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ABSTRACT

A silicon compiler translates a functional IC specification into a chip layout. An important part of a silicon
compiler is the structural synthesis part, which translates the IC specification into a data path and a
controller. In an intermediate step a demand graph is created representing the desired functional data
path. The operations of the demand graph must be scheduled and allocated before a data path and
controller can be extracted.

This thesis describes a basic algorithm for scheduling demand graphs. The scheduling algorithm is
preceded by a proposal for the data flow graph format of the demand graphs and the introduction of a
parser for analising the contents of the data flow graphs.

After dealing with the principles of the basic scheduler two extensions for optimization are discussed.

The first extension is the additional calculation of predecessor and successor forces during the schedule
process. The comparison of the experimental results of scheduling with and without predecessor and
successor forces shows that using predecessor and successor forces hardly improves the schedule
results. But using these additional forces makes the order of the algorithm grow from O(Ii) to O(rf3 ) ,
which means an enourmous increase of execution time for large data flow graphs. The conclusion must
be that predecessor and successor forces are not an improvement of the scheduler.

The second extension is the stretching algorithm. Stretching is an aftertreatment of the basic scheduling
algorithm. So the stretch results depend on those of the basic scheduling algorithm. The results of the
stretching algorithm in combination with the basic scheduling algorithm are hopeful. The final schedules of
the examples used in this thesis are the optimum results for those data flow graphs. Still more
experiments with this new algorithm are required to confirm the present results.
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1. INTRODUCTION

In the Design Automation Section of the Eindhoven University of Technology, tools are developed for
the design of integrated circuits. One of the current projects, the European Community project ESPRIT­
991, is concerned with the development of a silicon compiler. A silicon compiler is a combination of
software, which can translate a high levellC specification into a chip layout. A detailed description of the
silicon compiler of the Design Automation Section Eindhoven can be found in [3] and in [4].

In figure 1.1 a global view of the silicon compiler is given. One can see three main parts of the compiler:

1. structural synthesis part, which translates a high level functional specification into a data path,
consisting of standard library modules (like adders, multipliers, logical operators) and a controller.

2. logic synthesis part, which replaces the standard library modules by gates and gate networks.

3. layout synthesis part, which creates a chip layout of the gate networks.

The structural synthesis part can be subdivided in EDGAR (Eindhoven Demand GrAph constructoR),
which translates the high level IC specification into a demand graph, and EASY (Eindhoven Architectural
SYnthesis), which entails the actual structural synthesis. EASY transforms the demand graph into a data
path and a controller. This is done by scheduling all operations of the demand graph into machine cycles
(timeslots) and mapping them on modules. The main task of a scheduler is to create a data path that
needs as little as possible area on a chip. Substantially this is done by sharing one operator for several
operations that are not active at the same time. This seems to save a lot of area, however the data path
will need more registers and multiplexers to control the operators. So a real good scheduler has to count
the costs of all the effects of saving operators and then find the 'best' solution for a given demand graph.

This master thesis describes a scheduling algorithm for demand graphs. In this algorithm only the
benefits of sharing operators are used. The disadvantages like more complex controllers and more
registers are neglected. Even though with this scheduling algorithm a useful tool for structural synthesis is
developed.

In chapter 2 a data flow graph format for demand graphs is discussed, followed by an algorithm for parsing
data flow graphs having the proposed format. In chapter 3 the principles of scheduling are described,
resulting in a basic algorithm for scheduling demand graphs. Chapter 4 handles an already existing
extension of the basic algorithm, which is the calculation of predecessor and successor forces. Finally
chapter 5 discusses a new approach for dealing with the scheduling results, called stretching.
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2. PARSING

2.1 INTRODUCTION

Parsing a file means analyzing the contents of the file, which must have a predefined format. A
parsing program normally is an additional program to another succeeding main program. In this thesis the
main program is a scheduling program. The data of the input file of the parser consists of tokens. A token
is defined as a string consisting of one or more characters.

A parsing program consists of two main parts. On the one side the parser reads the tokens from the input
file and selects the data that is essential for the main program. The structure of this part of the parser is
mainly defined by the syntax of the data format of the input files. On the other side the parser creates a
useful data structure for the main program for storing the essential data that was found in the input file.

If the data format of the input files is hierarchical, and if the data structure at each hierarchical level is the
same, a recursive parsing algorithm can be used. Moving to a higher or lower level in the hierarchy is
provided by some specially defined tokens, for instance the token "(" for a level increment and the token
")" for a level decrement. Those special tokens will be called start tokens and end tokens. If the start level
equals 0, the actual parse level can be found by subtracting the number of end tokens from the number of
start tokens. After parsing the complete file the parse level must equal 0 again. That is when the number
of start tokens equals the number of end tokens.

One can look at a hierarchical structure as a tree. Each branch can be seen as a hierarchical level. The
root is level O. With a level increment each branch is subdivided in one or more sub-branches. A keyword
determines which sub-branch the parser will choose.

2.2 A DATA FORMAT FOR PARSING DATA FLOW GRAPHS

2.2.1 THE SYNTAX OF THE DATA FORMAT

The chosen data format for the input files is a hierarchical Lisp-like format [8]. The data structure at
each hierarchical level is a list, of which the informal description consists of the following parts:

1. a start token "("

2. a keyword

3. zero or more arguments

4. zero or more lists

5. an end token ")"

The parsing algorithm uses a library that contains all the allowed keywords, called the keyword table. If a
keyword that is read during parsing is not in the keyword table, the algorithm ignores the list that is
matched to the keyword, which means reading and ignoring every token between the keyword and the
matching end character inclusive.

The formal syntax of the data format is given in figure 2.1. In behalf of an orderly syntax notation the
following meta rules are introduced.
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• If a construct is in square brackets "[", "]" it is optional.

• If a construct is in cur1y brackets "{" ,"}" it may occur zero or more times,

level 1: <VIEW> ::= "r "view" "data-f1ow-graph" <GRAPH> ",.

level 2: <GRAPH> ::= "r "graph" <GRAPH-NAME> <NODE-LIST>
<EDGE-LIST>
<START-LIST>
<END-LIST> ",.

level 3: <NODE-LIST> ::= "r "node-list" {<NODE>} ",.

<EDGE-LIST> ::= "r "edge-list" {<EDGE>} ",.

<START-LIST> ::= "r "start"lIst" {<NODE>} ",.

<END-LIST> ::= "r "end-list" {<NODE>} ",.

level 4: <NODE> ::= "r "node" <NODE-NAME> <IN-EDGES>
<OUT-EDGES>
<TYPE>",.

<EDGE> ::="r "edge" <EDGE-NAME> <ORIGIN>
<DESTINATION>") "

level 5: <IN-EDGES> ::= " ( " " In_edges" {<EDGE-NAME>} ",.

<OUT-EDGES> ::= "(" "out_edges" (<EDGE-NAME>}""

<TYPE> ::="r "type" <TYPE-NAME> [<TYPE-INDEX>]",.

<ORIGIN> ::= "r "origin" <NODE-NAME> ")"

<DESTINATION> ::="r "destination" <NODE-NAME>""

<GRAPH-NAME>
<NODE-NAME>
<EDGE-NAME>
<TYPE-NAME>
<TYPE-INDEX>

<identifier>

::= <identifier>
::= <identifier>
::= <identifier>
::= <identifier>
::= <identifier>

::= ('a'..'z' 'A'..'Z' '0',.'9' '_' '-' '[' ']')+

Figure 2.1. Formal syntax of the data format

Two additional syntax rules are:

• Token delimiters are the start token "(" and the end token ")", white spaces, tabs and newlines.

• Sequential lists on the same hierarchical level may occur in any order.
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2.2.2 AN EXAMPLE OF THE DATA FORMAT

In figure 2.2 an example is drawn to illustrate the data format.

Figure 2.2. Data flow graph EXAMPLE

The description in the proposed data format can be found in figure 2.3. In this description data that will not
be used in the scheduling program is put in italics.
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( vl_ data-f1ow-graph
( graph EXAMPLE

( node-list
( node Node-o

( out-edges Edge-o)
( type GET)
( vamame a)

)
( node Node-1

( out-edges Edge-1 )
( type GET)

)
( node Node-2

( In-edges Edge-o Edge-1 )
( out-edges Edge-2)
( type +)

)
( node Node-3

( In-edges Edge-2)
( type PUT)

)
( edge-list

( edge Edge-Q
( origin Node-o)
( destination Node-2)
( type left-source )
( vamamea )

)
( edge Edge-1

( origin Node-1 )
( destination Node-2)
( type rigM-source )

)
( edge Edge-2

( origin Node-2)
( destination Node-3)
( type source )

)
( atart-llst

( node Node-o)
( node Node-1 )

)
( end·lIst

( node Node-3)
)
( status

( written 04106/88 Stok EXAMPLE)
( written 20109/89 Steketee EXAMPLE )

Figure 2.3. Example of a data flow graph in the data format
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2.3 A RECURSIVE PARSING ALGORITHM

static Int level;
static Int mode;

maln(file, graph)
{

level =0;
mode =0;
token =nexCtoken(file);
while (token == '(')

{
parse(file, graph);
token =nexCtoken(file);

}
}

parse(file, graph)
{

char keyw[MAX_TOKEN_LEN];
char tOken[MAX_TOKEN_LEN];

level ++;
keyw =nexCtoken(file);
If (keyw In keyword_table)

{
check_level(keyw);
check_mode(keyw) ;
keyw_func(file, graph);
token =nexCtoken(file);
while (token == '(')

{
parse(file, graph);
token =next_token(file);

}
}

else
{

Ignore_lIst(file);
\* token = last token of Ignored list = ')' *\

}
If (token == ')')

Ievel--;
}

Figure 2.4. Parsing algorithm for data format syntax
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A C-algorithm for parsing data flow graphs having a format according to the proposed syntax rules is
shown in figure 2.4. If the keyword that is read in the function parse(file, graph) is not in the keyword
table the matching list of the keyword is ignored. Each other keyword can be found in the keyword table
and is in this keyword table connected to two keyword indices, the keyword level and the keyword mode,
and a keyword function.

At the levels 0 and 1 only one keyword is available. So at these two levels the tree can not be split. The
keywords at the levels 1 and 2 are respectively:

• view.

• graph.

level:: 1

level:: 2

At level 2 the tree can be split in four branches. The (static) variable mode is used for storing which sub­
branch was chosen at level 2. This is done by setting the variable mode equal to the keyword mode.
The keywords of the branches of level 3 and their modes are respectively:

• node-list.

• edge-list.

• start-list.

• end-list.

mode:: 1

mode:: 2

mode:: 3

mode:: 4

Each of these branches at level 3 only has one sub-branch. So the tree can not be split at level 3. This
means that at this level no new variable is required. The keywords of the branches of level 4 are:

• node,

• edge.

mode:: 1• mode:: 3 and mode:: 4

mode:: 2

At level 4 only the branches of mode 1 and mode 2 can be split. For the other modes level 4 is the
maximum level. At level 5the keywords for the sub-branches are:

• In-edges,

• out-edges,

• type.

• origin,

• destination,

mode:: 1,

mode:: 1,

mode:: 1,

mode:: 2,

mode:: 2,

For all the keywords that are read during parsing, the parser checks if the variable level equals the
keyword level. For the keywords at levels 4 and 5 the parser also checks if the keyword mode is equal to
the variable mode.

After a keyword is read and the level and in case the mode are checked. the parser looks in the keyword
table for the keyword function connected to the keyword. This function is executed. Each keyword
function has a special task. Normally this task will be on the one side to create a part of the data structure
and on the other side to read the the argument(s) and store them in the data structure. For example the
task of the keyword function connected to the keyword node is to create the structure NODE which is
discussed in the next section. And the function connected to the keyword out_edges creates an edge
list and stores in this list the out-edge(s) that are read as the argument(s) of the keyword. Each keyword
function takes care of reading and storing the keyword argument(s), if present.



- 9 -

If during parsing a syntax error in the data flow graph is detected, the parser will stop immediately. Error
recovery is not provided. The parser only sends the error message "Syntax error in data file".

An extra feature of the parser is the graph checker. This checker looks for errors in the data of the graph.
This is possible because during parsing the information about the graph structure is given twice. the first
time in the node list and the second time in the edge list. If in the node list an edge is an in_edge of a
node, then in the edge list the node must be the destination of the edge. The same holds for ouCedges
and origins. So for each node all the in_edges and all the out_edges are checked. The number of
in_edges and the number of ouCedges both must be equal to the number of edges in the edge list. Also
the graph checker is not provided with error recovery. If a data error is detected the parser stops and
sends the error message "Data error in data file".

2.4 THE DATA STRUCTURE FOR °rHE SCHEDULER

The information that is found during parsing a data flow graph must be put away in a useful data
structure for the scheduler. A global view of such a data structure is presented in figure 2.5.

graph

node­
list

Figure 2.5. Data structure for demand graphs

In this data structure the node-list, the start-list and the end-list all are linked lists of NODE structures. The
edge-list is a linked list of EDGE structures. These structures are discussed at the end of this section. In
a linked list the list elements all consist of a field <NEXT_LlST_ELEM> and a field <STRUCTURE>, which
contain pointers to respectively the next list element and the matching data structure, in this case either a
NODE structure or an EDGE structure.

A linked list is useful if the total number of list elements is unknown during the creation of the list. It is easy
to add a new list element to the list by defining a pointer from the field <NEXT_LIST_ELEM> of the last list
element to the new list element. The contents of the field <NEXT_L1ST_ELEM> of the new list element is
set to NULL.

If an easy way of removing a list elements is required, one can use a doubly linked list. A list element of a
doubly linked list has an extra field, called <PREV_LlST_ELEM>, which points to the previous list element.
A list element can be removed by connecting the previous element to the next element.

In the parser only singly linked lists are used. With this definition of a list consisting of linked list elements
the data structure of the data flow graph EXAMPLE of figure 2.3 will be as in figure 2.6.
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next
node

next
node

Figure 2.6. Data structure using lists

What remain now are the definitions of the NODE structure. the EDGE structure and the GRAPH
structure. The GRAPH structure is found by looking at the data structure of figure 2.6. The NODE
structure and the EDGE structure can be found in the data format of figure 2.3. In figure 2.7 these
structures are written in C. Also the formal definitions of the list elements are given.
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typedef struct GRAPH
{

char
struet NODE_L1ST_ELEM
struet EDGE_LIST_ELEM
struet NODE_LIST_ELEM
struet NODE_L1ST_ELEM

};

typedef struet NODE
{

char
struct EDGE_LIST_ELEM
struct EDGE_LIST_ELEM
char
SCHED_INFO

};

typedef struct EDGE
{

char
struet NODE
struct NODE

};

*graph_name;
*node_lIst;
*edge_lIst;
*start_lIst;
*end_lIst;

*node_name;
*In_edge_lIst;
*oucedge_lIst;
*type;
*sched_lnfo;

*edge_name;
*orlg;
*dest;

typedef struet NODE_LIST_ELEM
{

struet NODE_L1ST_ELEM *nexClIscelem;
struet NODE *node;

};

typedef struct EDGE_L1ST_ELEM
{

struct EDGE_L1ST_ELEM *nexClIscelem;
struct EDGE *edge;

};

Figure 2.7. Structure definitions

In the GRAPH structure, the NODE structure and the EDGE structure the first field is reserved for the
name of the structure. In the NODE structure an extra field named <SCHED_INFO> is reserved. This
field will be used in the scheduling program for storing data that is necessary during the scheduling
process and is not used by the parser.
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2.5 CONCLUSION

The parser discussed in this chapter is a very flexible parser, in which, within the formal syntax,
changes in the data flow graph format as well as changes in the created data structure can be realised
easily. Changes in the data flow graph format will lead to a changed keyword table. Changes in the
created data structure will lead to changed keyword functions, which create the actual data structure. The
flexibility of the parser makes the parser not only useful for the scheduling program, but also for other
programs which use data flow graphs as input files that have a structure like the one proposed in this
chapter.
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3. SCHEDULING

3.1 INTRODUCTION

Generally scheduling means assigning tasks to resources (processors) in a certain time order. The
main task of the scheduler discussed in this thesis is to match operations in an integrated circuit to
operators as efficient as possible. This is done by using one operator in several nonoverlapping timeslots
for more operations of the same type. In this case an operator is a module, which can execute an
arithmetical or logical function. The function is called the operation. A disadvantage of sharing operations
is that the results of the operations must be stored in registers until these results are wanted again for
further calculations. So the number of registers probably increases. One will also need additional
multiplexers for making the connections in each timeslot between the operators and the registers. The
costs of extra registers and multiplexers and a more complex controller against the advantage of saving
one or more operators is not calculated in this thesis. The scheduling algorithm discussed in this thesis
only tries to find an optimal, this means as flat as possible, distribution of the operations over the available
timeslots for each operation type. In this chapter the word node is often used instead of operation.

3.2 MULTICVCLING AND CHAINING

Depending on the given cycle time operations may need more than one timeslot to execute. This is
when the delay (operation time) of an operation is greater than the cycle time. This is called multicycling.
In this thesis the word delay will be used for the normalized execution time, that is the execution time
divided by the cycle time. The required number of timeslots for an operation can be found by calculating
the (normalized) delay and round upwards.

If the delay of some operations is less than 1, more operations (of any operation type) may be shared in
one timeslot. This is called chaining and can be used as an option in the scheduler. There are two
restrictions on chaining.

1. Some operations, like multiplications, always start at the beginning of a timeslot.

2. Chaining of operations of the same operation type does not reduce the required number of operators
of that type.

The restrictions written above are both based on the fact that only between two sequential timeslots the
registers and multiplexers can be updated. Allowing updating of the registers and multiplexers between
timeslot boundaries would be the same as decreasing the cycle time.

There is also one restriction on multicycling. This restriction is that each operation must be placed in the
minimum number of timeslots that is possible for that operation. This minimum number of timeslots is
equal to the upwards rounded delay.

3.3 REQUIREMENTS

For scheduling a demand graph, the scheduler needs some information from the IC-designer:
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• the demand graph or demand graph section that needs to be scheduled. The graph must be acyclic.

• the required number of cycles.

• the required cycle time.

• whether chaining is allowed or not.

First scheduling without chaining and multicycling will be discussed. This means that the delay of each
operation is equal to 1. In section 3.9 the required modifications for scheduling multicycled operations are
discussed. Finally in section 3.10 the possibility of chaining is added to the algorithm.

3.4 EXAMPLE OF A DEMAND GRAPH

In figure 3.1 an example of a demand graph is drawn. This example graph is called TSENG [2] and
will be used in this chapter to illustrate the theoretical viewings.

Figure 3.1. Example TSENG
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3.5 ASAP, ALAP AND EXECUTION INTERVAL

The first schedule that can be made of a demand graph is an ASAP (As Soon As Possible) schedule.
This means placing a node in the first possible timeslot after all its predecessor nodes have been placed.
With the ASAP schedule one can find the minimum number of timeslots for the graph. The second
schedule that can be made is the ALAP (As Late As Possible) schedule. The ALAP schedule means
placing a node in the last possible timeslot before all its successor nodes have been placed. The formal
definitions of the ASAP and ALAP indices are as follows:

• ASAP: The earliest possible start time for the operation.

• ALAP: The latest possible completion time for the operation.

If the ALAP index must be greater than the ASAP index for each node, which in this case is necessary
because of the definition of the ALAP index, the scheduler must know the minimum number of timeslots
for the graph. The minimum number of timeslots was found during the ASAP schedule.

We have to make a definition for numbering the timeslots. In this thesis we will use the following notation:
If there are n timeslots they will be numbered 0 to n- 1 inclusive. These numbers are the starting
moments of the timeslots. So timeslot i is the slot between i and i + 1. Then the start-nodes will all be
placed in timeslot 0 and the end-nodes in timeslot n - 1. The ASAP index of an operation is defined as the
starting moment of the operation. The ALAP index is defined as the ending moment of the operation. For
example a start-node will have ASAP index 0 and ALAP index 1. The definitions of the ASAP index and
the ALAP index are chosen such as to make it easier to implement chaining in the algorithm. This will be
explained in section 3.10. The ASAP and ALAP schedule can both be made by use of a recursive
algorithm. An algorithm for the ASAP schedule is shown in figure 3.2.
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for (each node)
ASAP(node) =UNDEFINED;

for (each start-node)
Inlcasap(start-node, 0);

Inlcasap(node, Index)
{

ASAP(node) =Index;
Index =ASAP(node) + DELAY(node);
for (each successor succ of node)

If (ASAP(succ) == UNDEFINED)
{

max_Index =Index;
for (each predecessor pred of succ)

If (max_Index != UNDEFINED)
{

If (ASAP(pred) == UNDEFINED)
max_Index =UNDEFINED;

else
max_Index =max(ASAP(pred) + DELAY(pred), max_Index);

}
If (max_Index != UNDEFINED)

Inlcasap(succ, max_Index);
}

}

Figure 3.2. ASAP algorithm

With the ASAP and ALAP schedule the execution interval length (EI) of each operation can be found. The
execution interval length is defined as:

EI(op) = 1 + ALAP(op) - ASAP(op) - DELA Y(op)

In the algorithm of figure 3.2 DELA Y(node) is normalized to 1 if no multicycling or chaining is allowed. In
this case for each operation the execution interval length is:

EI(op) =ALAP(op) - ASAP(op)

The operations for which EI(op) equals 1 can be placed at once in the timeslot between their ASAP(op)
and ALAP(op). All other operations have EI(op) greater than 1 and can be shifted in their execution
interval. As a first example TSENG was scheduled in 7timeslots, one more then the minimum number of
timeslots, which is 6. The graph is scheduled in 7timeslots (numbered 0 to 6 inclusive) to increase the
execution intervals. Increasing the execution intervals will decrease concurrency between similar
operations. The results of the ASAP and ALAP schedule and the additional execution intervals of the
TSENG example scheduled in 7 slots are given in table 3.1 .
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node op DELAY ASAP ALAP EI

Node-2 GET 1 0 4 4
Node-3 GET 1 0 3 3
Node-4 GET 1 0 3 3
Node-5 GET 1 0 2 2
Node-6 GET 1 0 2 2
Node-7 + 1 1 3 2
Node-8 - 1 2 4 2
Node-9 * 1 2 4 2
Node-10 + 1 3 5 2
Node-11 + 1 3 5 2
Node-12 * 1 3 5 2
Node-14 AND 1 4 6 2
Node-15 OR 1 4 6 2
Node-16 PUT 1 5 7 2
Node-17 PUT 1 5 7 2

TABLE 3.1. Execution intervals of TSENG in 7

3.6 PROBABILITIES AND DISTRIBUTION FUNCTIONS

The probability that a node is scheduled in a timeslot somewhere in its execution interval is assumed
to be uniformly distributed over each timeslot in this interval. Therefore the probability prop, i) that the
operation opwill be placed in timeslot ican be defined as:

{

1
. EI(op)

P(op,ij = 0

ASAP(op) ~ i < ALAP(op)

i < ASAP(op) v i ~ ALAP(op)

The sum of all the probabilities of an operation type will be used to get a global view of the concurrency of
operations of the same type. For each timeslot the distribution value of a operation type can be found by
summing all the probabilities for that timeslot. In figures 3.3 and 3.4 the distribution functions of the
adders (including subtrahends) and the multipliers (including dividers) are drawn. The distribution function
is a strong indicator to represent concurrency between operations of the same type. How concurrency
between operations of different types can be calculated will be handled later in this report.
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Figure 3.4. Distribution function of the multipliers

3.7 FORCE OF AN ATTEMPTED SCHEDULING

A distribution function represents the expected concurrency of one operation type. Each operation
type op has a distribution value DF(op, i) for each possible timeslot i. A low distribution value in a timeslot
means little concurrency and a high value means high concurrency. To get a distribution that has as little
concurrency as possible means placing the nodes in such a way that the final distribution function is as flat
as possible. This means that timeslots with low distribution values need to be filled first.

Scheduling an operation in a timeslot will take effect on the execution interval of the operation. The
change of the execution interval of an operation will change the distribution function of that operation type.
From this distribution function change a force can be calculated. With this force a measure for the change
in distribution function is found. This force F(op,r) of operation optowards timeslot rwill be defined as:



with
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ASAP(op) + EI(op) - 1

F(op,r) = CrOp) . L [DF(op,ij . Mop,;,r) J
; K ASAP(op)

{

1---
. E/(op)

Mop, I,,) = 1

- E/(op) + 1

i :F- r

i = r

Crop) represents the normalized area costs of the operation type. These costs can be found in a cost table
in appendix A. The function of the area costs will be discussed below.

EXAMPLE.

The force that scheduling Node-7 of the TSENG-example will bring is (see fig 3.2):

Times/at 1: F(Nod~7, 1) = C(add) . [DF(1) . (+ 0.5) + DF(2) . (- 0.5) J
= 5 . [(0.5 . (+ 0.5) + 1.0 . (- 0.5) J
= - 1.25

Times/at 2: F(Nod~7, 2) = C(add) . [DF(1) . (- 0.5) + DF(2) . (+ 0.5) J
= 5 . [(0.5 . (- 0.5) + 1.0 . (+ 0.5) J
= + 1.25

The costs C(add) are normalized to 5 (see appendix A).

The timesJot with the lowest distribution value gives the most negative force. So the operation with the
most negative force needs to be scheduled first. In table 3.2 the forces of all operation of the TSENG
example are calculated, except for the GET and PUT nodes which are all placed in respectively timeslot 0
and in timeslot 6.

force to timeslot:
node op

1 2 3 4 5

Node-7 + -1.25 +1.25
Node-8 - -1.25 +1.25
Node-9 • -22.75 +22.75
Node-10 + +1.25 -1.25

Node-11 + +1.25 -1.25

Node-12 • +22.75 -22.75

Node-14 AND 0 0

Node-15 OR 0 0

TABLE 3.2. Forces of TSENG
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Comparing the results of table 3.2, we see that operations Node-9 and Node-12 both have forces that are
much higher than the forces of the other operations. This is the result of the area costs, which are much
higher for the multipliers as for the adders. So because of these area costs relatively expensive
operations will be scheduled first. The most negative force in table 3.2 is -22.75. So the first node to be
scheduled will be either Node-9 in timeslot 2 or Node-12 in timeslot 4.

3.8 A BASIC SCHEDULING ALGORITHM

The distribution functions (OF's) and forces defined above can be used to compose a scheduling
algorithm for demand graphs (see figure 3.5).

ASAP-schedule;
make lists of all types of nodes;

ALAP-schedule;
place trivial nodes (with EI(op) =1);
calculate DF's;
while (there are nodes not placed)

{
for (each node that Is not placed)

{
for (each possible tlmeslot)

calculate force;
select tlmeslot with minimum force;

}
select schedule-node;
place schedule-node;
If (selected tlmeslot > ASAP)

update ASAP and DF's;
If (selected tlmeslot < ALAP)

update ALAP and DF's;
place trivial nodes (with EI(op) =1);

}

Figure 3.5. Basic scheduling algorithm

During the ASAP schedule several lists of operations are created, one list for each operation type. These
lists are numbered in order of their area costs. The first list will be the list of the operation type with the
highest area costs. The area costs of each operation type can be found in appendix A. In the list of each
operation type, operations are put in order as their appearance in the ASAP algorithm. In table 3.3 the
operation lists of the TSENG example after the ASAP schedule are shown.
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operation type lists
node op ASAP

mult add comp reg AND OR GET PUT

Node-2 GET 0 1

Node-3 GET 0 2

Node-4 GET 0 3
Node-5 GET 0 4

Node-6 GET 0 5
Node-? + 1 1
Node-9 .. 2 1

Node-11 + 3 2
Node-15 OR 4 1

Node-1? PUT 5 1

Node-8 - 2 3
Node-12 .. 3 2
Node-10 + 3 4

Node-14 AND 4 1

Node-16 PUT 5 2

TABLE 3.3. ASAP schedule with operation type lists

With the scheduling algorithm of figure 3.5 a basic scheduler is created. If the ASAP and ALAP algorithms
are ignored, the order of the scheduling algorithm is O(arl) , with n the number of operations of the graph
section and a the number of timeslots. In the worst case for each node the scheduler must walk through
the while loop, in which loop for each other node the force to each possible timeslot of the other node
must be calculated.

3.9 MODIFICATIONS FOR MLlLTICYCLING

If the execution time of one or more operation types is greater than the chosen cycle time, multicycling
is needed. Multicycling will bring a few modifications in the basic scheduling algorithm of figure 3.5. For
the ASAP algorithm of figure 3.2 multicycling has no consequences. The reason is that the execution time
of the operations is already settled in the variable DELA Y(node). The same holds for the ALAP schedule.
The execution intervals now must be calculated using the equation:

E/(op) = 1 + ALAP(op) - ASAP(op) - DELA Y(op)

Multicycling does have consequences for the probabilities and the distribution function of the operation
type. For the calculation of the probabilities one can look at a multicycled operation as a number of
identical operation parts with delay equal to 1, placed in sequential timeslots. This number of operation
parts is equal to the delay of the muIticycled operation and is an integer greater than 1. The contribution of
the multicycled operation to the total distribution function is found by adding the distribution functions of
each operation part.

In finding the forces of a multicycled operation the same strategy is used as for the probabilities. For each
operation part the force of an attempted schedule is calculated. The sum of the forces of all the operation
parts is the force of the multicycled operation.
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The rest of the scheduling algorithm of figure 3.5 remains the same. This section shows that multicycling
does not change the essential part of the scheduler. That is why only examples without multicycling are
used.

3.10 MODIFICATIONS FOR CHAINING

Chaining is the opposite of multicycling and can be used as an option in the schedule program.
Chaining means sharing more than one successive operation in the same timeslot.

Not every operation may be chained. Chaining is only possible for operations that do not need a start
signal from the controller. For example logical gates do not need control signals. These gates operate
continuously, and they produce output data depending on the input data, and not depending on control
signals. At the other hand some arithmetical operators like multipliers do need control signals. A
multiplier can only produce the right output if the input data is available at the moment the controller gives
a start signal. So the scheduler needs to know for which operation type chaining is allowed and for which
type it is not. This information can be found in the operation type table.

The modifications for chaining in the basic scheduling algorithm of figure 3.5 are the calculation of the
ASAP and ALAP schedule. Instead of integers, now reals are used. In the calculation of the execution
intervals the ASAP index is rounded downwards and the ALAP index is rounded upwards. The operation
delay is also rounded upwards. Chaining does not change the selection algorithm for the node to be
placed next.

Because chaining does not change the basics of the scheduling algorithm only the algorithm without
chaining is handled. Without chaining the algorithm and the examples are easier to understand.

3.11 EXPERIMENTS WITH THE SCHEDULING ALGORITHM

As an experiment the TSENG example was scheduled with the scheduling algorithm of figure 3.5.
To keep the experiment simple no multicycling or chaining was allowed. First TSENG was scheduled in
the minimum number of cycles, which was 6. The final distribution of the operations is put in table 3.4.

dist_value in timeslot: total
op dist

type 0 1 2 3 4 5 value

mult 1.00 1.00 2.00
add 1.00 1.00 2.00 4.00
comp 0.00
reg 0.00
AND 1.00 1.00
OR 1.00 1.00
GET 5.00 5.00
PUT 2.00 2.00

TABLE 3.4. Final distribution of TSENG in 6

All the GET operations are all placed in timeslot O. This is because these operations are all defined as
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start-nodes. In the same way all the PUT operations are defined as end-nodes and placed in the last
timeslot, timeslot 5. When TSENG is scheduled in the minimum number of timeslots, only one multiplier
and two adders are needed. Because only in timeslot 4 these two adders are used at the same time,
increasing the execution time with one timeslot must lead to only one adder. To check this out TSENG
was scheduled in seven timeslots. The results of this experiment are in table 3.5.

disCvalue in timeslot: total
op dist

type 0 1 2 3 4 5 6 value

mult 1.00 1.00 2.00
add 1.00 1.00 1.00 1.00 4.00
comp 0.00
reg 0.00
AND 1.00 1.00
OR 1.00 1.00
GET 5.00 5.00
PUT 2.00 2.00

TABLE 3.5. Final distribution of TSENG in 7

Indeed only one adder is needed. This is the cheapest solution for TSENG because except for the start­
and end-nodes only one operation of every operation type is required. If this solution is also the best
solution can not be answered here. That is something the Ie designer must work out. The designer must
make a tradeoff between the costs of using less operations against the increase of execution time.

From the TSENG example it seems that the scheduling algorithm works well. With a lot of demand
graphs the algorithm will give good results. Partly this is a coincidence. Let us look at an other example,
created by the writer of this report and called DOG, in figure 3.6.
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Figure 3.6. DOG example

Running the example dog in the minimum number of timeslots, 6, gives the final distribution of table 3.6.

disCvalue in timeslot: total
op dist

type 0 1 2 3 4 5 value

mult 1.00 1.00 2.00
add 2.00 2.00 4.00
comp 0.00
reg 0.00
AND 0.00
OR 0.00
GET 2.00 2.00
PUT 2.00 2.00

TABLE 3.6. Final distribution of DOG in 6

From table 3.6. one can see that one multiplier and two adders are necessary. The GET and PUT
operations are respectively start and end operations, like in the TSENG example. With two more timeslots
available the DOG example is allowed to use at most one adder. In table 3.7. the final distribution of DOG
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after scheduling in 8 timeslots is given.

disCvalue in timeslot: total
op dist

type 0 1 2 3 4 5 6 7 value

mult 1.00 1.00 2.00
add 2.00 1.00 1.00 4.00
comp 0.00
reg 0.00
AND 0.00
OR 0.00
GET 2.00 2.00
PUT 2.00 2.00

TABLE 3.7. Final distribution of DOG in 8

Table 3.7 shows that in timeslot 2 two adders are placed instead of one. In timeslot 6 no operations are
scheduled. This shows that the scheduling algorithm is not as good as it seemed to be. The reason for
the failure of the algorithm will be dealt with in the next chapter.
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4. PREDECESSOR AND SUCCESSOR FORCES

4.1 INTRODUCTION

In the previous chapter a basic algorithm for scheduling demand graphs was developed. This
algorithm did not function perfectly for every possible demand graph. Still the results of the algorithm are
not so bad that the scheduler can not be used anymore. In this chapter the reason for failure of the
algorithm is indicated. Also an already existing solution for the failure problem will be discussed. This
solution is the calculation of predecessor and successor forces.

4.2 SHORTCOMINGS OF THE BASIC SCHEDULING ALGORITHM

To show where the algorithm of figure 3.5 goes wrong, the example graph DOG will be scheduled in 8
timeslots, and this scheduling process will be analized. The analysis starts with the determination of the
initial ASAP and ALAP schedules and the execution intervals for each operation. Just like in previous
examples the GET and PUT operations are start nodes and end nodes and they are placed in respectively
the first and the last timeslot. The results of these calculations are put in table 4.1.

node op DELAY ASAP ALAP EI

Node-O GET 1 0 1 1
Node-1 GET 1 0 1 1
Node-2 + 1 1 4 3
Node-3 + 1 1 4 3
Node-4 * 1 2 5 3
Node-5 * 1 3 6 3
Node-6 + 1 4 7 3
Node-7 + 1 4 7 3
Node-B PUT 1 7 B 1
Node-9 PUT 1 7 B 1

TABLE 4.1. Initial execution intervals of DOG in B

The initial distribution functions of the multipliers and adders are drawn in figures 4.1 and 4.2.
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Figure 4.1. Initial distribution function of the adders
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Figure 4.2. Initial distribution function of the multipliers

The initial forces of each operation to the matching timeslot can be found in table 4.2.
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node op to force
slot

1 0
Node-2,3 + 2 0

3 0
2 -20.22

Node-4 * 3 +10.11
4 +10.11
3 +10.11

Node-5 * 4 +10.11
5 -20.22
4 0

Node-6,7 + 5 0
6 0

TABLE 4.2. Initial forces

The most negative force is -20.22. The operation that will be scheduled first is either Node-4 in timeslot 2
or Node-5 in timeslot 5. If Node-4 will be placed in timeslot 2, then Node-2 and Node-3 are both forced to
be placed in timeslot 1. On the other hand if Node-5 is placed in timeslot 5, then Node-6 and Node-7 both
must be placed in timeslot 6. So both options are not optimal, and this is where the scheduling algorithm
fails.

4.3 CALCULATION OF PREDECESSOR AND SUCCESSOR FORCES

The reason for the failure in the previous section is that only concurrency between operations of the
same operation type is calculated in the scheduling algorithm. Concurrency between operations of
different types is neglected. To deal with this problem the algorithm must be modified. The best known
modification is the addition of predecessor and successor forces to the self forces. According to [10]
predecessor forces can be found by adding the force of each predecessor operation. This force is the
effect of the change of its execution interval, caused by the attempted placement of the schedule
operation. For the successor forces the same calculation is done to the successor operations.

A scheduling algorithm using predecessor and successor forces can be found in figure 4.3. In this
algorithm the modifications for the calculation of predecessor and successor forces are put in italics.
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ASAP-schedule;
make lists of all types of operations;

ALAP-schedule;
place trivial nodes (whh EI(op) =1);
calcul~te OF's;
while (there are operations not placed)

{
for (each node that Is not placed)

{
for (each possible tlmeslot)

{
calculate force;
for (each not placedpredecessors pred of node)

{
calculate pred_force;
force += pred_force;

}
for (each not placed successor succ of node)

{
calculate succ_force;
force += succ_force;

}
}

select t1meslot with minimum force;
}

select schedule-node;
place schedule-node;
If (selected tlmeslot > ASAP)

update ASAP and OF's;
If (selected t1meslot < ALAP)

update ALAP and OF's;
place trivial nodes (with EI(op) =1);

}

Figure 4.3. Scheduling algorithm with prec:l!succ forces

The modification means that for all possible timeslots the self forces and the predecessor and successor
forces have to be calculated. Because for all the operations the predecessor and successor forces of all
the other operations must be calculated, the order of the algorithm will now be O(arr) , with n the number
of operations and a the number of timeslots. The order is the order of the basic scheduling algorithm
multiplied by n. The reason for this is that for each possible timeslot now the forces of all the predecessor
and successor nodes must be calculated. So the execution time will grow. The increase of execution time
from order O(ar? ) to order O(arr) is significant.

The results of the predecessor and successor forces of the example DOG are put in table 4.3.
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pred,succ forces from
node op to self total

slot force Node-2,3 Node-4 Node-5 Node-6,7 force

1 0 * 0 0 0 0
Node-2,3 + 2 0 * +10.11 -5.05 0 +5.05

3 0 * +10.11 -20.22 0 -10.11
2 -20.22 0 * 0 0 -20.22

Node-4 * 3 +10.11 0 * -5.05 0 +5.05
4 +10.11 0 * -20.22 0 +10.11
3 +10.11 0 -20.22 * 0 +10.11

Node-5 * 4 +10.11 0 -5.05 * 0 +5.05
5 -20.22 0 0 * 0 -20.22
4 0 0 -20.22 +10.11 * -10.11

Node-6,7 + 5 0 0 -5.05 +10.11 * +5.05

6 0 0 0 0 * 0

TABLE 4.3. Initial predlsucc force

From table 4.3 it shows that adding the predecessor and successor forces does not improve the schedule
results. Still Node-4 will be placed in timeslot 2 or Node-5 in slot 5. The self force of Node-4 towards
timeslot 2 was -20.22. Placing Node-4 in timeslot 2 causes both Node-2 and Node-3 to be placed in
timeslot 1. So the predecessor forces are the force of Node-2 towards slot 1 plus the force of Node-3
towards slot 1. Calculating these forces gives the following results:

F(Node-2, 1) = C(add) . [(DF(1) . (+ 0.67) + DF(2) . (- 0.33) + DF(3) . (- 0.33) J
= 0

F(Node-3, 1) = C(add) . [(DF(1) . (+ 0.67) + DF(2) . (- 0.33) + DF(3) . (- 0.33) J
= 0

So the total predecessor forces equal O. And because placing Node-4 in slot 2 does not effect the
execution intervals of the successors, the successor forces also equal O. So the predecessor and
successor forces do not help scheduling the graph DOG in the right way.

4.4 IMPROVED CALCULATION OF PREDECESSOR AND SUCCESSOR FORCES

The failure that is made in calculating the predecessor and successor forces in the way written above
is that one ignores that these forces are connected with a change in the distribution function. This means
that if, for example, the predecessor force of Node-2 towards timeslot 1 is calculated, the distribution
function of the adders must be updated before calculating the predecessor force of Node-3 towards slot 1.
The force of Node-2 towards slot 1 equaled O. Now the distribution function of the adders must be
updated. The new distribution function is drawn in figure 4.4.
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Figure 4.4. Distribution function of the adders

With this new distribution function the force of Node-3 towards timeslot can be calculated.

This force results in:

F(Node-3, 1) = C(add) . [(DF(1) . (+ 0.67) + DF(2) . (- 0.33) + DF(3) . (- 0.33) J
= 5 . [1.33 . (+ 0.67) + 0.33 . (- 0.33) + 0.33 . (- 0.33) J
= 3.33

Now the predecessor forces of Node-4 towards slot 2 are:

o(from Node-2) + +3.33 (from Node-3) = +3.33.

In the same way for all operations predecessor and successor forces towards every possible timeslot can
be calculated. The question is if these forces really have effect on the results of the scheduler. To answer
this question the forces of all the operations in the DOG example are calculated, including the predecessor
and successor forces. The results are in table 4.4.
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pred,succ forces from
node op to self total

slot force Node-2,3 Node-4 Node-5 Node-6,7 force

1 0 * 0 0 0 0
Node-2,3 + 2 0 * +10.11 -7.58 +0.83 +3.36

3 0 * +10.11 -30.33 +3.33 -16.89
2 -20.22 +3.33 * 0 0 -16.89

Node-4 * 3 +10.11 +0.83 * -30.33 +0.83 -18.56
4 +10.11 0 * -30.33 +3.33 -16.89
3 +10.11 +3.33 -30.33 * 0 -16.89

Node-5 * 4 +10.11 +0.83 -30.33 * +0.83 -18.56
5 -20.22 0 0 * +3.33 -16.89
4 0 +3.33 -30.33 +10.11 * -16.89

Node-6,7 + 5 0 +0.83 -7.58 +10.11 * +3.36
6 0 0 0 0 * 0

TABLE 4.4. Improved pred/succ forces

From table 4.4. some hopeful results can be found. The most negative force now is -18.56 caused by the
attempted schedule of either Node-4 in timeslot 3 or Node-5 in slot 4. Now Node-4 will be placed in
timeslot 3, because this operation comes first in the list of multipliers.

The final distribution of DOG in 8timeslots, using the improved predecessor and successor forces, can be
found in table 4.5. This table shows that the results of scheduling DOG are the optimum results for this
graph.

disCvalue to timeslot: total
op dist

type 0 1 2 3 4 5 6 7 value

mult 1.00 1.00 2.00
add 1.00 1.00 1.00 1.00 4.00
comp 0.00
reg 0.00
AND 0.00
OR 0.00
GET 2.00 2.00

PUT 2.00 2.00

TABLE 4.5. Final distribution of DOG in 8

An algorithm for scheduling a demand graph using the improved predecessor and successor forces can
be found in figure 4.5. In this algorithm the changes for the improved calculation of the predecessor and
successor forces are put in italics.
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ASAP-schedule;
make lists of all types of operations;

ALAP-schedule;
place trivial nodes (with EI(op) =1);
calculate OF's;
while (there are operations not placed)

{
for (each node that Is not placed)

{
for (each possible tlmeslot)

{
calculate force;
for (each operation_types type)

NEW_DF[type) =DF[type);
for (each not placed predecessor pred of node)

(
calculate pred_force;
force += pred_force;
update NEW_DF[type{pred));

}
for (each not placed successor succ of node)

(
calculate succ_force;
force += succ_force;
update NEW_DF[type{succ));

}
}

select tlmeslot with minimum force;
}

select schedule-node;
place schedule-node;
If (selected tlmeslot > ASAP)

update ASAP and OF's;
If (selected t1meslot < ALAP)

update ALAP and OF's;
place trivial nodes (with EI(op) =1);

}

Figure 4.5. Schedule algorithm with improved predlsucc forces

4.5 MORE RESULTS OF THE MODIFIED SCHEDULING ALGORITHM

To try out the modified scheduling algorithm some experiments with the digital filter WAVE [1] have
been done. The results of the experiments without predecessor and successor forces are in table 4.6.
The results of the same experiments using the modified predecessor and successor forces are in table
4.7.
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nr required nr of op
of

slots mult add

15 2 ( 3 slots) 3 ( 4 slots)
2 ( 4 slots)

16 1 ( 8 slots) 3 ( 3 slots)
2 ( 5 slots)

17 1 ( 8 slots) 3 ( 1 slot)
2 ( 8 slots)

18 1 ( 8 slots) 2 ( 9 slots)
19 1 ( 8 slots) 3 ( 1 slot)

2 ( 6 slots)
20 1 ( 8 slots) 2 ( 7 slots)
~

26 1 (8 slots) 2 ( 5 slots)
27 1 (8 slots) 2 ( 3 slots)
28 1 ( 8 slots) 2 (3 slots)

29 1 ( 8 slots) 2 ( 3 slots)

30 1 (8 slots) 2 ( 4 slots)

TABLE 4.6. Results of WAVE without predlsucc forces

nr required nr of op
of

slots mult add

15 2 ( 3 slots) 3 ( 4 slots)
2 ( 4 slots)

16 1 ( 8 slots) 3 (3 slots)
2 (5 slots)

17 1 ( 8 slots) 3 ( 1 slot)
2 ( 8 slots)

18 1 ( 8 slots) 2 ( 9 slots)

19 1 ( 8 slots) 3 ( 1 slot)
2 ( 6 slots)

20 1 ( 8 slots) 2 ( 7 slots)
-

26 1 ( 8 slots) 2 ( 4 slots)
27 1 (8 slots) 2 ( 4 slots)
28 1 ( 8 slots) 2 ( 4 slots)

29 1 ( 8 slots) 2 ( 4 slots)
30 1 ( 8 slots) 2 ( 4 slots)

TABLE 4.7. Results of WAVE with predlsucc forces
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Comparing table 4.6 to table 4.7 shows that the results of scheduling with or without the use of
predecessor and successor forces are practically the same for WAVE. For scheduling WAVE in 18
timeslots the scheduler requires two multipliers and one adder. These two multipliers are both used in 9
timeslots. This means that WAVE can be scheduled with only one multiplier and one adder in 27 slots.
The results of scheduling WAVE in 27timeslots show that the algorithms with or without predecessor and
successor forces both use two adders. So both results are not optimal.

And although the results are the same, the computation times are certainly not the same. The algorithm
with the predecessor and successor forces uses a lot more execution time than the algorithm without
those forces. This was to be expected from the previously stated order of the algorithm.

4.6 CONCLUSION

The conclusion of the experiments with the WAVE example must be that using predecessor and
successor forces is not always beneficial to the scheduling process. And if we compare the results to the
increase of computation time, the only conclusion can be that predecessor and successor forces are not
the algorithm improvements they were supposed to be. In the next chapter a new algorithm modification
will be discussed briefly.
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5. STRETCHING

5.1 INTRODUCTION

In the previous chapter a modification of the scheduling algorithm was discussed. This modification
was the calculation of the predecessor and successor forces. The last version of the calculation of the
predecessor and successor forces in section 4.3 seemed to be the best version.

However this last version did not answer to the expected results. In the example WAVE the results of
scheduling with the predecessor and successor forces are practically the same as the results without the
predecessor and successor forces. In some experiments the results of the modified algorithm were even
worse than those of the basic algorithm. If in these results the increase of execution time, from order
O(r!) to order O(rr) , is settled, the only conclusion can be that the predecessor and successor forces
are not an improvement.

This means that a new solution to improve the algorithm has to be found. A new approach to improve the
algorithm is stretching. The details of stretching will be dealt with in this chapter.

5.2 STRETCH PRINCIPLES

Stretching is an operation that is done after the basic scheduling algorithm has finished. So it is an
aftertreatment. The stretching algorithm consists of two parts that are opposite. The first part tries the pUll
all the scheduled operations as far as possible in the direction of the end nodes. The second part tries to
pull all the operations as far as possible in the direction of the start nodes.

Pulling the operations is done in a breadth first search. This means that the nodes are pulled by timeslot,
starting in the first part with the nodes in the last timeslot, and in the second part with the nodes in the first
timeslot. Start nodes and end nodes can be ignored, because they are fixed in respectively the first and
the last timeslot.

The stretching algorithm requires for each timeslot a list of all the nodes that are fixed in that slot. These
lists are called slot lists and are numbered sIOLlist[O] to sloLlist[nr_slots - 1]. These slot lists must be
created before the first stretch starts. During the first stretch the slot lists are updated for the second
stretch. In the second stretch the lists are updated for the final distribution.

An algorithm for stretching the slot lists is discussed in the next section.
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5.3 A STRETCHING ALGORITHM

In figure 5.1 an algorithm for stretching node lists is stated.

stretchO
{

for (each operation type)
calculate minimum number of operatIons;

make sloClIsts;

for (j = nr_slots - 1; J>= 0; j--»
for (node = sloClIst[j]; node; node = node->next)

{
calc max_slot; \* = min slot of all succ *\
for (k = j + 1; k c max_slot; k++)

If (dlst_value[op_type(node)][k] c mln_nr[op_type(node)])
SLOT(node) = k;

If (SLOT(node) != j)
update dlsCvalues;

}
add node to sloC"st[SLOT(node)];

for (j = 0; j c nr_slots; j++»
for (node = sloClIstD]; node; node = node->next)

{
calc min_slot; \* = max slot of all succ *\
for (k = j - 1; k> min_slot; k--)

If (dlst_value[op_type(node)][k] c mln_nr[op_type(node)])
SLOT(node) = k;

If (SLOT(node) != j)
update dlsCvalues;

}
add node to sloClIst[SLOT(node)];

}

Figure 5.1. Stretching algorithm

The algorithm in figure 5.1 is a bit simplified. In the algorithm the possibilities of multicycling and chaining
are not implemented yet. Like in the scheduling algorithm multicycling and chaining do not effect the
basics of the stretching algorithm, but they only increase the complexity of the algorithm.

The order of both parts of the algorithm is O(an)., with n the number of operations and a the number of
timeslots. Each operation can be shifted in a timeslots maximum. So the total order of the stretching
algorithm is (2an). This means that for large data flow graphs the execution time of the stretching
algorithm can be ignored in relation to the execution time of the basic scheduling algorithm, which had
order O(ar! ) .
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5.4 RESULTS WITH THE STRETCHING ALGORITHM

First the stretching algorithm was tested with the DOG example. The results of scheduling DOG in 8
timeslots with stretching are in table 5.1.

disCvalue in timeslot: total
op dist

type 0 1 2 3 4 5 6 7 value

mult 1.00 1.00 2.00
add 1.00 1.00 1.00 1.00 4.00
comp 0.00
reg 0.00
AND 0.00
OR 0.00
GET 1.00 1.00 2.00
PUT 1.00 1.00 2.00

TABLE 5.1. Final distribution of DOG in 8

Table 5.1 shows that only one multiplier and one adder are required. This is the optimal solution for DOG.
Table 5.1 also shows that the start nodes, for DOG both GET nodes, and end nodes, for DOG the PUT
nodes, are not kept in the first and the last timeslot. If desired the algorithm can be simply modified to
keep the start nodes and the end nodes in the same timeslot during stretching.

The second test of the stretching algorithm was the WAVE example. In chapter 4 we found that the
minimum number of slots for which WAVE only requires one multiplier and one adder is 27. The results of
WAVE using the stretching algorithm are in table 5.2.
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nr required nr of op
of

slots mult add

15 2 (3 slots) 3 (4 slots)
2 (4 slots)

16 1 (8 slots) 3 ( 2 slots)
2 ( 7 slots)

17 1 (8 slots) 3 ( 1 slot)
2 (8 slots)

18 1 (8 slots) 2 (10 slots)
19 1 (8 slots) 2 (10 slots)
20 1 (8 slots) 2 (10 slots)
-

26 1 (8 slots) 2 ( 1 slot)
27 1 (8 slots) 1 (26 slots)

28 2 (8 slots) 1 (26 slots)

29 2 (8 slots) 1 (26 slots)
30 2 (8 slots) 1 (26 slots)

TABLE 5.2. Results of WAVE with stretching

Table 5.2 shows that scheduling WAVE in 27timeslots indeed requires only one multiplier and one adder.
So finally the optimal result for WAVE has been found.

5.5 CONCLUSION

Stretching has proved to be a useful tool in addition to the scheduling algorithm. But although the
results of the DOG example and the WAVE example are hopeful, one must keep in mind that the results of
stretching depend on the results of the scheduling algorithm. So bad results of the scheduling algorithm
probably lead to non optimal results of the stretching algorithm. However probably for most data flow
graphs the stretching algorithm can optimize the schedule results. To confirm this statement the algorithm
must be tested on more data flow graphs.
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6. CONCLUSIONS

The parser proposed in chapter 2 is a very flexible one, in which the format of the data flow graphs can
be easily changed. The chosen structure for the schedule data has proved to be useful and compact.
One easily finds the required information that is stored somewhere in the data structure.

The basic scheduler that was discussed in chapter 3 was already developed when this graduation work
started. The results of the basic scheduler are satisfactory, but they are not always the optimum results.
The reason for this is that concurrency between operations of different types is ignored.

One possibility to deal with this concurrency is the calculation of predecessor and successor forces. The
results of the use of predecessor and successor forces show that this way of optimizing the schedule
results is not the right way. The results of scheduling with and without predecessor and successor forces
are approximately the same. But the execution time increases enormously because the order of the
algorithm increases from O(arf) to O(af'iJ) with predecessor and successor forces.

A new approach in optimizing the scheduling algorithm is stretching. Stretching does not deal with the
concurrency between operations of different types during the scheduling process, but it is an
aftertreatment for the basic scheduling algorithm. So the results of the stretching algorithm depend on the
results of the basic scheduling algorithm. Nevertheless hopeful results have been found with the
stretching algorithm.

More experimental research is required to see if the stretching algorithm really is a good solution for an
optimum scheduling algorithm.
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APPENDIX A

In table A1 the used modules with their time delay and area consumption are given. The library is not yet
implemented with existing modules but is preliminary with module information from some data books.

module operations time delay area costs area costs
(ns) normalized

array mult *, / 102 2912 91
ripple add +, - 54 160 5
ripple comp =,<,>,<=,>= 54 160 5

and logic AND 3 32 1
or logic OR 3 32 1
I/O GET, PUT 20 32 1

register register 5 80 2,5
branch, merge

entry, exit
non-existent constant 0 32 1

sink, io-sink
link-in-1, link-in-2

TABLE A1. Module costs
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