Partitioning and eigenvalues

Citation for published version (APA):

Document status and date:
Published: 01/01/1976

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Partitioning and eigenvalues

by

Willem Haemers
Partitioning and eigenvalues

by

Willem Haemers

Let A be a complex hermitian matrix of size n, which is partitioned into block-matrices:

$$
A = \begin{bmatrix}
A_{11} & \cdots & A_{1m} \\
A_{m1} & \cdots & A_{mm}
\end{bmatrix},
$$

such that A_{ii} is a square matrix for all $1 \leq i \leq m$. Let B be the matrix of size m, any element b_{ij} of which equals the average rowsum of the block A_{ij}. Then the eigenvalues of A and B are real numbers, and it is known that the eigenvalues of B lie between the largest and the smallest eigenvalue of A, cf. [1], [3] where this fact is used under the name Higman-Sims technique. Here we prove a more general result:

Theorem. The eigenvalues $\alpha_1 \geq \ldots \geq \alpha_n$ of A and the eigenvalue $\beta_1 \geq \ldots \geq \beta_m$ of B satisfy

$$
\alpha_{n-m+i} \leq \beta_i \leq \alpha_i, \quad \text{for all } 1 \leq i \leq m.
$$

This property is often expressed as "the spectrum of B interlaces the spectrum of $A".

Proof. Let d_i be the size of A_{ii}. Consider the $m \times m$ matrix D, and the $m \times n$ matrix S defined by

$$
D := \begin{bmatrix}
\sqrt{d_1} & 0 \\
0 & \sqrt{d_m}
\end{bmatrix}; \quad S := D^{-1}
$$

Then we have $B = D^{-1}SAS^HD$, and $SS^H = I$, as can easily be verified.
Let T be a matrix of size $(n-m) \times n$, whose rows form an orthonormal basis of the orthogonal complement of the row-space of S, then $R := \begin{bmatrix} S \\ T \end{bmatrix}$ satisfies $R^H = R^{-1}$. Computing RAR^{-1} we obtain

$$RAR^{-1} = RAR^H = \begin{bmatrix} SAS^H & SAT^H \\ TAS^H & TAT^H \end{bmatrix}.$$

Now the theorem is proved, because the spectrum of any principal submatrix of a hermitian matrix interlaces the spectrum of that matrix, cf. [2], p. 119. Indeed, B is cospectral to SAS^H, which is a principal submatrix of the hermitian matrix RAR^{-1}, which is cospectral to A.

\textbf{Remark 1.} If any block A_{ij} has a constant rowsum then $AS^H D = S^H DB$, as can easily be verified. If in addition B has eigenvalue β, whose eigenspace is spanned by the columns of X, say, then we have $\lambda X = BX$, $\lambda S^H DX = S^H DBX = AS^H DX$. Hence the column-space of $S^H DX$ is an eigenspace of A belonging to the eigenvalue β. So in this case the spectrum of B is a sub(multi)set of the spectrum of A (note that in this case we do not need to take A hermitian).

\textbf{Remark 2.} Let \bar{B}, \bar{D} and \bar{S} be defined analogous to B, D and S, but with respect to another partition of A, which is a refinement of the above partitioning. Then the spectrum of B interlaces the spectrum of \bar{B} (note that in an extremal case we have $A = \bar{B}$). This can be proved in a similar way as above: first realize that $DBD^{-1} = SS^H DB - SS^H$, and $SS^H S^H = I$, then let SS^H do the job.

\textbf{Remark 3.} Of course everything remains valid if "rowsum" is replaced by "columnsum".

\textbf{Literature}

