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Summary

This report contains the results of a final project performed by K.
Pronk between August 1987 and March 1988 in the group Measurement and
Control of the Department of Electrical Engineering of the Eindhoven
University of Technology.

The task to perform was to find a simulation model of a laboratory
model of a floating platform. The floating platform is a practical
example of a multi-input-multi-output (MIMO) system. The simulation
model will be used to design a controller to stabilize the platform.

To determine a model of the platform several software tools were used
based upon output error methods. Final results were obtained from the
programs DIRECTO (Oudbier,1986l which estimates a MPSSM-model and
LS SSM (Veltmeyer,1985l which determines a state space model. The
simulations using the DIRECTO-output were improved after
implementation of an explicit offset estimator in the program
DIRECTO. Finally both simulations performed very weIl and very small
output errors were obtained.

Looking more closely to the structure of the model it is possible to
recognize the structure of the process in the model. The process is
very symmetrie: it consists of three almost identical subsystems that
each include one float. Each input mainly excites one of those
subsystems which is confirmed by the fact that the estimated input
matrix of the model is block diagonal dominant. The symmetry of the
system can be recognized in the structure of the system matrix as weIl.
Each float causes a single pole pair but, because the subsystems are
almost identical, it is very difficult to distinguish all the states
if not all inputs are used. This causes a too low order estimation in
the single-input-multi-output (SIMO) experiment.

Both the good simulation results and the structure of the model that
reflects the structure of the actual process give good confidence in
the accuracy of the model obtained.
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IntrQductiQn

This repQrt presents the results Qf a final prQject fQr Qbtainment Qf
the masters degree at the Department Qf Electrical Engineering Qf
the Eindhoven University of Technology.
The wQrk was carried Qut at the group Measurement and Control. In this
grQup a main research subject is System Identification and Parameter
EstimatiQn, especially of multi-input-multi-output (MIMO) systems.
As a result of the research effQrts in this field several model
representations have been fQrmulated. During the last years
several software-packages were developed to estimate models and
model-Qrder Qf MIMO-systems.

In this repQrt the identificatiQn of such a MIMO-system, a floating
platform, is described. Several program packages were used fQr this
purpQse and, if necessary, improved. This repQrt cQntains a complete
description of the data collection, the data preprocessing
(filtering) and the data prQcessing i.e. the identificatiQn of the
prQcess. Based Qn the data collected in the experiments a mathematical
model of the prQcess is estimated. Finally the structure Qf the mQdel
is analysed and compared wi th physical knQwledge Qf the real prQcess.

This report and the estimation results could not have
been accomplished without the help of the members of the
grQup Measurement and Control. I want to thank everybQdy that has
been helpfull to me during my final project. In particular I want tQ
thank dr.ir. A.A.H. Damen, dr.ir. A.J.W. van den BQom and ing.
J.W.J.J. Beckers.
Finally I thank Marina RQijakkers fQr assisting me in making the plots
for this repQrt.
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~ Description Q!~ process

~ General system description

The system of our concern is a laboratory model of a platform. The
pl3.t .,c"orm is f.l '1ating on three floats. The position of the floats vlith
respect to the platform can be controlled using three servomotors. A
schematic drawing of the system is given in Fig.l.

tub
with water

Fig.1 The floating platform.

measurement
equipment

By moving the floats vertically we try to eliminate any disturbances
of the balance of the platform. To perform this task only two control
inputs should be sufficient. The third control input is only strictly
necessary if we want to choose a certain height.
In reality the main causes of disturbance could be mass-displacement,
waves and wind. To eliminate the effects of these disturbances we use a
personal computer to determine the control signals JJ. c for the
servomotors.
As outputs we measure the heights of three points of the platform with
respect to a fixed reference plane using roller-potentiometers as
described by Dirks [Dirks,1986]. The output voltage of the roller­
potentiometer is linearly related to the length of the string which is
connected to the platform and to the bottem of the bassin . Neglecting
for the moment the influence of translation and rotation of the
platform in the horizantal plane the length of the string will be the
height of the platform near the measure-point. In par.l.3. we will
consider the effects of the movements in the horizontal plane as weIl
as other drawbacks of the measurement equipment.
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The output signals :i.. are used as input signals for the controller when
the system is operated in closed-loop configuration. A block-diagram
of both the open-loop configuration and the closed-loop configuration
is given in Fig.2a/b.

rbanee

ht

~ ~istu

Y c Y
IBM PC servo platform

lJ heig

~

~ PC memory potmeter

Fig.2a. Bloek-diagram of the open-loop eonfiguration.

ancelJ ~isturb

:i.. Y c Y
IBM PC serve platform ~

height
potmeter

Fig.2b. Bloek-diagram of the elosed-loop eonfiguration.

Clearly the system is a MIMO-system with three inputs ( the input
signals of the servomotors) and three outputs ( the three height
measurements) .
To design a proper controller it is necessary to obtain a good
mathematical model of the proeess. This model is obtained by
stochastie identification methods. For identification purposes we
use the open-loop eonfiguration.
Before starting the stoehastic analysis however we want to gain some
more insight in the expeeted behaviour of the system. For this reason
we start by determining a rough estimation of the model based on
physieal knowIedge. The strueture of this theoretieal model (e. g. the
order of the system and the eigenvalues) will be used for model
validation.
To be able to analyse the system theoretieally we use the syrnrnetry of
the system. We distinguish three single-input-single-output (SISO)
subsystems as deseribed in the next paragraph and suppose that the
behaviour of every subsystem will be approximately equal.
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~ A SISQ-subsystem

The SISO-subsystem is schematically drawn in Fig. 3. In this subsystem
there is only one control input and only one height measurement.

u h

float

///1111/// / ï///////////// /

Fig.3. A SISQ-subsystem.

The block-diagram of Fig.2. is still valid for this subsystem. An
important insight into the behaviour of the total system can be
obtained by studying the subsystem. Inthis subsystem there exist
four important forces: the gravitation, the upward force of the water,
a damping force and the inertia force. When no disturbances exist a
balance between these forces will be reached determining the height of
the platform with respect to the bottom of the bassin (h) and with
respect to the bottom of the float (u).
The signal u is temporarily regarded as the input-signal and the
signal h is the output signal.
To determine the transfer function between u and h we first consider
the direction and the magnitude of the mentioned forces:

Fz: The gravitation.
This force is always directed downwards.
lts magnitude is Mass * Gravitation acceleration.
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Fu: The upward force.
This force is always directed upwards.
lts magnitude is k (h-u) provided that the float is not completely
irnrnersed in the water and not on the bottem of the bassin, k being
a parameter dependent on the size of the float.

Fd: The damping force.
This force only exists when the float is moving. In that case the
direction of the force is always opposite to the direction of the
movement.
lts magnitude is D( h- u), D being a parameter.

Fi: The inertia force.
This force only exists when the movement of the mass M is
accelerating (positive or negative) . In this case the direction
of the force is opposite to the direction of the acceleration.
The magnitude of the force is Mass * h.

Next we determine the condition for balance between these forces. In
this case the sum of the forces must be zero. Using the forces and their
directions as described we obtain the following differential
equation:

Mh' + Dh + kh = Du + ku - Mg ( 1 )

As mentioned in paragraph 1.1 a mass-displacement, and thus a change
of effective mass of one subsystem, is considered to be a disturbance.
To determine the transferfuction between input and output however the
mass M is being supposed a constant. This minor simplification does
not cause significant inadequacies ( Daanen, 1985 J.
Performing Laplace-transforrnation we obtain the following equivalent
relation in the s-dornain:

h(s) =
Ds + k

------- * u(s)
Ms 2 + Ds + k

( 2 )

Finally we consider the input signal. Until now the distance between
the platform and the bottom of the float is used as input signal. The
input signalof the complete subsystern is in fact the input voltage of
the servomotor. To determine the transferfunction between the input
voltage and the height we have to consider the transferfunction
between the input voltage and the distance u. This transferfunction
was deterrnined using a step-function as input signal u c and
measuring u. The result of this measurement is plotted in Fig.4.
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I u

I
I

I
I

I
!
I
I

I
I
I t

Fig.4. Experiment to determine the transferfunction of the
servomotor.

It was concluded that the servomotor can be modelled best by a pure
integrator. This integrator is put in cascade with the
transferfunction of equation ( 2 ). The simplified block-diagram of
the subsystem now becomes:

• T (s)

· ·
u c. K u Ds + k · Y

) -
· s Ms 2 + Ds + k ·
· ·

Fig.5. Block-diagram of a SISO-subsystem.

The total transferfunction between input and output is:

T (s) =
K ( Ds + k )

s ( Ms 2 + Ds + k
3

In the next paragraph we will have a closer look at the output signaIs.
Several drawbacks of the measurement equipment used until now will be
discussed and an alternative will be briefly mentioned.
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~~ height-measurements

As mentioned before a lot of time has been devoted by other students
and their coaches to solve the measurement-problem in a cheap way. The
setting of the problem looks quite simpIe: determine the absolute
height of ( three points of) the platform ~ith respect to a fixed
reference plane, in this case the bottom of the bas in. Several
techniques have been discussed. Until now best proposal of an
algorithm to determine the height was introduced by Dirks [ Dirks,
1986] .
To determine the three output-signa1s h he used six distance­
measurements. The distance of six points with respect to fixed
reference points was measured using roller potentiometers. In this
way he obtained six independent measurement signaIs. The floating
platform has six degrees of freedom ( 3 trans1ations and 3 rotations)
so six measurement signals are sufficient. Dirks developed an
algorithm to determine the three heights from the six measurement
signaIs.
In practice however the implementation of this algorithm proves to be
too slow to determine the heights in one sample moment. This will be a
problem when the algorithm is used to determine the control signaIs. A
second problem is that the algorithm proves to be not very reliable.
Very often the algorithm does not converge. This, of course, also
affects the identification because no proper height measurements can
be calculated.
To cope with this problem we want to measure the height without
interferingly measuring rotation and translation of the platform at
the same time. Clearly using the measurements as sketched in Fig.1.
this condition can not be met. A rotation or a translation of the
platform will change the length of the string and will be regarded as a
change in height, cf. Fig.6.

"': =--:..::::==t====-==t======

Y -d

h = d. cosa

Fig. 6. Misfit between the height and the length of the string.

From Fig.6. it can be concluded that rotation or translation of the
platform will add a non-linear drift component to the output signaIs.
Another serious drawback of the measurement equipment recently used
is the fact that the elastic wires affect the behaviour of the system.
They have a certain influence on the dampingsconstant 0 and they add a
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springconstant.
At the moment new measurement equipment has been built. This equipment
uses conduction measurements between two metal plates connected to
the platform to determine the height of the platform. The new
measurement equipment is not sensitive for translation or rotation of
the platform. Because this new equipment is implemented only very
recently and is not yet tested all the results in this report were
obtained using the roll~r potentiometers as sketched in Fig.l. A
drawback for open-loop identification using the new measurement
equipment seems to be that this equipment is only linear in a limited
working area which is not large enough to obtain samplestrings of
sufficient length.
Because the new measurement equipment does no longer use the wires
connected to the bottem is will be necessary to obtain a new model.
This model will represent the system dynamics better ( assuming the
measurement equipment will prove to perform weIl during testing)
because no longer the dynamics of the platform are influenced by the
measurements or rotation and translation.
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~ MQdel representatiQos

~ IntrQductiQo

This chapter will briefly deal with the mQdel representatiQns used
during the identificatiQn Qf the flQating platfQrm.
First tWQ generally knQwn mQdel representatiQns are described: The
state space mQdel in Qbservability canQnical fQrm and the MarkQv
parameters.
Next a system descriptiQn will be given that is less well-knQwn. The
descriptiQn is based Qn a start sequence Qf MarkQv parameters and the
minimal PQlynQmial cQefficients. This representatiQn is especially
attractive because nQ structure indices are needed apart frQm the
degree Qf the minimal PQlynQmial.
At the end Qf this chapter the relatiQns between the mQdel
representatiQns are discussed and algQrithms tQ CQnvert the
representatiQns intQ each Qther are briefly mentiQned.
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~ State space mQdel

The state space mQdel is based Qn the definitiQn Qf several states
between input and output of the system. A state is a memory element ( an
integrator or a delay) whose contents are stored in the state-vector
Ä. From this definition i t is clear that the minimum nurnber of states (
the minimum dimension of the state space) equals the order of the
system. A state space model describes the relationships between
inputs, outputs and states according to the following convention:

{

X(k+l) __=

~ (k)

A X(k) + B l1(k)

C Ä(k) + D l1(k) + OFF
( 4 )

The model is characterized by the matrices [A,B,C,D,OFF] which is
called a realisation. This is not a unique representationi for a
particular cornbination of input- and output signals an infinite
nurnber of vectors Ä can be found leading to different realisations for
the same process:
If [A,B,C,D,OFF] is a realisation of a particular process, then for
each non-singular matrix T the realisation [T -lAT, T - 3s, CT, D, OFF]
results in the same input/output behaviour. This means that for using
algorithms for identification we have to choose one particular type of
the set of state space models to guarantee unique results. Some weIl
known ( pseudo) unique forms are the Jordan canonical form, which will
be discussed later, and the pseudo-canonical observability form
[Damen, 1986].
BQth realisations are attractive for their clear relations between
inputs and/or outputs and the states. Moreover they contain a small
nurnber of parameters. For multi-output systems the observability form
is unique but a nurnber of structure indices have to be estimated. In
the pseudo canonical or overlapping form most systems can be
represented in a fixed structure, so that in this representation the
structural indices are not estimated based on data but fixed
beforehand. Only in rare cases the system will not fit in the modelset .



13

~ MarkQY parameters

The MarkQv-parameter mQdel is based Qn the impulse respQnse Qf the
system. When the impulse-resPQnse Qf a causal SISO-system is called
m(k) then the system respQnse fQr a general input-signal u (k) can be
written as:

y(k) = ! m(j).u(k-j)
j=o

( 5 )

This descriptiQn is easily extended tQ the MIMO-case:

:i(k) = ! M(j) .y(k-j)
j =0

( 6 )

{M(j) } j =0 ~is a sequence Qf matrices, cal led the MarkQv parameters,
that provides the various impulse responses. The sequence of MarkQv­
parameters consists of q.p sequences of impulse responses, where q is
the number of outputs and p the number of inputs.
A MarkQv-parameter mQdel is an input-output model: The Qutput
variables are written explicitly in terms of the input variables . This
mQdel is unique.
AnQther great advantage during identification is that the impulse
respQnse model is linear in the parameters. The number of parameters
hQwever is infinite.
This remark requires some discussion: In case Qf finite-dimensional
systems the number of Markov parameters can be reduced at the CQst of
the linearity in the parameters. This will be dealt with in the next
paragraph.
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~ Minimal polynomial start seguence Markov parameters (MPSSMl

In this paragraph we have a closer look at the Markov sequence as
described in the last paragraph. If we consider a first order SISO
process we know that the impulse response obeys the following
relation:

m(k) = a.m(k-1) k > 1

This relation can easily be extended for finite-dimensional higher
order MIMO-processes:

M(k) = f a(j) .M(k-j)
j =1

k > r ( 7 )

This means that a finite dimensional system is completely determined
by M(O), {a(i),M(i)} 1"'1 r. The coefficients a(i) are cal led the
minimal polynomial coefficients and the set {M(i),i=O,r} is a start
sequence of Markov-parameters. Together they form the MPSSM
description of a process.
r is the degree of the minimal polynomial. If there are no poles with
geometric multiplicity more than one this r equals the n indicating
the dimension of the minimal state space realisation. In the sequel we
will put r=n and mainly use n.
Clearly the big advantage of this description is the small amount of
parameters without being restricted to a particular structure. A
disadvantage is that the linearity in the parameters is lost in this
representation.
More information about MPSSM-models can be found in [Backx, 1987] and
[Oudbier,1986]
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~ Relationships between ~ model representations

The relation between the state space model and the impulse response
model can be shown in a simple way by combining both equations of Equ. (
4 ) :

~(k) = k J - 1 k
~ C.A B ~(k-j) + D ~(k) + C.A Ä(O) + OFF

j =1
( 8 )

from which it follows

{

k-l
C.A B

M(k) = D

neglecting initial conditions):

k > 0

k = 0
( .9 )

To determine a state space realisation of a given impulse response
model is somewhat more complicated. Note that again we can choose one
particular realisation. The algorithm to calculate such a realisation
is cal led the Ho-Kalman algorithm:

1. Construct a Hankel matrix H:

M(l) M(2) • M(n)

M (2)
H = =

CB

CAB

CAB •
n-l

CA B

lM (n)

= r. ~

• M(2n-l)
n-l

CA B
2n-2

CA B

r = ~=[B B.A B.A n-l ]

r is called the observability matrix.
A is called the controllability matrix.
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2. Shift the Hankel matrix one column to the left:

...
H =

M (2)

M (3)

M(n+1)

M(n+1) . . M(2n)

...
Note that the matrix H is equal to the product of the observability
matrix r, the system matrix A and the controllability matrix ~

...
H = r.A. A

where + indicates the peudo inverse.
supposing rand A have full rank and M is long enough.

3. Decompose H using singular value decornposition:

H = W. 1:. V T

Wand V being orthonorrnal matrices and 1: = diag ( (f l' • 0.' (f,.), (f i being
the singular values of H in descending order.

4. Choose r = W. r 1/2 and A = 1: 1/2. V T (symmetrie realisation)
The conditions for 1: are now satisfied.

5. Calculate A,B,C using A = r+.R. A+ = 1:- 1 / 2.W T. R. V • r- 1 / 2

Note that D = M(O) .

Next we consider the rather straight forward relationships between the
Markov parameters and the MPSSM model.
When given a MPSSM-model the Markov parameters can be calculated as
follows:

M (k) if k ~ n

M(k) =
f a(i) .M(k-i)

i =1
k > n

( 10 )
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When given a set of Markov parameters the MPSSM-model can be
calculated as below:

= M (k)

= G +.m

if k :5 n
( 11 )

.a = - [ a (1), •. , a (n) ]

G =

vec (M 1) vec (M 2)
vec (M 2)

vec (M 11 - r> •

. . . vec (M r>
. vec (M r +1)

. vec (M 11-1)

m = [ vec (M r +1) T vec (M r + 2) T • • vec (M ~ T ]

vec(M i ) = [M 11 (i), M 21 (i), .. , Mql~i), M12(i), .. ,
.. ,M q2 (i), .. , Mqp(i) ]

The relationships between the state space model and the MPSSM model
can be derived using combinations of the techniques mentioned above.
To construct a state space model from a MPSSM model first convert the
MPSSM model into Markov parameters and then apply the Ho-Kalman
algorithm.
Generically a MPSSM model converted to state space will result in a
dimension of the state space n = r.min(p,q) as multiple poles are
allowed. To reduce the order we can use either of the following methods
[Backx,1987] :

We construct a matrix Hthat is as close as possible to the
Hankel matrix H in the Frobenius norm. The rank of H however is
r:

min.
rantH =r

-H - H Ir

-Using the matrix H in stead of H we apply the Ho-Kalman
algorithm as described above.
J;..n general, however, it can not be guaranteed that the matrix
H has the required Hankel structure. This means that, to be
able to apply the Ho-Kalman algorithm, we may be forced to
choose another matrix which is not the best in the Frobenius
ncc":n •

Another possibility is to reduce the order by deleting the
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least controllable and the least observable part of the state
space model. To solve this problem the state space model has
to be transformed into a balanced realisation after which the
mentioned parts can be removed. An algorithm to determine the
balanced realisation is given by Backx.

A state space model can be tranformed into a MP55M model: the start
sequence of Markov parameters can be determined as explained above,
the minimal polynomial coefficients are the coefficients of the
characteristic equation ( if no multiple poles occur):

det ( zI - A) = 0 ( 12 )
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~ ~ identificatiQn

~ IntrQductiQn

After having dealt with several mQdel representatiQns we are nQW ready
tQ start with the actual experiments tQ determine a mathematical mQdel
Qf the prQcess. The mathematical mQdel is calculated i~eratively

cQmparing during each iteratiQn the calculated output y with the
measured Qutput y. The errQr between the tWQ signals is calculated
accQrding tQ a predefined errQr criterion. In this case we use an
Qutput-errQr criteriQn because a cQmplete simulatiQn mQdel is needed
fQr the given control-method. The output error is calculated as the
sum of the squared residuals:

v 0 = ! e 2(k) = ~ (y (k) - .; (k)
t=o 0 t=o

2
( 13 )

where N is the nurnber of data pairs [~(k),~(k)J

This error is minimized using the sequence of prQgrams shown in Fig. 7 .

First the program ESMARK determines a finite Markov sequence based on
the measured data. The length of the Markov sequence to be determined
is entered by the user. In HANKEL a Hankel matrix wi th Markov
parameters is constructed as described in the Ho-Kalman algorithrn.
The nurnber of singular values of this matrix not equal to zero is equal
tQ the order Qf the process (when no noise is present) . Examining the
singular values of the Hankel matrix the user enters the wanted
dimension of the reduced state space realisation. A symmetric
realisation is constructed using the Ho-Kalman algorithm for the
truncated Hankel matrix.
Optionally the MarkQv-parameters are reconstructed for the given
order using Equ. ( 9 ).
In the right hand branch these reconstructed Markov-parameters are
used by DIRSTA to determine the initial minimal polynomial
coefficiens needed in DlRECTO. Because we use the reconstructed
Markov sequence ( nurnber Qf independent MarkQv-parameters = n) for
this purpose Equ. ( 11 ) can be reduced to:

À T = H -1.mn mn = [ M(n+1),M(n+2), ••• ,M(2n) ] T

Finally DlRECTO will determine an MPSSM model using an output error
criterion. This is the last step of the error-minimisation. To compare
the results of DlRECTO with the results of LS SSM the order of the
MPSSM model has to be reduced to n using one of the methods given in
par.2.5.
At the moment however none of the mentioned algorithms to Qbtain a
reduced Qrder state space realisatiQn is implemented yet. Trying tQ
Qbtain a reduced realisatiQn using HANKEL again we find a nQn-Qptimal
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realisation according to an output error criterion. The simulation
results in this report are obtained generating a finite Markov string
( order = r, 1=100) from the MPSSM model which is used for simulation.
In the left hand branch the state space realisation obtained by HANKEL
is transformed by PCAN in a pseudo canonical observability form which
is used as initial model in LS SSM. LS SSM will estimate a state space
model in pseudo canonical observability form using an output error
criterion.
For more detailed information about the programs the reader is
referred to Appendix A and the manuals of LS SSM [Veltmeyer, 1985] and
DIRECTO [Oudbier, 1986] -

measured data

I

ESMARK

Finite Markov string

HANKEL

reduced order
state-space model

I reduced order
Markov parameters

PCAN

zeroth iteration
ps.can.obs. form

LS SSM

~

state space model
ps.can.obs. form

order = n

DIRSTA

zeroth iteration
min. pol. coeff.

DIRECTO

MPSSM
order = r.min(p,q)

Fig.? Programs used for identification.
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~~ cQ1lectiQn ~ preprQcessing

BefQre starting the experiments we have tQ make SQme chQices tQ
Qbtain data that are suitable fQr identificatiQn.
First Qf all the input signal shQuld be sufficiently rich tQ excite all
the states Qf the system. A prQper chQice fQr input signal is a unifQrm
white nQise sequence generated by the randQm-generatQr Qf TurbQ
Pascal used on IBM Qr Philips XT.
Next we have tQ chQQse the sample-frequency. To do SQ we determine the
rise time of the prQcess experimentally. When we chQQse the sample
time at least 5-15 times as small as the rise time the signal contains
enQugh informatiQn tQ estimate the dynamics of the prQcess [
Isermann, 1980] . For identification purposes Qften one samples with a
higher rate because then the preprocessing can be done with higher
reliability. In our case the rise time is apprQximately 1 s. Because
internal delays of about 0.02 s. are present it makes no sense to use
extreme high sample rates. We chose the sampletime tQ be 0.1 s.
Now we are ready to start the experiments. BefQre using the obtained
data for identification, hQwever, we first have to perform
prefiltering . The most common types of filtering are offset­
filtering, dead-time filtering ,scaling and low-pass filtering.
To remove the dead-time of the system we first have to have a good
estimation of the dead-time. This estimation is obtained using cross­
correlation techniques. In this case the delays are small with respect
tQ the sampletime, so we do not use dead-time filtering.
To perfQrm offset-filtering it is necessary to have a good estimation
of the offset. It is common use to remove the average value of the
signal. However in general the average value of a signal is not equal
to the offset of the signal. Especially in this case when the transfer
function contains a pure integrator it is clear that it is impossible
tQ remove the offset without removing a part of the information as
weIl. FQr this reason we do not use this type Qf offset-filtering.
Instead we use explicit offset identification. During the experiments
however proper identification turned out tQ be very difficult when the
output signals did not start from zero. For this reason the signal was
shifted so that ~ (0) became.Q. (i. e. performing offset-filtering using
~(O) as offset-vector). During identification { OFF - ~(O)} is
determined instead of the offset-vector.
Whether it is useful to perform low-pass filtering depends on the
signal-noise ratio. When this ratiQ is very good there is no need for
low-pass filtering and it could even remove a part of the information
in the data. In our case, however, the quantisation noise sometimes
became tOQ large. This causes small negative real quantisation poles.
Especially for DlRECTO these poles became problematic because DlRECTO
does not allow poles in the left half z-plane. In general the existence
of poles with a negative real part can be avoided by increasing the
sample-frequency. This will however not affect the 10catiQn of
quantisation poles { f q= 0.5 * f la.p>. For this reason we used lowpass
filtering. The low-pass filtering is performed by the following
operation:
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y' (k) = ( y(k-1) + y(k) + y(k+1) ) / 3

The cut-off frequency off this type of low-pass filtering is 1/3 *
f sam~ which is enough to remove the quantisation noise. Averaging
only two samples would increase the bandwidth but at the same time
introduce a phase shift that would cause an additional ( delay) pole.
The last type of preprocessing we want to consider is scaling the
signaIs. Both LS SSM and DIRECTO minimize the total absolute error
between the signals and the simulations so a signal containing verl
little energy is discriminated compared to a signal containing more
energy. This will result in larger relative errors in the low-power
signaIs. By scaling we can avoid this discrimination at the cost of a
higher absolute error. Because the absolute error is most important
for control tasks we decided not to scale the signaIs.

Next we will use some special knowledge of the process to make the data
more suited for identifiction. First of all we know that a pure
integrator is present in the system. A pure integrator is very
difficult to estimate because of convergence-problems for allmost
unstable modes. To avoid problems during identifiaction we integrate
the input signal before starting the identification. During the
identification the integrated input signal is regarded as the input
signal. After identification an additional integrator has to be put in
cascade with the calculated model to obtain the complete model cf.
Fig.8.
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U c -;1""'---_J------11 u 1__m~_~;_i_I ; ) y

Fig.8. Dividing the model into two bloeks before
identification.

Finally we have to perform a last trans format ion of the output data to
be able to compare the results with the theoretical results in Chapter
1. In the theoretical model the relation between the input signal u and
the height of the float h is determined. The measured output signals
however are not the heights of the floats but the heights inbetween two
floats ( cf. Fig.1). It can easily be seen that the heights of the
floats can be calculated as below:
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h = E . ~ ~

[
1.0 -1. 0 1.0

E = 1.0 1.0 -1. 0
-1. 0 1.0 1.0

being the measured output

]
This transformation should be performed before identification
because it affects the calculation of the output error; the rotation
causes a different weighting of the residues:

v =o
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~~ SISO-experiment

After having discussed the general structure of the process based on
physical laws, having dealt briefly with several types of black box
models and having considered the need of proper filtering before
identification we now start the actual parameter estimation of the
platform.
We start just considering a SISO-subsystem as shown in Fig.9.:

~.--CD
t----.,U7_...... ...... -f;JJJfi~-

Fig.9. The SISO-experiment.

In this case only one servomotor is used and the height of only one
float is measured. The other floats are taken out of the water
temporarily and are fixed to the bassin. Note that in this
configuration the system has only one degree of freedom and the
height-measurement is no longer disturbed by translation or rotation
of the platform.
The uniform zero-mean white noise input signal as described in
par. 3.2. is generated by the IBM-computer and applied to the
servomotor.
The program that handles the input-generation and data collection and
storage is written in Turbo Pascal. The program for the SISO­
configuration is cal led MEETSISO.PAS. The output data collected by
MEETSISO are pictured in Fig.10.
Horizontally the time in samplemoments is plotted. The sampletime is
0.1 s. Vertically the output samples are plotted in digital
representation. This representation is obtained converting the
output voltage of the potentiometers (-5V,5V) to an eight bit digital
reprentation (0-256) and subtracting 128 to obtain a zero on output
when the potentiometer generates OV. In all the following plots
showing output measurements or simulations the same unities are used.
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Fig.l0. The output of the SISO-experiment.

The data pictured in Fig.10 will now be filtered and transformed as
described in paragraph 3.2. After preprocessing we obtain the red line
plotted in Fig.12. The filtered sequence is used to determine a
mathematical model of the process. A number of programs was used
according to the flow-diagram pictured in Fig.? Intermediate and
final results are discussed in this paragraph.
To determine an initial model we first estimate a sequence of Markov
parameters using the program ESMARK. The wanted length of the Markov­
sequence can be supplied by the user . We choose the length 1=20. The
amplitude of the 20th Markov parameter is more than 95% reduced
compared to the first Markov parameters so the greatest part of the
signal power is included in the first 20 Markov parameters. A
simulation based on the estimated Markov-parameters is pictured in
Fig .12 ( blue line). Indeed the greatest part of the information is
included in the model.
According to the Ho-Kalman algorithm We can construct a state space
model using the finite Markov sequence. First we determine the order
of the system considering the singular values of the Hankel-matrix
plotted in Fig.11.
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Fig.ll. Singular values of the Hankel matrix.

A clear edge can be detected near the third singular value. This
suggests that the magnitude of the third singular value has reached
the noise level. When no noise is present this singular value would
become zero if there are no more independent Markov parameters which
means that the order of the system is reached. However when the signal
is corrupted by noise the singular values will never become zero.
Instead the noise level can be used to determine the order of the
process. When a singular value enters the 90%-bound of the noise level
we decide we can not distinguish more independent Markov-parameters.
As an illustration in this plot also the singular values of the Hankel
matrix before low pass filtering are plotted. We see that the
quantisation noise increases the estimated model order. Moreover the
magnitude of each singular value is increased with the square root of
the quantisation noise power.
Rough calculations were performed to determine the noise level.
Unfortunately the calculations did not match with the noise level
indicated by the edge in Fig .11. Because the calculations are not very

.accurate we define from Fig .11 the order of the system ( = the nurnber of
independent Markov-parameters) by two. The misfit of the noise level
calculations and the results in Fig .11 may be caused by the fact that
calculation of the noise level is based on assumptions (uncorrelated
noise samples in Hankel matrix) which are not valid in this situation.
To determine a second order state space realisation the program HANKEL
was used. This program constructs a Hankel matrix according to the Ho­
Kalman algori thrn and calculates a syrnrnetrical realisation. Using this
state space realisation a new simulation was performed the results of
which are plotted in Fig.13 ( blue line).
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Fig.!2. SISO-simulation using ESMARK output.

Fig.!3. SISO-simulation using HANKEL output.
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Comparing the simulation of Fig.13 with the simulation of Fig.11 we
see that an important part of the information is lost during the order
reduction. This is caused by the model reduction of the Markov string
which, of course, does not give the best possiblE; state space
realisation in output error criterion.
The program HANKEL also reconstructs the estimated Markov-sequence
for a second order realisation. The reconstructed Markov-sequence is
stored too.

The results of HANKEL are used as initial estimations for the programs
LS SSM and DIRECTO . The state-space realisation produced by HANKEL
is-transformed in a pseudo-canonical observability form by PCAN and
used for LS SSM. A sequence of minimal polynomial coefficients is
extracted from the reconstructed Markov-parameters and entered in
DIRECTO.
The prgram LS SSM determines a state space model using equation error,
output erroror innovation error criterions . In this case we need an
output-error model because we want to design a controller based on the
simulation model. The state space model obtained by LS SSM is given in
Appendix C-l. -
The program DIRECTO determines a set of minimal polynomial
coefficients and the start sequence of the Markov parameters. The
parameters are estimated using an output error criterion. The
obtained MPSSM-model is given in Appendix C-2.

Both programs should give better simulation results than the
simulation based on the output of HANKEL because HANKEL estimates a
model using the Hankel criterion which is not the same as the output
error criterion. Evaluating the simulations with an output error
criterion of course the results of DIRECTO and LS SSM should be
better. Moreover DIRECTO should be superiour to LS SSM because the
model set of LS SSM is a part of the modelset of DIRECTO (which is not
restricted by-given structure indices).
The simulaton results of LS SSM and DIRECTO are shown in Fig .14. The
red lines indicate the measured signals, the blue lines are the
simulations. We irn.mediately conclude that the both simualtions
perform better than the simulations using HANKEL-output. To compare
the results of LS SSM and DIRECTO we need to have a closer look at the
absolute errors between the simulations and the measured signals:

LS SSM:

v 0 = O.2830673E+Ol

DIRECTO:

v 0 = O.2685179E+01



Fig.14a. SISO-simulation using LS SSM output.
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Fig.14b. SISO-simulation using DlmECTO output.
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The output errors given above are calculated using the samples 15 up to
150. The first 15 samples are used by DIRECTO to determine the initial
state. This initial state is not a part of the DIRECTO-output so it can
not be used for simulation. For this reason the first part of the
DIRECTO-simulation is clearly worse than the first part of the LS SSM
simulation. After this first part however the DIRECTO-simulation
performs better as was expected.
To obtain proper results with DIRECTO an explicit offset-estimator
was implemented. Prior to the implementation of the offset-estimation
the errors in DIRECTO-simulations were larger than the errors in
LS SSM simulations.
The comparatively large errors between measured outputs and
simulations are caused by the bad measurement conditions during the
SISO experiment. These conditions will be improved before starting
the SIMO and MIMO experiments.
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~ ~ SIMO-experiment

Next we want to extend the identification for the single-input-multi­
output (SIMO) case. In this experiment the platform is really floating
in the water. Only one servomotor was excited and all three heights
were measured. As mentioned the height measurements will be troubled
by translation and rotation of the platform because sofar it is not
feasible to measure absolute heights.
The excitation of the input-signal and the collection of the data
were performed by the program MEETSIMO on IBM-computer. The collected
data are plotted in Fig.IS:
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Fig.IS. The outputs of the SIMO-experiment.

The behaviour of two outputs is almost similar and the behaviour of the
third output is roughly speaking inverse. This can easily be explained
when we consider the location of the measurement-points and remember
that only one input was used cf. Fig.16.
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Fig.16. The location of the excitation and measurement
points.

When float 3 is excited the platform will turn more or less over the x­
axis shown in Fig.16 because of the inertia force. This causes the
output-signals 1 and 3 to be almost equal and output 2 almost inverse.
The symmetry, however, is not perfect mainly because of the crane on
the platform.
Similarly to the SISO-experiment a Markov-sequence is estimated based
on the fil tered data. Again i t was proved by simulation that
truncation of the Markov string after 20 samples does not cause any
signi ficant loss of information. To determine the order of the system
the singular values of the Hankel matrix are examined:

sgv
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Fig.1? Singular values of the Rankel matrix.

In this case again the most significant edge occurs at the third
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singular value ( indicating a second order system). This is rather
surprising because, when we assume that every float ( every SISO­
subsystem) contains two states, the order of the SIMO-system should be
six unless several states are numerically identical. This situation
can occur when several poles of the system are (almost) identical. In
paragraph 4.2 we will discuss the pole-locations of the model and
consider this phenomena more thoroughly. For the moment we just create
a second order realisation as indicated by the singlar values of the
Rankel matrix.
Now we want to use the second order realisation as an initial model for
identification with LS SSM and DIRECTO. To obtain an initial model for
DIRECTO again the Markov parameters are reconstructed and minimal
polynomial coefficients are calculated using DIRSTA. For LS SSM,
however, we need an initial state space model in the observability
form. Because it is impossible to create a second order observability
realisation of a system with three outputs we use a third order
realisation as initial model for LS SSM.
The model obtained by LS SSM is given in Appendix C-3.
The model obtained using-DIRECTO is given in Appendix C-4.

Both models were used for simulation. The simulated signals and the
measured signals are plotted in Fig.18. The output errors are given
below:

LS SSM: DIRECTO:

VOl =' 0.2600305E+Ol VOl == 0.3583565E+Ol
V 02 == 0.2705085E+Ol V 02 == 0.2705748E+Ol
V 03 = 0.2003381E+Ol V 03 = 0.2161680E+Ol

V o = 0.7309200E+Ol V o = 0.8450993E+Ol

whe~e V oi is the absolute error in the i-th signal.
It strikes that the output error in the DIRECTO-simulation is larger
than the error in the LS SSM simulation. This is caused by the fact
that the order n of the state space realisation is higher than the rank
of the minimal polynomial determined by DIRECTO. Because of this we
can not compare the results of LS SSM and DIRECTO unless we reduce the
order of the state space realisation obtained by LS SSM. In general,
however, the reduced state space realisation will not be an optimal
realisation with respect to an output error criterion. This is an
important disadvantage of the estimation of a state space model in the
observability form as performed by LS SSM.
Considering the simulations we see that-during the first 200 samples
the performance of the simulations is about equally good and the
output-error is very smalle During the last part of the simulation,
however, a drift signal becomes apparent that could not be fitted by
either of the identification programs. This drift signal may be caused
by translation and/or rotation of the platform disturbing the height­
measurements. For this reason we think this model can be improved by
implementing better measurement methods.
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Fig.18a. SIMO-simulation using LS SSM output.
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Fig.18b. SIMO-simulation using DIRECTO output.
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~~ MIMO-experiment

Finally we will consider the complete MIMO-process. In this
configuration three independent noise sequences are applied to the
servomotors. All three input signals are stored together with the
measured output signaIs. The generation of the inputsignals and the
collection of the data are performed by the progran MEETMIMO on IBM
computer. The measured outputs are plotted in Fig.19.
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Fig.19. The outputs of the MIMO-experiment.

As before the input signals are filtered and transformed before using
them for identification purposes.
First a fini te Markov-string is estimated ( 1=20) using ESMARK. AD
estimation of the order of the system is obtained considering the
singular values of the Hankel matrix produced by HANKEL:
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Fig.20. Singular values of the Hankel matrix.
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In this case it is impossible to detect a clear edge. Also th
calculations of the noise level seem to be not very reliable becaus
they would resul t in an extreme high system order. Using our knowledg
of the order of the system as described in par.3.4. and trying t
approximate Fig.20 with two straight lines we decide to try a sixt
order realisation.
Using HANKEL a sixth order Markov string and state space realisatio
are constructed which are used to calculate initial models for LS SS
and DIRECTO.
The final results of DIRECTO and LS SSM are given in Appendices C-5 an
C-6 -

These results are used for simulation. The simulation results ar
plotted in Fig.21a/b. The output errors are given below:

LS SSM:

VOl = O.1905310E+Ol
V 02 = O.2289953E+Ol
V 03 = O.3245606E+Ol

V 0 = O. 7440869E+Ol

DIRECTO:

VOl = O.1665260E+Ol
V 02 = O.2047058E+Ol
V 03 = 0.2 993687E+Ol

V 0 = O.6706005E+Ol

Both simulations perform very weIl. Clearly a sixth order model i.
sufficient to contain most of the information. As expected the outpu'
error in the DIRECTO-simulation is smaller than the output error i:
the LS SSM simualtion.
At thispoint it may be useful to mention that all results presented i:
this report using DIRECTO were obtained after implementing a:
explicit offset estimator. Earlier results using DIRECTO output wer l

clearly worse than the results using LS SSM. After the implementatio:
of the offset estimator the simulation results using DIRECTO outpu
were at least as good as the simulations using LS SSM output
In Fig.22 we show the pole-zero plots of the transfermatrix usin,
LS SSM output. Considering the pole-zero cancellations we concludl
that the order of the diagonal elements is effectively two and thl
order of the off-diagonal elements four. This can be explainel
considering the process again. The diagonal elements represent thl
influence of an input on the nearest float. In this case only one floa1
and thus only two states are invloved. The off-diagonal element:
represent the cross-influences between two floats. Two floats arl
invloved so the effective order will be four.
In the next chapter we will look more closely to the structure of thE
model. We will try to show that the expected structure of the process
based on physical modelling) is reflected in the structure of thE
estimated model which would of course strengthen our confidence in thE
model.
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Fig.21a. MIMO-simulation using LS SSM output.

y,y

1211

•

11

-1211

L...__.......__....... ""--__.......__.....&.. .a..-__...I t

11 411 • 1211

Fig.21b. MIMO-simulation using DIRECTO output.
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Fig.22 Pole-zero plots of the MIMO-transfermatrix.
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~ MlMQ mQdel yalidatiQn

~ IntrQductiQn

As mentiQned befQre we will nQW cQnsider mQre clQsely the estimated
MIMO-mQdel. We will try tQ assign a physical meaning tQ the estimated
parameters. Especially we want tQ investigate whether it is PQssible
tQ distinguish the influence Qf the three different subsystems, i.e.
the three flQats, in the mQdel structure.
TQ investigate the structure we use tWQ different special state space
realisatiQns : the JQrdan canQnical fQrm and the Qbservability
canQnical fQrm with which we deal in paragraph 4.3 and 4.4
respectively. First Qf all hQwever we examine the PQle IQcatiQns Qf
the transfermatrix . In this paragraph we will try tQ explain the fact
that when Qnly Qne input is used (the SIMO situatiQn) the Qrder Qf the
system decreases until abQut tWQ, althQugh theQretically the Qrder Qf
the system ( sUPPQsing all states are cQupled) shQuld be the same as
the Qrder Qf the MIMO system.
After having cQnsidered the structure Qf the estimated mQdel we will
IQQk mQre clQsely at the integratiQnal part in the Qutputs. It has been
nQted that an impQrtant part of the total transferfunctiQn between
inputs and Qutputs is caused by the integratQr. This dQminancy may
cause a WQrse estimatiQn Qf the Qther states. TQ check this we will
separate the integratiQnal part and cQmpare the rest Qf the simulatiQn
with the measured signaIs.
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~~ IQcatiQns

In this paragraph we have a clQser IQQk at the pQles Qf the transfer
matrix. TQ CQnstruct the transfer matrix we use fQr example the
relatiQn between the state space mQdel and the MarkQv parameters as
described in chapter 2. FrQm this relatiQn it is easy tQ understand the
relatiQn between the state space mQdel and the transfer matrix mQdel:

H(z) = C. (zI-A) -l. B ( 14 )

The elements Qf H (z) are all ratiqs Qf pQlynomials and can be regarded
as the transfer fU:1ctions between input i and output j. The poles of
the transfer function are the zerQS of the characteristic equation:
det( zI - A) = 0
Considering the structure of the process which can be separated in
three almost identical subsystems we expect three almost identical
pole-pairs. This assumption is supported by the fact that the
estimated order of the SIMO-prQcess is only tWQ (cf. par. 3.4). This
phenQmena can be explained by the following simplified example:

Consider the blockdiagram given in Fig.23 :

1----+) Y 2

~ I!l--r-fn---...,.,.l----+) y 1

L::..:J

------I~ --+[TI----JL...[."l----(.U 2

U 1

Fig.23 Example system with two identical poles.

In the example system shown in Fig.23 there exist always tWQ
independent observable states although the poles Qf the system are
identical (assuming B nQn-singular and u l' U 2 independent) . However
when only one input is used the system can be reduced to the following
scheme:
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)I .~. I
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--.;r.L.\--~) Y 2

Fig.24 Example system using only one input.

When the initial states are negleeted we ean reduee the system of
Fig.24 to the following seheme:

U 1 --~) Y 1

Fig.25 Redueed exarnple system.

In this ease no longer two independent observable states exist beeause
we use only one input. In the same way the order of a system with three
identieal pole-pairs effeetively reduees to two when only one input is
used.

Returning to the platform we eonsider the poles of the initial model
obtained by HANKEL in the MIMO-experiment:

1 1 ,2 = 0.7438 ± j. 0.4887
1 3 ,4 = 0.6992 ± j. 0.5019
1 5 ,6 = 0.6737 ± j. 0.4129

Indeed we have three almost identieal polepairs. However, as shown in
the example, when three proper input signals are used ( sueh as
independent noise sequenees) it is possible to reeognize all six
separate (!) states.
Using only one input however ( filling the B-matrix with zeros for the
other inputs) the number of independent states ( = the number of
independent Markov parameters) effeetively reduees to two. We
eonelude that similar as in the example proeess the estimated low
order of the SIMO-proeess is eaused by the existenee of multiple poles
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and only one input.

Considering the final estimation results again the structure of the
process is clearly reflected in the estimated model. As expected after
physically modelling each float introduces a single polepair. The
three polepairs are very near to each other because the three
subsystems ( i.e. the floats) are almost identical.
The poles of the state space realisation estimated with LS_SSM are the
eigenvalues of the system-matrix:

1 1 ,2= 0.7012 ij. 0.5615
1 3 ,4 = 0.6343 ± j. 0.4510
1 5 ,6 = 0.5734 + j. 0.3347

The poles of the MPSSM model determined by DIRECTO are the roots of the
minimal polynomial:

1 1 ,2 = 0.6581 ± j. 0.6072
1 3 ,4 = O. 7574 ± j. 0.3509
1 5 ,6 = 0.5948 ± j. 0.4023

To find the symmetry as indicated by the poles it proved to be very
important to use proper preprocessing (cf. par.3.2.). When this is
left out the estimation routines will find other poles to cope with
e.g. quantisation noise, delay or offset. Especially when the real
system poles are very near to each other the estimators tend to use
only one or two polepairs to model the dynamics of the system.
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A Jordan state space realisation is often used to determine the
relations between states and inputs and outputs. In a pure Jordan form
the A-matrix is diagonal matrix and the diagonal elements are the
eigenvalues of the matrix ( the poles of the system) . In this case all
states are decoupled.
This realisation however can only be found in case of cyclic systems
having distinct eigenvalues. Cyclic systems are systems whose poles
have all geo, etric multiplicity one. The geometrie multiplicity of an
eigenvalue is the dimension of the eigenspace of that eigenvalue. In
case of non-cyclic systems and/or multiple eigenvalues some pseudo­
Jordan realisations are known in which a maximum of states is
decoupled.
In general the matrices of a Jordan form are complex because in general
the eigenvalues of a process are complex. Calculating with complex
matrices introduces a lot of numerical inaccuracy which can be avoided
using pseudo-Jordan realisations containing only real matrices. In
these realisation every complex polepair is cornbined in a so cal led
Jordan block which is realo
The several pseudo-Jordan realisations are dealt with in Appendix B.
At this moment it is not yet possible to gain more insight in the system
using Jordan canonical realisations because of the lack of proper
software. In future it might be useful to examine some pseudo-Jordan
realisations of the model.
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~ ~ observability pseudo canonical form,

The observability canonical form of a state space model is
chracterized by the fact that the outputs are ( some of ) the states,
The A-matrix has the following structure [Veltmeyer,1985]:

o 1

a 1 n'

1
1

o o

a 11

A =

a zn

o
o 1 I

1 I
1 I

I

o

a z 1

-------------------------------------
0 1 0

0 0 1 t
1 Uq

a qn a q 1 ~

+- U1 -+ +- Uz -+ I +- Uq -+

The structure indices U i are chosen based on physical knowledge and
reamin fixed during estimation, Only in very rare cases the system
will not be in the modelset due to an improper choice of the structure
indices, This is caused by the overlapping properties of the
observaLility form, The structure indices determine more or less the
relative importance of each output, In the case of the floating
platform we choose u 1 = Uz = U3 = 2 because we expect that each float has
equal relevance, We expect a sixth order system so x 1 = Y 1; x 3 = Y z; x 5 =
Y3' We now can draw the following block-diagram:
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U 1

U 2

u 3

rC;;]~lI
x 1

l'8 Xr~ ) y 1

rg~lI
X3l 'C] Xr8 ) y 2

rg~lI
X 5

l'CJ Xru ) y 3

Fig.26. Bloek diagram of the observability pseudo eanonieal
form if B is • bloek diagonal dominant·.

In the figure above we supposed that the direct influenee of an input
at the states of another float could be negleeted. This must beeome
elear in the structure of the B-matrix in whieh the eorresponding
elements indieated in Fig.26 should be dominant. We will eall such
type of B-matrix "bloek diagonal dominant".
Moreover the bloek diagonal elements ean be interpreted as the effects
of the inputs on the height and the velocity of the nearest float.
Beeause of the symmetry of the system we expeet the bloeks to be almost
identical.
The program LS SSM gives a observability eanonieal form on output. The
output of DIRECTO is eonverted into a Markov string using DIRSIM.
Using the Ho-Kalman algorithm implemented in the program HANKEL this
string is redueed to a state spaee realisation of order n whieh is
transformed into an observability form using PCAN. The state spaee
realisation obtained using HANKEL is not a very good realisation with
respect to an output error criterion. Better order reduetion methods
are described in par.2.5.
The results of LS SSM are given in Appendix C-5 and the observability
eanonieal realisation using DIRECTO-output is in Appendix C-7.
Beeause the state spaee realisation obtained using DIRECTO is not very
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reliable we will only eonsider the LS SSM output. For eonvenienee the
B-matrix is given below: -

B =
O.1975442E-Ol
O.6562917E-Ol
O.3220015E-Ol
O.1302678E-02
O.2927007E-02

-O.1695212E-Ol

-O.7823338E-02
-O.7921277E-02

O.3733199E-Ol
O.7023374E-Ol

-O.2044060E-Ol
-O.3332312E-02

O.5549456E-02
-O.1080546E-Ol

O.1759723E-Ol
-O.1391743E-Ol

O.3819956E-Ol
O.7593216E-Ol

This B-matrix is elearly bloek diagonal dominant. This means that the
effect of the first input on the states of the first float are dominant
eompared to the effects of the other inputs.
Moreover the diagonal bloeks are almost identieal as expeeted from the
symmetry of the system. The structure of the system as found from
physieal modelling and knowledge of the proeess is clearly reflected
in the model:

- We have three almost identical subsystems.

- Eaeh subsystem can be described by a seeond order model.

- Eaeh input has a dominant influence on the nearest float.

As mentioned in par. 3.2. the influenee of a pure integrator is a very
important part of the output signal. In the next paragraph we will
consider dominanee of the integrational term in the outputs more
elosely.
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~ ~ integratiQnal~~ ~ Qutputs

In this paragraph we will deal with the dQminance Qf the part in the
Qutput that is caused by the integratQr. Because Qf the dQminance Qf
this part Qne CQuld fear that the Qther system dynamics are estimated
less accurately. This assumptiQn is cQntradicted by the results
discussed in earl ier paragraphs Qf this chapter. Especially the
lQcatiQn Qf the PQles Qf the estimated mQdel give gQQd faith in the
accuracy Qf the mQdel.
The tQtal transferfunctiQn in the z-dQmain is given by:

H tot(z) =
1

1-1
H (z)

where H(z) is the estimated transferfunctiQn.
The residue Qf the transferfunctiQn in z=l is determined by
substituting z=l in ( z - 1) * H tot (z) . DQing this fQr every element Qf
the transfermatrix we Qbtain the fQllQwing gain matrix K:

K = [

O.2618915E+OO -O.3871934E-01 -O.5696259E-01
-O.3510186E-01 O.2671739E+OO -O.4850501E-01
-O.4971524E-01 -O.1751516E-01 O.2852709E+OO ]

DenQting the integratiQnal part in the Qutputs by Jl int it hQldS that:

Jl int = K . Y.

remernber y. is the integrated input vectQr)

Again we pQint Qut the syrnrnetry in the K-matrix. The diagQnal elements
are clearly dQminant which means that changing the distance between
the platfQrm and a flQat has a dQminant influence Qn the height Qf the
platfQrm near that flQat. The signs Qf the elements Qf K can be
explained cQnsidering Fig .16 again. Increasing the distance between
the platfQrm and the flQat will increase the height Qf the platfQrm
near that flQat which results in a PQsitive gain Qn the diagQnal.
Because Qf the turning axis as indicated in Fig .16 hQwever an increase
in distance between Qne flQat and the platfQrm will tempQrarily
decrease the height Qf the platfQrm near the Qther flQats which causes
negative Qff-diagQnal gain factQrs. Because Qf the syrnrnetry Qf the
system all the Qff-diagQnal elements and all the diagQnal elements
shQuld be almQst the same.
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The signal :i. int is now constructed and subtracted from the measure
signals and the simulated signaIs. The non-integrational parts of tl':
measured signals and the simulations are plotted in Fig. 27. Again th
red lines indicate the measured signals and the blue lines th
simulations. Indeed the greatest part of the signal power is include
in the integrational part!
The absolute and relative errors (= the absolute error devided by th
output signal power) between the non-integrational part of tl':
simulations and the non-integrational part of the measured signal
are given below:

VOl = O.1991722E+01
V 02 = O.2268321E+01
V 03 = O.3149016E+01

V reil = O. 3146 416E+ 00
V re12 = O.3740882E+OO
V re13 = O.2548395E+OO

Although the relative errors become rather large we conclude fre
Fig.27 that the maximum error between measured output and simulatie
is never larger than one or two bits. Because of this we decide tha
although the integrational part is dominant the non-integrationa
part is also weIl modelled.
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Fig.27. Non-integral parts of the respective outputs and simulations.
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2.... CQnclusiQns

GQQd simulatiQn results were Qbtained with bQth DIRECTO and
LS SSM. After implementing an explicit Qffset-estimatQr
DIRECTO simulatiQn results were at least as gQQd as LS SSM
results. DIRECTO hQwever requires a very gQQd initial mQdel .

The structure and the symmetry Qf the flQating platfQrm is
clearly reflected in the mQdel. We can distinguish three
almQst identical subsystems each cQntaining tWQ states.

PrQper preprQcessing Qf the signals is essential tQ estimate
the actual system dynamics. BefQre preprQcessing already
fairly gQQd simulatiQn results were Qbtained but the
structure in the mQdel is cQmpletely lQst. BQth general types
Qf preprQcessing ( lQw-pass filtering) and mQre specific
types Qf preprQcessing Qnly suited fQr this system were used.

The identical subsystems cause multiple PQles. Because Qf the
existence Qf multiple pQles it is impQssible tQ recQgnize all
separate states when nQt all inputs are used. This causes a
lQwly estimated mQdel-Qrder in the SIMO-experiment.

A cQnsiderable part Qf the Qutput is caused by the integratQr.
When the integratiQnal part is subtracted frQm the signals
Qnly a lQw-PQwer signal is left. Al thQugh this integratiQnal
part must play a dQminant rQle during identificatiQn the nQn­
integratiQnal part is alsQ estimated weIl.

LS SSM estimates a state space mQdel in pseudQ canQnical
Qbservability fQrm. Because Qf this it is impQssible tQ
estimate a mQdel with a lQwer mQdel-Qrder than the number Qf
Qutputs. In this case there exist dependencies in the
Qutputs. TQ be able tQ estimate a mQdel in this case tQQ we
first have tQ determine the dependencies in the Qutputs. Next
we estimate a mQdel using Qnly the independent Qutputs.
Finally we CQnstruct the Qutput matrix with help Qf the
determined dependencies.

DIRECTO can nQt estimate systems with pQles with a negative
real part (in the z-dQmain). NQrmally this can be aVQided
using high sample-rates. When quantisatiQn nQise is present
Qr when it is impQssible tQ use high sample rates this may
becQme a disadvantage.
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Appendix A

,****************************************************************************

PROGRAM ADSM01
VERSION : 1.0

,****************************************************************************

VERS ION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

1.0
15-12-1987
KARSTEN PRONK
EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM ADDS SEVERAL VARIABLES (ON REQUEST MULTIPLIED WITH
A CONSTANT SCALE-FACTOR) WHICH ARE STORED IN ER-STRUCTURED
SAMPLE FILES. THE RESULTS ARE STORED IN AN ER-STRUCTURED SAMPLE
FILE.

~***************************************************************************

Parameters:
MPSAMP=3000
MPSIGN=30

Max. number of samples in a sample file;
Max. number of signals in a sample file;

.*********************************************************************

Variables entered by user:

FILN1
FILN2

[CHAR*40]
[CHAR*40]

NAME OF THE ER-SAMPLE FILE WITH DATA
NAME OF THE OUTPUT ER-SAMPLE FILE

*********************************************************************
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c**************************************************************************
C

PROGRAM ADSM02
e VERSION : 1.0
C**************************************************************************

PROGRAM DESCRIPTION:

THIS PROGRAM READS A PICOS STRUCTURED DATA FILE AND MULTIPLIES
THE DATA WITH A MATRIX T SO THAT Y'=T*Y.
THE TRANSFORMED DATA ARE STORED IN A PICOS STRUCTURED FILE.

1.0
10-2-1988
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

VERSION
DATE
AUTHOR
INSTITUTE

COUNTRY

GROUP
ADDRESS

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e
e**************************************************************************,

MAXIMUM NUMBER OF SIGNALS
MAXIMUM NUMBER OF SAMPLES

15
= 500
=MSIG

MSAMP

PARAMETERS:
C
C
e
C
C
C
C**************************************************************************:

VARIABLES ENTERED BY USER:

NAME OF THE PICOS-STRICTURED IMPUT FILE
NAME OF THE PICOS-STRUCTURED OUTPUT FILE
NUMBER OF SIGNALS TO BE READ
NUMBER OF SAMPLES
NUMBER OF SIGNALS TO BE CALCULATED
TRANSFORMATION MATRIX

[CHAR*40]
[CHAR*40]
[INT]
[INT]
[INT]
[DBLE]

FILN
FILOUT
NSIG
NSAMP
NRSIG
T(MSIG,MSIG)

C
C
C
C
C
C
C
C
C
C
C**************************************************************************,
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****************************************************************************,
*

PROGRAM DIRSTA
* Version 1.0
****************************************************************************,

VERS ION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

1.0
28-10-1987
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM IS USED FOR DETERMINING INITIAL VALUES FOR THE
A-PARAMETERS USED IN DlRECTO (OUDBIER) . THE MARKOV-PARAMETERS
ARE READ FROM FILN AND THE A-PARAMETERS ARE STORED IN FILOUT.

M(n+1) = a1*M(n) + a2*M(n-1) + ... + an*M(l)

THE A-PARAMETERS ARE SOLVED USING:
A(n x 1) = MI(n x n) * MV(n x 1)

****************************************************************************

PARAMETERS:

MSIG
MSAM
MN

=
=
=

15
100

50

MAXIMUM NUMBER OF SIGNALS TO BE READ
MAXIMUM NUMBER OF SAMPLES TO BE READ
MAXIMUM ORDER OF THE MIN. POLYNOMIAL

****************************************************************************

VARIABLES ENTERED BY THE USER:

FILN

FILOUT

N

[CHAR*40]

[CHAR*40]

[INT]

NAME OF THE ER-STRUCTURED INPUT SAMPLE FILE
CONTAINING THE MARKOV PARAMETERS.
NAME OF THE MATLAB-STRUCTURED MATRIX FILE
CONTAINING INITIAL ESTlMATES FOR DlRECTO.
NUMBER OF MINIMAL POLYNOMIAL COEFFICIENTS TO
BE CALCULATED.

~***************************************************************************
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c*************************************************************************
C*

PROGRAM DISlOl
c* VERSION 1.0
C*************************************************************************

PROGRAM DESCRIPTION:

THIS PROGRAM CAN BE USED TO EVALUATE THE RESULTS OF THE PROGRAM
DlRECTO. THE PROGRAM READS THE FIRST MARKOV-PARAMETERS AND THE
A-PARAMETERS AND DETERMINES A MARKOV-SEQUENCE OF GlVEN LENGTH
WHICH CAN BE USED FOR SIMULATION.

1.0
3-11-1987
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

VERS ION
DATE
AUTHOR
INSTITUTE

COUNTRY

GROUP
ADDRESS

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
C
c
c*************************************************************************~

MIN.POLYNOMIAL COEFFICIENTS TO BE F
THE START MARKOV SEQUENCE TO BE REA
THE MARKOV SEQUENCE TO BE CALCULATE
INPUTS
OUTPUTS
SIGNALS

OF
OF
OF
OF
OF
OF

MAX I MUM NUMBER
MAXIMUM LENGTH
MAXIMUM LENGTH
MAXIMUM NUMBER
MAXIMUM NUMBER
MAXIMUM NUMBER

6
35

100
5

10
15

PARAMETERS:

AMAX =
MMAX =
MARMAX=
MIP =
MIQ =
MSIG =

C
C
C
C
C
C
C
C
C
C
C**************************************************************************

VARIABLES ENTERED BY THE USER:

NAME OF THE MATLAB STRUCTURED INPUT FILE
CONTAINING DlRECTO OUTPUT.
NAME OF THE ER-STRUCTURED SAMPLE OUTPUT FIL
CONTAINING THE MARKOV PARAMETERS.
LENGTH OF THE MARKOV SEQUENCE TO BE CALCULA
TITLE OF THE CREATED DATASET

[CHAR*40]

[CHAR*40]

(INT]
(CHAR*8]

L
TITLE

FILOUT

FILN

C
C
C
C
C
C
C
C
C
C
C**************************************************************************
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****************************************************************************

PROGRAM DISI02
VERSION 1.0

****************************************************************************

VERS ION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

1.0
3-11-1987
KARSTEN PRONK
EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM CAN BE USED TO EVALUATE THE RESULTS OF THE PROGRAM
DIRECTO. THE PROGRAM READS THE DIRECTO OUTPUT AND CONSTRUCTS A
ER-STRUCTURED DATAFILE (.MRK) TRAT CAN BE USED FOR SIMULATION.

****************************************************************************

PARAMETERS:

AMAX = 9 MAXIMUM NUMBER OF MIN.POLYNOMIAL COEFFICIENTS TO BE READ
MMAX = 35 MAXIMUM LENGTH OF THE START MARKOV SEQUENCE TO BE READ
MSIG = 15 MAXIMUM NUMBER OF SIGNALS (MSIG=MIP+MIQ)
MIP = 5 MAXIMUM NUMBER OF INPUTS
MIQ = 10 MAXIMUM NUMBER OF OUTPUTS
MLOW = 0 LOWER DIMENSION OF MARKOV SEQUENCE TO BE CALCULATED
MUP = 100 UPPER DlMENSION OF MARKOV SEQUENCE TO BE CALCULATED

,*************************************************************************

VARIABLES ENETERED BY THE USER:

FILN

FILOUT

LEN
TITLE

[CHAR*40]

[CHAR*40]

[INT]
[CHAR*8]

NAME OF THE MATLAB STRUCTURED INPUT FILE
CONTAINING DIRECTO OUTPUT.
NAME OF THE ER-STRUCTURED SAMPLE OUTPUT FILE
CONTAINING THE MARKOV PARAMETERS.
LENGTH OF THE MARKOV SEQUENCE TO BE CALCULATED
TITLE OF THE CREATED DATASET

***************************************************************************
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C**************************************************************************
C*

PROGRAM ENSF01
C* Version 1.0
c**************************************************************************

This program writes a number of samples of I/O-signals into
an standard structured signal file. The samples are in double
precision and are given with use of the terminal.

:Name of file to be createdi
:Two dimensional I/O-matrix;
:Number of samplesi
:Number of signalsi
:Titel of the data seti
:Names of the signalsi
:Subtype of matrixi
:Vector containing the offset-parameters
:Vector containing the scale-parameters

1.0
KARSTEN PRONK
2-9-1987
EINDHOVEN UNIVERSITY OF TECHNOLOGIES
FACULTY OF ELECTRICAL ENGINEERING
MEASUREMENT AND CONTROL
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

Maximum number of signals storedi
Maximum number of samplesi

(CH*40)
(DBL)
(INT)
(INT)
(CH* 8)
(CH* 8)
(INT)
(DBL)
(DBL)

VERSION
AUTHOR
DATE
INSTITUTE

Parameters:
MSIG=15
MSAM=800

Variables:
FILN
SYSIO(MSAM,MSIG)
N
NSIG
TITLE
NAME (MSIG)
SBTYP1
OFFSET (MSIG)
SCALE(MSIG)

c
c
C
C
C
C
C GROUP
C ADDRESS
C
C COUNTRY
C
C
C PROGRAM DESCRIPTION:
C
C
c
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
C
c
c
c**************************************************************************,
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*******************************************************************
* *

PROGRAM FILTER
* *
*******************************************************************

VERS ION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

1.0
24-9-1987
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
MEASUREMENT AND CONTROL
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM READS A NONFORMATTED PICOS-STRUCTURED DATAFILE
AND WRITES THE CONTENTS OF THIS FILE IN A STANDARD FORMATTED
PICOS-STRUCTURED DATAFILE.
IF NECESSARY THE DATA CAN BE SCALED AND/OR CORRECTED WITH
THE INITIAL VALUE, THE BIAS OR AN ARBITRARY OFFSET.

*****************************************************************

PARAMETERS:

MN = 10
MSAMP = 500

MAXIMUM NUMBER OF SIGNALS
MAXIMUM NUMBER OF SAMPLES

***********************************************************************

VARIABLES USED:

FILN1
FILN2
NSIG
NSAMP
NR
T
SYSIOS
SYSIO
DELAY
MAXDEL

[CHAR]
[CHAR]
[INT]
[INT]
[INT]
[INT]
[REAL]
[DBL]
[INT]
[INT]

NAME OF THE INPUT-FILE
NAME OF THE PICOS STRUCTURED OUTPUT-FILE
NUMBER OF SIGNALS
NUMBER OF SAMPLES
SAMPLENUMBER
REFERENCE TIME
MATRIX CONTAINING I/O-SAMPLES
COPY OF A ROW OF SYSIOS
VECTOR CONTAINING DELAY-TlMES
MAXIMUM DELAY

,****************************************************************
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C*********************************************************************
C *

PROGRAM HANKEL
C *
C*********************************************************************

Given a sequence of NNUM matrices MARK(k), k=NST, .. ,NST+NNUM-l.
Based on these matrices a block Hankel matrix is constructed:

RANK = MATU . SINGV • MATVT

************** Outline of the program ***********************

A singular value decomposition is performed on this matrix:

be

MARK (NST+NNUM-l)

. MARK (NST+NRC-l)

. MARK (NST+NRC)
MARK (NST+l)
MARK (NST+2)

T
MATU = I and MATVT . (MATVT) = I

T
(MATU)

MARK (NST)
MARK (NST+l)

MARK (NST+NRB-l)

with C =
A =
B =
D =

RANK =

In a specific form this program creates an (approximate)
realization in state space form:

x(k+l) = A x(k) + B u(k)
y (k) = C x (k) + D u (k)

based on a sequence of Markov parameters: M(k), k=O,NNUM
In terms of system identification this emans that a model is
constructed based upon impulse response data.

Exact modelling (minimal realization problem) .
If a sequence of Markov parameters has been generated by a
state space model as described above with dimension NDIM,
then this state space model (or an equivalent form) will be
reproduced by this program, if the number of Markov parameters
to take into account is such that a singular Hankel matrix can
constructed that has rank NDIM.

This program creates an (approximate) decomposition of a
matrix sequence M(k), k=NST-l,NST+NNUM-l into

k-NST
M(k)=- CAB + D delta (k-NST+l) .

[NIQxNDIM]
[NDIMxNDIM]
[NDIMxNIP]
[NIQxNIP]

Matrix RANK will have block dimensiosns [NRBxNRC] and real
dimensions [NROWxNCOL].
The choice of NRB, NRC that have to fulfil NRB+NRC=NNUM+l, can
be made by the user by choosing one of the options:

[1] Automatic choice creating RANK as square as possiblei
[2] Automatic choice creating RANK as block square as

possiblei
[3] Manual input of NRB and NRC with NRB+NRC=NNUM+l.

with SINGV a diagonal matrix with ordered elements on the
diagonal, being greater than or equal to zero.

Moreover:

C
c
c
c
c
c
c
c
c
c
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
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The number of positive elements in SINGV equal the rank of the
decomposed Hankel matrix.
The dimension of the model to be constructed (NDIM) now is chosen
on the basis of these singular values.

There are three basic algorithms implemented for constructing
the model {A,B,C,D}
1. Algorithm of van Zee/Bosgra,
2. Algorithm of Damen/Hajdasinski,
3. Algorithm of Kung;
All of these algorithms are based on the realization method
of Ho/Kalman, in the modified version of Zeiger/McEwen.
An overview of the theory that is concerned with these algo­
rithms, and an overview of corresponding references, can be
found in:

* Van den Hof, P.M.J., "Approximate realization of noisy
linear multivariable systems", Journal A, Vol. 25, 1984,
No. 1, pp. 21-26.

* Van den Hof, P.M.J., "Approximate realization of noisy
linear systems; the Hankel and Page matrix approach",
M.Sc. Thesis, Eindhoven Univ. Techn., Dep. Electr. Eng.,
Group Measurement and Control, Dec. 1982.

* Damen, A.A.H. and A.K. Hajdasinski (1982)
Practical tests with different approximate realizations
based on the singular value decomposition of the
Hankel matrix. In: Proc. 6th IFAC Symp. Identification
and System Par. Estim., Washington O.C., June 1982,
pp . 809- 814 .

****** Input information to be entered from the keyboard ****

NNUM

IOFF

FILN1

IEIGV

IRECM

NST
NDIM

Name of an existing standard file containing a matrix
sequence;
Number of matrices to take into account in the Hankel
matrix;

NIP,NIQ Dimensions of the matrix sequence to take into account
(possibly smaller than the available dimensions);
Index of first matrix element in the Hankel matrix;
A fixed choice for the dimension of the model to be
created, or choice of the dimension based on the
singular values of the decomposed Hankel matrix;

FILN2(5:10) A six character string for composing the name of
the output file(s).
Integer for deciding if a seqeunce of reconstructed
matrices has to be stored in a file;
Integer for deciding if the eigenvalues of the
resulting matrix A have to be calculated.
Integer for deciding if an offset vector has to be
copied to the model, from an existing matrix file.
Name of the matrix file containing this offset vector.FILN5

************** OUTPUT INFORMATION ***********************

Output files created:
RANK .SSM standard matrix file with state space model;
RANK .DOC (nonstandard) text file with documentation on

the program run;
RANK .MAR on request: a sample file containing the

reconstructed matrix seqeunce, ordered column
wise;
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On output a set of error values is calculated, relating the
original matrix sequence to the reconstructed matrix sequenece
in order to evaluate the performance of the approximate model.
For each entry in the matrix the absolute RMS error and the
relative RMS error are calculated over a given range of matrices.

2
)

2
)

[MPIQxMPIP]
[MPROWxMPCOL]
[MPDIM]

index 200.
[MPLOW, MPUP]

altered, by changing the
at the end of the respective

NST+NNUM-1 2
SOM (MARK(i,j,k»

k=NST

NST+NNUM-1
SUM (MARK(i,j,k)-MARK (i,j,k»

k=NST rec

NST+NNUM-1
SOM (MARK (i, j, k) -MARK (i, j, k»

k=NST rec

standard sample file containing the singular
values of the Hankel matrix.

SQRT

size of matrices M(k) = 5 x 5;
size of Hankel matrix = 100 x 100;
dimension of the realization = 50;
range of matrices M(k): index -10 to

1.1 Date: 21-5-1986
Fortran version adapted to standard F-77;
Dealing with situation of static model.
1.2 Date: 13-6-1986
Fortran version completed with ERFILE/LIB
1.3 Date: 19-6-1986
Scale/offset information in D*8 accuracy.
1.4 Date: 23-6-1986
Corrections in Kung realization rnethod irnplernentation;
1.5 Date: 2-10-1986
Corrections in printing the singular values: the singu­
lar values of the firstly created H-matrix are printed;
Extension of output file names to 4+6 characters.

SQRT( l/NNUM

HANK . SGV---

abs. RMS(i,j) =

rel. RMS(i,j) =

Maximum
Maximum
Maximum
Maximum

These maximum sizes can easily be
appropriate parameters, indicated
line.

Date: 04-05-1986
Author: Paul Van den Hof

Copyright:
P.M.J. Van den Hof
Delft University of Technology
Department of Mechanical Engineering
Laboratrory for Measurement and Control
Mekelweg 2, 2628 CD Delft
The Netherlands.
Tel. 015 - 784509.

Version

Version

Version

Version

Version

cad
cad
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c -----------------------------------------------------------------------
c
c
C
c
c
c
c
c
c
c
c
c
C
C
c
c
c
c
c
c
c
c
c
C
C
c
c
c
c
C
c
C
c
C
c
c
c



61

Version 1.6 Date: 3-2-1987
Documentation added.

Version 1.7 Date: 24-3-1987
Minor corrections in checking on entered values.

Version 1.8 Date: 2-4-1987
Adding the possibility to copy an offset vector in the
resulting state space model. Adding an extra check on
the value of NNUM in order to guarantee correspondence
with parameter statements. (NUMUP)

Version 1.9 Date: 24-4-1987
Minor corrections in constructing file names.

ld Version 1.10 Date: 19-11-1987
.d Adding construstion of standard sample file with
.d singular values of Hankel matrix
.d Modification made by: Karsten Pronk
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C**************************************************************
C* *

SUBROUTINE MATSVE(LUNIT,NMAX,MMAX,NSAMP,IP,IQ,X)
C* *
C**************************************************************

THIS SUBROUTINE WRITES THE CONTENTS OF THE ARRAY X
IN A MATLAB STRUCTURED SAMPLE FILE.

I/O-SAMPLES

lST SAMPLE MOMENT
lST SAMPLE MOMENT

NSAMPst SAMPLE MOMENT

LOGICAL UNIT NUMBER
ROW-DlMENSION OF X
COLUMN-DlMENSION OF X
NUMBER OF SAMPLES
NSAMP<=NMAX
NUMBER OF INPUTS
NUMBER OF OUTPUTS
IP+IQ<=MMAX
ARRAY CONTAINING THE

FORMAT(I5,2I1)
FORMAT «4218))
FORMAT ( (4218) )

1.0
28-9-1987
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
MEASUREMENT AND CONTROL
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

[INT]
[INT]

[DBLE]

[INT]
[INT]
[INT]
[INT]

x

VERS ION
DATE
AUHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

SUBROUTINE DESCRIPTION:

MATLAB STRUCTURE:

NSAMP, lP, IQ
lP inputs
IQ outputs

LUNIT
NMAX
MMAX
NSAMP

IQ outputs

PARAMETER DESRIPTION:

lP
IQ

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C****************************************************************
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~*****~*********************************************************************~
~

PROGRAM PCAN01
~ VERSION 1.1
~***************************************************************************,

VERS ION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

VERSION
DATE
MODIFIED by
INSTITUTE

GROUP
ADDRESS

COUNTRY

1.0
25-11-1987
KARSTEN PRONK
EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

1.1
10-2-1988
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM DETERMINES A PSEUDO-CANONICAL OBSERVABILITY
REALISATION OF A GlVEN STATE SPACE MODEL.

REASON FOR MODIFICATION:

IF IQ=l THEN MU(l)=IN

,***************************************************************************j

PARAMETERS:

MIN
MIP
MIQ

= 10
= 6
= 6

MAXIMUM DlMENSION OF THE MODEL
MAXIMUM NUMBER OF INPUTS
MAXIMUM NUMBER OF OUTPUTS

,***************************************************************************j

VARIABLES ENTERED BY THE USER:

FILN

FILOUT

MU(MIQ)

[CHAR*40]

[CHAR*40]

[INT]

NAME OF THE ER-STRUCTURED INPUT MODEL FILE
CONTAINING THE STATE SPACE MODEL.
NAME OF THE ER-STRUCTURED OUTPUT MODEL FILE
CONTAING THE OBSERVABILITY FORM ON OUTPUT.
STRUCTURE INDICES

'***********************************************************************
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c**************************************************************************.
C*

PROGRAM PRMFO 1
e VERSION : 1.0
C**************************************************************************

PROGRAM DESCRIPTION:

THIS PROGRAM READS THE CONTENTS OF A STANDARD STRUCTURED MATRIX­
FILE AND PUTS THEM IN A DOCUMENT FILE.

1.0
3-12-1987
KARSTEN PRONK
EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

VERSION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

e
e
e
e
e
c
c
e
e
e
c
e
e
e
e
e
e
e**************************************************************************

MATRICES
MAXIMUM NUMBER OF MATRICSE TO BE PRINTED
DECLARED FIRST AND SECOND DIMENSION OF THE
DECLARED LOWER THIRD DIMENSION
DECLARED UPPER THIRD DIMENSION

15
50

1
30=

=

=MNUM
MX,MY =
MZL
MZUP

PARAMETERS:
e
C
C
C
C
C
C
C
C**************************************************************************.

VARIABLES ENTERED BY THE USER:

NAME OF THE ER-STRUCTURED INPUT MATRIX FILE
NAME OF THE OUTPUT DOCUMENT FILE

[CHAR*40]
[CHAR*40]

FILN
FILOUT

C
C
C
C
C
C
C**************************************************************************
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:***************************************************************************

PROGRAM PRSF01
VERSION : 1.1

***************************************************************************

VERS ION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

1.0
21-9-1987
Eric van Beuningen
EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

VERSION
DATE
MODIFIED by
INSTITUTE

GROUP
ADDRESS
COUNTRY

1.1
3-12-1987
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT

PROGRAM DESCRIPTION:
This program writes the content of a standard structured sample
file into a printable output file.The file is supposed to contain
data in double precision accuracy.

REASON FOR MODIFICATION:

Output-format modifications.

~**************************************************************************

Name of input file;
Name of output file;
Actual nurnber of signals copied;
Actual nurnber of samples copiedi
First sample moment to be copied;
Subtype of sample file;
Sub-subtype of sample filei
Title of the data set;
Names of the signalsi
Scale and offset information available;
Logical for scale/offset correct ion of data;
Scale parametersi
Offset parameters;
Error code;

: Signal matrixi
First sample moment to be printed;
Nurnber of samples to be printedi
MIN (NSAMCP, NSTTIM+NSAM-NSTCOP)
Data of creationi
Time of creationi
Auxiliary variables;
Countersi

NSTCOP
NSAMCP
NS
DAT
TIM
FORM,IFH
I,J

LOCAL VARIABLES: NONE
GLOBAL VARIABLES:

FILN (CH*40)
FILN1 (CH*40)
NSIG (INT)
NSAM (INT)
NSTTIM (INT)
SBTYP1 (INT)
SBTYP2 (INT)
TITLE (CH* 8)
NAME (MSIG) (CH*8)
ISCOF (INT)
LSCOF (LOG)
SCALE(MSIG) (DBLE)
OFFSET (MSIG) (DBLE) :
IFAIL (INT)
SYSIO(MSAM,MSIG)

(DBLE)
(INT)
(INT)
(INT)
(CH* 9)
(CH* 8)
(INT)
(INT)
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c*************************************************************************,
C*

PROGRAM RMSM02
c* VERSION : 1.0
C*************************************************************************,

PROGRAM DESCRIPTION:

THIS PROGRAM CALCULATES SQUARED ERRORS BETWEEN AND SQUARED VALUES
OF SIGNALS STORED IN ER-STRUCTURED DATA FILES. THE RESIDUES ARE
SAVED IN A ER-STRUCTURED DATA FILE.

1.0
7-12-1987
KARSTEN PRONK
EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDSCOUNTRY

GROUP
ADDRESS

VERSION
DATE
AUTHOR
INSTITUTE

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c*************************************************************************,

VARIABLES ENTERED BY THE USER:

NAME OF ER-STRUCTURED INPUT SAMPLE FILE
NAME OF OUTPUT DOCUMENT FILE (OPTIONALLY)
NAME OF ER-STRUCTURED OUTPUT SAMPLE FILE CONTAI~

THE RESIDUS ON OUTPUT.
FIRST SAMPLE TO BE CONSIDERED
NUMBER OF SAMPLES TO BE CONSIDERED

MAXIMUM NUMBER OF SIGNALS
MAXIMUM NUMBER OF SAMPLES

[CHAR*40]
[CHAR*40]
[CHAR*40]

[INT]
[INT]

30
= 3000
=MSIG

MSAMP

PARAMETERS:

I START
ISAMP

FILN1
FILN2
FILOUT

c
C
C
C
C
C
C*************************************************************************,
C
C
C
C
C
C
C
C
C
C
C*************************************************************************j
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****************************************************************************,
*

PROGRAM TRMATM
* VERSION 1.1
****************************************************************************~

VERS ION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

VERS ION
DATE
MODIFIED by
INSTITUTE
GROUP
ADDRESS
COUNTRY

1.0
11-11-1987
KARSTEN PRONK
EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

1.1
21-12-1987
KARSTEN PRONK

IDEM.

PROGRAM DESCRIPTION:

THIS PROGRAM CONVERTS A MATLAB STRUCTURED MATRIX FILE
IN AN ER-STRUCTURED MATRIX FILE.

REASON FOR MODIFICATION:

DATE AND TIME SETTINGS INCLUDED.

SEE ALSO DOCUMENTATION:

****************************************************************************

PARAMETERS ..
MNUM = 15
MROW = 50
MCOL = 50
MZL = 1
MZUP = 3

MAXIMUM NUMBER OF MATRICES
MAXIMUM ROW DIMENSION OF MATRICES
MAXIMUM COLUMN DIMENSION OF MATRICES
DECLARED LOWER THIRD DIMENSION
DECLARED UPPER THIRD DIMENSION

,***************************************************************************

VARABLES ENTERED BY THE USER:

FILN
FILOUT
NUM
SBTYPl
SBTYP2
TITLE

[CHAR*40]
[CHAR*40]
[INT]
[INT]
[INT]
[CHAR*8]

NAME OF MATLAB-STRUCTURED INPUT MATRIX FILE
NAME OF ER-STRUCTURED OUTPUT MATRIX FILE
NUMBER OF MATRICES TO BE CONVERTED
SUBTYPE OF THE OUTPUT FILE
SUB-SUBTYPE OF THE OUTPUT FILE
TITLE OF THE CREATED DATASET

***************************************************************************
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c*************************************************************************j
C*

PROGRAM TRMATS
C* VERS ION 1.0
C*************************************************************************j

PROGRAM DESCRIPTION:

THIS PROGRAM TRANSFERS A MATLAB STRUCTURED SAMPLE FILE
IN AN ER-STRUCTURED SAMPLE FILE.

1.0
12-11-1987
KARSTEN PRONK
EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

VERS ION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c*************************************************************************j

MAXIMUM NUMBER OF SIGNALS
MAXIMUM NUMBER OF SAMPLES

MSIG = 10
MSAMP= 1000

PARAMETERS:
C
C
C
C
C
C
C*************************************************************************~

VARIABLES ENTERED BY THE USER:

NAME OF THE MATLAB-STRUCTURED INPUT SAMPLE FI
NAME OF THE ER-STRUCTURED OUTPUT SAMPLE FILE
NUMBER OF SAMPLES TO BE CONVERTED
FIRST SAMPLE Ta BE CONVERTED
SUBTYPE OF THE OUTPUT FILE

NAMES OF THE SIGNALS
: TITLE OF THE CREATED DATASET

[CHAR*40]
[CHAR*40]
[INT]
[INT]
[INT]
[CHAR*8]
[CHAR*8 ]

FILN
FILOUT
NSCOP
NLOW
SBTYP1
NAME (NSIG)
TITLE

C
C
C
C
C
C
C
C
C
C
C
C************************************************************************
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****************************************************************************

PROGRAM TRMMAT
VERSION 1.0

****************************************************************************

VERSION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

1.0
6-11-1987
KARSTEN PRONK
EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM TRANSFORMS AN ER-STRUCTURED MATRIX FILE IN
A MATLAB STRUCTURED MATRIX FILE.
REMARK : A MATLAB STRUCTURED MATRIX FILE CAN ONLY CONTAIN

TWO-DIMENSIONAL MATRICES!!!! !!!!!
IF THE PROGRAM TRIES TO COPY A THREE-DIMENSIONAL
MATRIX ONLY THE FIRST PAGE WILL BE COPIED.

***************************************************************************

PARAMETERS:

MNUM = 15
MX,MY= 50
MZL = 1
MZUP = 10

MAXIMUM NUMBER OF MATRICES TO BE CONVERTED
DECLARED FIRST AND SECOND DIMENSION OF MATRICES
DECLARED LOWER THIRD DIMENSION
DECLARED UPPER THIRD DIMENSION

***************************************************************************

VARIABLES ENTERED BY THE USER:

FILN
FILOUT

[CHAR*40]
[CHAR*40]

NAME OF THE ER-STRUCTURED INPUT MATRIX FILE
NAME OF THE MATLAB-STRUCTURED OUTPUT MATRIX FILE

**************************************************************************
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C***********************************************************************
C *

PROGRAM TRSM02
C Vers ion 1.1 *
C***********************************************************************

Version 1.0 Date: 27-6-1986
Fortran version is an adapted version of DTIOPT, and
satisfies the F-77 standard.

The PICOS format: sequential, formatted:
1X,I5,<NSIGN>(lX,E14.7) in single prec1s1on,

where NSIGN is the number of signals in the PICOS-file.

This program transforms a general PICOS structured signal data
file into a standard ER structured sample file.
The extra information that is stored in the standard structured
sample file has to be entered by the user.
The accuracy of the PICOS file is single precision, of the
standard ER structured file is double precision.

Copyright:
P.M.J. Van den Hof
Group Measurement and Control
Dept. Electrical Engineering
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands

Input PICOS file;
Output standard ER structured
sample file;

Max. number of signals to be copied;

Writing base/info section of the file;
Writing data section of the file;

1.1
17-9-1987
Karsten Pronk
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

Routines: WRBI02
WRSD01

On input a PICOS-formatted IO data file has to be available;
the name of the file has to be entered from the keyboard. Extra
information on the PICOS file also has to be entered:

- the number of samples to be copied,
- the number of signals to be copied,
- the names of the signaIs, and
- a title for the data set, and the subtype indication.

Files: FILN1 (Unit=LUNl):
FILN2 (Unit=LUN2):

Paremeter statements:
MPSIG=30

Author: Paul Van den Hof
Date: 27-6-1986

COUNTRY

GROUP
ADDRESS

VERS ION
DATE
MODIFIED by
INSTITUTE

C
C
C
c
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
c
c
c
c
c
c
c
c
c
c
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
C
C
C
C
C
C
C
C
C
C
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EXTENSIONS TO FORTRAN 77:

FORMAT «NSIG>E14.7) IS A REPEATING FORMAT:
THE FORMAT E14.7 IS NSIG TIMES REPEATED

REASON FOR MODIFICATION:

IN VERSION 1.0 THE REPEATING FORMAT ((E14.7) IS USED
THIS FORMAT STARTS READING ON A NEW LINE EACH REPETITION

THE FORMAT IN LINE 9090 IS ADJUSTED ACCORDING TO PICOS-STANDARDS
PICOS FORMAT:
IS,lX,IS,<NSIG>(lX,E14.7)

~*********************************************************************

Variables:

NSIG Number of signals to be copiedi
NSAMP Number of samples to be copiedi
NST Time moment of first sample to be copiedi
STREC Start record nr. of data section in output filei
MS Declared row dimension of SYSIO
NS Actual row dimension of SYSIO
SYSIO Double precision row vector with signalsi
SYSIOS Real row vector with signalsi
NLOW First row of SYSIO to be copiedi
ISCOF Indication for presence of scale/offset informationi

r********************************************************************
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C**************************************************************************
C*

PROGRAM TRSMAT
C* VERS rON 1.
C**************************************************************************

PROGRAM DESCRIPTION:

THIS PROGRAM CONVERTS AN ER-STRUCTURED SAMPLE-FILE IN
A MATLAB STRUCTURED SAMPLE FILE.

1.0
6-11-1986
KARSTEN PRONK
EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

GROUP
ADDRESS

VERS rON
DATE
AUTHOR
INSTITUTE

COUNTRY

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c**************************************************************************

Maximum length 10

Maximum number of signals copied
Maximum number of signals copied

Scale parameters
Offset parameters
ERROR code

Filename
Filename
Logical Unit Number for communication
Input Logical Unit Number
Output Logical Unit Number
Actual number of samples copied
Actual number of samples copied
First sample moment to be copied
Subtype of sample file
Subsubtype of sample file
Title of the data set
Names of the signals
Scale and offset invormation available
ISCOF = 0 : NO
ISCOF = 1 : YES
Logical for scale/offset correction of

data

Signal matrix
Name of output file

(INT)
(INT)

(LOG)

Variables
F I LN (CH*4 0 )
OUTFIL (CH*40)
IODAUN (INT)
UNIN (INT)
UNOUT (INT)
NSIG (INT)
NSAM (INT)
NSTTIM (INT)
SBTYP1 (INT)
SBTYP2 (INT)
TITLE (CH*8)
NAME (MSIG) (CH*8)
ISCOF (INT)

Parameters
MSIG = 10
MSAM = 1000

OUTF

LSCOF

SCALE(MSIG) (DBLE)
OFFSET (MSIG) (DBLE)
IFAIL (INT)
SYSIO(MSAM,MSIG)

(DBLE)
(CHAR* (*» :

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c*********************************************************************
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****************************************************************************

PROGRAM TRSPIC
VERSION 1.0

****************************************************************************

VERS ION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

1.0
9-2-1988
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM CONVERTS AN ER-STRUCTURED SAMPLE-FILE IN
A PICOS STRUCTURED SAMPLE FILE.

~***************************************************************************

Parameters
MSAM = 10
MSIG = 1000

(INT)
(INT)

Maximum number of samples copied
Maximum number of signals copied

Signal matrix
Name of output file Maximum length 10

Scale parameters
Offset parameters
ERROR code

Filename
Filename
Logical Unit Number for communication
Input Logical Unit Number
Output Logical Unit Number
Actual number of signals copied
Actual number of samples copied
First sample moment to be copied
Subtype of sample file
Subsubtype of sample file
Title of the data set
Names of the signals
Scale and offset invormation available
ISCOF = 0 : NO
ISCOF = 1 : YES
Logical for scale/offset correct ion of

data
(LOG)

OUTF

SCALE(MSIG) (DBLE) :
OFFSET (MSIG) (DBLE)
IFAIL (INT)
SYSIO(MSAM,MSIG)

(DBLE)
(CHAR* (*) )

LSCOF

Variables
FILN (CH* 40)
OUTFIL (CH*40)
IODAUN (INT)
UNIN (INT)
UNOUT (INT)
NSIG (INT)
NSAM (INT)
NSTTIM (INT)
SBTYP1 (INT)
SBTYP2 (INT)
TITLE (CH* 8)
NAME (MSIG) (CH*8)
ISCOF (INT)

*******************************************************************
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C**************************************************************************,
C*

PROGRAM TRTHER01
C* Version 1.0
C**************************************************************************,

PROGRAM DESCRIPTION:

THIS PROGRAM TRANSFORMS A THE-STRUCTURED MODEL-FILE {A,B,C,D,OFF,XO
IN AN ER-STRUCTURED MODEL-FILE.

1.0
29-10-1987
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

VERSION
DATE
AUTHOR
INSTITUTE

COUNTRY

GROUP
ADDRESS

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c**************************************************************************

TO BE READ

NAME OF TH-STRUCTURED INPUT MODELFILE CONTAININ
A STATE SPACE MODEL.
NAME OF ER-STRUCTURED OUTPUT MODEL FILE

MAXIMUM NUMBER OF MATRUCES
MAXIMUM ORDER OF THE MODEL
MAXIMUM NUMBER OF INPUTS
MAXIMUM NUMBER OF OUTPUTS
DlMENSION DUMMY ARAY

[CHAR*40]

[CHAR*40]

=

= 10
= 10

5
= 15

5

MNUM
MIN
MIP
MIQ
IDUM =

PARAMETERS:

VARIABLES ENTERED BY THE USER:

FILOUT

FILN

C
C
C
C
C
C
C
C
C
C**************************************************************************
C
C
C
C
C
C
C
C**************************************************************************
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****************************************************************************

SUBROUTINE WRMD06
VERSION : 1.0

****************************************************************************

This subroutine writes 6 three-dimensional matrices into
the data section of a standard structured matrix file.
The output file is assumed to be opened at l.u.n. UN.
Data file standard = 2.

SUBROUTINE WRMD06 (UN,MAT1,MAT2,MAT3,MAT4,MAT5,MAT6,MX,MY,MZL,
1 NZUP,NX,NY,NZL,BEGR,IERR)

~***************************************************************************

VERSION
DATE
AUTHOR
INSTITUTE

GROUP
ADDRESS

COUNTRY

1.0
2-12-1987
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

MX (6)
MY (6)
MZL (6)
NZUP (6)
NX (6)
NY (6)
NZL (6)
BEGR (6)
IERR

SUBROUTINE DESCRIPTION:

This subroutine writes 6 three-dimensional matrices into
the data section of a standard structured matrix file.
The output file is assumed to be opened at l.u.n. UN.
Data file standard = 2.

***************************************************************************

Parameter list:
UN (INT) (i): Logical unit number;
MATI (MX (1) , MY (l) , MZL (1) : NZUP (l) )

(DBL) (I): Matrix nr. 1;
MAT2(MX(2),MY(2),MZL(2) :NZUP(2»

(DBL) (I): Matrix nr. 2;
MAT3(MX(3),MY(3),MZL(3) :NZUP(3»

(DBL) (I): Matrix nr. 3;
MAT 4 (MX (4) , MY (4) , MZ L (4) : NZUP (4) )

(DBL) (I): Matrix nr. 4;
MAT 5 (MX (5) , MY (5) , MZ L (5) : NZUP (5) )

(DBL) (I): Matrix nr. 5;
MAT 6 (MX (6) , MY (6) , MZL (6) : NZUP (6) )

(DBL) (I): Matrix nr. 6;
(INT) (i): Declared row dimension of the matrices;
(INT) (i): Declared column dimension of the matrices;
(INT) (i): Declared lower bounds of third indices;
(INT) (i): Upper bound third index of the matrices;
(INT) (i): Actual row dimensions of the matrices;
(INT) (i): Actual column dimensions of the matrices;
(INT) (i): Actual lower bounds of third indices;
(INT) (i): Start records of the data sections in file;
(INT) (0): Error code:

= 0 successful completion;
= 1 error in parameter list;
= 2 error in WRITE-statement;
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c**************************************************************************
c*

SUBROUTINE WRSS03 (FILN,UN,A,B,C,D,OFF,XO,MIP,MIQ,MDIM,NIP,NIQ,
1 NDIM,SBTYP2,TITLE,IERR)

c* VERS ION : 1.0
c**************************************************************************

SUBROUTINE DESCRIPTION:

THIS SUBROUTINE STORES A STATE SPACE MODEL {A,B,C,D,OFF,XO}
IN A STANDARD STRUCTURED MODEL FILE.

1.0
2-12-1987
KARSTEN PRONK
EINDHOVEN UNlVERSITY OF TF~HNOLOGY

FACULTY OF ELECTRICAL ENGINEERING
CONTROL AND MEASUREMENT
P.O. BOX 513
5600 MB EINDHOVEN
THE NETHERLANDS

VERS ION
DATE
AUTHOR
INSTITUTE

COUNTRY

GROUP
ADDRESS

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c**************************************************************************

[ I)
[I)
[ I ]
[ I )
[I)
[ I )
[ I )
[ I )
[I]
[ I ]
[ I ]
[ I]
[I]
[ I ]
[ I ]
[ I ]
[0 ]

file;

Number of matrices in S.S. model (PARAMETER);

Name of the matrix file;
Logical unit number;
System matrix;
Input matrix;
Output matrix;
Input/output matrixi
Offset vector on the outputi
Initial state vector
Maximum number of inputs
Maximum number of outputs
Maximum state space dimensioni
Actual number of inputs;
Actual number of outputs;
Actual state space dimension;
Sub-subtype of filei
Title of data seti
Error code;
= 0 Successful completioni
= 1 Error in parameter listi
= 2 Error during opening of input
= 3 Error in subroutine WRBIOli
= 4 Error in subroutine WRMD06i

(CH* 40)
(INT)
(DBL)
(DBL)
(DBL)
(DBL)
(DBL)
(DBL)
( INT)
(INT)
(INT)
(INT)
(INT)
(INT)
(INT)
(CH* 8)
(INT)

variables:
(INT) : Error code
(CH*8) :Names of the matrices;
(INT) Declared row dimensions of the matrices;
(INT) Declared column dimensions of the matricesi
(INT) Actual row dimensions of the matrices;
(INT) Actual column dimensions of the matrices;
(INT) Actual length of third index (NZUP-NZL+l);
(INT) Declared lower bounds for third indices;
(INT) Actual lower bounds for third indices;

Local parameter:
NUM (INT)

Local
IFAIL
NAME (NUM)
MX(NUM)
MY (NUM)
NX (NUM)
NY (NUM)
NZ (NUM)
MZL(NUM)
NZL (NUM)

Parameters:
FILN
UN
A (MDIM, NDIM)
B(MDIM,NIP)
C(MIQ,NDIM)
D(MIQ,MIP)
OFF(NIQ)
XO (NDIM)
MIP
MIQ
MDIM
NIP
NIQ
NDIM
SBTYP2
TITLE
IERR

c
C
c
c
c
c
c
c
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c**********************************************************************
C
C
C
c
c
c
c
c
c
C
c
C
c
c
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Appendix 1i

Jordan forms

As already mentioned in paragraph 4.3 the Jordan form of a state space
mode 1 is a re;:> lisation that decol1ples all states. In this realisation
the system-matrix is a diagonal matrix. The diagonal elements are the
eigenvalues of the system matrix. For all systems with distinct
eigenvalues this realisation can be found:

Corollary:
For every state space model with distict eigenvalues a transformation
matrix T can be found such that T -lAT is a diagonal matrix and the
input-output behaviour of the system {T -lAT, T -~, CT, D} is the same as
the behaviour of the system {A,B,C,D}.

Proof:
cf. for example [Trentelman,1985)

In general the eigenvalues of the system matrix may be complex so the
elements of the Jordan system matrix can be complex. This can reduce
the stability of the algorithms using this form. Moreover for the
moment it is impossible to store complex matrices in standard ER­
structured model files.
Therefore we try to find a Jordan-like representation of a system with
complex poles using only real matrices. To find this representation we
use the fact that if a system has a complex pole z then also its
conjugent z * is a pole of the system.

Considering for the moment a simplified system with only one complex
polepair z l, 2 = a ± jb we obtain the following transfer function:

-b
H (z) =

z 2-2az+a 2.rb 2

This second order system can be represented by the following state
space realisation:

A =
a

-b

b

a ] B =
1

o ] c = [ 1 o ]
The constructed A-matrix is cal led a Jordan-cage.
Now we extend our discussion to the case of multiple distinct
polepairs. In this case we can construct a system matrix which has
Jordan cages on its main diagonale All the other elements are zero.
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A =

o

In this way we decoupled every single polepair instead of decoupling
every poIe of the system. This realisation is called a pseudo-Jordan
realisation. There exist other ways to contruct a Jordan-like
realisation with real matrices.

Next we want to consider systems with multiple poles. For the moment we
concentrate on cyclic systems with (multiple) real poles.
Cyclic systems are characterized by the fact that the geometrical
multiplicity of each eigenvalue is one. This means that the dimension
of the eigenspace for each eigenvalue is one. The algebraic
multiplicity on the other hand is the multiplicity of an eigenvalue in
the charcteristic equation. This means that the algebraic
multiplicity is always larger or equal to the geometrie multiplicity.
For cyclic systems both multiplicities are one for all poles. All SISO
systems are cyclic.
If we consider a SISO systems with multiple poles we know that it is
impossible to decouple all states. Considering for example the system
described by the transfer function:

H(z) =
1

(z-l) 2

then trying to write H(z) as A/(z-l) + B/(z-l) would lead to a
contradiction.

For this situation we use another Jordan-like representation given
below:

\1 1
\1 1

\ 1 0
A =

0
\n 1

\n
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In other words: Jordan-like blocks are constructed on the main
diagonal. The elements of the main diagonal are the eigenvalues of the
system matrix and the elements of the upper subdiagonal of each block
(!!) are one. All other elements are zero.
Physically we can interprete this realisation as a decoupling of all
distinct eigenvalues putting all multiple eigenvalues in cascade:

---+)~---+)[;] - - - - -

Fig.27 Jordan-like realisation of a system with multiple
poles.

Clearly the above mentioned realisations can easily be combined for
cyclic systems with multiple complex poles. In this situation we put
all multiple polepairs in cascade resulting in the following
structure of the system matrix:

a 1 b 1
-b 1 all 0

a 1 b 1
A = -b 1 a 1

o a n b n
L -b n a n

The main diagonal is filled with the Jordan cages we know from our
discussion of a system with complex poles. The subdiagonal elements
between each identical Jordan cage are filled with ones. All the other
elements are zero. In this way we create a number of cascades of Jordan
cages for every polepair.

Until now we restricted our discussion to cyclic systems. This
restrietion holds for most practical situations. Let us, however, now
consider the following example:



U 1

U 2

--~)GJ --~) Y 1

--~)GJ --~) Y 2
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In this situation we have a second order system with a multiple pole.
Both the algebraic and the geometrie multiplicity of the pole are two
50 this is not a cyclic system. Clearly for this situation we can
construct a Jordan form:

A = diag ( "1' 1 1); B = diag (1,1); C = diag (1,1)

This type of realisation can be constructed for all systems with equal
geometrie and algebraic multiplicity. In general the geometrie
multiplicity is greater or equal to one and less or equal than the
algebraic multiplicity [Trentelman,1985]
For this general case it can be proved [Guidorzi, 1984] that a Jordan­
like realisation can be constructed. In this situation again the main
diagonal is filled with Jordan blocks. In this situation however the
nurnber of Jordan blocks for each distinct poIe is equal to the
geometrical multiplicity of that pole. An algorithrn to construct this
generaI Jordan form is given by Guidorzi in his paper. Clearly this
realisation is not unique 50 this is a pseudo-canonical realisation.
If we want to avoid using complex matrices we can again replace each
polepair by a Jordan cage as shown above.



Appendix C-1

Name of the experiment

Estimation program

Number of iterations

Stop criterion

SISO

LS SSM

150

0.1000000E-04

81

Name of the matrix data file:
Date and time of creation
Title of the data set
Model subtype 1
Model subtype 2
Data type of variables
Number of matrices

ESSS22IF2.SSM
3-MAR-88 14:22:17

********
10

2
DB

6

Name rows columns depth
A 2 2 1
B 2 1 1
C 1 2 1
D 1 1 1
OFF 1 1 1
XO 2 1 1

A =

O.OOOOOE+OO 0.10000E+01
-0.57817E+00 0.12118E+01

B =

0.29BB8E-01
0.52231E-01

c =

O.10000E+01 O.OOOOOE+OO

D =

O.62640E-01

OFF =

-O.55485E+01

XO =



~PPendix c-2
Name of the experiment

Estimation program

Number of iterations

Stop criterion

SISO

DIRECTO

45

0.5268356E-07

83

Name of the matrix data file:
Date and time of creation
Title of the data set
Model subtype 1
Model subtype 2
Data type of variables
Number of matrices

MARK31433.STA
9-MAR-88 09:41:12

DIRECTO
30

1
D8

4

Name
A
MARK
OFF
V

A =

rows
1
1
1
1

columns
2
3
1
1

depth
1
1
1
1

0.12459E+01-0.58752E+00

MARK =

0.55033E-01 0.43455E-01 0.52039E-01

OFF =

-0.77461E+01

V =

0.97336E+03



Appendix C-3

Name of the experiment

Estimation program

Number of iterations

Stop criterion

SIMO

LS SSM

300

0.1000000E-04

84

Name of the matrix data file:
Date and time of creation
Title of the data set
Model subtype 1
Model subtype 2
Data type of variables
Number of matrices

ESSS30IF2.SSM
4-MAR-88 09:14:48

********
10

3
D8

6

Name rows columns depth
A 3 3 1
B 3 1 1
C 3 3 1
D 3 1 1
OFF 3 1 1
XO 3 1 1

A =

-O.20298E+01 0.12560E+02-0.26840E+02
0.12156E+01-0.42295E+01 0.11405E+02
0.79294E+00-0.34706E+01 0.83753E+01

B =

0.60360E-01
-0.48420E-02
-0.87520E-02

c =

0.10000E+01 O.OOOOOE+OO O.OOOOOE+OO
O.OOOOOE+OO O.lOOOOE+Ol O.OOOOOE+OO
0.OOOOOF L 00 O.OOOOOE+OO 0.10000E+01

D =

0.22175E-01
0.56797E-02

-0.78001E-02

OFF =



Appendix c-4
Name of the experiment

Estimation program

Number of iterations

Stop criterion

SIMO

DIRECTO

54

0.5268356E-04

86

Name of the matrix data file:
Date and time of creation
Title of the data set
Model subtype 1
Model subtype 2
Data type of variables
Number of matrices

MARK40857.STA
9-MAR-88 09:45:38

DIRECTO
30

1
D8

4

Name rows
A 1
MARK 3
OFF 3
V 1

A =

columns
2
3
1
1

depth
1
1
1
1

0.14199E+Ol-0.67586E+00

MARK =

0.31932E-Ol 0.38452E-Ol 0.69405E-Ol
0.86496E-02-0.88056E-02-0.16283E-Ol

-0.49398E-02-0.25733E-02-0.12800E-Ol

OFF =

0.45192E+Ol
0.39178E+Ol

-O.28911E+Ol

V =

O.67056E+04



Appendix C-s

Name of the experiment

Estimation program

Number of iterations

Stop criterion

MIMO

LS SSM

300

0.1000000E-04

87

Name of the matrix data file:
Date and time of creation
Title of the data set
Model subtype 1
Model subtype 2
Data type of variables
Number of matrices

ESSS33IF2.SSM
3-MAR-88 21:07:34

********
10

3
08

6

Name rows columns depth
A 6 6 1
B 6 3 1
C 3 6 1
0 3 3 1
OFF 3 1 1
XO 6 1 1

A =

O.OOOOOE+OO 0.10000E+01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.00000:
-0.61220E+00 0.12206E+01 0.16454E+00-0.24790E+00 0.74031E-02-0.65203:

O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.10000E+01 O.OOOOOE+OO 0.00000:
0.32604E-01 0.66401E-01-0.62458E+00 0.13964E+01-0.13740E-01 0.13655:
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.10000l
0.16496E-01-0.56383E-01 0.98352E-01-0.21745E+00-0.56953E+00 0.12007J

B =

0.19754E-01-0.78233E-02 0.55495E-02
0.65629E-01-0.79213E-02-0.10805E-01
0.32200E-01 0.37332E-01 0.17597E-01
0.13027E-02 0.70234E-01-0.13917E-01
0.29270E-02-0.20441E-01 0.38200E-01

-0.16952E-01-0.33323E-02 0.75932E-01

c =

0.10000E+01 O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.000001
O.OOOOOE+OO O.OOOOOE+OO 0.10000E+01 O.OOOOOE+OO O.OOOOOE+OO 0.000001
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 0.10000E+01 0.000001

o =



O.77512E-Ol-O.30914E-02-0.17675E-Ol 88
-O.33216E-Ol O.48745E-Ol-O.24549E-Ol
-O.48354E-02 O.15661E-Ol O.77801E-Ol

OFF =

O.25138E+Ol
O.50400E+OO

-O.15628E+Ol

XO =

O.43462E-02
-O.11050E-Ol
-O.33696E-02

O.17618E-02
-O.11747E-02

O.67984E-02



Appendix C-6

Name of the experiment

Estimation program

Number of iterations

Stop criterion

MIMO

DIRECTO

49

0.5268356E-07

89

Name of the matrix data file:
Date and time of creation
Title of the data set
Model subtype 1
Model subtype 2
Data type of variables
Number of matrices

MARK31653.STA
7-MAR-88 15:41:23

WIND.3
30

1
08

4

Narlle
A
MARK
OFF
V

A =

rows
1
3
3
1

columns
6

21
1
1

depth
1
1
1
1

0.40206E+01-0.73757E+01 0.77458E+01-0.48952E+01 0.17637E+01-0.2880E

MARK =

0.56915E-01-0.68639E-02-0.97834E-04 0.42867E-01-0.13606E-01 0.5101S
0.62801E-01-0.75095E-02-0.13022E-01 0.62265E-01-0.10168E-01-0.19774
0.49844E-01-0.16047E-01-0.20707E-01 0.30022E-01-0.16961E-01-0.1744€
0.72525E-02-0.90894E-02-0.10363E-01

-0.13483E-01 0.46299E-01-0.25227E-01 0.48988E-03 0.45303E-01-0.12937
-0.41869E-02 0.68600E-01-0.35495E-02-0.70780E-02 0.65186E-01-0.73030
-0.90533E-02 0.51396E-01-0.11834E-01-0.84115E-02 0.32681E-01-0.10216
-0.41928E-02 0.10955E-01-0.26379E-02
-0.10547E-01 0.20327E-01 0.32077E-Ol 0.41237E-02-0.48781E-02 0.53453
-0.78532E-02-0.14112E-01 0.76786E-OI-0.16428E-01-0.16183E-01 0.75707
-0.19732E-OI-0.14179E-Ol 0.57391E-OI-0.15342E-OI-0.96287E-02 0.27929
-0.44243E-02-0.33881E-02-0.32762E-02

OFF =

0.25302E+Ol
0.34563E+00

-0.14188E+Ol

V =

0.42167E+04
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l.Lll.t. .Q;r sYmbQ1s~

A
a (k)

a i
B
b i
C
D
E
e a
F d

F i
F u
F z
H
h
M
m
M (k)
m (k)
N
OFF
U

U c
Va
x
XO
y

r
~

'). i
Ui

P

system matrix
minimal PQlynQmial cQefficients
real part Qf eigenvalue
input matrix
imaginary part Qf eigenvalue
Qutput matrix
direct feed thrQugh
rQtatiQn matrix
residu
damping fQrce
inertia fQrce
upwards fQrce
gravitatiQn
Hankel matrix cQntaing MarkQv parameters
height Qf the platfQrm at a CQrner
mass
number Qf MarkQv parmeters
MarkQv parameter (MIMO)
MarkQv parameter (SISO)
number Qf datapairs
Qutput Qffset vectQr
distance between platfQrm and flQat,
input fQr identificatiQn
input Qf serVQmQtQr
Qutput errQr
state vectQr
initial state
height Qf the platfQrm at a measurepQint

Qbservability matrix
cQntrQllability matrix
eigenvalue, PQle
structure index
singular value
diagQnal matrix cQntaining singular values
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