is implemented via the reserved word ”is”,
e.g.

m is (n ∗ y)
A disadvantage of this implementation is that it only allows uni-directional use, i.e. n and
y have to be known before m can be given a value. An impure logical aspect!

Summarizing the results, we obtain the following Prolog definition

rfac(0,1).

rfac(N,M) :- N1 is N-1, rfac(N1,Y), M is N*Y.

Note that we rearranged the conjuncts in order of their sequentially need in the ”is”-
construction.

6.2.2 Functions over Lists

Derive a clausal definition for list-concatenation.
The functional definition is

−‖ :: [α]× [α] → [α]
[]−‖ys = ys
(x : xs)−‖ys = x : (xs−‖ys)

Its relational version rconc is specified by

rconc(us, vs, ws) ≡ (us−‖ vs = ws)

An inductive definition for rconc is constructed in the usual way:

case([]) rconc([], vs, vs)

case(u : us)

CH: rconc(us, vs, rs) ≡ (us−‖ vs = rs)

rconc(u : us, vs, ws)

≡ { spec rconc }
(u : us)−‖ vs = ws

≡ { def (−‖) }
u : (us−‖ vs) = ws

6.2 Function design 27

⇐ { intro rs }
u : rs = ws ∧ rs = (us−‖ vs)

≡ { CH }
(u : rs) = ws ∧ rconc(us, vs, rs)

Thus we have derived

rconc([], vs, vs)
rconc(u : us, vs, ws) ⇐ (u : rs) = ws ∧ rconc(us, vs, rs)

Now we have to bring rconc into clausal form.
The base case is okay and the overall shape of the composite case agrees with the clausal
syntax too. It is the argument u : us of rconc and the conjunct (u : rs) = ws which need
a further investigation.

Let us start with the argument u : us. It is required to be a term, and, fortunately, it
is. Prolog-like systems support a means to use list-patterns as a term: the pattern (a:b:c)
may be expressed by the term [a,b|c].

Next we investigate the conjunct (u : rs) = ws and see that it can be eliminated by
the 1-point rule. We obtain the following Prolog definition

rconc([],Vs,Vs).

rconc([U|Us],Vs,[U|Rs]) :- rconc(Us,Vs,Rs).

rconc is a pure logical program and we will use it in section 6.2.4 where we illustrate some
of the differences between a logic and a functional program.

6.2.3 Functions over trees

While in other programming styles the system support to booleans, integers and lists is
taken for granted, the support of a logical system to such subject is negligible; the user is
responsible for the type and the operations he requires. Despite this lack of support it is
not too difficult to give a ”term implementation” of inductively defined sets. The idea is
to introduce function symbols for its constructors.
As an example, consider the set T defined by

Definition The set T is the least set X such that

〈〉 ∈ X empty tree
lt ∈ X, rt ∈ X, n ∈ Z ⇒ 〈lt,n,rt〉 ∈ X

�

The set T has two constructors, 〈〉 ∈ 1 → T and 〈−,−,−〉 ∈ T ×Z×T → T . Introduce
the constant nil for the first constructor and the function symbol t for the latter one. Then

28 6 Design of logic programs

every element of T has been given a term implementation in Prolog. E.g. t(nil,1,nil)
is a one-element tree.

Having terms which represent trees we are able to derive clausal definitions for func-
tions on T . As before we will do so by starting from a functional definition.

Derive a clausal definition for the maximum of a non-empty tree.
The functional definition is

maxT :: T → Z
maxT.〈〈〉, n, 〈〉〉 = n
maxT.〈〈〉, n, rt〉 = n ↑ (maxT.rt)
maxT.〈lt, n, 〈〉〉 = n ↑ (maxT.lt)
maxT.〈lt, n, rt〉 = n ↑ (maxT.lt) ↑ (maxT.rt)

Its relational version rmaxT is specified by

rmaxT (t,m) ≡ (maxT.t = m)

An inductive definition for rmaxT is constructed as follows:

case(〈〈〉, n, 〈〉〉)

rmaxT (〈〈〉, n, 〈〉〉, n)

case(〈〈〉, n, rt〉), with rt 6= 〈〉
CH: rmaxT (rt, p) ≡ (maxT.rt = p)

rmaxT (〈〈〉, n, rt〉,m)

≡ { spec rmaxT }
maxT.〈〈〉, n, rt〉 = m

≡ { def maxT }
(n ↑ (maxT.rt)) = m

⇐ { intro p }
(n ↑ p) = m ∧ maxT.rt = p

≡ { CH }
(n ↑ p) = m ∧ rmaxT (rt, p)

case(〈lt, n, 〈〉〉), with lt 6= 〈〉
CH: rmaxT (lt, p) ≡ (maxT.lt = p)

rmaxT (〈lt, n, 〈〉〉,m)

⇐ { similarly }
(n ↑ p) = m ∧ rmaxT (lt, p)

6.2 Function design 29

case(〈lt, n, rt〉), with lt, rt 6= 〈〉
CH: rmaxT (lt, p) ≡ (maxT.lt = p)

rmaxT (rt, q) ≡ (maxT.rt = q)

rmaxT (〈lt, n, rt〉,m)

⇐ { similarly }
(n ↑ p ↑ q) = m ∧ rmaxT (lt, p) ∧ rmaxT (rt, q)

Thus we have derived

rmaxT (〈〈〉, n, 〈〉〉, n)
rmaxT (〈〈〉, n, rt〉) ⇐ (n ↑ p) = m ∧ rmaxT (rt, p) for rt 6= 〈〉
rmaxT (〈lt, n, 〈〉〉,m) ⇐ (n ↑ p) = m ∧ rmaxT (lt, p) for lt 6= 〈〉
rmaxT (〈lt, n, rt〉,m) ⇐ (n ↑ p ↑ q) = m ∧ rmaxT (lt, p) ∧ rmaxT (rt, q) for lt, rt 6= 〈〉

Now we have to bring rmaxT into clausal form.
It is only the conjunct (n ↑ p ↑ q) = m which has to be investigated. Unfortunately there
is no standard predicate for the maximum operator ↑, but the Prolog arithmetic allows
atoms like

m is max(n, p)

Using the “is”-construction with a binary max only the maximum of two numbers can be
calculated. For a more general use we define an additional predicate max that computes
the maximum of a non-empty list of numbers:

max([X],X).

max([X|Xs],Y):-max(Xs,Z),Y is max(X,Z).

Summarizing the results, we obtain the following Prolog definition for rmaxT

rmaxT(t(nil,N,nil),N).

rmaxT(t(nil,N,R),M) :- R\=nil,rmaxT(R,P),max([N,P],M).

rmaxT(t(L,N,nil),M) :- L\=nil,rmaxT(L,P),max([N,P],M).

rmaxT(t(L,N,R),M) :- L\=nil,R\=nil,rmaxT(L,P),rmaxT(R,Q),max([N,P,Q],M).

6.2.4 Logical versus functional programs

Not every functional program has a clausal counterpart. Think of the fact that functions
may be arguments as well as results in a functional program while atomic formulae have a
limited expressive power.

Furthermore, (most) functional languages are typed while (most) logical languages are
untyped. The use of a type system is to detect program errors at compile time thereby
enhancing the reliability of execution results. Since logical languages are not equipped
with a type system the execution results may be incomprehensible in case of a syntactical
and/or semantical incorrect program.

30 6 Design of logic programs

Sometimes the lack of typing gives a programmer more freedom, as we will show in the
following examples

Goal: rconc([1,a],[2,b],L). Answer: L = [1,a,2,b]

Goal: rconc([1,[2,3]],[a,[]],L).Answer: L = [1,[2,3],a,[]]

The declarative content of rconc is the same as in the functional program for (−‖) -the input
lists given in the first two arguments are appended and the result is “assigned” to the third
argument- but in a functional program a new sum-type has to be defined to comprise the
element type of a list.

The most prominent difference between a logic and a functional program is in their input-
output behaviour: functional programs only allow uni-directional use while logic programs
also allow non-directional use.
Functional programs are executed using reduction or term-rewriting. That is, given a
function f and a domain-value v, the arguments in the LHS of the (equational) definition
of f are matched against v. This produces bindings of the variables in the equation for
f and f.v is rewritten by the RHS bounded to these bindings. Thus, there is a transfer
of information from the given v to a use of the equation. Stated differently, functional
programs make an explicit commitment as to the inputs and the outputs of a function
(input-output directionality).

Logical programs are executed using resolution. That is, given a goal that contains both
values and variables, resolution produces all possible bindings which make the goal true.
During resolution the LHS of a clause is unified with a goal, potentially producing bindings
for the variables in both, the clause and the goal. Thus, the transfer of information is in
both directions. Logic programs make no commitment to inputs and outputs of a relation
(non-directionality).

To see that this non-directionality has a great impact on the computational content we
will give some examples

• Goal: rconc(L1,L2,[a,b,c]). Answer: L1 = [], L2 = [a,b,c]

L1 = [a], L2 = [b,c]

L1 = [a,b], L2 = [b]

L1 = [a,b,c], L2 = []

“all splittings of [a,b,c] are generated”

• Goal: rconc(L1,[3|L2],[1,2,3,4,5]). Answer: L1 = [1,2], L2 = [4,5]

“splitting at a specific value”

• Goal: rconc(,[X,3,Y|],[1,2,3,4,5]). Answer: X = 2, Y = 4

“searching for neighbours”

• Furthermore, other relations may be defined as an instance of rconc, e.g.

member(X,L) :- rconc(L1,[X|L2],L).

6.3 Query design 31

We see that a single logic program corresponds to several functional programs which contain
the same declarative information but have different input-output directionality.
The declarative content of the logic program rconc and the functional program (−‖) is the
same, but the computational content is different.

In particular, a logic program for a function is a logic program for the function’s inverse
too.

For an extensive discussion about the differences between a logic and a functional
program see [8], [2] and [3].

6.3 Query design

In many practical situations databases (database schemes) are a natural means to model a
real world problem. A database scheme is a (finite) set of relational schemes together with
a (finite) set of (database) constraints. A database instance consists of a set of consistent
relational instances of their schemes. A consistent database -or database for short- is a
database instance that satisfies all (database) constraints.
As a current example we take the following beer database scheme 2

Example Scheme for the beer database:

likes(drinker, beer)
visits(drinker, pub)
serves(pub, beer)

The entity and the attribute names are meaningful - their intended meaning is suggested.
The (database) constraints are

- Each drinker likes at least one beer
- Each drinker visits at least one pub
- Each pub serves at least one beer

�

From this modelling we may infer that in an actual beer database:
All actual drinkers are mentioned in the likes instance as well as in the visits instance, all
actual pubs are mentioned in the serves instance and the actual beers contain at least the
beers that are mentioned in the likes or in the serves instance.

In the sequel we will show that databases and their operations smoothly fit into the
logical approach.

6.3.1 Databases, represented logically

In a logical system, a database may be represented in two different ways:

2This database scheme is suggested to us by Paul de Bra.

32 6 Design of logic programs

non-deductively: all information is expressed explicitly, i.e.
the database is a collection of facts. Each fact represents a tuple of the database, e.g.
likes(rik,triple). It is assumed that this collection satisfies the constraints that are part of
the database scheme. Constraints are represented by clauses -“rules”- and their only role
is to maintain the database’s consistency during update operations.

deductively: the information is partly explicit and partly implicit, i.e.
the database is a collection of facts and rules. There are tuples (or tables) whose values are
partly mentioned while their remaining values may be inferred from the rules, e.g. because
of inclusion/functional dependencies. Again it is assumed that the collection satisfies the
constraints (represented by rules), but in this case the constraints do not solely maintain
the database’s consistency they also may serve to generate (part of) tuple or table values.
Deductive databases form a basis for knowledge based system, rule based systems and
expert systems. More detailed information on deductive databases can be found in [5].
A standard example of a deductive database is a Prolog program: it states facts and rela-
tions between data in a real world problem. With its Closed World Assumption this means
that Prolog’s view of the world is limited to a collection of basic and derived facts (outside
this collection nothing does hold). Because of this view, a Prolog program is often referred
to as a Prolog database.

Besides the choice for a deductive or non-deductive database, we have to decide upon
the representation of a tuple. There are two possibilities, each of which with their own
application type:

1. a tuple as an atomic formula, i.e.
the tuple constructor is represented by a predicate symbol while its attribute values
are terms. E.g. the entity “rik likes triple” is represented by likes(rik,triple).
This representation is in accordance with the relational database approach in a very
natural way and is used in practical applications.

2. a tuple as a term, i.e.
the tuple constructor is represented by a function symbol and the (complete) tuple
as well as its attribute values are terms. E.g. the entity “rik likes triple” may be
represented by item(likes(rik,triple)).
In this representation properties and relations between two or more tuples can be
phrased in an atom or clause. Typically this representation is used when one likes to
prove properties of a logical program.

In the remaining part of this section we assume that our example database is represented
non-deductively and that tuples are represented by atomic formulae.

6.3.2 Database retrieval

Once a database is implemented (deductively or not) it can be retrieved by queries posed
as a goal. Queries are usually phrased in natural language and their formalization might be

6.3 Query design 33

surprisingly complicated, even for simple databases like the one above. Whatever database
implementation is considered, a safe start of the formalization process is to express the
query by a predicate. Afterwards this predicate can be transformed into the required
formalism: a goal here, an expression in (e.g.) relational algebra, tuple calculus or SQL
in other implementations. A goal -a conjunct of atoms- seems easier to establish than
e.g. a relational algebra expression, but the complexity -mainly due to occurrences of
negation and/or sets- remains. Below we will give some example queries together with
their formalizations in SQL and Prolog. We choose to introduce new predicates to describe
answers to queries. In order to keep the SQL formulation compact we will use the following
abbreviations

L(d,b) for likes(drinker,beer)
V(d,p) for visits(drinker,pub)
S(p,b) for serves(pub,beer)

Query 0 { Projection }
Which beers are served ?

SQL: Select s.b
From S as s

Prolog: q0(B) :- serves(P,B).

Recall that in each proof of a goal, Prolog constructs (at most) one solution. By triggering
the backtracking process the remaining solutions are constructed (again one by one).

From the database constraints we infer that all drinkers and all pubs considered in the
database scheme can be obtained from a projection of the likes table and the serves table
respectively. I.e. the drinker table and the pub table can be defined “deductively” by
adding the following clauses to the database

drinker(D) :- likes(D,B).

pub(P) :- serves(P,B).

�

Query 1 { Selection }
Which pubs serve “Heineken” ?

SQL: Select s.p
From S as s
Where s.b = “Heineken”

Prolog: q1(P) :- serves(P,B),B=heineken.

or using the 1-point rule

q1(P) :- serves(P,heineken).

�

34 6 Design of logic programs

Query 2 { Join }
A potential visitor of a pub is a drinker who may go to that pub because they serve a beer
he likes. Extend the serves table with potential visitors.

SQL: Select s*, l.d
From S as s, L as l
Where s.b = l.b

Prolog: q2(P,B,D) :- serves(P,B),likes(D,C),B=C.

or 1-point rule

q2(P,B,D) :- serves(P,B),likes(D,B).

�

Intermezzo. In each proof of a goal, Prolog constructs (at most) one solution. Sometimes
we want all solutions to a goal in one proof. For these cases Prolog has three 2nd order
standard predicates

• findall

• bagof

• setof

As an example of their use, consider the query q1L(Ps). where q1L is defined by

q1L(Ps) :- findall(P,serves(P,heineken),Ps).

Here findall(P,serves(P,heineken),Ps) may be considered as a quantified expression:
findall acts like a quantifier, with P as a dummy and serves(P,heineken) as the domain.
Ps is a name coupled to the result which is of type list, the value of Ps is a list with all
pubs which serve “Heineken”.
A similar statement can be made for bagof and setof.

Note that the solutions collected in Ps all have different proofs but it is not guaranteed
that Ps is a set! There may be more than one proof for a solution. If we are interested in
all different solutions we may call

q1S(Ps) :- newsetof(P,serves(P,heineken),Ps).

Here newsetof is a redefined version (by us) of the built-in predicate setof, see below.
This redefinition was necessary because the predicate setof fails when an empty set is
encountered while we consider such case as successful.

newsetof(Var,Goal,Vs) :- findall(Var,Goal,Vl),list to set(Vl,Vs).

where list to set is a Prolog predicate which converts Vl of type list to Vs of type set.
Also, newsetof(Var,Goal,Vs) may be considered as a quantified expression:
newsetof acts like a quantifier, with Var as a dummy and Goal as the domain. Vs is a
name coupled to the result which is of type set, and the value of Vs is a set containing all
elements which satisfy the Goal.
�

6.3 Query design 35

Query 3 { Group by }
Give per drinker the different kinds of beer he likes.

SQL: Select l.d, distinct l.b
From L as l
Group by l.d

Prolog: q3(D,Bs) :- drinker(D),newsetof(B,likes(D,B),Bs).

�

Query 4 { Group by with aggregation }
Give per drinker the number of different kinds of beer he likes.

SQL: Select l.d, count distinct l.b
From L as l
Group by l.d

Prolog: q4(D,N) :- drinker(D),newsetof(B,likes(D,B),Bs),length(Bs,N).

length is a standard predicate in Prolog.
�

Query 5 { Subqueries }
Which drinker likes the largest number of beers.

SQL: With (Select l.d, count distinct l.b
From L as l
Group by l.d
) as tmp(d,n)

Select t.d
From tmp as t
Where t.n = (Select max u.n

From tmp as u)

Prolog: q5(D) :- q4(D,N),maxnr(N).

maxnr(M) :- findall(N,q4(D,N),Ns),max(Ns,M).

The predicate max which computes the maximum of a non-empty list of numbers is
defined in section 6.2.
�

Query 6 { Subsets }
Verify whether constraint “Each drinker likes at least one beer” holds.
(In this query we assume that a drinkers table D is available.)
We have to verify whether the drinkers in D are a subset of the drinkers in L.
We choose to answer the validity of this subset-requirement via negation. I.e. we will

36 6 Design of logic programs

construct a table with drinkers who don’t like any beer at all. If this table is empty
(hence the corresponding Prolog query fails) then the constraint is valid. Otherwise not.

SQL: Select d.d
From D as d
Where not exists (Select l*

From L as l
Where l.d = d.d)

Prolog: q6 :- drinker(D),not(likes(D,B)).

�

37

7 Application: Logical acceptors

Context-free grammars are often used to model problem domains. Attribute grammars are
context-free grammars in which nonterminals have additional parameters. These parame-
ters are used to compute additional information (about the parsing tree that is generated)
during the derivation steps in the grammar.

In this note we will design some elementary components which enables the reader to
construct a logical parser for any context-free grammar he likes. After a short introduction
to attribute grammars we extend the logical parser for a context-free grammar to one that
implements the attribute grammar as well.

7.1 Context-free grammars, logically implemented

Let G = (N,Σ, P, S) be a context-free grammar, where N , Σ and P are the sets of nonter-
minals, terminals and production rules respectively, and where S is a special nonterminal
called the start symbol. (We assume that all nonterminals are productive, i.e. for all
X ∈ N (its language) L(X) is nonempty.)
As an example we take

N = {S,A,B}
Σ = {a, b}
P = {S → AB,A→ AA,A→ a,B → BB,B → b}

When we have to design a (logical) acceptor for the language of G, the problem is specified
by

accept(w) ≡ w ∈ L(S)

Knowing that the language of S is constructed from the language of all nonterminals and
terminals, we therefore introduce, for any X ∈ N , a predicate parse defined by

parse(X, l, r) ≡ 〈∃x :: x ∈ L(X) ∧ l = x−‖ r〉
Then the acceptor can be defined by

accept(w) ≡ parse(S,w, ε)(4)

where ε denotes the empty string.
This requirement on accept becomes manifest in a logic program as

accept(w) ⇐ parse(S,w, ε)(5)

(which is correct since an implementation will construct the strongest predicate accept
satisfying (5)).

Next we will have to implement the parse-predicate, but we will deal with this in a
more general setting, not just for the example grammar above.

∗ ∗ ∗

38 7 Application: Logical acceptors

The production rules of a context-free grammar are basically of the following shapes

X → Y Z {sequence}
X → Y | Z {alternation}

This leads us to extend the parse-predicate to expressions of nonterminals, i.e. we will
explore

(i) parse(Y Z, l, r)
(ii) parse(Y | Z, l, r)

as follows.

Re(i)

parse(Y Z, l, r)

≡ { •y ∈ L(Y) ∧ z ∈ L(Z) }
l = (y−‖ z)−‖ r

≡ { assoc −‖}
l = y−‖ (z−‖ r)

≡ { •r′ : true }
l = y−‖ r′ ∧ r′ = z−‖ r

≡ { •y ∈ L(Y), •z ∈ L(Z) }
parse(Y, l, r′) ∧ parse(Z, r′, r)

i.e. we have proved, using L(Y) 6= ∅ and L(Z) 6= ∅

Lemma 1 If X → Y Z then

parse(X, l, r) ≡ 〈∃r′ :: parse(Y, l, r′) ∧ parse(Z, r′, r)〉
�

In a logic program this requirement on parse(X, l, r) becomes manifest as

parse(X, l, r) ⇐ parse(Y, l, r′) ∧ parse(Z, r′, r)

(with ∀r′ left implicit).

Since (UV)W = U(VW) lemma 1 gives a parse-predicate for each finite sequence of
nonterminals. For further use we mention

Corollary 1 If X → Y ZW then

parse(X, l, r) ≡ 〈∃r′, r′′ :: parse(Y, l, r′) ∧ parse(Z, r′, r′′) ∧ parse(W, r′′, r)
�

7.1 Context-free grammars, logically implemented 39

Re(ii)

parse(Y | Z, l, r)
≡ { •l = u−‖ r }
u ∈ L(Y | Z)

≡ { def L}
u ∈ L(Y) ∨ u ∈ L(Z)

≡ { •l = u−‖ r }
parse(Y, l, r) ∨ parse(Z, l, r)

i.e. we have proved

Lemma 2 If X → Y | Z then

parse(X, l, r) ≡ parse(Y, l, r) ∨ parse(Z, l, r)
�

In a logic program this requirement on parse(X, l, r) becomes manifest as

(parse(X, l, r) ⇐ parse(Y, l, r)) ∧ (parse(X, l, r) ⇐ parse(Z, l, r))

(which follows from predicate calculus).

Since (U | V) | W = U | (V | W) lemma 2 yields a parse-predicate for each finite
alternation of nonterminals.

Having explored the parse-predicate for the composition of nonterminals we examine
the parse-predicate for terminals and ε. This choice is motivated by the fact that RHS’s
of production rules are (possibly empty) sequences of terminals and nonterminals.

Let t be a terminal or ε, then

parse(t, l, r)

≡ { def parse }
〈∃u :: u ∈ L(t) ∧ l = u−‖ r〉

≡ { L(t) = {t} }
l = t−‖ r

i.e. we have proved

Lemma 3
If X → ε then parse(X, r, r)
For each terminal t: parse(t, t : r, r)

40 7 Application: Logical acceptors

�

The results formulated in the lemmas 1, 2 and 3 are the components from which a
logical acceptor may be built for any context-free grammar.
As an illustration we construct a logical acceptor for our example grammar

accept(w) ⇐ parse(S,w, ε)
parse(S, l, r) ⇐ parse(A, l, r′) ∧ parse(B, r′, r)
parse(A, l, r) ⇐ parse(A, l, r′) ∧ parse(A, r′, r)
parse(A, l, r) ⇐ parse(a, l, r)
parse(B, l, r) ⇐ parse(B, l, r′) ∧ parse(B, r′, r)
parse(B, l, r) ⇐ parse(b, l, r)
parse(a, a : r, r) ⇐ true
parse(b, b : r, r) ⇐ true

�

∗ ∗ ∗

In a logical system the arguments of a predicate are subject to a unification process.
Because all (non)terminals are constants we don’t want to burden the system with unnec-
essarily unification steps. Therefore we decide to represent the ternary relation parse by a
collection of binary predicates. As follows.

parse(X, l, r) is represented by parseX(l, r) for all (non)terminals X

A Prolog program for our logical acceptor would then look like

accept(L) :- parseS(L,[]).

parsea([a|R],R).

parseb([b|R],R).

parseS(L,R) :- parseA(L,R1),parseB(R1,R).

parseA(L,R) :- parsea(L,R).

parseA(L,R) :- parseA(L,R1),parseA(R1,R).

parseB(L,R) :- parseb(L,R).

parseB(L,R) :- parseB(L,R1),parseB(R1,R).

�

7.2 Attribute grammars, logically implemented

Attribute grammars are an extension to context-free grammars in the sense that they add
computations to the derivation steps that come with a context-free grammar. In this
section we will show that attribute-grammars may serve as a means to generate (elements
of the wider class of) context-sensitive languages. The example here is

L = {anbncn | n ≥ 1}

7.2 Attribute grammars, logically implemented 41

It is a context-sensitive language (in doubt, try out!) but it may be defined as a subset of
an even regular language, as follows:

L = {w ∈ GL | pL.w}
where

GL = {akblcm | k, l,m ≥ 1}
pL.w ≡ #(a, w) = #(b, w) = #(c, w)

The language GL is context-free and a grammar which generates GL is G = (N,Σ, P, S)
where

N = {S,A,B,C}
Σ = {a, b, c}
P = {S → ABC,A→ AA,A→ a,B → BB,B → b, C → CC,C → c}

An acceptor for GL is easily constructed via the components developed in the previous
section. The question now is: how can we compute pL.w during an acceptance of w ?
Well, an acceptor for GL constructs -for a given w ∈ {a, b, c}+- a parse tree for w, if
w ∈ GL. In this construction the production rules of G are used. The idea now is to
define functions for each of the nonterminals in such a way that pL.w can be expressed in
terms of these functions. As an example: expression #(a, w) occurs in pL.w. Looking at
the grammar it may be clear that those a’s are generated by nonterminal A only. There
are two production rules for A, viz. A→ AA and A→ a, and together they have to take
care of a correct computation of #(a, w).

The task for A → a is simple: when this rule is applied in a derivation, exactly one
a is generated. For the recursive rule A → AA, we rely on the induction/construction
hypothesis that the number of a’s are computed along with the derivation of the first
and the second A in the RHS, say n1 for the first A and n2 for the second A. Then
the task for A → AA is to add n1 and n2. Graphically the tasks can be depicted by::

A ↑1 A ↑(n1 + n2)

�
�

�
�

@
@

@
@

a A ↑n1 A ↑n2

Now that we know how #(a, w) can be defined by the grammar, we come to the fol-
lowing problem: in grammar land functions like #(a, w) are not explicitly named. Instead,
parameters are added to the relevant nonterminals -in this case one output parameter of
type Nis added to A- and along with each production rule a condition on these parameters
is formulated, viz.

A〈↑ n〉 → a n = 1

42 7 Application: Logical acceptors

A〈↑ n〉 → A〈↑ n1〉 A〈↑ n2〉 n = n1 + n2

The up-arrow indicates that the value of n is generated during the derivation. In grammar
terminology this is phrased by “n is a synthesized attribute”.

Remark. In many other applications nonterminals are “attributed” with input-parameters
too such as, for instance, the list of declared variables. In such cases the value of the pa-
rameter/attribute must be known from the context (“inherited attributes”). In many a
course on Compiler Construction attribute grammars are used to formalize the so-called
context-conditions which are put on a context-free grammar.
�

Having seen how #(a, w) can be computed by the grammar, it is not difficult to see
that the following attribute grammar generates our context-sensitive language L.

S〈↑ ac〉→ A〈↑ n〉 B〈↑ m〉 C〈↑ l〉 ac ≡ (n = m = l)

A〈↑ n〉 → a n = 1

A〈↑ n〉 → A〈↑ n1〉 A〈↑ n2〉 n = n1 + n2

B〈↑ m〉→ b m = 1

B〈↑ m〉→ B〈↑ m1〉 B〈↑ m2〉 m = m1 +m2

C〈↑ l〉 → c l = 1

C〈↑ l〉 → C〈↑ l1〉 C〈↑ l2〉 l = l1 + l2
�

After this compact introduction to attribute grammars we know that the shape of the
context-free grammar is not really changed by an “attribuation”: the only difference is
that along with parsing the parameters are computed so as to satisfy the given conditions.

In our example, a word w belongs to L if it belongs to GL and if its derivation shows
as many a’s as there are b’s and c’s in w. A straightforward extension of the L(G) parser
will do.

csaccept(L) :- csparseS(L,[]).

csparsea([a|R],R).

csparseb([b|R],R).

csparsec([c|R],R).

csparseS(L,R) :- csparseA(L,R1,N),csparseB(R1,R2,N),csparseC(R2,R,N).

csparseA(L,R,1) :- csparsea(L,R).

csparseA(L,R,N) :- csparseA(L,R1,N1),csparseA(R1,R,N2),N is N1+N2.

csparseB(L,R,1) :- csparseb(L,R).

csparseB(L,R,N) :- csparseB(L,R1,N1),csparseB(R1,R,N2),N is N1+N2.

csparseC(L,R,1) :- csparsec(L,R).

csparseC(L,R,N) :- csparseC(L,R1,N1),csparseC(R1,R,N2),N is N1+N2.

7.2 Attribute grammars, logically implemented 43

1. Note that attribute grammars only “work” for an attribuation in which a (previously
known) finite number of parameters are involved. Fortunately, many real-world
context-sensitive grammars are captured by this limitation.

2. Often it is difficult to infer the meaning of an attribute from its (mostly) recursive
definition. Giving a formal specification of these attributes could promote the very
powerful formalism of attribute grammars.

�

44 8 Appendix: A unification algorithm

8 Appendix: A unification algorithm

A unification algorithm is at the heart of each polymorphic type system and also at the
heart of logical systems. In unification algorithms the aim is

• to explore whether two expressions can be made textually identical by applying a
suitable substitution for the variables. Such a substitution is called a “unifier”.

• and, if such a unifier exists then a ”most general unifier” (mgu) has to be constructed.

Our goal is to present a functional version of one of the existing unification algorithms:
Robinson’s algorithm, [11]. A derivation of this algorithm together with a formalisation of
the concepts unifier and mgu is given in [1].

The shape of the expressions to be unified depends on the specific application, e.g. the
type-expressions in Haskell and the “terms” in a logical system. In this note -which heavily
depends on [1]- expressions are defined as follows.

Definition The set EXPR of expressions is generated according to the following BNF
syntax

E := X | F ”(” E∗ ”)”

The nonterminalsX and F generate, in a not further specified way, variables and function symbols
respectively.
�
Thus an expression is either a variable or a function symbol followed by ”(”, a (possibly
empty) list of expressions and ”)”. An expression of the form f() is just a constant and
for brevity’s sake we will omit the parentheses in our examples.

In the sequel we will use the following type conventions
- x, y, z, w denote variables
- a, f , g, h denote function symbols
- e, e′ denote expressions
- es, es′ denote lists of expressions

Now that we have fixed the kind of expressions to be unified, we will illustrate Robinson’s
approach in two examples.

8.1 Unification by example

Example 1. Unify the expressions e and e′ where

e = h(a, w, x, f(f(x)))

e′ = h(z, g(y), g(z), f(y))

The first question we have to face is ”is unification of e and e′ possible?”, i.e. can we find

8.1 Unification by example 45

a substitution for the variables that makes e and e′ textually identical? Well
- the function names are the same, viz. h, and
- the arities (i.e. length of the argument-lists) are the same, viz. 4
hence the answer depends on a successful unification of the arguments lists of e and e′.
Robinson proved that the following left-to-right traversal of the lists yields an mgu, if an
mgu exists:{

(a, w, x, f(f(x)))
(z, g(y), g(z), f(y))

Unify heads, viz. z := a.
Continue with the substitution-adapted tails:{

(w, x, f(f(x)))
(g(y), g(a), f(y))

Unify heads, viz. w := g(y)
Continue with the substitution-adapted tails:{

(x, f(f(x)))
(g(a), f(y))

Unify heads, viz. x := g(a)
Continue with the substitution-adapted tails:{

(f(f(g(a))))
(f(y))

Unify heads, viz. y := f(g(a))
This ends the successive unification process because empty-lists are textually equal.
From the above we may conclude that a unification of e and e′ exists and that the calculated
mgu is

[z := a, w := g(y), x := g(a), y := f(g(a))]
�

In order to show that unification is not always as straightforward as it seems from the
above, we give another example.

Example 2. Unify the expressions e and e′, where

e = h(x, x)
e′ = h(y, f(y))

The function names and the arities are the same, so we will try to find an mgu for{
(x, x)
(y, f(y))

Unify heads, viz. x := y
Continue with the substitution-adapted tails

46 8 Appendix: A unification algorithm

{
(y)
(f(y))

Now the substitution y := f(y) doesn’t lead to equal heads.
Unification of e and e′ is not possible because y occurs in f(y).
�

In each unification algorithm an ”occur-check” has to be made to disallow self-referential
bindings such as y := f(y).

8.2 Definition of the unification algorithm

For a formalisation of the unification process exemplified above we introduce the following
ingredients

• A function unify, where unify.e.e′ denotes the unifier of e and e′

• A way to denote a failing unification. We introduce nil for this purpose.

• A successful unification yields a substitution (unifier), i.e. a list of replacements
each of which of the form var := expr. (Note that the order of the replacements
is significant.) We may encounter the identical replacement x := x. In that case
nothing has to be done and we don’t insert it in the substitution (probably leading
to an empty substitution).

• A function applyL where applyL.θ.es distributes the substitution list θ over the
expression list es. Its specification is

applyL.θ.es = es′, with 〈∀i : 0 ≤ i <| es |: es′i = apply.θ.esi〉
apply.[].x = x
apply.((x := e) : θ).x = e
apply.((x := e) : θ).y = apply.θ.y
apply.θ.(f.es) = f.(applyL.θ.es)

• A predicate occurs in which establishes the occur-check. Informally this predicate
may be described by occurs in.e.e′ ≡ e is a proper subexpression of e′. With
induction on the second argument its definition is

¬occurs in.e.x
occurs in.e.f(es) ≡ e ∈ es ∨ 〈∃e′ : e′ ∈ es : occurs in.e.e′〉

To motivate that an mgu is constructed we mention the following lemma:

If ¬occurs in.x.e then x := e is an mgu of x and e

Now the functional version of Robinson’s algorithm is given by

8.2 Definition of the unification algorithm 47

Unification algorithm

unify.x.y = [] if x = y
= [x := y] otherwise

unify.x.f(es) = nil if occurs in.x.f(es)
= [x := f(es)] otherwise

unify.f(es).x = unify.x.f(es)

unify.f(es).g(es′) = nil if f 6= g ∨#es 6= #es′

= unifyL.es.es′ otherwise

unifyL.().() = []

unifyL.(e : es).(e′ : es′) = nil if unify.e.e′ = nil
= let θ = unify.e.e′

tes = applyL.θ.es
tes′ = applyL.θ.es′

in
nil if unifyL.tes.tes′ = nil
θ−‖unifyL.tes.tes′ otherwise

48 References

References

[1] Backhouse, R.C. A Unification Algorithm Handout, Eindhoven University of Technol-
ogy.

[2] Bratko,I. Prolog Programming for Artificial Intelligence Addison-Wesley, Great
Britain.

[3] DeGroot, D. Logic Programming, Functions, Relations, and Equations, Prentice-Hall,
New Jersey.

[4] Flach, P. Simply Logical, John Wiley & Sons, Great Britain.

[5] Frost, R.A. Introduction to Knowledge Base Systems Collins, London.

[6] Gray, P. Logic, Algebra and Databases, Ellis Horwood Limited, Great Britain.

[7] Hogger,C.J. Essentials of Logic Programming Oxford University Press, Oxford.

[8] Kowalski,R.A. Logic for Problem Solving Elsevier-North Holland, New York,1979a.

[9] Lloyd,J.W. Foundations of Logic Programming Springer-Verlag, Berlin.

[10] Malpas, J. Prolog: A Relational Language and its Applications, Prentice-Hall, New
Jersey.

[11] Robinson,J.A. A Machine-Oriented Logic based on the Resolution Principle. Journal
of the ACM , 12, 1(1965), 23-41

