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�e retinal fractal dimension (FD) is a measure of vasculature branching pattern complexity. FD has been considered as a potential
biomarker for the detection of several diseases like diabetes and hypertension. However, con	icting 
ndings were found in the
reported literature regarding the association between this biomarker and diseases. In this paper, we examine the stability of the
FD measurement with respect to (�) di�erent vessel annotations obtained from human observers, (�) automatic segmentation
methods, (�) various regions of interest, (
) accuracy of vessel segmentation methods, and (�) di�erent imaging modalities. Our
results demonstrate that the relative errors for the measurement of FD are signi
cant and FD varies considerably according to the
image quality, modality, and the technique used for measuring it. Automated and semiautomated methods for the measurement of
FD are not stable enough, which makes FD a deceptive biomarker in quantitative clinical applications.

1. Introduction

�e blood vessels, as part of the human circulatory system,
transport the blood with nutrition and oxygen and remove
the waste throughout the body. �e development of the
vascular system is not a random process but follows a set
of optimization principles, such as the minimum friction
between the blood 	ow and the vessel wall, the optimal
heart rate to achieve proper blood supply, and the shortest
transportation distance [�]. Inmany diseases such as diabetes,
glaucoma, hypertension, and other cardiovascular diseases,
these optimal conditions are no longer maintained, leading
topological abnormalities to appear in the vascular network.
Vessels in organs like the brain, the lung, or the kidney
can only be observed indirectly by certain image modalities,
such as magnetic resonance angiograph, CTA, and X-ray
angiography. However, the vasculature in the nerve 
ber
layer of the retina can be observed directly and noninvasively
by fundus cameras. �erefore, increasing attention has been

drawn to the retinal images for the quantitative analysis of
retinal blood vessels, whichmight provide useful information
about the progress of systemic and cardiovascular diseases.

One of the biomarkers that could describe changes in
microvasculature due to the disease progression is the fractal
dimension (FD). �e theory of FD was 
rst introduced by
Mandelbrot in ���� [�]. He proposed a set of mathematical
de
nitions for a self-similar object and used a noninteger
number to describe the dimension of this highly irregular
shape. In ����, the fractal dimension was 
rst introduced into
the ophthalmology by Family et al. [�]. A�er that, there has
been a growing interest in studying the association between
the fractal dimension of the retinal vasculature and the
disease severity and progression [
��].

In many clinical studies, the fractal dimension has shown
its potential in characterizing the growth of neurons, tissues,
and vessels. Firstly, the fractal describes growing progression
of the neuron cells by quantifying their complex dendrites.
For instance, Ristanovi·c et al. [�] and Milo�sevi·c et al. [��]
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studied the morphology of the branching patterns in the cor-
tical neuronal dendrites by fractal dimension and Reichen-
bach et al. [��] used it as a discriminator for di�erent mam-
malian astroglial cell types. In the case of tissue image anal-
ysis, Li et al. [��] applied the fractal calculation on medical
tissue images in order to detect the special texture of patho-
logical tissues. In addition, fractal dimension was used as a
feature for parenchymal lung disease detection [��]. Finally,
as is the focus of this paper, the fractal dimensions have been
appliedwidely on human retinal images for disease detection.

However, we found con	icting 
ndings in di�erent clin-
ical studies. Some literature reports a higher FD in images
of a patient group with a late stage of proliferative diabetic
retinopathy compared to a healthy control group [
, �, �
].
Broe et al. [�] did a fractal analysis on optic disc centered
images of ��� patients who had type � diabetes in a ��-year
follow-up study. �ey compared the fractal dimension of the
patients with their values that were recorded �� years ago
and found that the fractal dimensionwas generally decreased.
Similarly, Grauslund et al. [�] compared the box dimension of
�
 type � diabetes patients without proliferative retinopathy
to �� patients with proliferative retinopathy (PR).�ey found
that the PR group had lower dimension than the group with-
out PR. Also papers report mixed results when comparing
healthy and diabetic groups. In the study of Aliahmad et
al. [�], ��� optic disc centered retinal images of healthy and
diabetic individuals were examined with box dimension.�e
statistical results showed that the healthy subjects had higher
fractal dimension than the diabetic group. However, Yau et
al. [�] found higher fractal dimensions in the diabetic group
with 
�� patients compared to those in the normal group
with �
� healthy subjects.Moreover, the cross-sectional study
conducted by Cheung et al. [
] showed that the longer the
diabetic duration of one patient was, the higher his retinal
fractal dimension was.

Of course, all the above-mentioned studies had di�erent
setups. Not only the number of patients but also the cameras
used in data acquisition in each study were di�erent. �ere-
fore, the images� resolution, illumination, and quality varied
across studies. Moreover, the computer so�ware which semi-
automatically does the optic disc detection, vessel segmen-
tation, vessel skeletonization, and the fractal computation
was also di�erent in each study. Finally, the region of interest
for FD calculation was not the same for all studies. �ese
di�erent experimental settings, therefore, may be the reasons
of con	icting 
ndings in each study.

In that case, it is worth to investigate the reliability of
the FD measurement, since the measurement itself might
not be stable enough to provide reliable results. Previously,
few works analyzed the stability and the reliability of FD
measurements. Wainwright et al. [�
] studied the robustness
of the FD measurement in terms of variation of brightness,
focus, contrast, and image format and concluded that FD
is highly sensitive to all these factors. MacGillivray and
Patton [��] reported that the segmentation threshold value
signi
cantly a�ected the FD. Mendonc‚a et al. [��] found that
the FD was highly dependent on both vessel segmentation
and FD calculation methods.

In our previous study [��], we have examined the stability
of multiple fractal measurements in di�erent cases. In this
paper, we extend the previous work into � cases, in which
we calculated the variation of the fractal dimension. (1)
We calculated the FD values in groups of subjects with
various diabetic retinopathy grades, where the intergroup
and intragroup variations are compared. (2) We calculated
the fractal dimension on the manual vessel segmentation
annotated by di�erent human observers. (3) We investi-
gated the stability of FD using di�erent vessel segmentation
methods. (4) We explored the changes of FD in various
regions of interest. (5) We tuned the segmentation threshold
values to examine the in	uence of segmentation accuracy on
the fractal measurements and (6) we compared the fractal
dimensions that are calculated on the images acquired by
di�erent cameras.

�e paper is organized as follows: in Section �, we
introduce the materials and datasets used in this study. In
Section �, we explain the pipeline for computing the fractal
dimension, including four state-of-the-art vessel segmen-
tation methods, the region of interest determination, and
three classic fractal dimension calculation methods that are
widely used in clinical studies. In Section 
 the results of
di�erent cases are compared, and the discussion is presented
in Section �. Finally, Section � summarizes the conclusions.

2. Materials

In this section, we introduce the public retinal image datasets
and the test image dataset that were used in the stability stud-
ies. We used three datasets: MESSIDOR, DRIVE, and a test
dataset including images captured by 
ve di�erent cameras.

�.�. MESSIDOR Database. �e MESSIDOR public dataset
[��] includes ���� eye color fundus images with diabetic
retinopathy grades (R�, R�, R�, and R�). �e grades are
provided based on the number of microaneurysms and
hemorrhages and the presence of neovascularization. �e
images were taken in � ophthalmologic departments in
France by using the Topcon TRC NW� (Topcon, Japan) with

eld of view (FOV) of 
� degree. �e images have three
di�erent sizes: �

� × ���, ��
� × �
��, and ���
 × ����. In
this paper, we use this dataset for investigating the intragroup
FD di�erences.

�.�. DRIVE Database. �e DRIVE dataset [��] contains 
�
fovea centered color retinal images, which were captured on
�� nondiabetic retinopathy subjects and � with mild early
diabetic retinopathy. �e images were acquired by a Canon
CR� nonmydriatic �CCD camera (Canon, Japan) with a FOV
of 
� degree. �e 
� images were randomly divided into a
training set and a testing set of equal size. In the testing
set, the images were manually annotated by � di�erent well-
trained ophthalmologists. �ese �� test images were used for
the fractal stability and robustness study.

�.�. � Cameras Dataset. In order to investigate the variation
of FD computed on the images acquired by di�erent cameras,
we established a new dataset which consists of the retinal
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F����� �: �e pipeline for calculating the fractal dimension from a color fundus image.

images captured by � di�erent fundus cameras on �� young
healthy volunteers. �e � fundus cameras were installed in
the Ophthalmology Department of the Academic Hospital
Maastricht (AZM) in Netherlands. �e volunteers are young
students with �� to �� years of age. �e retinal photographs
were taken on the le� eye of every subject � times with each
camera, both fovea centered and optic disc centered (���
images in total).

�e � cameras are �nethra Classic, Canon CR-� Mark II,
Nidek AFC-���, TopconNW���, and EasyScan.�e �nethra
Classic (Forus, India) provides color fundus images with size
of ��
� × ����, and the FOV is 
� degrees. �e Canon CR-
� mark II (Canon, Japan) is a nonmydriatic retinal camera
with FOV of 
� degrees, and the image size is �
�� × ���
.
�e Nidek AFC-��� (Nidek, Japan) is also a nonmydriatic
autofundus camera with 
�-degree FOV and captures the
fundus on a ��

 × ��

 color image. �e Topcon NW���
(Topcon, Japan) is a color fundus camerawith picture angle of

� degrees and its image size is ��
� × ����. Finally, EasyScan
(iOptics, Netherlands) is a scanning laser ophthalmoscopy
(SLO) camera with FOV of 
� degrees and the image size of
���
 × ���
.

3. Methodology

In this section, we introduce the pipeline andmethodologies,
which are used to compute the fractal dimension from a
fundus image. �e pipeline involves � steps (see Figure �).
First of all, we import the raw color images from each dataset
and rescale them to the same pixel size as the images in the
DRIVE dataset. As a result of the acquisition process, very
o�en the retinal images are nonuniformly illuminated and
exhibit local luminosity and contrast variability. In order to
overcome this problem, each image is preprocessed using the
method proposed by Foracchia et al. [��], which normalizes
both luminosity and contrast based on a model of the
observed image. Luminosity and contrast variability in the

background are estimated and then used for normalizing the
whole image.

A�er the image local normalization, we apply � state-of-
the-art vessel segmentation methods on color retinal images
and one particular segmentation method on the SLO images
to obtain the vessel probability maps (so� segmentation).
A�erwards, a threshold value is applied to the obtained vessel
probability maps in order to construct binary segmentations
(hard segmentations). At the same time, we automatically
determine the region of interest for FD calculation by
detecting, segmenting, and parameterizing the optic disc and
the fovea. Finally, the fractal dimension is calculated on the
binary vessel segmented images within a circular ROI using �
classic FD measurements. In the following section, each step
of the pipeline is introduced in detail.

�.�. Automatic Vessel Segmentation Methods. �e fractal di-
mension is usually calculated on a vessel binary map, where
pixel intensity of � is considered as vessel and � as background.
Generally manual vessel annotations provided by the human
observers have better quality than automatic vessel segmenta-
tion techniques. Additionally, for large volume clinical stud-
ies, an automatic vessel segmentation program is needed for
the vessel detection. In our study, we investigated three vessel
segmentation methods for extracting the vessels from RGB
retinal images, Frangi�s vesselness method, Soares� method,
andZhang�smethod, and theBIMSOmethod for SLO images.

�.�.�. Frangi�s Vesselness. Frangi�s vesselness is a multiscale
vessel enhancement method proposed by Frangi et al. [��],
which uses the second-order derivatives to enhance elongated
structures in the image. An important property for an
elongated structure is a large change of gradient (principal
curvature) in one direction but little gradient change in the
direction perpendicular to the former. �erefore, the pixels
of a vessel have �1 � �2, where �1 and �2 are the magnitudes
of the local principle curvatures that can be calculated via the
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(a) (b) (c) (d)

F����� �: (a) An original image from the DRIVE database; (b)�(d) the vessel probability maps generated by the methods of Frangi et al. [��],
Soares et al. [��], and Zhang et al. [��].

eigenvalues of the �DGaussian Hessian.�us, the vessels can
be enhanced by a normal probability distribution function:

exp��
�2�
2�2

��1 � exp��
�2

2	2
�� , (�)

where �1 and �2 are the eigenvalues of the �D Gaussian
Hessian, �� = �2/�1 is an anisotropy (elongatedness)
term, � = �1 + �2 is a structure term, and � and 	 are
constant values that determine the sharpness of the 
lter.�e
vessel probability map generated by this method is shown in
Figure �(b).

�.�.�. Soares� Segmentation. Soares� segmentation is a super-
vised method for vessel enhancement proposed by Soares et
al. [��]. First it extracts � features including the pixel intensity
(the green channel) and 
 Gabor 
lter responses from the
images. By using a bank of Gabor 
lters with multiscales,
multifrequencies, and multiorientations, vessels with di�er-
ent sizes and orientations are enhanced and di�erentiated
from the image background.

A�erwards a supervised Gaussian Mixture Model
(GMM) classi
cation method is used to classify the pixels
into vessel or background using the obtained features. �e
output is a probability map indicating the likelihood for a
pixel being a vessel (shown in Figure �(c)).

�.�.�. Zhang�sMethod. Zhang�smethod is based on describing
the image as a function on an extended space of positions and
orientations [��]. In the method, the image is li�ed to the �D
space of positions and orientations via a wavelet-type trans-
form. In the �D domain, vessels are disentangled at crossings
due to their di�erence in orientation. In the new space, le�-
invariant Gaussian derivatives are used (exploiting a rotating
coordinate system) in order to enhance the blood vessels.�e
method results in crossing preserving enhancement of blood
vessels (shown in Figure �(d)).

�.�.�. BIMSO Method. BIMSO method is a brain-inspired
multiscale and multiorientation technique proposed by
Abbasi-Sureshjani et al. [�
], which is mainly designed for
the vessel segmentation in SLO images. In this method, the

image is li�ed to the �D orientation score using rotated
anisotropic wavelets and then a nonlinear transform is
applied to enhance the elongated structures (blood vessels)
and to suppress the noise. A�erwards, several features for
each pixel are extracted including the intensity, 
lter response
to the oriented wavelets, and the multiscale le�-invariant
Gaussian derivatives jet. �e pixels are then classi
ed by a
neural network classi
er into vessel or background using the
obtained features.

�.�. Region of Interest (ROI). In this subtask, the fractal
dimensions were calculated in di�erent circular regions with
various radii around the fovea and optic disc (OD) centers.
For fovea centered images, the regions of interest were
centered at the fovea centralis with radii of 
, �, and � times
the optic disc radius (OD�).�ese radii were set in accordance
to the diameter of human optic discs and the average fovea-
to-disc distance. According to the study of [��], the average
diameter of the human optic disc is �.��mm and the distance
from the fovea center to the optic disc center is 
.��mm,
which is about � times OD�. �erefore, the circular ROI with
radius 4 × OD� covers the retina but excludes the optic disc,
the 5×OD� ROI covers half of the optic disc, and the 6×OD�
ROI covers the full optic disc. �roughout the studies, the
ROI is determined automatically by a pipeline described in
the following subsubsections.

�.�.�. Optic Disk Detection. Optic Disk detection is done
using the method proposed by Bekkers et al. [��]. In this
method, the OD is detected via a cross-correlation based
template matching in higher dimensional objects called
orientation scores. An orientation score represents image
data on the �D space of positions and orientations, where
the vessels with di�erent orientations are li�ed to di�erent
planes of the space. �e templates are designed to detect
the �D pattern of vessels originating from the optic nerve
head.�erefore, the global maximum of the correlated image
reveals the position of the OD.

�.�.�. Optic Disk Segmentation. Optic disk segmentation is
performed a�er locating the OD centralis. �e segmentation
is done within a small patch of an enhanced OD to detect



Journal of Ophthalmology �

Blue

Optic nerve head

Red Green

0.8

0.7

0.6

0.5

0.3

0.4

0.2

0.1

0

RGB values in di�erent region

Vessel in optic disk
Background tissue
Vessel on the background

F����� �: �e RGB color di�erence between the pixels inside and outside the optic nerve head region.

its circular boundary. On a regular RGB fundus image, the
OD region has higher color di�erences than the background
region. For instance, the tissue and vessels inside the disc have
greater yellow-blue color di�erence than the background ves-
sel and tissue (see Figure �).�erefore, the color derivatives of
the red, green, and blue intensity can be used to enhance the
OD region and suppress the background tissue of the retina.

�e color derivatives of an RGB image are computed
using the Gaussian color model proposed in [��, ��], where
the best linear transform from the RGB color domain to the
Gaussian color model is de
ned by


�

�




�

��

��

�

= �
0.06 0.63 0.31
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�
�

�

R
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B

��

�

, (�)

where 
, 
�, and 
�� represent the nonderivative, �st-order
derivative, and �nd-order derivative with respect to the wave-
length �. �e enhanced OD image is obtained by combining
invariant assemblies of 
, 
�, and 
��.

A�er the enhancement, the OD boundary becomes
stronger and the potential interferences caused by the edge
of vessels are suppressed and a simple zero crossings of the
Laplace operator is used for OD edge detection. A�er that,
an ellipse is 
tted to the detected boundary positions and the
major and minor radius are obtained. Finally, the OD radius
(OD�) is estimated as the average of themajor andminor radii
of the 
tted ellipse.

�.�.�. Fovea Center Detection. Fovea center detection is done
within a ring area around the optic disc center. As mentioned
earlier, the average distance between the fovea centralis and
the optic disc centralis is about 5×OD�, so the inner and outer
radii of the ring of interest are selected as 4×OD� and 6×OD�,
respectively. A�er determining the ring area, we reduced the
interference of blood vessels by using the binary vessel seg-
mentation obtained beforehand and an inpainting algorithm
which replaces/paints the detected vessels by their neighbor
background texture. Finally, the fovea center is detected as the
global minimum at a large Gaussian blurring scale.

�.�. Fractal DimensionMeasurements. �e fractal dimension
is a measurement which quanti
es the highly irregular shape
of fractals or fractal objects. An important property of the
fractal objects is their self-similarity over di�erent scales or
magni
cations. �is means that at di�erent scales a same
pattern with di�erent sizes can be observed, such as trees,
snow	akes, and river systems. �is self-similar property can
be described by the following formula:

�(�) = ���, (�)

where �(�) is some measurements applied on the compli-
cated pattern of the object at a scale �; � is the fractal
dimension that implies how many new similar patterns are
observed as the resolution magni
cation (scale) decreases or
increases. In order to solve for� we rewrite (�) into

� = �
log�(�)
log �

. (
)

According to the de
nition, a fractal object is self-similar;
therefore the comparison of two measurements in various
scales should yield the same results. �is implies that the
fractal can also be calculated by comparing themeasurements
between any two scales:

� � �
log����� � log�����1�

log �� � log ���1
. (�)

Based on the above relation between measurements in
di�erent scales, a box-counting method is introduced to do
a simple, fast estimation of the fractal dimension �. In this
method, the full space is 
rstly covered by squared boxes
with side-length ��. And then measurements are done in
the boxes that are overlapping with the objects. �is step
will be repeated multiple times with di�erent box side-
lengths. Finally, the size of the box and the corresponding
measurement are plotted in a log-log plot. �e estimated
fractal dimension is the slope of the regression line that 
ts
to these data points.

In this paper, we are mainly interested in three fractal
methods that are widely used in the literature: the box
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dimension ��, information dimension ��, and correlation
dimension�	, which measure di�erent properties (di�erent
�(�)) of the self-similar pattern of the object, respectively.

�.�.�. Box Dimension (��). Box dimension (��) is the most
simple and popular method for estimating the FD of fractal
objects proposed by [��]. It is the direct implementation
of the Hausdor� dimension in mathematics [��]. �e box
dimension is de
ned as the real number ��, such that the
number�(�) of balls with radius � that is needed to cover an
object grows with (1/�)�� as � � 0. In other words, �� is
calculated via

�� = lim
�
0

log�(�)
log 1/�

. (�)

So, in the image domain, the measurement �(�) in (�)
is the number of boxes with side-length � which overlap
with the vessel segmentation. When dealing with discrete
problems, taking the limit � � 0 is not possible. Instead, as
suggested by [��], �� can be computed as the slope of �(�)
plotted against � in a log-log plot.

�.�.�. Information Dimension (��). Information Dimension
(��) is inspired from information theory. In information
theory, entropy is the measure of the uncertainty of a random
event.�e less likely a random event might happen, the more
informative it is and thus the larger entropy it has. Conversely,
if an event happens very o�en, it provides less information,
implying lower entropy. �e information dimension [��, ��]
is de
ned as

�� = lim
�
0

��
=1 �
 log�

log 1/�

, (�)

where � is the number of boxes with size � overlapped
with the object, the numerator��
=1 �
 log�
 is the 
rst-order
Shannon entropy, �
 = �
/� is the probability for 
nding a
part of the object in the �th box,� is the totalmass of it, and �

is the part of the object in the box.�e limit of (�) is estimated
as the slope of the regression line of the logarithmic points.

�.�.�. Correlation Dimension (�	). Correlation dimension
(�	) estimates the FD via the relationship between two pixels
inside a region. A correlation integral is de
ned via the
Heaviside step function for counting the pair of points in a
region with size �� and can be approximately expressed in
terms of the probability density:

 � =
1
�2

�

!

=1,�=1,
 �=�

"#�� �
$$$$$x
 � x�

$$$$$% �
��
!
�=1
�2��, (�)

where "(&) is the Heaviside step function, x
 is the �th pixel
belonging to an object, and ��� = ���/� is the probability
density of the object with mass� in the ’th box with size ��.
�e correlation dimension �	 is de
ned via the relationship
between  � and �� as�	 = lim��
0(log �/ log ��).

4. Stability Analysis and Results

In this section, we present our stability analysis of the fractal
methods in terms of the choice of manual annotations,
di�erent segmentation methods, various regions of interest,
the accuracy of the segmentation method, and di�erent
imaging modalities. To study the variation of FDs, we use
the relative error (RE) with respect to the binary images
annotated by Observer � as the reference. �e RE is obtained
using |(�����)|/��, where�� is the obtained FD in di�erent
studies and �� is the reference FD. To test whether or not
measurement methods are correlated, we use the Pearson
correlation coe�cient test.

Study �: Intergroup and Intragroup Fractal Dimension Vari-
ation. In order to show the signi
cance of these relative
errors in di�erent experiments, the obtained FD values are
compared with the coe�cient of variation, also known as
relative standard deviations (RSD) of all subjects in the
DRIVE dataset, which are �.�%, �.�%, and �.�% for ��, ��,
and�	, respectively.

We also obtained the intergroup and intragroup fractal
dimension (��) variations for the di�erent groups of diabetic
retinopathy in the MESSIDOR dataset. For all images with
di�erent DR grades, the box dimension is calculated once on
the full image and once inside the region of interest around
the fovea (5 × OD�). �e averages and relative standard
deviations of FD values for each separateDR group are shown
in Table �. As we can see in this table and in Figure 
, the
di�erences between the mean of FD values for di�erent DR
groups are small compared to the RSD of each DR group.�e
average of RSD in the di�erent groups is higher than �.�%.

�e results of multiple one-way ANOVA tests are shown
in Table �. With this test, we study whether a pair of
subgroups have di�erent distributions. In the case of using
the full FOV as ROI, there are no signi
cantmean di�erences
between any two groups, except in group pairs R��R� and
R��R�. For the circle ROI around the fovea, the mean
di�erence is signi
cant between R� and R� and between R�
and R� groups.

Study �: Variation between Di�erent Manual Annotations. We
compared the FD values that were calculated on the ground
truth images annotated by two experts within the circular
ROI with 5 × OD�. Here we used the FDs of Observer �
as reference as this is also considered as ground truth in
[��]. �e result is shown in the �st row of Table �. �e
main di�erence between the two manual annotations is the
presence of the tiny vessels. We found that missdetecting the
tiny vessels does a�ect the fractal dimension. �e maximal
di�erences of �.��%, �.��%, and �.��% and mean relative
errors of �.��%, �.��%, and �.��% are obtained for ��, ��,
and �	, respectively, which are noticeable compared to the
calculated RSDs.

Itmeans that even if the FDs are calculated on vesselmaps
annotated by human observers, the methods cannot produce
stable values for diagnosis, which makes fractal dimension
measurement useless. In addition, Figure � plots �� of ��
images of the two observers. �e curves illustrate that the
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T���� �: �e mean and standard deviation of FD values (��) for di�erent DR grades.

DR grade Number of images ROI: full FOV ROI: 5 ×OD�
Mean SD� RSD� Mean SD RSD

R� �
� �.���
 �.���
 �.�
% �.���� �.���� �.��%
R� ��� �.���� �.��
� �.
�% �.���� �.���
 �.��%
R� �
� �.���� �.���
 �.�
% �.���� �.���
 �.��%
R� ��
 �.���� �.���
 �.��% �.���� �.���� �.��%
Total ���� �.��
� �.���� �.��% �.���� �.��
� �.��%
�SD: standard deviation.
�RSD: relative standard deviation.

T���� �: Comparison between FD values in di�erent DR groups (ANOVA test).

DR grade Mean di�erence Std. error � value� ��% con
dence interval
Lower bound Upper bound

ROI: full FOV R�
R� �.����� �.����� �.��� ��.���� �.���

R� �.����
� �.����� �.��� �.���� �.����
R� ��.���
� �.����� �.��� ��.���� �.����

ROI: full FOV R� R� �.����� �.����� �.��� ��.���� �.����
R� ��.����� �.����� �.��� ��.���� �.����

ROI: full FOV R� R� ��.������ �.����� �.��� ��.���� ��.����

ROI: 5 ×OD� R�
R� ��.����
 �.����� �.��� ��.���� �.��
�
R� �.������ �.����� �.��� �.���� �.����
R� �.����� �.����� �.��� ��.���� �.����

ROI: 5 ×OD� R� R� �.������ �.����� �.��� �.���� �.����
R� �.��
�� �.����� �.�
� ��.��
� �.����

ROI: 5 ×OD� R� R� ��.����� �.����� �.��� ��.��
� �.����
��emean di�erence is signi
cant at the �.�� level.
�One-way ANOVA test with null hypothesis that the means of distributions are equal.
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F����� 
: Box plots of the fractal dimensions (��) of di�erent DR groups for (a) ROI: full FOV and (b) ROI: � ×OD�.

variations of FD for two observers in some subjects are
too large which might cause wrong discrimination among
subjects for clinical applications. For example, we see �� of
patient � is greater than patient 
 forObserver �, while the two
patients have similar values obtained from the other observer.

Study �: Variation between Di�erent Vessel Segmentation
Methods. In this study, we investigated the variation of

fractal dimensionswhenusing automatic vessel segmentation
methods instead of human annotations. �e methods by
Frangi et al. [��], Soares et al. [��], and Zhang et al. [��] were
used as described previously. Each method produces a vessel
probability map from the raw fundus image from which
we obtain a binary map by setting an optimal threshold.
�e optimal threshold for each method is set to the value
which maximizes the vessel segmentation accuracy for the
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T���� �: �e comparison of FD between two human observers and di�erent vessel segmentation methods by considering Observer � as
reference.

Method Box dimension (��) Information dimension (��) Correlation dimension (�	)
Max� MRE� p value� Max MRE p value Max MRE p value

Observer � �.�% �.�% �.���� �.�% �.�% �.���� �.�% �.�% �.��	�
Frangi [��] �.�% 
.�% �.���� �.
% 
.�% �.���� �.
% 
.�% �.����
Soares [��] �.�% �.�% �.
��� �.�% �.�% �.���� �.�% �.�% �.����
Zhang [��] �.
% �.�% �.
��� �.
% �.�% �.���� �.�% �.�% �.���
�Max: maximum relative error with respect to Observer �.
�MRE: mean of relative error with respect to Observer �.
�Pearson correlation test with null hypothesis that the correlation coe�cient is zero.
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F����� �:�e box dimension values using themanual segmentation
by two observers for all patients.

whole dataset. For measuring the errors, we used the FDs
of Observer � as reference. �e �nd to 
th rows of Table �
show the REs when using the binary images created by the
segmentation methods instead of human observers.

�e maximum errors of the box dimension for the
three segmentation techniques are �.��%, �.��%, and �.��%,
respectively. �e average errors are 
.��%, �.��%, and �.��%,
which are signi
cantly compared to the RSD values. �ese
values suggest that using an automatic segmentation would
induce a large error in fractal calculation. In addition, the
very high � values imply the weak association between the
automatic methods and the manual. �e variation among
di�erent segmentation methods is also large according to
curves shown in Figure �, which shows the mean and
standard deviation of�� among the �methods.�is suggests
that the fractal measurement is very sensitive to the choice of
vessel segmentation method.

Study �: Di�erent Regions of Interest. We calculate the FD
in various circular regions around the fovea center of the
DRIVE ground truth images annotated by Observer �. As
mentioned previously, the ROI radii are considered as 4×OD�
(ROI�), 5 × OD� (ROI�), and 6 × OD� (ROI�), and ROI�
is used as reference for the relative error calculation. �e
relative errors of changing the ROI are shown in Table 
.
When FDs are calculated in ROI�, the maximum error of the
box dimension is �.�%, and the average error is �.
%. If we
use ROI�, the relative errors were smaller, with a maximum
of �.�% and average of �.
% error. Figure � shows the plot
of �� calculated in ROI� (red), ROI� (green), and ROI�
(blue) and also the mean and deviation of them (purple).
According to the table and 
gure, changing ROI causes a

T���� 
: �e comparison of �� values using di�erent region of
interest.

Method Radius Max MRE p value�

ROI� 4 ×OD� �.�% �.
% <�.��
ROI� 5 ×OD� �.�% �.
% <�.��
ROI� 6 ×OD� Reference
�Pearson correlation test with null hypothesis that the population correlation
coe�cient is zero with respect to ROI�.
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F����� �:�� of �� subjects varied with the change of the ROI.

variation in fractal calculation; in particular the FDs of ROI�
are signi
cantly lower compared to ROI� and ROI�. But,
from another point of view, we see that � values are less than
�.��, which means the FDs calculated in di�erent ROIs are
signi
cantly associated.

Study �: Vessel Segmentation Method Quality. We studied
the relation between the FD error and the quality of vessel
segmentation methods. �e FD is usually calculated on a
vessel binary map, which is converted from the vessel prob-
ability map with a threshold value. �e choice for threshold
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T���� �: FD variation against vessel segmentation accuracy.

�reshold
* = 0.15 * = 0.21 * = 0.34

Average of vessel
segmentation
accuracy

��.�
% ��.��% ��%

Average of FD
variation

�
.

% ��.
�% ��%

value changes the accuracy of vessel segmentation, and the
accuracy of the segmentation method turns out to a�ect the
fractal measurement signi
cantly. �e comparison is based
on Zhang�s segmentation method in a 
xed region of interest
(ROI�). Several threshold values * with range from �.�� to
�.�� and step size �.�� are applied to the vessel probability
map for all test images in the DRIVE database to obtain the
vessel binary segmentations. Since there is a large di�erence
between number of vessel pixels and nonvessel pixels in
retinal images, we used the Matthews correlation coe�cient
(MCC) instead of accuracy to evaluate the quality of binary
images. �e MCC is a balanced measure which can be used
even if the classes are of very di�erent sizes:

MCC

=
TP × TN � FP × FN

-(TP + FP) (TP + FN) (TN + FP) (TN + FN)
,

(�)

where TP, TN, FP, and FN are the true positive, true negative,
false positive, and false negative parts of the segmentation
with respect to the annotations by Observer �. For each result
of the binary segmentation, the fractal dimension ismeasured
and compared to the values of the reference ones.

�emean relative errors for the �� images with respect to
the reference ones are shown in Table � for � sample thresh-
olds t = �.��, �.��, and �.�
. As we can see in this table, using
both �.�� and �.�
 as threshold results in similar MCC values
for the vessel segmentation, while one is the oversegmented
(higher FD) and the other one is the undersegmented (lower
FD), a threshold equal to �.�� gives the highest MCC ��% as
an average among �� images.Note that no postprocessingwas
applied a�er the thresholding, so the segmentation accuracy
in our studies might be lower than the proposed accuracy in
the literature. From the table, we see that if the threshold is
set properly (t = �.��), the relative error is small. Meanwhile
if * is underestimated or overestimated, the relative error
dramatically increases. Moreover, Figure � shows the plot
of the mean MCC of vessel segmentation against the mean
error of FD of �� images. We can see that segmentation with
higher accuracy produces a more reliable FD. �ese results
suggest that poor segmentation with improper selection of
the threshold value leads to a large error for fractal dimension
calculation.

Study �: Di�erent Cameras and Di�erent Image Modalities.
We investigated the variation of fractal dimension which
is calculated on the images captured by di�erent cameras
described previously. �e optic disc centered images of the
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F����� �: �e mean relative error of fractal dimension against the
quality of vessel segmentation based on MCC.

�� volunteers are used in this examination (see Figure �).
�e circular region of interest centered at the OD center with
radius 4 ×OD� is used in all images. �e vessel segmentation
results of the RGB images captured by regular cameras are
generated by Zhang�s [��] method and those of the EasyScan
SLO camera are generated by the BIMSO method [�
].

First we compare the variation among di�erent cameras,
where the box dimensions of �� subjects are shown in
Figure �� with di�erent colors per camera. As we can see
from this 
gure, the fractal dimension is very sensitive to
image properties like resolution, amount of noise, quality, and
imaging modality, which depend on the type of camera. For
example, the mean relative di�erence between �nethra (red
dashed line) and Nidek (purple dashed line) is �.��% with
respect to the average of two cameras. Moreover, using dif-
ferent imaging modalities also causes a signi
cant variation.
�e SLO images acquired by EasyScan (green dashed line)
in general have lower FDs than the other color RGB cameras
except for �nethra. In addition, the average relative variation
between the SLO images and RGB images (by Canon camera)
is �.��%.

Finally, we investigate the repeatability of di�erent cam-
eras by comparing the FDs of di�erent acquisitions of
one subject. �e repeatability is measured as the standard
deviation of the fractals calculated on � acquisitions of the
same subject divided by the average of them. As we can
see from Table �, the � cameras give an average of �.��%
variation on the same subject in di�erent acquisition times.
With Canon and Nidek cameras, this error is small (�.��%
and �.��% resp.), which shows better stability compared to
other cameras.

5. Discussion

In previous studies, fractal dimension is considered as a
potential biomarker for disease detection. However, con	ict-
ing 
ndings were found in di�erent literature. �erefore, we
examined the reliability of three classic fractal measurements
for their use in clinical study applications. We divided our
experiments into six studies, which we will discuss in the
remainder of this section.

In our 
rst and second studies, we investigated inter-
group and intragroup variability of FD methods using the
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Binary segmentation ROIOriginal images Vessel probability map

(a)

Binary segmentation ROIOriginal images Vessel probability map

(b)

Binary segmentation ROIOriginal images Vessel probability map

(c)

Vessel probability map Binary segmentation ROIOriginal images

(d)

Binary segmentation ROIOriginal images Vessel probability map

(e)

F����� �: �e retina of one subject captured by di�erent cameras: (a) �nethra, (b) Canon, (c) Nidek, (d) Topcon, and (e) EasyScan.
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T���� �: �e mean relative error of FD for repeated acquisitions in di�erent cameras.

Camera Image modality Image size FOV Max RSD Mean RSD
�nethra RGB 2048 × 1536 
�� �.��% �.��%
Canon RGB 3456 × 2304 
�� �.�
% �.��%
Topcon RGB 2048 × 1536 
�� �.��% �.
�%
Nidek RGB 3744 × 3744 
�� �.��% �.�
%
EasyScan SLO 1024 × 1024 
�� �.��% �.��%
Average � � � �.��% �.��%
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F����� ��: �� calculated on the images captured by � di�erent
fundus cameras.

MESSIDOR dataset. Also, we studied intraobserver variation
using ground truth segmentation from the DRIVE dataset.
�e experimental results show that, even with ground truth
vessel maps, the fractal dimensions are not reliable. �e RSD
of�� of all patients in the DRIVE dataset is �.�%. Moreover,
the variation of FD between di�erent human observers
produces errors of �.��%, �.��%, and �.��% on average on
��, ��, and �	. �is signi
cant variation makes the FD less
informative and less reliable in discriminating DR patients in
di�erent severity levels from the healthy ones. No signi
cant
di�erences in FD were found between di�erent DR groups of
the MESSIDOR dataset. From Figure ��, we see that the main
di�erence between the vessel annotations of two observers
is the presence or absence of small vessels. �erefore, the
in	uence of small vessels on the fractal measurements cannot
be neglected and should be considered seriously.

In the third study, we investigated the in	uence of
automatic segmentation method on FD computations. We
examined the FD on the vessel maps produced by three
di�erent vessel segmentation methods on the same imaging
modality (RGB fundus images). �e results show that the
FDs calculated with various segmentations have signi
cant
di�erences compared to the values calculated using the
annotations by Observer �. In addition, the statistical tests
show that the FDs were not associated with those computed
from ground truth images. �erefore, the FD computed by
automatic computer so�waremight not be reliable, as was the
case in the studies from [
��].

In the fourth study, we investigated the variation of FD
calculated within di�erent regions of interest centered at the
fovea centralis. �is study is motivated by the fact that, in
clinical retinal photography, the actual captured area on the
retina is not always the same because of eyemotion.�e result
shows that FDs calculated in � di�erent ROIs are associated

with each other, with � values less than �.��. However, as
we can see from Figure �, a smaller ROI produces a lower
FD in general, because fewer vessels are taken into account.
�erefore, this study implies that a 
xed region of interest is
necessary in order to obtain comparable FD values.

In the 
�h study, we investigated the in	uence of the
accuracy of vessel segmentation methods on the fractal
measurements. Most vessel segmentation methods need a
threshold value to convert the vessel probability map into
a vessel binary map. �is threshold value also a�ects the
accuracy of the segmentation. In this study, we computed the
FD on vessel binary segmentations using di�erent thresholds
(MCC ranged from ��% to ��%). As expected, the computed
FD values become closer to the ones obtained from manual
segmentations when segmentation accuracies increase (with
respect to manual segmentation). Moreover, the variation
decreases faster when the segmentation accuracy is higher
than ��%. �erefore, a proper thresholding technique is
required to obtain a stable FD measurement.

Finally, in the sixth study, we compared the FDs cal-
culated on images acquired by di�erent fundus cameras.
�e result shows that the variations of FD are signi
cant
when di�erent cameras are used. �ese 
ve cameras use
di�erent 	ashing systems resulting in di�erent contrast and
tissue re	ections. Finally, the image sizes and resolutions are
di�erent, so the details of retina captured by these cameras
are also not identical. Moreover, some cameras were easier
to operate (e.g., via autofocus), resulting in more consistent
image quality. �e comparison result shows that, in general,
the FD of the same subject using di�erent cameras has
signi
cant di�erences. �e di�erences in terms of image
properties cause signi
cant variations as we see from the
results.

Besides the variation between cameras, we also inves-
tigated the repeatability of the FD measurement on the
same subject using the same camera. �e slight di�erences
among multiple acquisitions on the same patient with the
same camera are caused by variation in image quality,
for example, caused by eye motions (blurry image), weak
	ashing/illumination, or incorrect focusing.�e results show
that the � cameras generally produce �.��% variation between
multiple photographs.

6. Conclusion

Our experiments suggest that the classic fractal dimensions
must be calculated under very strict conditions, and tiny
changes on the images and vessel segmentation can cause
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(a) (b)

F����� ��: �e vessel annotations of � human observers. �e major di�erence is the missing of small vessels, as indicated by the red circles;
(a) Observer � (�� = 1.468) and (b) Observer � (�� = 1.450).

signi
cant variations. �e vessel segmentation method must
be very carefully chosen, the region of interest in all images
must be equally set for the FD calculation, and an optimal
threshold value for creating a high accuracy binary vessel
segmentation map is required. For future studies, FD�s high
sensitivity to the segmentation methods and thresholding
techniques will be addressed by measuring FD directly from
the vessel probability maps.
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