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This report contains the results of a final project performed by K.
Pronk between August 1987 and March 1988 in the group Measurement and
Control of the Department of Electrical Engineering of the Eindhoven
University of Technology.

The task to perform was to find a simulation model of a laboratory
model of a floating platform. The floating platform is a practical
example of a multi-input-multi-output (MIMO) system. The simulation
model will be used to design a controller to stabilize the platform.

To determine a model of the platform several software tools were used
based upon output error methods. Final results were obtained from the
programs DIRECTO [Oudbier,1986] which estimates a MPSSM-model and
LS SSM [Veltmeyer,1985] which determines a state space model. The
simulations using the DIRECTO-output were improved after
implementation of an explicit offset estimator in the program
DIRECTO. Finally both simulations performed very well and very small
output errors were obtained.

Looking more closely to the structure of the model it is possible to
recognize the structure of the process in the model. The process is
very symmetric: it consists of three almost identical subsystems that
each include one float. Each input mainly excites one of those
subsystems which is confirmed by the fact that the estimated input
matrix of the model is block diagonal dominant. The symmetry of the
system can be recognized in the structure of the systemmatrix as well.
Each float causes a single pole pair but, because the subsystems are
almost identical, it is very difficult to distinguish all the states
if not all inputs are used. This causes a too low order estimation in
the single-input-multi-output (SIMO) experiment.

Both the good simulation results and the structure of the model that
reflects the structure of the actual process give good confidence in
the accuracy of the model obtained.
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Introduction

This report presents the results of a final project for obtainment of
the masters degree at the Department of Electrical Engineering of
the Eindhoven University of Technology.

The work was carried out at the group Measurement and Control. In this
group a main research subject is System Identification and Parameter
Estimation, especially of multi-input-multi-output (MIMO) systems.
As a result of the research efforts in this field several model
representations have been formulated. During the last years
several software-packages were developed to estimate models and
model-order of MIMO-systems.

In this report the identification of such a MIMO-system, a floating
platform, is described. Several program packages were used for this
purpose and, if necessary, improved. This report contains a complete
description of the data collection, the data preprocessing
(filtering) and the data processing i.e. the identification of the
process. Based on the data collected in the experiments a mathematical
model of the process is estimated. Finally the structure of the model
is analysed and compared with physical knowledge of the real process.

This report and the estimation results could not have
been accomplished without the help of the members o¢f the
group Measurement and Control. I want to thank everybody that has
been helpfull to me during my final project. In particular I want to
thank dr.ir. A.A.,H. Damen, dr.ir. A.J.W. van den Boom and ing.
J.W.J.J. Beckers.

Finally I thank Marina Roijakkers for assisting me in making the plots
for this report.




1. Description of the process
d1.1. General gsystem description

The system of our concern is a laboratory model of a platform. The
plat€orm is fl»ating on three floats. The position of the floats with
respect to the platform can be controlled using three servomotors. A
schematic drawing of the system is given in Fig.1l.

crane

( rotating ) [%]

platform

float servomotor

measurement
equipment

tUD cm—
with water

Fig.1l The floating platform.

By moving the floats vertically we try to eliminate any disturbances
of the balance of the platform. To perform this task only two control
inputs should be sufficient. The third control input is only strictly
necessary if we want to choose a certain height.

Inreality the main causes of disturbance could be mass-displacement,
waves and wind. To eliminate the effects of these disturbances we use a
personal computer to determine the control signals u . for the
servomotors.

As outputs we measure the heights of three points of the platformwith
respect to a fixed reference plane using roller-potentiometers as
described by Dirks [Dirks,1986]. The output voltage of the roller-
potentiometer is linearly related to the length of the string which is
connected to the platform and to the bottem of the bassin . Neglecting
for the moment the influence of translation and rotation of the
platform in the horizantal plane the length of the string will be the
height of the platform near the measure-point. In par.l.3. we will
consider the effects of the movements in the horizontal plane as well
as other drawbacks of the measurement equipment.



The output signals y are used as input signals for the controller when
the system is operated in closed-loop configuration. Ablock-diagram
of both the open-loop configuration and the closed-loop configuration
is given in Fig.2a/b.

JJdisturbance

u. ) L
IBM PC | servo Jplatform
theight
X
1 PC memory K— potmeter

Fig.2a. Block-diagram of the open-loop configuration.
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Fig.2b. Block-diagram of the closed-loop configuration.

Clearly the system is a MIMO-system with three inputs ( the input
signals of the servomotors) and three outputs ( the three height
measurements) .

To design a proper controller it is necessary to obtain a good
mathematical model of the process. This model is obtained by
stochastic identification methods. For identification purposes we
use the open-loop configuration.

Before starting the stochastic analysis however we want to gain some
more insight in the expected behaviour of the system. For this reason
we start by determining a rough estimation of the model based on
physical knowledge. The structure of this theoretical model ( e.g. the
order of the system and the eigenvalues) will be used for model
validation.

To be able to analyse the system theoretically we use the symmetry of
the system. We distinguish three single-input-single-output (SISO)
subsystems as described in the next paragraph and suppose that the
behaviour of every subsystem will be approximately equal.



1.2. A SISO-subsystem

The SISO-subsystem is schematically drawn in Fig.3. In this subsystem
there is only one control input and only one height measurement.
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Fig.3. A SISO-subsystem.

The block-diagram of Fig.2. is still valid for this subsystem. An
important insight into the behaviour of the total system can be
obtained by studying the subsystem. In this subsystem there exist
four important forces: the gravitation, the upward force of the water,
a damping force and the inertia force. When no disturbances exist a
balance between these forces will be reached determining the height of
the platform with respect to the bottom of the bassin (h) and with
respect to the bottom of the float (u).

The signal u is temporarily regarded as the input-signal and the
signal h is the output signal.

To determine the transfer function between u and h we first consider
the direction and the magnitude of the mentioned forces:

Fz: The gravitation.
This force is always directed downwards.
Its magnitude is Mass * Gravitation acceleration.



Fu: The upward force.
This force is always directed upwards.
Its magnitude is k (h-u) provided that the float is not completely
immersed in the water and not on the bottem of the bassin, k being
a parameter dependent on the size of the float.

Fd: The damping force.
This force only exists when the float is moving. In that case the
direction of the force is always opposite to the direction of the
movement. ..
Its magnitude is D( h- u), D being a parameter.

Fi: The inertia force.
This force only exists when the movement of the mass M is
accelerating ( positive or negative). In this case the direction
of the force is opposite to the direction of the acceleration.
The magnitude of the force is Mass * h.

Next we determine the condition for balance between these forces. In
this case the sumof the forces must be zero. Using the forces and their
directions as described we obtain the following differential
equation:

Mh' + Dh + kh = Du + ku - Mg (1)

As mentioned in paragraph 1.1 a mass-displacement, and thus a change
of effective mass of one subsystem, is considered to be a disturbance.
To determine the transferfuction between input and output however the
mass M is being supposed a constant. This minor simplification does
not cause significant inadequacies [ Daanen, 1985 ].

Performing Laplace-transformation we obtain the feollowing equivalent
relation in the s-domain:

Ds + k
h(s) = * u(s) ( 2)
Ms 24+ Ds + k

Finally we consider the input signal. Until now the distance between
the platform and the bottom of the float is used as input signal. The
input signal of the complete subsystemis in fact the input voltage of
the servomotor. To determine the transferfunction between the input
voltage and the height we have to consider the transferfunction
between the input voltage and the distance u. This transferfunction
was determined using a step-function as input signal u . and
measuring u. The result of this measurement is plotted in Fig.4.
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Fig.4. Experiment to determine the transferfunction of the
servomotor.

It was concluded that the servomotor can be modelled best by a pure
integrator. This integrator is put 1in <cascade with the
transferfunction of equation ( 2 ). The simplified block-diagram of
the subsystem now becomes:

v

ooooooooooooooooooooooooooooooooooo

Fig.5. Block-diagram of a SISOésubsystem.
The total transferfunction between input and output is:

K( Ds + k )

T(s) = ( 3)
s(Ms?+ Ds + k) .

In the next paragraph we will have a closer look at the output signals.
Several drawbacks of the measurement equipment used until now will be
discussed and an alternative will be briefly mentioned.



4.3, Ihe height-measurements

As mentioned before a lot of time has been devoted by other students
and their coaches to solve the measurement-problem in a cheap way. The
setting of the problem looks quite simple: determine the absolute
height of ( three points of) the platform with respect to a fixed
reference plane, in this case the bottom of the basin. Several
techniques have been discussed. Until now best proposal of an
algorithm to determine the height was introduced by Dirks [ Dirks,
1986].

To determine the three output-signals h he used six distance-
measurements. The distance of six points with respect to fixed
reference points was measured using roller potentiometers. In this
way he obtained six independent measurement signals. The floating
platform has six degrees of freedom ( 3 translations and 3 rotations)
sO0 six measurement signals are sufficient. Dirks developed an
algorithm to determine the three heights from the six measurement
signals.

In practice however the implementation of this algorithm proves to be
too slow to determine the heights in one sample moment. This will be a
problem when the algorithm is used to determine the control signals. A
second problem is that the algorithm proves to be not very reliable.
Very often the algorithm does not converge. This, of course, also
affects the identification because no proper height measurements can
be calculated.

To cope with this problem we want to measure the height without
interferingly measuring rotation and translation of the platform at
the same time. Clearly using the measurements as sketched in Fig.1l.
this condition can not be met. A rotation or a translation of the
platformwill change the length of the string and will be regarded as a
change in height, cf. Fig.6.

Fig.6. Misfit between the height and the length of the string.

From Fig.6. it can be concluded that rotation or translation of the
platform will add a non-linear drift component to the output signals.
Another serious drawback of the measurement equipment recently used
is the fact that the elastic wires affect the behaviour of the system.
They have a certain influence on the dampingsconstant D and they add a
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springconstant.

At the moment new measurement equipment has been built. This equipment
uses conduction measurements between two metal plates connected to
the platform to determine the height of the platform. The new
measurement equipment is not sensitive for translation or rotation of
the platform. Because this new equipment is implemented only very
recently and is not yet tested all the results in this report were
obtained using the roller potentiometers as sketched in Fig.l. A
drawback for open-loop identification using the new measurement
equipment seems to be that this equipment is only linear in a limited
working area which is not large enough to obtain samplestrings of
sufficient length.

Because the new measurement equipment does no longer use the wires
connected to the bottem is will be necessary to obtain a new model.
This model will represent the system dynamics better ( assuming the
measurement equipment will prove to perform well during testing)
because no longer the dynamics of the platform are influenced by the
measurements or rotation and translation.
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2. Model representations

2.1, Introduction

This chapter will briefly deal with the model representations used
during the identification of the floating platform.

First two generally known model representations are described: The
state space model in observability canonical form and the Markov
parameters.

Next a system description will be given that is less well-known. The
description is based on a start sequence of Markov parameters and the
minimal polynomial coefficients. This representation is especially
attractive because no structure indices are needed apart from the
degree of the minimal polynomial.

At the end of this chapter the relations between the model
representations are discussed and algorithms to convert the
representations into each other are briefly mentioned.
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2.2, State space model

The state space model is based on the definition of several states
between input and output of the system. A state is a memory element ( an
integrator or a delay) whose contents are stored in the state-vector
X. Fromthis definition it is clear that the minimum number of states (
the minimum dimension of the state space) equals the order of the
system. A state space model describes the relationships between
inputs, outputs and states according to the following convention:

it

X (k+1) A x(k) + B u(k)
(4)

¥ (k)

C X(k) + D u(k) + OFF

The model is characterized by the matrices [A,B,C,D,OFF] which is
called a realisation. This is not a unique representation; for a
particular combination of input- and output signals an infinite
number of vectors X can be found leading to different realisations for
the same process:

I1f [A,B,C,D,OFF] is a realisation of a particular process, then for
each non-singular matrix T the realisation [T ~'AT,T " B,CT,D,OFF)]
results in the same input/output behaviour. This means that for using
algorithms for identification we have to choose one particular type of
the set of state space models to guarantee unique results. Some well
known ( pseudo) unique forms are the Jordan canonical form, which will
be discussed later, and the pseudo-canonical observability form
[Damen, 1986].

Both realisations are attractive for their clear relations between
inputs and/or outputs and the states. Moreover they contain a small
number of parameters. For multi-output systems the observability form
is unique but a number of structure indices have to be estimated. In
the pseudo canonical or overlapping form most systems can be
represented in a fixed structure, so that in this representation the
structural indices are not estimated based on data but fixed
beforehand. Only in rare cases the systemwill not fit in the modelset.
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2.3, Markov parameters

The Markov-parameter model is based on the impulse response of the
system. When the impulse-response of a causal SISO-system is called
m(k) then the system response for a general input-signal u(k) can be
written as:

y (k) = fom(j).u(k-j) (5)

This description is easily extended to the MIMO-case:

g0 = Mo aed (6)

{M(J)} j20,01s a sequence of matrices, called the Markov parameters,
that provides the various impulse responses. The sequence of Markov-
parameters consists of g.p sequences of impulse responses, where gis
the number of outputs and p the number of inputs.

A Markov-parameter model is an input-output model: The output
variables are writtenexplicitly in terms of the input variables. This
model is unique.

Another great advantage during identification is that the impulse
response model is linear in the parameters. The number of parameters
however is infinite.

This remark requires some discussion: In case of finite-dimensional
systems the number of Markov parameters can be reduced at the cost of
the linearity in the parameters. This will be dealt with in the next
paragraph.
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In this paragraph we have a closer look at the Markov sequence as
described in the last paragraph. If we consider a first order SISO
process we know that the impulse response obeys the following
relation:

m(k) = a.m(k~1) k>1

This relation can easily be extended for finite-dimensional higher
order MIMO-processes:

M(k) =

ners

y, a(d) Mk-3) k >r ( 7)

This means that a finite dimensional system is completely determined
by M(0),{a(i),M(i)} {=4,¢ The coefficients a(i) are called the
minimal polynomial coefficients and the set {M(i),1i=0,r) is a start
sequence of Markov-parameters. Together they form the MPSSM
description of a process.

r is the degree of the minimal polynomial. If there are no poles with
geometric multiplicity more than one this r equals the n indicating
the dimension of the minimal state space realisation. In the sequel we
will put r=n and mainly use n.

Clearly the big advantage of this description is the small amount of
parameters without being restricted to a particular structure. A
disadvantage is that the linearity in the parameters is lost in this
representation.

More information about MPSSM-models can be found in [Backx,1987)] and
[Oudbier,1986]
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The relation between the state space model and the impulse response

model can be shown in a simple way by combining both equations of Equ. (
4 )

- k
k) = jgl C.A] 1B u(k-j) + D u(k) + C.A 3(0) + OFF ( 8)

from which it follows ( neglecting initial conditions):

M (k)

Il
-

9)

To determine a state space realisation of a given impulse response
model is somewhat more complicated. Note that again we can choose one
particular realisation. The algorithm to calculate such a realisation
is called the Ho-Kalman algorithm:

1. Construct a Hankel matrix H:

-1
M(1) M(2) . M(n) (CB CAB. . cA' B
M(2) ] . CAB
H = =
n-1i 2n-2
M(n) . . M(2n-1) CA B . . CA B
A i J
= I, A
o
C.A
I = ) a=[B B.A .. B.A"!]
c.an-!

M is called the observability matrix.
A is called the controllability matrix.



2.

16

Shift the Hankel matrix one column to the left:
- -

M(2) . . M(n+l)
M(3) . .

M(n+l) . . M(2n)

i

Note that the matrix H is equal to the product of the observability
matrix ', the system matrix A and the controllability matrix a

H=Na.a = a= TtH at

where + indicates the peudo inverse.
supposing I and A have full rank and M is long enough.

Decompose H using singular value decomposition:

H=W. LvT

W and V being orthonormal matrices and I=diag(e¢y ,,., ¢y, o;being
the singular values of H in descending order.

4.

5.

Choose = W.I'/%2and a= $!/2vy? (symmetric realisation)
The conditions for I are now satisfied.

Calculate A,B,C using A = Tt H. at= "V 2T H v, 1-1/2
Note that D = M(0).

Next we consider the rather straightforward relationships between the
Markov parameters and the MPSSM model.

When given a MPSSM-model the Markov parameters can be calculated as
follows:

M(k) if k £n

M(k) = l ‘ 10 )

2 oa Ma-i) k>n




17

When given a set of Markov parameters the MPSSM-model can be
calculated as below:

M(k) = M(k) if k sn
(11 )
a = Ghm
a=-[ald), .., a(n) ]
F -
vec(M, vec(M,) . . . vec(M)
vec(M,) . . . . vec(M
G = .
veé(Mn_r) . . .« . vec(Mp_y J
mD=1[vecMp,,) TvecM ,,) T . . vecMp "]
vec(Mp = [ Myy(i), Mpy(i), ..y Mgy(i)s My,(i), ..,
cerMga(i), wuy Mgp(d) ]

The relationships between the state space model and the MPSSM model
can be derived using combinations of the techniques mentioned above.
To construct a state space model from a MPSSM model first convert the
MPSSM model into Markov parameters and then apply the Ho-Kalman
algorithm.

Generically a MPSSM model converted to state space will result in a
dimension of the state space n = r.min(p,q) as multiple poles are
allowed. To reduce the order we can use either of the following methods
[Backx,1987]):

We construct a matrix H that is as close as possible to the
Hankel matrix H in the Frobenius norm. The rank of H however is
r:

Herr = ran:\lkrﬁ =r [ B - H s

Using the matrix H in stead of H we apply the Ho-Kalman
algorithm as described above.

In general, however, it can not be guaranteed that the matrix
H has the required Hankel structure. This means that, to be
able to apply the Ho-Kalman algorithm, we may be forced to
choose another matrix which is not the best in the Frobenius
nc .

Another possibility is to reduce the order by deleting the
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least controllable and the least observable part of the state
space model. To solve this problem the state space model has
to be transformed into a balanced realisation after which the
mentioned parts can be removed. An algorithm to determine the
balanced realisation is given by Backx.

A state space model can be tranformed into a MPSSM model: the start
sequence of Markov parameters can be determined as explained above,
the minimal polynomial coefficients are the coefficients of the
characteristic equation ( if no multiple poles occur):

det ( zI - A) =0 (12 )
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3.1 Introduction

After having dealt with several model representations we are now ready
to start with the actual experiments to determine a mathematical model
of the process. The mathematical model is calculated iteratively
comparing during each iteration the calculated output y with the
measured output y. The error between the two signals is calculated
according to a predefined error criterion. In this case we use an
output-error criterion because a complete simulation model is needed
for the given control-method. The output error is calculated as the
sum of the squared residuals:

X Py 2
ve= boeo = by -y (13)

where N is the number of data pairs [u(k),y (k)]
This error isminimized using the sequence of programs shown in Fig.7.

First the program ESMARK determines a finite Markov sequence based on
the measured data. The length of the Markov sequence to be determined
is entered by the user. In HANKEL a Hankel matrix with Markov
parameters is constructed as described in the Ho-Kalman algorithm.
The number of singular values of this matrix not equal to zero is equal
to the order of the process ( when nonoise is present). Examining the
singular values of the Hankel matrix the user enters the wanted
dimension of the reduced state space realisation. A symmetric
realisation is constructed using the Ho-Kalman algorithm for the
truncated Hankel matrix.

Optionally the Markov-parameters are reconstructed for the given
order using Equ.( 9 ).

In the right hand branch these reconstructed Markov-parameters are
used by DIRSTA to determine the initial minimal polynomial
coefficiens needed in DIRECTO. Because we use the reconstructed
Markov sequence ( number of independent Markov-parameters = n) for
this purpose Equ.( 11 ) can be reduced to:

a'=H"Lm, m,= [ M(n+l),M(n+2),...,M(2n) ]°

Finally DIRECTO will determine an MPSSM model using an output error
criterion. This is the last step of the error-minimisation. To compare
the results of DIRECTO with the results of LS_SSM the order of the
MPSSM model has to be reduced to n using one of the methods given in
par.2.5.

At the moment however none of the mentioned algorithms to obtain a
reduced order state space realisation is implemented yet. Trying to
obtain a reduced realisation using HANKEL again we find a non-optimal
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realisation according to an output error criterion. The simulation
results in this report are obtained generating a finite Markov string
( order = r, 1=100) from the MPSSM model which is used for simulation.
In the left hand branch the state space realisation obtained by HANKEL
is transformed by PCAN in a pseudo canonical observability form which
is usedas initial model inLS SSM. LS_SSMwill estimate a state space
model in pseudo canonical observability form using an output error
criterion.

For more detailed information about the programs the reader is
referred to Appendix A and the manuals of LS_SSM [Veltmeyer, 1985] and
DIRECTO [Oudbier, 1986]

measured data

ESMARK
Finite Markov string
HANKEL
reduced order | 1 reduced order
state-space model Markov parameters
y
PCAN DIRSTA
zeroth iteration zeroth iteration
ps.can.obs. form min. pol. coeff,.
< 1| LS_SSM DIRECTO l( -
state space model MPSSM
ps.can.obs. form order = r.min(p,q)

order = n

Fig.7. Programs used for identification.
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3.2 Data collection and preprocessing

Before starting the experiments we have to make some choices to
obtain data that are suitable for identification.

First of all the input signal should be sufficiently rich to excite all
the states of the system. A proper choice for input signal is auniform
white noise sequence generated by the random-generator of Turbo
Pascal used on IBM or Philips XT.

Next we have to choose the sample-frequency. To do so we determine the
rise time of the process experimentally. When we choose the sample
time at least 5-15 times as small as the rise time the signal contains
enough information to estimate the dynamics of the process |
Isermann,1980]. For identification purposes often one samples with a
higher rate because then the preprocessing can be done with higher
reliability. In our case the rise time is approximately 1 s. Because
internal delays of about 0.02 s. are present it makes no sense to use
extreme high sample rates. We chose the sampletime to be 0.1 s.
Now we are ready to start the experiments. Before using the obtained
data for identification, however, we first have to perform
prefiltering. The most common types of filtering are offset-
filtering, dead-time filtering ,scaling and low-pass filtering.
To remove the dead-time of the system we first have to have a good
estimation of the dead-time. This estimation is obtained using cross-
correlation techniques. In this case the delays are small with respect
to the sampletime, so we do not use dead-time filtering.

To perform offset-filtering it is necessary to have a good estimation
of the offset. It is common use to remove the average value of the
signal. However in general the average value of a signal is not equal
to the offset of the signal. Especially in this case when the transfer
function contains a pure integrator it is clear that it is impossible
to remove the offset without removing a part of the information as
well. For this reason we do not use this type of offset-filtering.
Instead we use explicit offset identification. During the experiments
however proper identification turned out to be very difficult when the
output signals did not start from zero. For this reason the signal was
shifted so that y(0) became Q0 (i.e. performing offset-filtering using
y(0) as offset-vector). During identification { OFF - y(0)} is
determined instead of the offset-vector.

Whether it is useful to perform low-pass filtering depends on the
signal-noise ratio. When this ratio is very good there is no need for
low-pass filtering and it could even remove a part of the information
in the data. In our case, however, the quantisation noise sometimes
became too large. This causes small negative real quantisation poles.
Especially for DIRECTO these poles became problematic because DIRECTO
does not allow poles in the left half z-plane. In general the existence
of poles with a negative real part can be avoided by increasing the
sample-frequency. This will however not affect the location of
quantisationpoles ( f,=0.5*f ;.. . For this reason we used lowpass
filtering. The low-pass filtering is performed by the following
operation:
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y' (k) = (y(k=-1) + y(k) + y(k+l) ) / 3

The cut-off frequency off this type of low-pass filtering is 1/3 *
f samp Which is enough to remove the quantisation noise. Averaging
only two samples would increase the bandwidth but at the same time
introduce a phase shift that would cause an additional ( delay) pole.
The last type of preprocessing we want to consider is scaling the
signals. Both LS_SSM and DIRECTO minimize the total absolute error
between the signals and the simulations so a signal containing very
little energy is discriminated compared to a signal containing more
energy. This will result in larger relative errors in the low-power
signals. By scaling we can avoid this discrimination at the cost of &
higher absolute error. Because the absolute error is most important
for control tasks we decided not to scale the signals.

Next we will use some special knowledge of the process to make the data
more suited for identifiction. First of all we know that a pure
integrator is present in the system. A pure integrator is very
difficult to estimate because of convergence-problems for allmost
unstable modes. To avoid problems during identifiaction we integrate
the input signal before starting the identification. During the
identification the integrated input signal is regarded as the input
signal. After identification an additional integrator has to be put in
cascade with the calculated model to obtain the complete model cf.
Fig.8.

ooooooooooooooooooooooooooooooooo

Fig.8. Dividing the model into two Dblocks before
identification.

Finally we have to perform a last transformation of the output data to
be able to compare the results with the theoretical results in Chapter
1. In the theoretical model the relation between the input signal u and
the height of the float h is determined. The measured output signals
however are not the heights of the floats but the heights inbetween two
floats ( cf. Fig.l). It can easily be seen that the heights of the
floats can be calculated as below:
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h = E . ¥ Yy being the measured output
1.0 -1.0 1.0

E = 1.0 1.0 -1.0
-1.0 1.0 1.0

This transformation should be performed before identification
because it affects the calculation of the output error; the rotation
causes a different weighting of the residues:

Vo= DBy -E) TEy -EY) = I - EEQ-D
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3.3, The SISO-experiment

After having discussed the general structure of the process based on
physical laws, having dealt briefly with several types of black box
models and having considered the need of proper filtering before
identification we now start the actual parameter estimation of the
platform.

We start just considering a SISO-subsystem as shown in Fig.9.:

Fig.9. The SISO-experiment.

In this case only one servomotor is used and the height of only one
float is measured. The other floats are taken out of the water
temporarily and are fixed to the bassin. Note that in this
configuration the system has only one degree of freedom and the
height-measurement is no longer disturbed by translation or rotation
of the platform.

The uniform zero-mean white noise input signal as described in
par.3.2. 1is generated by the IBM-computer and applied to the
servomotor.

The program that handles the input-generation and data collection and
storage 1is written in Turbo Pascal. The program for the SISO-
configuration is called MEETSISO.PAS. The output data collected by
MEETSISO are pictured in Fig.10.

Horizontally the time in samplemoments is plotted. The sampletime is
0.1 s. Vertically the output samples are plotted in digital
representation. This representation is obtained converting the
output voltage of the potentiometers (-5V,5V) to an eight bit digital
reprentation (0-256) and subtracting 128 to obtain a zero on output
when the potentiometer generates 0V. In all the following plots
showing output measurements or simulations the same unities are used.
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Fig.10. The output of the SISO-experiment.

The data pictured in Fig.10 will now be filtered and transformed as
described in paragraph 3.2. After preprocessing we obtain the red line
plotted in Fig.12. The filtered sequence is used to determine a
mathematical model of the process. A number of programs was used
according to the flow-diagram pictured in Fig.7. Intermediate and
final results are discussed in this paragraph.

To determine an initial model we first estimate a sequence of Markov
parameters using the program ESMARK. The wanted length of the Markov-
sequence can be supplied by the user. We choose the length 1=20. The
amplitude of the 20th Markov parameter is more than 95% reduced
compared to the first Markov parameters so the greatest part of the
signal power is included in the first 20 Markov parameters. A
simulation based on the estimated Markov-parameters is pictured in
Fig.12 ( blue line). Indeed the greatest part of the information is
included in the model.

According to the Ho-Kalman algorithm we can construct a state space
model using the finite Markov sequence. First we determine the order
of the system considering the singular values of the Hankel-matrix
plotted in Fig.l1l.
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Fig.11. Singular values of the Hankel matrix.

A clear edge can be detected near the third singular value. This
suggests that the magnitude of the third singular value has reached
the noise level. When no noise is present this singular value would
become zero if there are no more independent Markov parameters which
means that the order of the system is reached. However when the signal
is corrupted by noise the singular values will never become zero.
Instead the noise level can be used to determine the order of the
process. When a singular value enters the 90%-bound of the noise level
we decide we can not distinguish more independent Markov-parameters.
As an illustration in this plot also the singular values of the Hankel
matrix before low pass filtering are plotted. We see that the
gquantisation noise increases the estimated model order. Moreover the
magnitude of each singular value is increased with the square root of
the quantisation noise power.

Rough calculations were performed to determine the noise level.
Unfortunately the calculations did not match with the noise level
indicated by the edge inFig.11. Because the calculations are not very
.accurate we define fromFig.1l1 the order of the system ( = the number of
independent Markov-parameters) by two. The misfit of the noise level
calculations and the results in Fig.1l1l may be caused by the fact that
calculation of the noise level is based on assumptions (uncorrelated
noise samples in Hankel matrix) which are not valid in this situation.
To determine a second order state space realisation the program HANKEL
was used. This program constructs a Hankel matrix according to the Ho-
Kalman algorithm and calculates a symmetrical realisation. Using this
state space realisation a new simulation was performed the results of
which are plotted in Fig.13 ( blue line).
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Fig.12. SISO-simulation using ESMARK output.
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Fig.13. SISO-simulation using HANKEL output.
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Comparing the simulation of Fig.13 with the simulation of Fig.1l1l we
see that an important part of the information is lost during the order
reduction. This is caused by the model reduction of the Markov string
which, of course, does not give the best possible state space
realisation in output error criterion.

The program HANKEL also reconstructs the estimated Markov-sequence
for a second order realisation. The reconstructed Markov-sequence is
stored too.

The results of HANKEL are used as initial estimations for the programs
LS_SSM and DIRECTO . The state-space realisation produced by HANKEL
is transformed in a pseudo-canonical observability form by PCAN and
used for LS SSM. A sequence of minimal polynomial coefficients is
extracted from the reconstructed Markov-parameters and entered in
DIRECTO.

The prgram LS _SSM determines a state space model using equation error,
output error or innovation error criterions. In this case we need an
output-error model because we want to design a controller based on the
simulation model. The state space model obtained by LS SSMis given in
Appendix C-1.

The program DIRECTO determines a set of minimal polynomial
coefficients and the start sequence of the Markov parameters. The
parameters are estimated using an output error criterion. The
obtained MPSSM-model is given in Appendix C-2.

Both programs should give better simulation results than the
simulation based on the output of HANKEL because HANKEL estimates a
model using the Hankel criterion which is not the same as the output
error criterion. Evaluating the simulations with an output error
criterion of course the results of DIRECTO and LS_SSM should be
better. Moreover DIRECTO should be superiour to LS_SSM because the
modelset of LS_SSM is a part of the modelset of DIRECTO ( which is not
restricted by given structure indices).

The simulaton results of LS SSM and DIRECTO are shown in Fig.14. The
red lines indicate the measured signals, the blue lines are the
simulations. We immediately conclude that the both simualtions
perform better than the simulations using HANKEL-output. To compare
the results of LS SSM and DIRECTO we need to have a closer look at the
absolute errors between the simulations and the measured signals:

LS SSM: DIRECTO:

Vo= 0.2830673E+01 V,= 0.2685179E+01
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Fig.14b. SISO-simulation using DIRECTO output.
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The output errors given above are calculated using the samples 15 up to
150. The first 15 samples are used by DIRECTO to determine the initial
state. This initial state is not a part of the DIRECTO-output so it can
not be used for simulation. For this reason the first part of the
DIRECTO-simulation is clearly worse than the first part of the LS SSM
simulation. After this first part however the DIRECTO-simulation
performs better as was expected.

To obtain proper results with DIRECTO an explicit offset-estimator
was implemented. Prior to the implementation of the offset-estimation
the errors in DIRECTO-simulations were larger than the errors in
LS SSM simulations.

The comparatively large errors between measured outputs and
simulations are caused by the bad measurement conditions during the
SISO experiment. These conditions will be improved before starting
the SIMO and MIMO experiments.
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3.4 The SIMO-experiment

Next we want to extend the identification for the single-input-multi-
output (SIMO) case. In this experiment the platform is really floating
in the water. Only one servomotor was excited and all three heights
were measured. As mentioned the height measurements will be troubled
by translation and rotation of the platform because sofar it is not
feasible to measure absolute heights.

The excitation of the input-signal and the collection of the data
were performed by the program MEETSIMO on IBM-computer. The collected
data are plotted in Fig.15:

Y
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Fig.15. The outputs of the SIMO-experiment.

The behaviour of two outputs is almost similar and the behaviour of the
third output is roughly speaking inverse. This can easily be explained
when we consider the location of the measurement-points and remember
that only one input was used cf. Fig.l6.
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Fig.16. The location of the excitation and measurement
points.

When float 3 is excited the platform will turn more or less over the x-
axis shown in Fig.16 because of the inertia force. This causes the
output-signals 1 and 3 to be almost equal and output 2 almost inverse.
The symmetry, however, is not perfect mainly because of the crane on
the platform.

Similarly to the SISO-experiment a Markov-sequence is estimated based
on the filtered data. Again it was proved by simulation that
truncation of the Markov string after 20 samples does not cause any
significant loss of information. To determine the order of the system
the singular values of the Hankel matrix are examined:

~T T T T T T T T T T T T T J
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Fig.17. Singular values of the Hankel matrix.

In this case again the most significant edge occurs at the third
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singular value ( indicating a second order system). This is rather
surprising because, when we assume that every float ( every SISO-
subsystem) contains two states, the order of the SIMO-system should be
six unless several states are numerically identical. This situation
can occur when several poles of the systemare ( almost) identical. In
paragraph 4.2 we will discuss the pole-locations of the model and
consider this phenomena more thoroughly. For the moment we just create
a second order realisation as indicated by the singlar values of the
Hankel matrix.

Now we want to use the second order realisation as an initial model for
identificationwith LS SSM and DIRECTO. To obtain an initial model for
DIRECTO again the Markov parameters are reconstructed and minimal
polynomial coefficients are calculated using DIRSTA. For LS SSM,
however, we need an initial state space model in the observability
form. Because it is impossible to create a second order observability
realisation of a system with three outputs we use a third order
realisation as initial model for LS SSM.

The model obtained by LS SSM is given in Appendix C-3.

The model obtained using DIRECTO is given in Appendix C-4.

Both models were used for simulation. The simulated signals and the
measured signals are plotted in Fig.18. The output errors are given
below:

LS_SSM: DIRECTO:

Vo1 = 0.2600305E+01 Vor = 0.3583565E+01
Vo2 = 0.2705085E+01 Vo2 = 0.2705748E+01
Vea= 0.2003381E+01 Vez = 0.2161680E+01
Ve = 0.7308200E+01 Ve = 0.8450993E+01

where V ,; is the absolute error in the i-th signal.

It strikes that the output error in the DIRECTO-simulation is larger
than the error in the LS SSM simulation. This is caused by the fact
that the order n of the state space realisation is higher than the rank
of the minimal polynomial determined by DIRECTO. Because of this we
can not compare the results of LS_SSM and DIRECTO unless we reduce the
order of the state space realisation obtained by LS_SSM. In general,
however, the reduced state space realisation will not be an optimal
realisation with respect to an output error criterion. This is an
important disadvantage of the estimation of a state space model in the
observability form as performed by LS_SSM.

Considering the simulations we see that during the first 200 samples
the performance of the simulations is about equally good and the
output-error is very small. During the last part of the simulation,
however, a drift signal becomes apparent that could not be fitted by
either of the identification programs. This drift signal may be caused
by translation and/or rotation of the platform disturbing the height-
measurements. For this reason we think this model can be improved by

implementing better measurement methods.
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Fig.18a. SIMO-simulation using LS SSM autput.

Fig.18b. SIMO-simulation using DIRECTO output.
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2.5, Ihe MIMO-experiment

Finally we will consider the complete MIMO-process. In this
configuration three independent noise sequences are applied to the
servomotors. All three input signals are stored together with the
measured output signals. The generation of the inputsignals and the
collection of the data are performed by the progran MEETMIMO on IBM
computer. The measured outputs are plotted in Fig.19.
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Fig.19. The outputs of the MIMO-experiment.

As before the input signals are filtered and transformed before using
them for identification purposes.

First a finite Markov-string is estimated ( 1=20) using ESMARK. An
estimation of the order of the system is obtained considering the
singular values of the Hankel matrix produced by HANKEL:
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Fig.20. Singular values of the Hankel matrix.
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In this case it is impossible to detect a clear edge. Also th
calculations of the noise level seem to be not very reliable becaus
they would result in an extreme high system order. Using our knowledg
of the order of the system as described in par.3.4. and trying t
approximate Fig.20 with two straight lines we decide to try a sixt
order realisation.

Using HANKEL a sixth order Markov string and state space realisatio
are constructed which are used to calculate initial models for LS_SS
and DIRECTO.

The final results of DIRECTO and LS_SSMare given in Appendices C-5 an
C-6

These results are used for simulation. The simulation results ar
plotted in Fig.2la/b. The output errors are given below:

LS_SSM: DIRECTO:

v 0.1905310E+01 \ 0.1665260E+01

01 01

Vga = 0.2289953E+01 Vgp = 0.2047058E+01
Vo3 = 0.3245606E+01 Vgs = 0.2993687E+01
V, = 0.7440869E+01 V, = 0.6706005E+01

Both simulations perform very well. Clearly a sixth order model 1i.
sufficient to contain most of the information. As expected the outpu
error in the DIRECTO-simulation is smaller than the output error i:
the LS_SSM simualtion.

At this point it may be useful to mention that all results presented i:
this report using DIRECTO were obtained after implementing a:
explicit offset estimator. Earlier results using DIRECTO output wer
clearly worse than the results using LS_SSM. After the implementatio:
of the offset estimator the simulation results using DIRECTO outpu
were at least as good as the simulations using LS_SSM output

In Fig.22 we show the pole-zero plots of the transfermatrix usin
LS _SSM output. Considering the pole-zero cancellations we conclud
that the order of the diagonal elements is effectively two and th
order of the off-diagonal elements four. This can be explaine
considering the process again. The diagonal elements represent th
influence of an input on the nearest float. In this case only one floaf
and thus only two states are invloved. The off-diagonal element:
represent the cross-influences between two floats. Two floats are
invloved so the effective order will be four.

In the next chapter we will look more closely to the structure of the
model. We will try to show that the expected structure of the process
based on physical modelling) is reflected in the structure of the
estimated model which would of course strengthen our confidence in the
model.
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Fig.21b. MIMO-simulation using DIRECTO output.
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4, MIMO model wvalidation
4.1 Introduction

As mentioned before we will now consider more closely the estimated
MIMO-model. We will try to assign a physical meaning to the estimated
parameters. Especially we want to investigate whether it is possible
to distinguish the influence of the three different subsystems, i.e.
the three floats, in the model structure.

To investigate the structure we use two different special state space
realisations : the Jordan canonical form and the observability
canonical form with which we deal in paragraph 4.3 and 4.4
respectively. First of all however we examine the pole locations of
the transfermatrix. In this paragraph we will try to explain the fact
that when only one input is used ( the SIMO situation) the order of the
system decreases until about two, although theoretically the order of
the system ( supposing all states are coupled) should be the same as
the order of the MIMO system.

After having considered the structure of the estimated model we will
look more closely at the integrational part in the outputs. It has been
noted that an important part of the total transferfunction between
inputs and outputs is caused by the integrator. This dominancy may
cause a worse estimation of the other states. To check this we will
separate the integrational part and compare the rest of the simulation
with the measured signals.
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4.2 Pole locations

In this paragraph we have a closer look at the poles of the transfer
matrix. To construct the transfer matrix we use for example the
relation between the state space model and the Markov parameters as
described in chapter 2. Fromthis relation it is easy to understand the
relation between the state space model and the transfer matrix model:

H(z) = C.(zI-A) "L.B ( 14 )

The elements of H(z) are all ratios of polynomials and can be regarded
as the transfer functions between input i and output j. The poles of
the transfer function are the zeros of the characteristic equation:
det( zI - A) =0

Considering the structure of the process which can be separated in
three almost identical subsystems we expect three almost identical
pole-pairs. This assumption is supported by the fact that the
estimated order of the SIMO-process is only two (cf. par. 3.4). This
phenomena can be explained by the following simplified example:

Consider the blockdiagram given in Fig.23 :

u, SZ; — | z-a — Yy,

Fig.23 Example system with two identical poles.

In the example system shown in Fig.23 there exist always two
independent observable states although the poles of the system are
identical ( assuming B non-singular and u 4 u , independent) . However
when only one input is used the system can be reduced to the following
scheme:
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Fig.24 Example system using only one input.
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When the initial states are neglected we can reduce the system of
Fig.24 to the following scheme:

u, J2§ s| L ‘Z;

L 2
<
-

B— v2

Fig.25 Reduced example system.

In this case no longer two independent observable states exist because
we use only one input. In the same way the order of a system with three
identical pole-pairs effectively reduces to two when only one input is
used.

Returning to the platform we consider the poles of the initial model
obtained by HANKEL in the MIMO-experiment:

\y,2= 0.7438 t 3. 0.4887
\s's= 0.6992 3. 0.5019
5I6= 0.6737 tj. 0.4129

Indeed we have three almost identical polepairs. However, as shown in

the example, when three proper input signals are used ( such as
independent noise sequences) it is possible to recognize all six
separate (!) states.

Using only one input however ( filling the B-matrix with 2zeros for the
other inputs) the number of independent states ( = the number of
independent Markov parameters) effectively reduces to two. We
conclude that similar as in the example process the estimated low
order of the SIMO-process is caused by the existence of multiple poles
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and only one input.

Considering the final estimation results again the structure of the
process is clearly reflected in the estimated model. As expected after
physically modelling each float introduces a single polepair. The
three polepairs are very near to each other because the three
subsystems ( i.e. the floats) are almost identical.

The poles of the state space realisation estimated with LS_SSM are the
eigenvalues of the system-matrix:

A;,,= 0.7012 % j. 0.5615
3.4 = 0.6343 % 3. 0.4510
5.6 = 0.5734 % 3. 0.3347

The poles of the MPSSM model determined by DIRECTO are the roots of the
minimal polynomial:

‘;,,= 0.6581 t 3. 0.6072
‘3.4 = 0.7574 t 3. 0.3509
‘g ¢ = 0.5948 t 3. 0.4023

To find the symmetry as indicated by the poles it proved to be very
important to use proper preprocessing (cf. par.3.2.). When this is
left out the estimation routines will find other poles to cope with
e.g. quantisation noise, delay or offset. Especially when the real
system poles are very near to each other the estimators tend to use
only one or two polepairs to model the dynamics of the system.
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4,3, The Jordan form

A Jordan state space realisation is often used to determine the
relations between states and inputs and outputs. In a pure Jordan form
the A-matrix is diagonal matrix and the diagonal elements are the
eigenvalues of the matrix ( the poles of the system). Inthis case all
states are decoupled.

This realisation however can only be found in case of cyclic systems
having distinct eigenvalues. Cyclic systems are systems whose poles
have all geo,etricmultiplicity one. The geometric multiplicity of an
eigenvalue is the dimension of the eigenspace of that eigenvalue. In
case of non-cyclic systems and/or multiple eigenvalues some pseudo-
Jordan realisations are known in which a maximum of states is
decoupled.

In general the matrices of a Jordan form are complex because in general
the eigenvalues of a process are complex. Calculating with complex
matrices introduces a lot of numerical inaccuracy which can be avoided
using pseudo-Jordan realisations containing only real matrices. In
these realisation every complex polepair is combined in a so called
Jordan block which is real.

The several pseudo-Jordan realisations are dealt with in Appendix B.
At this moment it is not yet possible to gain more insight in the system
using Jordan canonical realisations because of the lack of proper
software. In future it might be useful to examine some pseudo-Jordan
realisations of the model.
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The observability canonical form of a state space model is
chracterized by the fact that the outputs are ( some of ) the states.
The A-matrix has the following structure [Veltmeyer,1985]:
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The structure indices u; are chosen based on physical knowledge and
reamin fixed during estimation. Only in very rare cases the system
will not be in the modelset due to an improper choice of the structure
indices. This is caused by the overlapping properties of the
observability form. The structure indices determine more or less the
relative importance of each output. In the case of the floating
platform we choose u,= u,= us= 2 because we expect that each float has
equal relevance. We expect a sixth order systemso X ;=Y 47 X 3= Y 9/ X g=
y 3- We now can draw the following block-diagram:
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Fig.26. Block diagram of the observability pseudo canonical
form if B is " block diagonal dominant”.

In the figure above we supposed that the direct influence of an input
at the states of another float could be neglected. This must become
clear in the structure of the B-matrix in which the corresponding
elements indicated in Fig.26 should be dominant. We will call such
type of B-matrix "block diagonal dominant".

Moreover the block diagonal elements can be interpreted as the effects
of the inputs on the height and the velocity of the nearest float.
Because of the symmetry of the system we expect the blocks to be almost
identical.

The program LS_SSMgives a observability canonical form on output. The
output of DIRECTO is converted into a Markov string using DIRSIM.
Using the Ho-Kalman algorithm implemented in the program HANKEL this
string is reduced to a state space realisation of order n which is
transformed into an observability form using PCAN. The state space
realisation obtained using HANKEL is not a very good realisation with
respect to an output error criterion. Better order reduction methods
are described in par.2.5.

The results of LS SSM are given in Appendix C-5 and the observability
canonical realisation using DIRECTO-output is in Appendix C-7.
Because the state space realisation obtained using DIRECTO is not very
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reliable we will only consider the LS_SSM output. For convenience the
B-matrix is given below:

[ 0.1975442E-01 ~0.7823338E-02 0.5549456E-02

0.6562917E-01 -0.7921277E-02 -0.1080546E-01
B = 0.3220015E-01 0.3733199E-01 0.1759723E-01
0.1302678E-02 0.7023374E-01 -0.1391743E-01
0.2927007E-02 -0.2044060E-01 0.3819956E-01
|-0.1695212E-01 -0.3332312E-02 0.7593216E-01

This B-matrix is clearly block diagonal dominant. This means that the
effect of the first input on the states of the first float are dominant
compared to the effects of the other inputs.

Moreover the diagonal blocks are almost identical as expected from the
symmetry of the system. The structure of the system as found from
physical modelling and knowledge of the process is clearly reflected
in the model:

- We have three almost identical subsystems.

- Each subsystem can be described by a second order model.

- Each input has a dominant influence on the nearest float.

As mentioned in par.3.2. the influence of a pure integrator is a very
important part of the output signal. In the next paragraph we will

consider dominance of the integrational term in the outputs more
closely.
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4.5 The integrational part of the outputs

In this paragraph we will deal with the dominance of the part in the
output that is caused by the integrator. Because of the dominance of
this part one could fear that the other systemdynamics are estimated
less accurately. This assumption is contradicted by the results
discussed in earlier paragraphs of this chapter. Especially the
location of the poles of the estimated model give good faith in the
accuracy of the model.

The total transferfunction in the z-domain is given by:

H,;,¢(z) = —z—. H(z)

where H(z) is the estimated transferfunction.

The residue of the transferfunction in z=1 is determined by
substituting z=1 in (z - 1)* H,,4(2z) . Doing this for every element of
the transfermatrix we obtain the following gain matrix K:

0.2618915E+00 -0.3871934E-01 -0.5696259E-01
K = -0.3510186E-01 0.2671739E+00 -0.4850501E-01
-0.4971524E-01 -0.1751516E-01 0.2852709E+00

Denoting the integrational part in the outputs by ¥ j,¢it holds that:
Yint= K . 1
( remember u is the integrated input vector)

Again we point out the symmetry in the K-matrix. The diagonal elements
are clearly dominant which means that changing the distance between
the platform and a float has a dominant influence on the height of the
platform near that float. The signs of the elements of K can be
explained considering Fig.16 again. Increasing the distance between
the platform and the float will increase the height of the platform
near that float which results in a positive gain on the diagonal.
Because of the turning axis as indicated in Fig.16 however an increase
in distance between one float and the platform will temporarily
decrease the height of the platform near the other floats which causes
negative off-diagonal gain factors. Because of the symmetry of the
system all the off-diagonal elements and all the diagonal elements
should be almost the same.



48

The signal y j,¢ 1s now constructed and subtracted from the measure
signals and the simulated signals. The non-integrational parts of tr
measured signals and the simulations are plotted inFig.27. Againth
red lines indicate the measured signals and the blue lines th
simulations. Indeed the greatest part of the signal power is include
in the integrational part!

The absolute and relative errors (= the absolute error devided by tt
output signal power) between the non-integrational part of ttf
simulations and the non-integrational part of the measured signal
are given below:

Vo, = 0.1991722E+01 Vieeys = 0.3146416E+00
V,2 = 0.2268321E+01 V,e1z = 0.3740882E+00
Vo3 = 0.3149016E+01 Viye1s = 0-2548395E+00

Although the relative errors become rather large we conclude frc
Fig.27 that the maximum error between measured output and simulatic
is never larger than one or two bits. Because of this we decide tha
although the integrational part is dominant the non-integrationa
part is also well modelled.
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outputs and simulations.
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5., Conclusions

- Good simulation results were obtained with both DIRECTO and
LS SSM. After implementing an explicit offset-estimator
DIRECTO simulation results were at least as good as LS SSM
results. DIRECTO however requires a very good initial model.

- The structure and the symmetry of the floating platform is
clearly reflected in the model. We can distinguish three
almost identical subsystems each containing two states.

- Proper preprocessing of the signals is essential to estimate
the actual system dynamics. Before preprocessing already
fairly good simulation results were obtained but the
structure in the model is completely lost. Both general types
of preprocessing ( low-pass filtering) and more specific
types of preprocessing only suited for this system were used.

- The identical subsystems cause multiple poles. Because of the
existence of multiple poles it is impossible to recognize all
separate states when not all inputs are used. This causes a
lowly estimated model-order in the SIMO-experiment.

- A considerable part of the output is caused by the integrator.
When the integrational part is subtracted from the signals
only a low-power signal is left. Although this integrational
part must play a dominant role during identification the non-
integrational part is also estimated well.

- LS SSM estimates a state space model in pseudo canonical
observability form. Because of this it is impossible to
estimate a model with a lower model-order than the number of
outputs. In this case there exist dependencies in the
outputs. To be able to estimate a model in this case too we
first have to determine the dependencies in the outputs. Next
we estimate a model using only the independent outputs.
Finally we construct the output matrix with help of the
determined dependencies.

- DIRECTO can not estimate systems with poles with a negative
real part (in the z-domain). Normally this can be avoided
using high sample-rates. When quantisation noise is present
or when it is impossible to use high sample rates this may
become a disadvantage.



51
Appendix A
ok ok ok ok ok Ak kA K Kk Kk KKk kKKK KKK KA KR KA Ak ok ok k ko kk kA kR kA kA A A A A A A KK A KK XK KRRk kk kkx

4

PROGRAM ADSMQ1
VERSION : 1.0

1%k g sk ok ko k kK sk sk ke ok sk % vk %k gk sk sk vk sk sk ok vk vk %k ok sk ok vk sk sk 3k vk ok ok ok ok ok sk ok sk %k sk vk sk ok gk gk sk Yk sk ok ok d %k gk gk sk d vk Sk gk %k de Kk dk ok Kk ok kK ok

VERSION : 1.0

DATE : 15-12-1987

AUTHOR : KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP : CONTROL AND MEASUREMENT

ADDRESS : P.O. BOX 513
5600 MB EINDHOVEN

COUNTRY : THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM ADDS SEVERAL VARIABLES (ON REQUEST MULTIPLIED WITH
A CONSTANT SCALE-FACTOR) WHICH ARE STORED IN ER-STRUCTURED
SAMPLE FILES. THE RESULTS ARE STORED IN AN ER-STRUCTURED SAMPLE
FILE.

kkkkhkdkkhkAk sk kA kA Ak khkdkkkhkkkkk Ak kkhAhk kA kA Ak kA kAR A AR A XA XA AR A I A AR Ak kkkkkhkkkkxk

Parameters:
MPSAMP=3000 Max. number of samples in a sample file;
MPSIGN=30 Max. number of signals in a sample file;

gk ok Kk %k %k ok %k ok %k g Kk gk ok gk gk ok ok ok sk %k ok ok ok %k ok ok ok Kk ok ok ok ok b ok ok ok ok ok ok ok ok kv 3k ok ok ok ok ok ok ok ok ok ok %k ok sk ok ke %k ok sk ok sk ok ke ok ok ok %k
Variables entered by user:

FILN1 (CHAR*40] : NAME OF THE ER-SAMPLE FILE WITH DATA
FILN2 (CHAR*40] : NAME OF THE OUTPUT ER-SAMPLE FILE

khkhkkhkkhkkhhhkk Ak Ak Ak Ak Ak Ak Ak A kkAkhkkkkhkAkkhkhkhkhkhkhkAhkhkhk Ak hhkhkhkhkkhbrhkkhk ki kkk
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C
PROGRAM ADSM02
VERSION : 1.0

J Ak K ok gk dk ko Kk gk Kk ko sk gk sk gk sk Kk k ok sk ok k Kk %k ok sk K Kk ok Kk ok %k Kk ok sk ki ok ok Kk sk gk ok ok ok ok ok ok ok ok ok ok ok ok Kk sk ok sk ok ok ok ok Kk %k Kk ok Kk

VERSION ¢ 1.0

DATE : 10-2-1988

AUTHOR : KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING

GROUP : CONTROL AND MEASUREMENT
ADDRESS : P.0O. BOX 513

5600 MB EINDHOVEN
COUNTRY : THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM READS A PICOS STRUCTURED DATA FILE AND MULTIPLIES
THE DATA WITH A MATRIX T SO THAT Y’=T*Y.

THE TRANSFORMED DATA ARE STORED IN A PICOS STRUCTURED FILE.

Kk K sk Kk ok ok sk sk ok ok sk ok Kk k ok ok Kk ok ok %k ok vk ok %k ok sk ok ok %k sk ok ok ok %k sk sk ok ok ok %k vk ok %k ok %k sk vk ok %k %k %k sk Kk %k % vk ok ok sk ok ok ok ok sk sk ok ke ke ke ke

PARAMETERS:
MSIG = 15 : MAXIMUM NUMBER OF SIGNALS
MSAMP = 500 ¢ MAXIMUM NUMBER OF SAMPLES

%k %k Kk % vk %k k Kk kv %k k ok sk ok k k ok ok ok % sk ok ok ok ok %k ok 9k ok ok %k ok dk ok ok ok ok ok %k kR sk ok ok Kk vk ok ok ok ok ok ok kb ok ok sk ok ok ki ok ok ki ke ok ok ok ke ks

VARIABLES ENTERED BY USER:

FILN [CHAR*40] : NAME OF THE PICOS~-STRICTURED IMPUT FILE
FILOUT [CHAR*40] : NAME OF THE PICOS-STRUCTURED OUTPUT FILE
NSIG [INT] : NUMBER OF SIGNALS TO BE READ

NSAMP [INT] : NUMBER OF SAMPLES

NRSIG [INT] ¢ NUMBER OF SIGNALS TO BE CALCULATED

T (MSIG,MSIG) [DBLE] : TRANSFORMATION MATRIX

%k %k %k Kk Kk %k Kk sk %k Kk %k ok sk %k Kk Kk Kk ok %k Kk ok ok sk ok %k k K ok ok k %k %k ok ok ok %k Kk ok ok %k %k ok Kk ok Xk ok sk ok ok ok sk ok vk ok ok gk Kk ok ok ok ok ok ok ok %k %k Kk ok ok k ok ks

QOO0 00000000000000000000000000000000
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*
PROGRAM DIRSTA

* Version 1.0
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VERSION : 1.0

DATE : 28-10-1987

AUTHOR : KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP : CONTROL AND MEASUREMENT

ADDRESS : P.O. BOX 513
5600 MB EINDHOVEN

COUNTRY : THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM IS USED FOR DETERMINING INITIAL VALUES FOR THE

A-PARAMETERS USED IN DIRECTO (OUDBIER). THE MARKOV-PARAMETERS

ARE READ FROM FILN AND THE A-PARAMETERS ARE STORED IN FILOUT.
M(n+l) = al*M(n) + a2*M(n-1) + ... + an*M(1l)

THE A-PARAMETERS ARE SOLVED USING:
A(n x 1) = MI(n xn) * M\V(nh x 1)

%k sk sk %k Kk ok ok ke ok kb ok ok ok sk ok gk ok sk ok ok ok ok ok ok ok Tk ok ok ok ok ok %k ok ok ok ok ok %k ok ok ok ok ok ok dk ok dk dk ok vk ok ok ok ok vk ok ok ok ok vk ok ok ok ok sk sk ok ok Kk ok ok Kk

PARAMETERS :

MSIG = 15 : MAXIMUM NUMBER OF SIGNALS TO BE READ
MSAM = 100 : MAXIMUM NUMBER OF SAMPLES TO BE READ
MN = 50 : MAXIMUM ORDER OF THE MIN. POLYNOMIAL

% % Yk %k %k vk sk sk gk sk ok vk ok dk vk ok sk ok ok Yk ok K ok ok vk ok g sk sk vk ok sk sk ok vk ke sk ok ok ok ok ok ok vk vk e vk ok vk dk vk ok ok sk ok ok ke ok vk ok e vk sk ok e ki ok Kk ki k ok ok k %k

VARIABLES ENTERED BY THE USER:

FILN [CHAR*4(0] : NAME OF THE ER-STRUCTURED INPUT SAMPLE FILE
CONTAINING THE MARKOV PARAMETERS.

NAME OF THE MATLAB-STRUCTURED MATRIX FILE
CONTAINING INITIAL ESTIMATES FOR DIRECTO.
NUMBER OF MINIMAL POLYNOMIAL COEFFICIENTS TO
BE CALCULATED.

FILOUT [CHAR*40]

N [INT]

k % %k % % % % ok %k ok %k ok 3k % %k K sk %k % %k Kk ok sk % 3k %k %k %k %k sk %k 3k %k %k %k %k 3k %k %k %k %k k% %k %k %k %k %k %k %k %k Kk %k 3k %k %k dk %k %k %k ok d ok Kk k Kk ok k ok ok ok ok kkok
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C*

PROGRAM DISIO1

c*

VERSION 1.0

CrAAA A AA A KA K AA KA A A AR AARARA AR AR A A KRARA R A AR Ak AR AR kAR A Ak kkkkkkkkkokkkkkkkkkdkkx

INSTITUTE

PROGRAM DESCRIPTION:

PARAMETERS:

AMRX = 6 : MAXIMUM NUMBER
MMAX = 35 : MAXIMUM LENGTH
MARMAX= 100 : MAXIMUM LENGTH
MIP = 5 MAXIMUM NUMBER
MIQ = 10 : MAXIMUM NUMBER
MSIG = 15 : MAXIMUM NUMBER

FILN [CHAR*40] :
FILOUT [CHAR*40] :
L [INT] :
TITLE [CHAR* 8] :

Qoo 0000000000000000000D0

VARIABLES ENTERED BY THE USER:

VERSION : 1.0
DATE : 3-11-1987
AUTHOR : KARSTEN PRONK

OF
OF
OF
OF
OF
OF

EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
GROUP :+ CONTROL AND MEASUREMENT

ADDRESS : P.O. BOX 513
5600 MB EINDHOVEN
COUNTRY : THE NETHERLANDS

THIS PROGRAM CAN BE USED TO EVALUATE THE RESULTS OF THE PROGRAM
DIRECTO. THE PROGRAM READS THE FIRST MARKOV~-PARAMETERS AND THE
A-PARAMETERS AND DETERMINES A MARKOV-SEQUENCE OF GIVEN LENGTH
WHICH CAN BE USED FOR SIMULATION.

AAAKAKA A A A KAk AkhkkhkhkkdAhkkkhhkkhkhAkkhkhkkhkkkkkhkhhkhkkkhkkhkhkkhkkxkkkhkhkhkhkhkhkkhkhkkkhkhhkhkkkhkkki

MIN.POLYNOMIAL COEFFICIENTS TO BE F
THE START MARKOV SEQUENCE TO BE REA
THE MARKOV SEQUENCE TO BE CALCULATE
INPUTS

OUTPUTS

SIGNALS

AAk A AKX Ak hkhkhkkhkhkAkAhkkAdhkkdhhkAkhAhkhk khkhkk Kk kkkkkkkdkkkohkkkkkhkkkdkkokdkkkkokokkkkkkkkkhkkkxk

NAME OF THE MATLAB STRUCTURED INPUT FILE
CONTAINING DIRECTO OUTPUT.

NAME OF THE ER-STRUCTURED SAMPLE OUTPUT FIL
CONTAINING THE MARKOV PARAMETERS.

LENGTH OF THE MARKOV SEQUENCE TO BE CALCULA
TITLE OF THE CREATED DATASET

* % % %k Kk sk % % %k % %k %k %k %k % %k %k sk % ok sk sk % %k % %k 5k %k %k %k sk % 3k ok %k ok sk b ok sk ok vk ok %k vk ok ke ok ok d ok ok ok gk sk ok sk ki sk sk de ok ki ko k Kk ok k ok k%
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PROGRAM DISIOZ2

VERSION 1.0
kI A KKK KK R KK A ARk R AR KK AR KA A Kk k ke k ok ok kk ok kk ok kk ok kAR kAR ARk AR AR K KA KKK KK KAk ok &k ok k& & %

VERSION : 1.0

DATE : 3-11-1987

AUTHOR : KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP : CONTROL AND MEASUREMENT

ADDRESS : P.O. BOX 513

5600 MB EINDHOVEN

COUNTRY THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM CAN BE USED TO EVALUATE THE RESULTS OF THE PROGRAM
DIRECTO. THE PROGRAM READS THE DIRECTO OUTPUT AND CONSTRUCTS A
ER-STRUCTURED DATAFILE (.MRK) THAT CAN BE USED FOR SIMULATION.

Kk k ok ok Kk Kk gk sk Kk Kk sk Kk k Kk ok %k ok ki sk ok dk k k ok ke k sk ok kK sk sk %k K Kk %k %k %k ok Kk sk gk ok sk %k ok sk ok ok Kk k ok sk ok vk ke vk sk sk kg ke ok k ok ko

PARAMETERS:

AMAX = 9 : MAXIMUM NUMBER OF MIN.POLYNOMIAL COEFFICIENTS TO BE READ
MMAX = 35 : MAXIMUM LENGTH OF THE START MARKOV SEQUENCE TO BE READ
MSIG = 15 : MAXIMUM NUMBER OF SIGNALS (MSIG=MIP+MIQ)

MIP = S5 : MAXIMUM NUMBER OF INPUTS

MIQ = 10 : MAXIMUM NUMBER OF OUTPUTS

MLOW = 0 : LOWER DIMENSION OF MARKOV SEQUENCE TO BE CALCULATED

MUP = 100 : UPPER DIMENSION OF MARKOV SEQUENCE TO BE CALCULATED

£k %k % dk g ook gk sk ok ok b sk sk Sk ok ke sk ok Sk ok sk sk sk sk ko ok ok %k ok sk K 2k Kk gk dk ok gk ok 3k K gk dk % %k sk 9k 3k gk Jk Jk ok dk ok ok vk Jk dk dk dk ok ok ok ok ke ok ok ke ok ke ke

VARIABLES ENETERED BY THE USER:

FILN [CHAR*40] : NAME OF THE MATLAB STRUCTURED INPUT FILE
CONTAINING DIRECTO OUTPUT.

FILOUT [CHAR*40] : NAME OF THE ER-STRUCTURED SAMPLE OUTPUT FILE
CONTAINING THE MARKOV PARAMETERS.

LEN [INT) : LENGTH OF THE MARKOV SEQUENCE TO BE CALCULATED

TITLE [CHAR*8] : TITLE OF THE CREATED DATASET

% % Kk k gk kg sk Kk ok gk Kk gk Kk ok Kk sk Kk sk Sk %k d %k dk gk sk d gk 3k Ik sk %k Ik e ok Ik dk dk gk sk %k Ik gk dk e gk gk ok gk 3k ke ok %k %k ke sk dk gk %k ko ok ok sk ok ok sk ok ke
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*

PROGRAM ENSFO01

* Version 1.0
k ok Kk ok ok Kk ok ok sk ok ok ok sk ke sk ok ok ok k ok ok ok sk sk ok ok ok ok sk ok ok ok sk Kk %k ok gk K gk ok ok ok ok ok ok sk Kk sk kR ke sk ok sk ok ok ke sk Rk kb ok kR ok ok ok ok Rk
VERSION : 1.0
AUTHOR ¢ KARSTEN PRONK
DATE : 2-9-1987
INSTITUTE ¢ EINDHOVEN UNIVERSITY OF TECHNOLOGIES
FACULTY OF ELECTRICAL ENGINEERING
GROUP : MEASUREMENT AND CONTROL
ADDRESS : P.O. BOX 513
5600 MB EINDHOVEN
COUNTRY : THE NETHERLANDS

PROGRAM DESCRIPTION:
This program writes a number of samples of I/O-signals into

an standard structured signal file. The samples are in double
precision and are given with use of the terminal.

Parameters:

MSIG=15 Maximum number of signals stored;
MSAM=800 Maximum number of samples:;
Variables:
FILN (CH*40) :Name of file to be created:
SYSIO(MSAM,MSIG) (DBL) :Two dimensional I/O-matrix;
N (INT) :Number of samples;
NSIG (INT) :Number of signals;
TITLE (CH*8) :Titel of the data set:;
NAME (MSIG) (CH*8) :Names of the signals;
SBTYP1 (INT) :Subtype of matrix;
OFFSET (MSIG) (DBL) :Vector containing the offset-parameters
SCALE (MS1IG) (DBL) :Vector containing the scale-parameters

% K Kk sk d K ok Kk de ok sk sk ok ok sk sk sk e Kk gk Kk %k %k sk K %k Kk %k ki k% vk sk % %k sk ok ok gk gk ok vk ok %k ok e ek Kk sk sk ke ke ke sk sk ek k ok ko kk ok ok
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* *
PROGRAM FILTER

* *

Eh kAR IR A A I AR K AR AR KA AR A AR KRR AR A KRR R AR AR R ARk A R KRR kA hkkkkkkkkk kok Kk

VERSION £ 1.0

DATE : 24-9-1987

AUTHOR : KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING
GROUP ¢ MEASUREMENT AND CONTROL

ADDRESS : P.O. BOX 513
5600 MB EINDHOVEN
COUNTRY : THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM READS A NONFORMATTED PICOS-STRUCTURED DATAFILE
AND WRITES THE CONTENTS OF THIS FILE IN A STANDARD FORMATTED
PICOS-STRUCTURED DATAFILE.

IF NECESSARY THE DATA CAN BE SCALED AND/OR CORRECTED WITH
THE INITIAL VALUE, THE BIAS OR AN ARBITRARY OFFSET.

R R st s X LS 22 X2 2222
PARAMETERS :

MN
MSAMP

10 : MAXIMUM NUMBER OF SIGNALS
500 : MAXIMUM NUMBER OF SAMPLES

% %k %k %k %k 3k % ok sk 3k 3k %k %k %k 3k Kk %k ok Jk %k %k % dk ok sk ok %k sk %k Kk ok sk Jk sk 3k ke sk sk b dk ok ke %k ke ok ok ok ok ok Kk ke Kk Kk k k ke k kR k Kk k ok ok k k k%

VARIABLES USED:

FILN1 [CHAR] : NAME OF THE INPUT-FILE

FILN2 [CHAR] : NAME OF THE PICOS STRUCTURED OUTPUT-FILE
NSIG [INT] : NUMBER OF SIGNALS

NSAMP [INT] : NUMBER OF SAMPLES

NR [INT] : SAMPLENUMBER

T [INT] : REFERENCE TIME

SYSIOS [REAL] : MATRIX CONTAINING I/0-SAMPLES

SYSIO [DBL] : COPY OF A ROW OF SYSIOS

DELAY {INT] : VECTOR CONTAINING DELAY-TIMES

MAXDEL {INT] : MAXIMUM DELAY

TRk ARk AR AR Ak ko kkk ko ko kkkkkkkkkhkkkhkhkhkkhkhkhkkhkhkkhkhkhkhkhhkhkhkhkhkhkkhkkhkkhkkk
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C *
PROGRAM HANKEL
C *
ChAkhkdkkkhkhkk sk hk kA Ak kA A A A AR KA KRR KRR AR AR AR KRR AR AR AR AR AR KAk hkhkkkkkk k& k kX & %

This program creates an (approximate) decomposition of a
matrix sequence M(k), k=NST-1,NST+NNUM-1 into

k-NST
M(k)=~ C A B + D delta(k-NST+1).
with C = [NIQxNDIM]
A = [NDIMxNDIM]
B = [NDIMxNIP]
D = [NIQxNIP]

In a specific form this program creates an (approximate)
realization in state space form:
x(k+1l) = A x(k) + B u(k)
y(k) = C x(k) + D u(k)
based on a sequence of Markov parameters: M(k), k=0,NNUM
In terms of system identification this emans that a model is
constructed based upon impulse response data.

Exact modelling (minimal realization problem).

If a sequence ¢of Markov parameters has been generated by a

state space model as described above with dimension NDIM,

then this state space model (or an equivalent form) will be
reproduced by this program, if the number of Markov parameters

to take into account is such that a singular Hankel matrix can be
constructed that has rank NDIM.

Axkkkkkkkkkk*xx Qutline Of the pProgram **kkkkk ks ks kkkkkkk %%k

Given a sequence of NNUM matrices MARK(k), k=NST,..,NST+NNUM-1.
Based on these matrices a block Hankel matrix is constructed:

MARK (NST) MARK (NST+1) . . . . . . . MARK(NST+NRC-1)

MARK (NST+1) MARK(NST+2) . . . . . . . MARK(NST+NRC)
HANK = . . .« e e . .

MARK}NST+NRB-1) : : . : . MARK (NST+NNUM-1)

Matrix HANK will have block dimensiosns [NRBxNRC] and real
dimensions [NROWxNCOL].
The choice of NRB, NRC that have to fulfil NRB+NRC=NNUM+1l, can
be made by the user by choosing one of the options:
{1] Automatic choice creating HANK as square as possible;
[2] Automatic choice creating HANK as block square as
possible;
[3] : Manual input of NRB and NRC with NRB+NRC=NNUM+l.

A singular value decomposition is performed on this matrix:

HANK = MATU . SINGV . MATVT

with SINGV a diagonal matrix with ordered elements on the
diagonal, being greater than or equal to zero.

Moreover: T T
(MATU) . MATU = I and MATVT . (MATVT) =1

0000000000000 00O00ONQ0O0000000O00O00N00N000A00NO0N00OQNDO0000000A0AON
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The number of positive elements in SINGV equal the rank of the
decomposed Hankel matrix.

The dimension of the model to be constructed (NDIM) now is chosen
on the basis of these singular values.

There are three basic algorithms implemented for constructing
the model {A,B,C,D}
l. Algorithm of van Zee/Bosgra,
2. Algorithm of Damen/Hajdasinski,
3. Algorithm of Kung;
All of these algorithms are based on the realization method
of Ho/Kalman, in the modified version of Zeiger/McEwen.
An overview of the theory that is concerned with these algo-
rithms, and an overview of corresponding references, can be
found in:
* Van den Hof, P.M.J., "Approximate realization of noisy
linear multivariable systems", Journal A, Vol. 25, 1984,
No. 1, pp. 21-26.

* Van den Hof, P.M.J., "Approximate realization of noisy
linear systems; the Hankel and Page matrix approach",
M.Sc. Thesis, Eindhoven Univ. Techn., Dep. Electr. Eng.,
Group Measurement and Control, Dec. 1982.

* Damen, A.A.H. and A.K. Hajdasinski (1982)
Practical tests with different approximate realizations
based on the singular value decomposition of the
Hankel matrix. In: Proc. 6th IFAC Symp. Identification
and System Par. Estim., Washington D.C., June 1982,
pp. 809-814.

**xx%xk* Tnput information to be entered from the keyboard ****

FILN1 Name of an existing standard file containing a matrix
sequence;

NNUM Number of matrices to take into account in the Hankel
matrix;

NIP,NIQ Dimensions of the matrix sequence to take into account
(possibly smaller than the available dimensions):

NST Index of first matrix element in the Hankel matrix;

NDIM A fixed choice for the dimension of the model to be
created, or choice of the dimension based on the
singular values of the decomposed Hankel matrix;

FILN2(5:10) A six character string for composing the name of
the output file(s).

IRECM Integer for deciding if a segeunce of reconstructed
matrices has to be stored in a file;

IEIGV Integer for deciding if the eigenvalues of the
resulting matrix A have to be calculated.

IOFF Integer for deciding if an offset vector has to be
copied to the model, from an existing matrix file.

FILNS Name of the matrix file containing this offset vector.

kkkkkkkkkkkkx*x OUTPUT INFORMATION **Xkkkkkkkkkkkkhkkkkkkk

Output files created:

HANK .SSM standard matrix file with state space model;

HANK .DOC (nonstandard) text file with documentation on
the program run;

HANK .MAR on request: a sample file containing the

reconstructed matrix segeunce, ordered column
wise;
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HANK .SGV standard sample file containing the singular
values of the Hankel matrix.

On output a set of error values is calculated, relating the
original matrix sequence to the reconstructed matrix sequenece
in order to evaluate the performance of the approximate model.
For each entry in the matrix the absolute RMS error and the
relative RMS error are calculated over a given range of matrices.

abs. RMS(i,3j) =

NST+NNUM-1 2
SQRT ( 1/NNUM SUM (MARK (i, j, k) -MARK (i,3,k)) )

k=NST rec

rel. RMS(i,j) =

NST+NNUM-1 2

k=NST rec
SQRT ( —— e e

NST+NNUM-1 2
SUM (MARK (i, j,k))
k=NST

Maximum size of matrices M(k) = 5 x 5; [MPIQXMPIP]
Maximum size of Hankel matrix = 100 x 100; [MPROWXMPCOL]
Maximum dimension of the realization = 50; [MPDIM]
Maximum range of matrices M(k): index -10 to index 200.
[MPLOW, MPUP]

These maximum sizes can easily be altered, by changing the
appropriate parameters, indicated at the end of the respective
line.

Date: 04-05-1986
Author: Paul Van den Hof

Copyright:
P.M.J. Van den Hof
Delft University of Technology
Department of Mechanical Engineering
Laboratrory for Measurement and Control
Mekelweg 2, 2628 CD Delft
The Netherlands.
Tel. 015 - 784509.

Version 1.1 Date: 21-5-1986
Fortran version adapted to standard F-77;
Dealing with situation of static model.

Version 1.2 Date: 13-6-1986
Fortran version completed with ERFILE/LIB
Version 1.3 Date: 19-6-1986
Scale/offset information in D*8 accuracy.
Version 1.4 Date: 23-6-1986
Corrections in Kung realization method implementation;
Version 1.5 Date: 2-10-1986

Corrections in printing the singular values: the §ingu—
lar values of the firstly created H-matrix are printed;
Extension of output file names to 4+6 characters.
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1.6 Date: 3-2-1987
Documentaticn added.
1.7 Date: 24-3-1987

Minor corrections in checking on entered values.

1.8 Date: 2-4-1987

Adding the possibility to copy an offset vector in the
resulting state space model. Adding an extra check on
the value of NNUM in order to guarantee correspondence
with parameter statements. (NUMUP)

1.9 Date: 24-4-1987

Minor corrections in constructing file names.

1.10 Date: 19-11-1987

Adding construstion of standard sample file with
singular values of Hankel matrix

Modification made by: Karsten Pronk
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Cx *
SUBROUTINE MATSVE (LUNIT, NMAX, MMAX,NSAMP, IP, IQ, X)
Cx* *

C**********************************************************‘k***

VERSION : 1.0

DATE ¢ 28-9-1987

AUHOR ¢ KARSTEN PRONK

INSTITUTE ¢ EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP ¢ MEASUREMENT AND CONTROL

ADDRESS : P.0O. BOX 513
5600 MB EINDHOVEN

COUNTRY : THE NETHERLANDS

PARAMETER DESRIPTION:

LUNIT [INT] : LOGICAL UNIT NUMBER
NMAX [INT] : ROW-DIMENSION OF X
MMAX [INT] : COLUMN-DIMENSION OF X
NSAMP [INT] : NUMBER OF SAMPLES
NSAMP<=NMAX
IP [INT] : NUMBER OF INPUTS
IQ [INT] : NUMBER OF OUTPUTS
IP+I1Q<=MMAX
X [DBLE] : ARRAY CONTAINING THE I/0-SAMPLES

SUBROUTINE DESCRIPTION:

THIS SUBROUTINE WRITES THE CONTENTS OF THE ARRAY X
IN A MATLAB STRUCTURED SAMPLE FILE.

MATLAB STRUCTURE:

NSAMP, IP, IQ FORMAT (I5,2I1)

IP inputs FORMAT ( (4218)) 1ST SAMPLE MOMENT

IQ outputs FORMAT ( (4218)) 15T SAMPLE MOMENT

IQ éﬁtputs .- NSAMPst SAMPLE MOMENT

OOOO0O000000000000000000000000000000000000

AkkkkkhkkkkhkkhkhkAkkkkkhkhkhkhkkArkkhkhkhkhkkhkhkhkkkkkkhkhkkkkkhkhkdkkdhkhkkikkkkkkkkxk
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doode deod koo ko % ke ko gk sk ke ko %k %k kA g kb gk e dk dk sk sk sk ke sk sk sk sk vk vk dk vk sk e J Jk sk sk ok vk gk gk v ot sk sk dke sk ok ko kT e gk vk ke e vk ke ko ok ok ok ok Kk
3

PROGRAM PCANO1
x VERSION 1.1

Ak kKA A A KA A A AR A AT A AR A AR A A A A AR A A A AR AR A A Ak AR Rk Ak ARk Ak ko kkkkhkkkkkhkkkkokkkkhkkkky

VERSION : 1.0

DATE : 25-11-1987

AUTHOR : KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP : CONTROL AND MEASUREMENT

ADDRESS : P.0O. BOX 513
5600 MB EINDHOVEN

COUNTRY : THE NETHERLANDS

VERSION 1.1

DATE : 10-2-1988

MODIFIED by ¢ KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP ¢ CONTROL AND MEASUREMENT

ADDRESS : P.O. BOX 513
5600 MB EINDHOVEN

COUNTRY : THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM DETERMINES A PSEUDO-CANONICAL OBSERVABILITY
REALISATION OF A GIVEN STATE SPACE MODEL.

REASON FOR MODIFICATION:

IF IQ=1 THEN MU(1)=IN

thkhkkhkhkhkhkhkhkhkhhhkhhhhkhAhhkhkhkhhhhhkkhkhkkhhhhrhkhkhkkhkhhkhkkkhkhddddhhkhhkhhkkhkhkkrhhkhkhkhhkkkkkki

PARAMETERS:

MIN = 10 : MAXIMUM DIMENSION OF THE MODEL
MIP = 6 : MAXIMUM NUMBER OF INPUTS

MIQ = 6 : MAXIMUM NUMBER OF OUTPUTS

ok %k % g ok kK Kk ok ok ok sk %k gk sk %k %k kg ok ok ok sk ok g %k %k sk ok %k vk sk %k kg vk gk %k gk ok %k %k ok %k %k ok %k sk ok %k kK vk sk ok ok sk ok ok ko ok %k sk ok Kk ok %k ok ok ok ok k kA

VARIABLES ENTERED BY THE USER:

FILN [CHAR*4(0] : NAME OF THE ER-STRUCTURED INPUT MODEL FILE
CONTAINING THE STATE SPACE MODEL.

FILOUT [CHAR*40] : NAME OF THE ER-STRUCTURED OUTPUT MODEL FILE
CONTAING THE OBSERVABILITY FORM ON OUTPUT.

MU (MIQ) [INT] ¢ STRUCTURE INDICES

kKKK KK KA KKK KA KA KA KA AR AR AR kAR ARk A Ak kkkkkkkkkkkkkkk Ak kA kkhkkkhkkkkkkkxkx
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C*
PROGRAM PRMFO01
VERSION : 1.0

%k Kk gk k Kk Kk sk ok Kk k Kk ok Kk ok ok Kk ok sk sk kK sk sk ok K Kk K ok %k % ok sk sk sk ok ok Kk ok %k ok ok Kk K sk sk sk sk ok Kk ok ke ok ok ok K %k %k ok ok k ke ko ok ok ok ok k ok k ok

VERSION : 1.0

DATE : 3-12-1987

AUTHOR ¢ KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING

GROUP ¢ CONTROL AND MEASUREMENT
ADDRESS : P.O. BOX 513

5600 MB EINDHOVEN
COUNTRY ¢ THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM READS THE CONTENTS OF A STANDARD STRUCTURED MATRIX-
FILE AND PUTS THEM IN A DOCUMENT FILE.

% % sk k sk Kk Kk sk ok k Kk Kk sk Kk Kk ok %k k sk ok sk Kk k ok ok ok ok 3k ok ok ok ok K ok K ok ok 3k ok K ok ok 3k ok ok ok ok %k K ok ok ok ok sk vk ok ok sk dk ok vk ok ok sk Kk ko k sk ok ok ok ok

PARAMETERS:

MNUM = 15 : MAXIMUM NUMBER OF MATRICSE TO BE PRINTED

MX,MY = 50 : DECLARED FIRST AND SECOND DIMENSION OF THE MATRICES
MZL = 1 : DECLARED LOWER THIRD DIMENSION

MZUP = 30 : DECLARED UPPER THIRD DIMENSION

% %k %k Kk %k Kk %k ok sk k Kk Kk sk k Kk Kk %k %k %k ok 3k %k %k 3k ok %k %k 3k %k dk 3k %k %k %k 3k %k Kk %k %k sk ok Kk Kk %k Kk ok %k Kk dk sk dk ok %k Kk Kk ok %k Kk ok ok ok Kk ok sk sk ok ok ok k ok k k ok ke

VARIABLES ENTERED BY THE USER:

FILN [CHAR*40] : NAME OF THE ER-STRUCTURED INPUT MATRIX FILE
FILOUT [CHAR*40] : NAME OF THE OUTPUT DOCUMENT FILE

% %k %k %k ok %k %k 3k ok 3k dk dk dk dk dk dk dk dk %k %k %k %k %k %k %k %k %k dk dk 3k dk %k %k sk dk dk dk %k %k %k %k %k %k %k dk )k dk dk dk dk Kk dk 3k %k 3k 3k %k %k %k 3k %k %k %k %k %k %k %k %k %k k k kk Xk

o000 00000000nNNNO00NNNO00NNNNN0A0O0
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PROGRAM PRSFO01
VERSION : 1.1

KAA kA A A A A KA Ak ko ko A A kA KAk ARk AR AR R kAR AR A AR R AR A kA A kA kA Rk k kA kkk Ak ok kA kR Ak kkk k%%

VERSION : 1.0

DATE : 21-9-1987

AUTHOR ¢ Eric van Beuningen

INSTITUTE ¢ EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP : CONTROL AND MEASUREMENT

ADDRESS ¢t P.O. BOX 513
5600 MB EINDHOVEN

COUNTRY : THE NETHERLANDS

VERSION 1.1

DATE ¢ 3-12-1987

MODIFIED by ¢ KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP ¢ CONTROL AND MEASUREMENT

ADDRESS :

COUNTRY :

PROGRAM DESCRIPTION:

This program writes the content of a standard structured sample
file into a printable output file.The file is supposed to contain
data in double precision accuracy.

REASON FOR MODIFICATION:
Output-format modifications.

(RS S S S SRR R RS SR SRR SRR S SR RNttt Rttt it s Rttt e 0 R RRRRRRRR RO R REE L]

LOCAL VARIABLES: NONE
GLOBAL VARIABLES:

FILN (CHE*40) Name of input file;
FILN1 (CH*40) Name of output file;
NSIG (INT) Actual number of signals copied;
NSAM (INT) Actual number of samples copied;

NSTTIM (INT)
SBTYP1 (INT)
SBTYP2 (INT)

First sample moment to be copied;
Subtype of sample file;
Sub-subtype of sample file;

TITLE (CH*8) Title of the data set:

NAME (MSIG) (CH*8) Names of the signals:;

ISCOF (INT) Scale and offset information available;
LSCOF (LOG) Logical for scale/offset correction of data;

SCALE (MSIG) (DBLE)
OFFSET (MSIG) (DBLE)

Scale parameters;
Offset parameters;

08 00 00 *8 00 8 00 98 80 8 se s es e

FORM, IFH (INT)
I,Jd (INT)

Auxiliary variables;
Counters:;

IFAIL (INT) Error code;
SYSIO (MSAM,MSIG)
(DBLE) : Signal matrix;
NSTCOP (INT) : First sample moment to be printed;
NSAMCP (INT) : Number of samples to be printed;
NS (INT) + MIN(NSAMCP, NSTTIM+NSAM-NSTCOP)
DAT (CH*9) : Data of creation;
TIM (CH*8) : Time of creation;
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ChREAAAA A KK A KKK KA A A A AR AR KR AR A AR KRR KRR AR A Rk Ak kA kA Ak hk ko hkk kA kkhk Ak ok kkk k ok k & %k %k %k %9
C*

PROGRAM RMSMO02
- VERSION : 1.0

C*************************************************************************i

C
c VERSION : 1.0
c DATE : 7-12-1987
c AUTHOR : KARSTEN PRONK
c INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
GROUP : CONTROL AND MEASUREMENT
ADDRESS ¢ P.O. BOX 513
5600 MB EINDHOVEN
COUNTRY ¢ THE NETHERLANDS

PROGRAM DESCRIPTION:
THIS PROGRAM CALCULATES SQUARED ERRORS BETWEEN AND SQUARED VALUES

OF SIGNALS STORED IN ER-STRUCTURED DATA FILES. THE RESIDUES ARE
SAVED IN A ER~-STRUCTURED DATA FILE.

R R T e R R S T S R e T R P TR T ey
PARAMETERS:

30 : MAXIMUM NUMBER OF SIGNALS
3000 : MAXIMUM NUMBER OF SAMPLES

MSIG
MSAMP

IS RS SRS SRR SRR RRERRRRRRRRRRsSR sttt t i s s Rt t sttt Rttt sy S]

VARIABLES ENTERED BY THE USER:

FILN1 [CHAR*40] : NAME OF ER-STRUCTURED INPUT SAMPLE FILE

FILN2 [CHAR*4(0] : NAME OF OUTPUT DOCUMENT FILE (OPTIONALLY)

FILOUT [CHAR*40] : NAME OF ER-STRUCTURED OUTPUT SAMPLE FILE CONTAI}
THE RESIDUS ON OUTPUT.

ISTART [INT] : FIRST SAMPLE TO BE CONSIDERED

ISAMP [INT] ¢ NUMBER OF SAMPLES TO BE CONSIDERED

QOOO0O000000000000000000000000000

Ak A KA A A KA A AR A AR A A A A AR A A A A AR AR AR AR KR AR AR AR AR A A A AR A A A A Ak kA Ak kkkhkokkhkkkkkkhxn
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PROGRAM TRMATM
VERSION 1.1

kkokdkkkkhkkokkkkkkkkhkkkokhkkkkkkhkkkk Ak hkkhkkhkhkhkhhhkkhkhkhkhkkkkkhkhkhk kkkkkkkkkkhkkkkkkhkkxid

VERSION : 1.0

DATE : 11-11-1987

AUTHOR : KARSTEN PRONK

INSTITUTE ¢ EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP : CONTROL AND MEASUREMENT

ADDRESS : P.O. BOX 513
5600 MB EINDHOVEN

COUNTRY : THE NETHERLANDS

VERSION : 1.1

DATE : 21-12-1987

MODIFIED by : KARSTEN PRONK

INSTITUTE : IDEM.

GROUP .

ADDRESS :

COUNTRY :

PROGRAM DESCRIPTION:

THIS PROGRAM CONVERTS A MATLAB STRUCTURED MATRIX FILE
IN AN ER-STRUCTURED MATRIX FILE.

REASON FOR MODIFICATION:

DATE AND TIME SETTINGS INCLUDED.

SEE ALSO DOCUMENTATION:

k %k e ok sk %k ok ok ok k ok sk ok ok ok Kk dk ok %k K %k ok %k Kk ok %k % %k %k %k b sk ok Kk %k 9k %k ok Jk %k 3k sk ok Kk vk %k ok ok Ik %k d sk ok K ok %k ok k vk ok sk %k gk ok ok Xk Kk ok ok Kk ok Kk ok

PARAMETERS

MNUM = 15 : MAXIMUM NUMBER OF MATRICES

MROW = 50 : MAXIMUM ROW DIMENSION OF MATRICES
MCOL = 50 : MAXIMUM COLUMN DIMENSION OF MATRICES
MZL = 1 : DECLARED LOWER THIRD DIMENSION

MZUP = 3 : DECLARED UPPER THIRD DIMENSION

t % Jc ok % %k ok % %k ok vk ok %k ok %k ok 3 e sk 3k ok ok ok 3k ok 3 % %k %k ok % I sk ok ok %k sk ok % ok vk sk %k sk %k ok vk ok %k vk vk dk vk ok kv vk vk ok dk vk ok ok vk gk ok kok ok ke ok ok ok

VARABLES ENTERED BY THE USER:

FILN
FILOUT
NUM
SBTYP1
SBTYPZ2
TITLE

[CHAR*40] : NAME OF MATLAB-STRUCTURED INPUT MATRIX FILE
[CHAR*40] : NAME OF ER-STRUCTURED OUTPUT MATRIX FILE
[INT] : NUMBER OF MATRICES TO BE CONVERTED

[INT] : SUBTYPE OF THE OUTPUT FILE

[INT] : SUB-SUBTYPE OF THE OUTPUT FILE

[CHAR*8] : TITLE OF THE CREATED DATASET

AAk A AR KA A A A A A A Ak A A A AR Ak hkkhk ok kkkkkkhkhkkkhkkkkhkhkkhkkhhkkkhkhkhkkhkhkkhkhkhhkhhkkhkkhkkk
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C*

PROGRAM TRMATS
C* VERSION 1.0

(C % % %k sk % ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok gk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ki ok ke ok sk sk sk ke ke ke ok ok k ok ok kR Ak %k

VERSION : 1.0
DATE : 12-11-1987
AUTHOR KARSTEN PRONK

INSTITUTE EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
GROUP : CONTROL AND MEASUREMENT
ADDRESS : P.O. BOX 513
5600 MB EINDHOVEN
COUNTRY : THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM TRANSFERS A MATLAB STRUCTURED SAMPLE FILE
IN AN ER-STRUCTURED SAMPLE FILE.

Kkk ok ko kR kk kA A A I Ak kkk ok kk ok ko Ak kAR kkkkkkkkkkkkkkkkkkkkkkk ko kk ok kdkk kK ok & % % % 2
PARAMETERS:

MSIG = 10 : MAXIMUM NUMBER OF SIGNALS
MSAMP= 1000 : MAXIMUM NUMBER OF SAMPLES

Kk khkkkkkhkkkkkdkkhkhkhkhkkkkhkkhkhkhkkhkhkkhkkkhkhkhkkkhkkhkkhkkkhkhkkkkhkkhkhhhkkhkkhkkkkhkkkhkkxk

VARIABLES ENTERED BY THE USER:

FILN (CHAR*40] : NAME OF THE MATLAB-STRUCTURED INPUT SAMPLE FI
FILOUT [CHAR*40] : NAME OF THE ER-STRUCTURED OUTPUT SAMPLE FILE
NSCOP [INT] : NUMBER OF SAMPLES TO BE CONVERTED

NLOW [INT] : FIRST SAMPLE TO BE CONVERTED

SBTYP1 [INT] : SUBTYPE OF THE OUTPUT FILE

NAME (NSIG) [CHAR*8] : NAMES OF THE SIGNALS
TITLE [CHAR*8] : TITLE OF THE CREATED DATASET

% % ok %k %k Kk ok Kk gk ok sk g %k 3k sk %k b ok ok dk ok b dk ok sk ok ok ok sk ok ok Tk dk %k ok dk gk gk ok ok ke ok sk k ok ke ok ok ok vk dk ok ok ke ke ok gk dk ok ok ok gk ok ke ok ok Kk X

OOO00O0O0000000000000000000000000000000
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% %k ok % % %k sk % K sk ok %k Kk T ok %k Jk %k K %k % % ok vk % vk sk Je d gk ke sk dk sk sk sk g ok ok ke sk dk sk b sk Ak Sk ok sk ok kA ok ok ok ok ok ok kK R Kk ok KKk Kk k kK k kX

PROGRAM TRMMAT
VERSION 1.0

% ok ok %k sk % ok vk sk do sk gk gk v gk gk vk ok sk ok ok Jo Kk %k % 9k ok vk 9kt vk ok %k gk ok ok %k gk v gk ok ke ok sk ok ok vk sk sk ok ek ok vk ko de ok ok sk ok sk K gk k ke ke ok ok ok

VERSION
DATE
AUTHOR

INSTITUTE

GROUP
ADDRESS

COUNTRY

1.0
: 6-11-1987
: KARSTEN PRONK
: EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING
: CONTROL AND MEASUREMENT
: P.O. BOX 513
5600 MB EINDHOVEN
¢+ THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM TRANSFORMS AN ER-STRUCTURED MATRIX FILE IN
A MATLAB STRUCTURED MATRIX FILE.

REMARK

A MATLAB STRUCTURED MATRIX FILE CAN ONLY CONTAIN
TWO-DIMENSIONAL MATRICES !!tftttt!

IF THE PROGRAM TRIES TO COPY A THREE-DIMENSIONAL
MATRIX ONLY THE FIRST PAGE WILL BE COPIED.

KAKAK KA AR KA A AR A AR A AR KRR AR KA A AA KA AR A AR AR AR A A A Ak Ak ko hkhkhkdkhkkkkdkkkdkokkhkkhkkkkkkk

: MAXIMUM NUMBER OF MATRICES TO BE CONVERTED
: DECLARED FIRST AND SECOND DIMENSION OF MATRICES

PARAMETERS:
MNUM = 15
MX,MY= 50
MZL = 1
MZUP = 10

: DECLARED LOWER THIRD DIMENSION
: DECLARED UPPER THIRD DIMENSION

% %k %k %k sk Kk %k ok Kk Kk ok k %k %k Kk ok k %k sk sk sk Kk Kk sk ok ok k% %k gk sk ks sk %k ok %k vk ok ok ok sk vk ok sk sk sk sk sk ke ek sk sk ke sk sk ke ko ko k ok kgk ok ok ok ok ok ko

VARIABLES ENTERED BY THE USER:

FILN
FILOUT

[CHAR*40] : NAME OF THE ER-STRUCTURED INPUT MATRIX FILE
[CHAR*40] : NAME OF THE MATLAB-STRUCTURED OUTPUT MATRIX FILE

%k Kk ok k Kk Kk Kk sk dk kg Kk Kk sk k Kk k ke %k Kk Tk sk sk Kk ok %k ok sk Kk sk sk Kk ok gk ke sk sk sk sk sk ok sk ok Kk sk sk Kk ke sk sk ok ok ok ok ok ke sk k Sk ok ok ke ki ok ke ok ok k ok
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C *
PROGRAM TRSM02

C Version 1.1 *
C***********************************************************************

This program transforms a general PICOS structured signal data
file into a standard ER structured sample file.

The extra information that is stored in the standard structured
sample file has to be entered by the user.

The accuracy of the PICOS file is single precision, of the
standard ER structured file is double precision.

On input a PICOS-formatted IO data file has to be available;
the name of the file has to be entered from the keyboard. Extra
information on the PICOS file also has to be entered:

- the number of samples to be copied,

- the number of signals to be copied,

- the names of the signals, and

- a title for the data set, and the subtype indication.

The PICOS format: sequential, formatted:
1X,I5,<NSIGN>(1X,E14.7) in single precision,
where NSIGN is the number of signals in the PICOS-file.

Routines: WRBIO2 Writing base/info section of the file;
WRSDO1 Writing data section of the file;
Files: FILN1l (Unit=LUN1): Input PICOS file;
FILN2 (Unit=LUN2): Output standard ER structured

sample file;

Paremeter statements:
MPSIG=30 Max. number of signals to be copied;

Author: Paul Van den Hof
Date: 27-6-1986

Copyright:

P.M.J. Van den Hof

Group Measurement and Control
Dept. Electrical Engineering
Eindhoven University of Technology
P.0. Box 513, 5600 MB Eindhoven
The Netherlands

Version 1.0 Date: 27-6-1986
Fortran version is an adapted version of DTIOPT, and
satisfies the F-77 standard.

VERSION e 1.1

DATE : 17-9-1987

MODIFIED by : Karsten Pronk

INSTITUTE :+ EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP : CONTROL AND MEASUREMENT

ADDRESS : P.O. BOX 513
5600 MB EINDHOVEN

COUNTRY : THE NETHERLANDS

OOO0000000000000000000000000Q000O00O00000ON0O0N000000Q000O000N0NO000O0O0O
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EXTENSIONS TO FORTRAN 77:

FORMAT (KNSIG>E14.7) IS A REPEATING FORMAT:
THE FORMAT E14.7 IS NSIG TIMES REPEATED

REASON FOR MODIFICATION:

IN VERSION 1.0 THE REPEATING FORMAT ((E14.7) IS USED
THIS FORMAT STARTS READING ON A NEW LINE EACH REPETITION

THE FORMAT IN LINE 9090 IS ADJUSTED ACCORDING TO PICOS-STANDARDS
PICOS FORMAT:

I15,1X,15,<NSIG>(1X,E14.7)

he e e sk de e ok kb gk ke dk ke sk ok dk sk dk ok ok Jk dk ok A ok ok % sk 3k dk ok ok ok ok dk Jk 3k ok dk ok %k k sk dk dk Jk %k ok bk vk Jk dk dk ok ok b ek Kk ok ok

Variables:

NS1IG Number of signals to be copied;

NSAMP Number of samples to be copied;

NST Time moment of first sample to be copied;

STREC Start record nr. of data section in output file;
MS Declared row dimension of SY¥SIO

NS Actual row dimension of SYSIO

SYSIO Double precision row vector with signals;
SYSIOS Real row vector with signals;
NLOW First row of SYSIO to be copied;

ISCOF Indication for presence of scale/offset information;
r Kk %k ok gk Kk kK ko ko k ko k k Kk k% vk gk %k gk gk gk ok sk sk sk sk Kk %k sk ok sk Kk sk sk %k sk %k Kk Kk sk sk sk ok sk ok ok ok ok K sk ok Kk %k ok Kk %k Kk ok ke ok Kk %
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C*
PROGRAM TRSMAT
C* VERSION 1.

BEEEEEEEERRRRRRRRRR RSS2 s 2 s s R AR RRRRTRRTRR SRR RN LS R

C

c VERSION : 1.0

c DATE : 6-11-1986

c AUTHOR : KARSTEN PRONK

c INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
c FACULTY OF ELECTRICAL ENGINEERING
c GROUP : CONTROL AND MEASUREMENT

c ADDRESS : P.O. BOX 513

c 5600 MB EINDHOVEN

c COUNTRY ¢ THE NETHERLANDS

C

C

PROGRAM DESCRIPTION:

THIS PROGRAM CONVERTS AN ER-STRUCTURED SAMPLE-FILE IN
A MATLAB STRUCTURED SAMPLE FILE.

%ok dk ok de sk ddk d sk sk ko k Kk ok k ok k ok ok ko k Ak Ak Rk Ak k ok kkkkkkkk ok kkk ko k ok k kA hkkkhkkhkkkkkhkkkx

c
c

c

c

c

c

C

Cc Parameters

C MSIG = 10 (INT) : Maximum number of signals copied
Cc MSAM = 1000 (INT) : Maximum number of signals copied
Cc

Cc Variables

C FILN (CH*40) : Filename

C OUTFIL (CH*40) : Filename

C IODAUN (INT) : Logical Unit Number for communication
C UNIN (INT) : Input Logical Unit Number

c UNOUT (INT) : Output Logical Unit Number

Cc NSIG (INT) : Actual number of samples copied

C NSAM (INT) : Actual number of samples copied

Cc NSTTIM (INT) : First sample moment to be copied

C SBTYP1 (INT) : Subtype of sample file

c SBTYP2 (INT) : Subsubtype of sample file

Cc TITLE (CH*8) Title of the data set

C NAME (MSIG) (CH*8) : Names of the signals

C ISCOF (INT) : Scale and offset invormation available
Cc ISCOF = 0 : NO

Cc ISCOF = 1 : YES

Cc LSCOF (LOG) : Logical for scale/offset correction of
C data

C SCALE (MSIG) (DBLE) : Scale parameters

c QOFFSET (MSIG) (DBLE) : Offset parameters

c IFAIL (INT) : ERROR code

c SYSIO (MSAM, MSIG)

o (DBLE) : Signal matrix

Cc OUTF (CHAR* (*)) : Name of output file Maximum length 10
o

C

Ahkhkdkkkkkhkkhkkkkhkkkkkkkkkhkdkdkkdhkhkdkdkhhkkhkhkkhkkkhkhkkkkhkhkkhkhkhhkkhhhkkhhhkkkkhhhhkkk
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PROGRAM TRSPIC

VERSION 1.0
KAKK KK AR A KAk Kk A K KR K kAR A AR KA A A A AR KRR A KA R R AR R Ak AR kA Ak kA Ak ARk kA Ak kA kkk kA kR kXX

VERSION ¢+ 1.0

DATE : 9-2-1088

AUTHOR ¢ KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP ¢ CONTROL AND MEASUREMENT

ADDRESS : P.O. BOX 513
5600 MB EINDHOVEN

COUNTRY s+ THE NETHERLANDS

PROGRAM DESCRIPTION:

THIS PROGRAM CONVERTS AN ER-STRUCTURED SAMPLE-FILE IN
A PICOS STRUCTURED SAMPLE FILE.

kA ARk A AR A I A A AR A AR KA A R AR A A AR KA KRR A AR A AR A AR KA AR A A AR AR A A AR KRR KRR KRR A RAR A AR R ARk Ak &

Parameters

MSAM = 10 (INT) : Maximum number of samples copied
MSIG = 1000 (INT) : Maximum number of signals copied
Variables

FILN (CH*40) : Filename

OUTFIL (CH*40) : Filename

IODAUN (INT) : Logical Unit Number for communication
UNIN (INT) : Input Logical Unit Number

UNOUT (INT) : Output Logical Unit Number

NSIG (INT) : Actual number of signals copied

NSAM (INT) : Actual number of samples copied

NSTTIM (INT)
SBTYP1 (INT)
SBTYP2 (INT)
TITLE (CH*8)
NAME (MSIG) (CH*8
ISCOF (INT)

First sample moment to be copied
Subtype of sample file
Subsubtype of sample file
Title of the data set
: Names of the signals
Scale and offset invormation available
ISCOF = 0 : NO
ISCOF = 1 : YES
LSCOF (LOG) : Logical for scale/offset correction of
data

es =" 20 se se oo

SCALE (MSIG) (DBLE) : Scale parameters
OFFSET (MSIG) (DBLE) : Offset parameters

IFAIL (INT) : ERROR code
SYSIO(MSAM,MSIG)
(DBLE) : Signal matrix
OUTF (CHAR* (*)) Name of output file Maximum length 10

J vk d ok de gk dk ok dk vk gk ok sk sk ok ok sk ok dkdk kb k ko dkkkdkokdk ok kokdkkokdkokkkkkokkkkkokkkkkhkkkkkkkkkokk
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PROGRAM TRTHERO1

C* Version 1.0
CrRAAKK KA KA KA K AK KKK A KKK KK KKK KKK KKK KRRk KA KKK A KKK R KRR KRR A A KA KA KRR ARk KAk

o

c VERSION : 1.0

c DATE ¢ 29-10-1987

c AUTHOR : KARSTEN PRONK

c INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
c FACULTY OF ELECTRICAL ENGINEERING
c GROUP ¢ CONTROL AND MEASUREMENT

c ADDRESS : P.O. BOX 513

c 5600 MB EINDHOVEN

c COUNTRY ¢ THE NETHERLANDS

C

PROGRAM DESCRIPTION:

THIS PROGRAM TRANSFORMS A THE-STRUCTURED MODEL-FILE {A,B,C,D,OFF, X0
IN AN ER-STRUCTURED MODEL-FILE.

L2 SRS R R RS SRR R SRR E RSt RSttt st RS s At s Rt R e R R RS

PARAMETERS :

MNUM = 10 : MAXIMUM NUMBER OF MATRUCES TO BE READ
MIN = 10 : MAXIMUM ORDER OF THE MODEL

MIP = 5 : MAXIMUM NUMBER OF INPUTS

MIQ = 15 : MAXIMUM NUMBER OF OUTPUTS

IDUM = 5 : DIMENSION DUMMY ARAY

L EEE RS E SRR SRR NSRS R R R R R Rt RS RS R Rt s it t R R R R R RS S

VARIABLES ENTERED BY THE USER:

NAME OF TH-STRUCTURED INPUT MODELFILE CONTAININ

A STATE SPACE MODEL.
NAME OF ER-STRUCTURED OUTPUT MODEL FILE

FILN [CHAR*40]

FILOUT [CHAR*40]

e

AAARARKAKRAKAAA A AR A A A AAKRKRRA A AR AR R RA R AR AR AR A A AR A AR AAAR KA A AR A AR A A A A A A AR A A Ak kk k%

QOO0 000000000000000
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SUBROUTINE WRMDO6
VERSION : 1.0

AAA KK AR A A AA KA A A KA AAAR K AR KRR KA AR AKA A AR AR A A A A AR A A AR Ak kA k kb k kA hkhkhkkhkhkkhhkkkkkhkkkkxx

This subroutine writes 6 three-dimensional matrices into
the data section of a standard structured matrix file.
The output file is assumed to be opened at l.u.n. UN.
Data file standard = 2,

SUBROUTINE WRMD06 (UN,MAT1,MAT2,MAT3,MAT4,MATS5,MAT6,MX, MY, MZL,
1 NZUP,NX,NY,NZL, BEGR, IERR)

Kk khk ok kA A kA A A A A A A AR A A A A AR A A A A AR A AR R kA Ak kA Ak ok ok ok Ak ok kA Ak kA Akkkkkhkkhkhkkkkkkkkkx

VERSION : 1.0

DATE : 2-12-1987

AUTHOR + KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

GROUP : CONTROL AND MEASUREMENT

ADDRESS : P.O. BOX 513

5600 MB EINDHOVEN

COUNTRY THE NETHERLANDS

SUBROUTINE DESCRIPTION:

This subroutine writes 6 three-dimensional matrices into
the data section of a standard structured matrix file.
The output file is assumed to be opened at l.u.n. UN.
Data file standard = 2.

Ahkhkhkkhkhkhkhkhhhkhhdhhdhhkhkhhhkhbkhhk kb hkhkkhkhhdkkhkhkkhkhkhdhkhkhkdhkhhkhkkhkhkhhkhkhkkhkhhhhkkhkkkkkhkkhkkkk

Parameter list:
UN (INT) (i) : Logical unit number:;
MAT1 (MX (1) ,MY(1),MZL (1) :NZUP (1))
(DBL) (I): Matrix nr. 1;
MAT2 (MX (2) ,MY (2) ,MZL (2) :NZUP (2))
(DBL) (I): Matrix nr. 2;
MAT3 (MX (3) ,MY (3) ,MZL (3) :N2UP (3))
(DBL) (I): Matrix nr. 3;
MAT4 (MX (4) ,MY (4) ,MZL (4) :NZUP (4))
(DBL) (I): Matrix nr. 4;
MATS (MX (5) ,MY (5) ,MZL (5) :NZUP (5))
(DBL) (I): Matrix nr. 5;
MAT6 (MX (6) ,MY (6) ,MZL (6) :NZUP (6) )
(DBL) (I): Matrix nr. 6;
MX (6) (INT) (i) : Declared row dimension of the matrices;
MY (6) (INT) (i) : Declared column dimension of the matrices;
MZL (6) (INT) (i) : Declared lower bounds of third indices:;
NZUP (6) (INT) (i): Upper bound third index of the matrices;

NX (6) (INT) (i) ¢+ Actual row dimensions of the matrices;

NY (6) (INT) (i) : Actual column dimensions of the matrices;
NZL (6) (INT) (i) : Actual lower bounds of third indices:;

BEGR (6) (INT) (i) : Start records of the data sections in file;
IERR (INT) (0): Error code:

= 0 : successful completion;
1 : error in parameter list;
: error in WRITE-statement;
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C*
SUBROUTINE WRSS03 (FILN,UN,A,B,C,D,OFF,X0,MIP,MIQ,MDIM,NIP,NIQ,

1 NDIM, SBTYP2, TITLE, IERR)
- VERSION : 1.0

C**************************************************************************

VERSION : 1.0

DATE : 2-12-1987

AUTHOR : KARSTEN PRONK

INSTITUTE : EINDHOVEN UNIVERSITY OF TFTHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING

GROUP : CONTROL AND MEASUREMENT
ADDRESS : P.O. BOX 513

5600 MB EINDHOVEN
COUNTRY : THE NETHERLANDS

SUBROUTINE DESCRIPTION:

THIS SUBROUTINE STORES A STATE SPACE MODEL (A,B,C,D,OFF, X0}
IN A STANDARD STRUCTURED MODEL FILE.

dodk ok ok ko ok k ok kokkokkkkkk sk hkkkhkkhkkkkkkkkokkokkkkkkkkkhkdkkhkkdkhkhkhkhkkhkkhkkhkkhkkkhkkkhkkkkhkkxk

Parameters:
FILN (CH*40) : Name of the matrix file; [I]
UN (INT) : Logical unit number; [I]
A (MDIM,NDIM) (DBL) : System matrix; [I]
B (MDIM,NIP) (DBL) : Input matrix; [I]
C(MIQ,NDIM) (DBL) : Output matrix; [T]
D (MIQ,MIP) (DBL) : Input/output matrix:; [I]
OFF (NIQ) (DBL) : Offset vector on the output: [I]
X0 (NDIM) (DBL) : Initial state vector [I]
MIP (INT) : Maximum number of inputs [I]
MIQ (INT) :+ Maximum number of outputs [I]
MDIM (INT) : Maximum state space dimension; [I]
NIP (INT) : Actual number of inputs:; [I]
NIQ (INT) : Actual number of outputs; (1]
NDIM (INT) : Actual state space dimension; [I1]
SBTYP2 (INT) : Sub-subtype of file; [I]
TITLE (CH*8) : Title of data set:; [I]
IERR (INT) ¢« Error code; [0]

= 0 : Successful completion;

=1 : Error in parameter list;

= 2 : Error during opening of input file;

= 3 : Error in subroutine WRBIO01;

= 4 : Error in subroutine WRMDO06;

% % % % % %k % %k %k % % % sk %k 3%k % % %k % %k % %k %k %k %k %k %k % %k %k % % 3%k %k %k ok % Kk %k %k sk %k 3%k %k %k 3%k Kk %k ok ok %k ok %k k ok %k ok Kk ok Kk %k Kk &k kkok kK

Local parameter:
NUM (INT) : Number of matrices in S.S. model (PARAMETER);

lLocal variables:

IFAIL (INT) : Error code

NAME (NUM) (CH*8) :Names of the matrices;

MX (NUM) (INT) : Declared row dimensions of the matrices;

MY (NUM) (INT) : Declared column dimensions of the matrices:;

NX (NUM) (INT) : Actual row dimensions of the matrices:

NY (NUM) (INT) Actual column dimensions of the matrices:;
NZ (NUM) (INT) Actual length of third index (NZUP-NZL+1):
MZL (NUM) (INT) Declared lower bounds for third indices:
NZL (NUM) (INT) Actual lower bounds for third indices:;

NO0OQOOQ0O000000OO000N000O000000O0ONDOONDOO0ONNNN0NANNO0N0000000O00D0DO0
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Appendix B
Joxrdan forms

As already mentioned in paragraph 4.3 the Jordan form of a state space
model is a re~clisation that decocuples all states. In this realisation
the system-matrix is a diagonal matrix. The diagonal elements are the
eigenvalues of the system matrix. For all systems with distinct
eigenvalues this realisation can be found:

Corollary:

For every state space model with distict eigenvalues a transformation
matrix T can be found such that T “'AT is a diagonal matrix and the
input-output behaviour of the system {T ~ AT, T "8B,CT,D} is the same as
the behaviour of the system {A,B,C,D}.

Proof:
cf. for example [Trentelman,1985]

In general the eigenvalues of the system matrix may be complex so the
elements of the Jordan system matrix can be complex. This can reduce
the stability of the algorithms using this form. Moreover for the
moment it is impossible to store complex matrices in standard ER-
structured model files.

Therefore we try to find a Jordan-like representation of a systemwith
complex poles using only real matrices. To find this representation we
use the fact that if a system has a complex pole z then also its
conjugent z* is a pole of the system.

Considering for the moment a simplified system with only one complex
polepair z,,,=a ! jb we obtain the following transfer function:

-b

H(z) =
z >-2az+a %b ?

This second order system can be represented by the following state
space realisation:

a b 1
1 0
-b a 0

The constructed A-matrix is called a Jordan-cage.

Now we extend our discussion to the case of multiple distinct
polepairs. In this case we can construct a system matrix which has
Jordan cages on its main diagonal. All the other elements are zero.

Y
I
o
f
(@]
[
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In this way we decoupled every single polepair instead of decoupling
every pole of the system. This realisation is called a pseudo-Jordan
realisation. There exist other ways to contruct a Jordan-like
realisation with real matrices.

Next we want to consider systems withmultiple poles. For the moment we
concentrate on cyclic systems with (multiple) real poles.

Cyclic systems are characterized by the fact that the geometrical
multiplicity of each eigenvalue is one. This means that the dimension
of the eigenspace for each eigenvalue is one. The algebraic
multiplicity on the other hand is the multiplicity of an eigenvalue in
the charcteristic equation. This means that the algebraic
multiplicity is always larger or equal to the geometricmultiplicity.
For cyclic systems bothmultiplicities are one for all poles. All SISO
systems are cyclic.

If we consider a SISO systems with multiple poles we know that it is
impossible to decouple all states. Considering for example the system
described by the transfer function:

1
H(z) = —
(z-1) ?

then trying to write H(z) as A/(z-1) + B/(z-1) would lead to a
contradiction.

For this situation we use another Jordan-like representation given
below:
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In other words: Jordan-like blocks are constructed on the main
diagonal. The elements of the main diagonal are the eigenvalues of the
system matrix and the elements of the upper subdiagonal of each block
(!!) are one. All other elements are zero.

Physically we can interprete this realisation as a decoupling of all
distinct eigenvalues putting all multiple eigenvalues in cascade:

n — B, [— Nyl ---- — Yy |

g — By, |—m Apg | - ——— - r—— An |

Fig.27 Jordan-like realisation of a system with multiple
poles.

Clearly the above mentioned realisations can easily be combined for
cyclic systems with multiple complex poles. In this situation we put
all multiple polepairs in cascade resulting in the following
structure of the system matrix:

[ a3 b, ]
a; b,
A= -b131
0 anby,
bpanp J

The main diagonal is filled with the Jordan cages we know from our
discussion of a system with complex poles. The subdiagonal elements
between each identical Jordan cage are filled with ones. All the other
elements are zero. In this way we create a number of cascades of Jordan
cages for every polepair.

Until now we restricted our discussion to cyclic systems. This
restriction holds for most practical situations. Let us, however, now
consider the following example:
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uy, — Ay |y

u, — Ay |/ VY2

In this situation we have a second order system with a multiple pole.
Both the algebraic and the geometric multiplicity of the pole are two
so this is not a cyclic system. Clearly for this situation we can
construct a Jordan form:

A = diag(iy %) 7 B = diag(l1,1); C = diag(1,1)

This type of realisation can be constructed for all systems with equal
geometric and algebraic multiplicity. In general the geometric
multiplicity is greater or equal to one and less or equal than the
algebraic multiplicity [Trentelman,1985])

For this general case it can be proved [Guidorzi,1984] that a Jordan-
like realisation can be constructed. Inthis situation again the main
diagonal is filled with Jordan blocks. In this situation however the
number of Jordan blocks for each distinct pole is equal to the
geometrical multiplicity of that pole. An algorithm to construct this
general Jordan form is given by Guidorzi in his paper. Clearly this
realisation is not unique so this is a pseudo-canonical realisation.
If we want to avoid using complex matrices we can again replace each
polepair by a Jordan cage as shown above.



Appendix C-1

Name of the experiment

Estimation program

Number of iterations

Stop criterion :

Name of the matrix data file:
Date and time of creation
Title of the data set

Model subtype 1
Model subtype 2

Data type of variables

Number of matrices

Name

rows

N ERERNEN

0.00000E+00 0.10000E+01
-0.57817E+00 0.12118E+01

0.29888E-01
0.52231E-01

0.10000E+01

0.62640E-01

CrFr =

-0.55485E+01

X0 =

0.00000E+00

SISO

LS_SSM

150
0.1000000E-04

: 1
: D
columns

2

1

2

1

1

1

0
2
8
6

81

depth

[ =

ESSS221IF2.SSM
3-MAR-88

% ok %k %k k k%

14:22:17
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Appendix C-2

Name of the experiment : SISO
Estimation program : DIRECTO
Number of iterations : 45
Stop criterion : 0.5268356E-07

Name of the matrix data file: MARK31433.STA
Date and time of creation 9-MAR-88 09:41:12

Title of the data set : DIRECTO
Model subtype 1 : 30
Model subtype 2 : 1
Data type of variables : D8
Number of matrices : 4
Name rows columns depth
A 1 2 1
MARK 1 3 1
OFF 1 1 1
v 1 1 1

0.12459E+01-0.58752E+00

MARK =

0.55033E-01 0.43455E-01 0.52039E-01

OFF =

-0.77461E+01

Vv =

0.97336E+03
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Name of the experiment : SIMO
Estimation program : LS SsM
Number of iterations : 300
Stop criterion : 0.1000000E-04

Name of the matrix data file: ESSS301IF2.SSM

Date and time of creation : 4-MAR-88 09:14:48
Title of the data set HEE R Rk b
Model subtype 1 : 10
Model subtype 2 : 3
Data type of variables : D8
Number of matrices : 6
Name rows columns depth
A 3 3 1
B 3 1 1
C 3 3 1
D 3 1 1
OFF 3 1 1
X0 3 1 1

A =

-0.20298E+01 0.12560E+02-0.26840E+02
0.12156E+01-0.42295E+01 0.11405E+02
0.79294E+00-0.34706E+01 0.83753E+01

0.60360E-01
-0.48420E-02
-0.87520E-02

0.10000E+01 0.00000E+00 0.00000E+00
0.00000E+00 0.10000E+01 0.00000E+00
0.00000F~N0 0.00000E+00 0.10000E+01

0.22175E-01
0.56797E-02
-0.78001E-02

OFF =
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Name of the experiment : SIMO
Estimation program : DIRECTO
Number of iterations : 54
Stop criterion : 0.5268356E-04

Name of the matrix data file: MARK40857.STA
Date and time of creation 9-MAR-88 09:45:38

Title of the data set : DIRECTO
Model subtype 1 : 30
Model subtype 2 : 1
Data type of wvariables : D8
Number of matrices : 4
Name IrOwWsS columns depth
A 1 2 1
MARK 3 3 1
OFF 3 1 1
v 1 1 1

A =

0.14199E+01~-0.67586E+00

MARK =

0.31932E-01 0.38452E-01 0.69405E-01
0.86496E-02-0.88056E-02-0.16283E-01
-0.49398E-02-0.25733E-02-0.12800E-01

OFF =

0.45192E+01
0.39178E+01
-0.28911E+01

v =

0.67056E+04
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Name of the experiment : MIMO
Estimation program : LS SSM
Number of iterations : 300
Stop criterion : 0.1000000E-04

Name of the matrix data file: ESSS33IF2.SSM

Date and time of creation : 3-MAR-88 21:07:34
Title of the data set 3 KRkkkkkkk
Model subtype 1 : 10
Model subtype 2 : 3
Data type of variables : D8
Number of matrices : 6
Name rows columns depth
A 6 6 1
B 6 3 1
C 3 6 1
D 3 3 1
OFF 3 1 1
X0 6 1 1

0.00000E+00 0.10000E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000:
-0.61220E+00 0.12206E+01 0.16454E+00-0.24790E+00 0.74031E-02-0.65203:
.00000E+00 0.00000E+00 0.00000E+00 0.10000E+01 0.00000E+00 0.00000:
.32604E-01 0.66401E-01-0.62458E+00 0.13964E+01-0.13740E-01 0.13655!
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.10000!
.16496E-01-0.56383E~01 0.98352E-01-0.21745E+00-0.56953E+00 0.12007]

OO OO

.19754E-01-0.78233E-02 0.55495E-02
.65629E-01-0.79213E-02-0.10805E-01
.32200E-01 0.37332E-01 0.17597E-01
.13027E-02 0.70234E-01-0.13917E-01
.29270E-02-0.20441E-01 0.38200E-01
.16952E-01-0.33323E-02 0.75932E-01

QCOOCOOO

.10000E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000!
.00000E+00 0.00000E+00 0.10000E+01 0.00000E+00 0.00000E+00 0.00000t}
.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+01 0.00000¢

OO O



0.77512E-01-0.30914E-02-0.17675E-01
-0.33216E-01 0.48745E-01-0.24549E-01
-0.48354E-02 0.15661E-01 0.77801E-01

OFF =

0.25138E+01
0.50400E+00
-0.15628E+01

0.43462E-02
-0.11050E-01
-0.33696E-02
0.17618E-02
-0.11747E-02
0.67984E-02
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Name of the experiment MIMO
Estimation program DIRECTO
Number of iterations 49
Stop criterion : 0.5268356E-07

89

Name of the matrix data file: MARK31653.STA
Date and time of creation

Title of the data set
Model subtype 1

Model subtype 2

Data type of variables
Number of matrices

Name rOWS
A 1
MARK 3
OFF 3
v 1

0.40206E+01-0.73757E+01 0.

0.56915E-01-0.68639E-02-0.
0.62801E-01-0.75095E-02-0.
0.49844E-01-0.16047E-01-0.
0.72525E-02-0.90894E-02-0.
~-0.13483E-01 0.46299E-01-0.
-0.41869E-02 0.68600E-01-0.
-0.90533E-02 0.51396E-01-0.
-0.41928E-02 0.10955E-01-0.
-0.10547E-01 0.20327E-01 O.
-0.78532E-02-0.14112E-01 O.
-0.19732E-01-0.14179E-01 0.
-0.44243E-02-0.33881E-02-0.

OFF =

0.25302E+01
0.34563E+00
-0.14188E+01

Vv =

0.42167E+04

7-MAR-88 15:41:23

: WIND.3
30
1
D8
4
columns depth
6 1
21 1
1 1
1 1

77458E+01-0.

97834E-04
13022E-01
20707E-01
10363E-01
25227E-01

35495E-02-0

OO0

0.

11834E-01-0.

26379E-02
32077E-01

0

76786E-01-0.
57391E-01-0.

32762E-02

48952E+01 0.17637E+01-0.

.42867E-01-0.13606E-01 O.
.62265E-01-0.10168E-01-0.
.30022E-01-0.16961E-01-0.

48988E-03 0.45303E-01-0.

.70780E-02 0.65186E-01-0.

84115E~-02 0.32681E-01-0.

.41237E-02-0.48781E-02 0.

16428E-01-0.16183E-01 0.
15342E-01-0.96287E-02 0.

2880¢

5101¢
19774
1744¢

12937
73030
10216

53453
75707
27929



90

Appendix D

List of symbols used

A system matrix
a (k) minimal polynomial coefficients
a; real part of eigenvalue

B input matrix

b, imaginary part of eigenvalue

C output matrix

D direct feed through

E rotation matrix

e, residu

F g damping force

F; inertia force

F. upwards force

F, gravitation

H Hankel matrix containg Markov parameters

h height of the platform at a corner

M mass

m number of Markov parmeters

M(k) Markov parameter (MIMO)

m (k) Markov parameter (SISO)

N number of datapairs

OFF output offset vector

u distance between platform and float,
input for identification

u . input of servomotor

Vo output error

b4 state vector

X0 initial state

y height of the platform at a measurepoint

r observability matrix

A controllability matrix

¥ eigenvalue, pole

Ly structure index

7 singular value

X diagonal matrix containing singular values



Appendix E
Literature

[Backx,1987]

[Daanen, 1985]

[Damen, 1986]

[Dirks,1986]

[Guidorzi,1984]

[Isermann, 1980]

[Oudbier, 1986]

[Trentelman, 1985]

91

Backx,A.C.P.M.

Identification of an industrial process
- A Markov parameter approach.

Dr. dissertation TU Eindhoven

Daanen,A.M.J.

Het ontwerpen van een besturing voor een
drijvend platform.

Internal report TU Eindhoven,

Group Measurement and Control

Damen,A.A.H. and Boom,A.J.W. van den
Toegepaste systeemanalyse
TU Eindhoven, course 5P280

Dirks, P.A.J.

To determine the position of a floating
platform.

Internal report TU Eindhoven,

Group Measurement and Control

Guidorzi,R.P.

State space decomposition into cyclic
subspaces and transformation to the Jordan
form.

American Control Conference New York, 1984

Isermann, R.
Practical aspects of Process Identification
Automatica, Vol.l1l6, pp.575-587

Oudbier,R.S.

A different approach to the minimal polynomial
and start sequence of Markov parameters
estimation problem (+ documentation DIRECTO)
PICOS-R-070 report

Trentelman,H.L. and Veltkamp,G.W.
Matrixtheorie 1 en 2
TU Eindhoven, courses 2F400/2F450



92

[Veltmeyer,1985] Veltmeyer,A.J.W.
Parameter estimation of multivariable
processes represented by stochastic models in
pseudo canonical form (+ manual LS_SSM)
Internal report TU Eindhoven
Group Measurement and Control



	The identification of the dynamics of a floating platform

	Summary 

	Table of contents

	Introduction

	1. Description of the process

	2. Model representations

	3. The identification

	4. MIMO model validation

	5. Conclusions

	Àppendices

	Literature


