
 Eindhoven University of Technology

MASTER

An object-oriented model for EPEP

Nieuwenhuizen, J.C.

Award date:
1995

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Apr. 2025

https://research.tue.nl/en/studentTheses/5ca0460f-5449-4d97-a646-a67a43e3b026

t~
Eindhoven University
of T ech nology

Faculty of
Applied Physics
Department of Measurement and Computer Science (NF)

An Object-Oriented
Model for EPEP

Eindhoven Program Editor and Processor

J.C. Nieuwenhuizen
August 24, 1995
NF/FTI 9506

Department of Measurement and Computer Science (NF)

Adviser: dr. ir. G.J.W. van Dijk
Supervisor: prof. dr. ir. K. Kopinga

Contents

1 Introduetion
1.1 Automation of physics experiments .
1.2 The object-oriented model ...

1.2.1 Object-oriented design .
1.3 Overview

2 EPEP: The Static Model
2.1 Modular structure of applications .

2 .1.1 The Library
2.1.2 Program vs. unit
2.1.3 The internal structure of a program
2.1.4 The cell concept ..

2.2 The Classes of EPEP

1
1
2
3
4

5
6
7
8
9

9

9
2.3 The EPEP Root structure 11

2.3.1 The root class EPEP: EPEP at start-up . 11
2.3.2 Class SOURCE: Writing an application . 13
2.3.3 Class UNIT: The Library revisited 15
2.3.4 Class PROGRAM: A glimpse of the Interpreter . 16

2.4 The Interpreter . 18
2.4.1 Class STATEMENT: the fragmented Interpreter 18
2.4.2 Class BLOCK: the task list 19
2.4.3 Details of the EPEP application language

3 MPEP: The Dynamic Model
3.1 Multitasking aspects

3.1.1 Processes: Concurrent tasks
3.1.2 Semaphores: Process synchronization
3.1.3 The dynamic Library: Remote procedure call

21

27
28
29
30
31

CONTENTS

3.2 The Classes of MPEP
3.3 The MPEP Root structure

3.3.1 The root class MPEP: MPEP at start-up
3.3.2 The class PROCESS: Concurrent tasks .
3.3.3 The class REMOTE_FROCEDURE: RPC .

3.4 Details of the MPEP application language .
3.4.1 The class SIGNAL

4 The Program Editor
4.1 The Editor characteristics
4.2 The Editor operation . . .
4.3 The library mechanism . .
4.4 More efficient Program editing

A Graphical representation

B U sed class interfaces
B.1 Array
B.2 List .
B.3 Table.

C Software design
C.1 The static model

C.l.1 EPEP .
C.l.2 Souree ..
C.l.3 Unit ...
C.l.4 Statement
C.l.5 Block ..
C.l.6 Program.
C.l.7 Empty statement .
C.l.8 Assignment statement
C.l.9 If statement .

C.2 The dynamic model
C.2.1 Process .. .
C.2.2 MPEP
C.2.3 Remote procedure
C.2.4 Signal

31
32
32
33
33
35
35

37
37
38
39
40

43

47
47
48
49

51
51
51
51
52
52
53
55

55

55
56
56
56
58
58
59

~----

CONTENTS

D lmplementation aspects 61
D.1 Introduetion 61
D.2 Portability 62

D.2.1 Software aspects 62
D.2.2 Hardware aspects . 62

D.3 The implementation of static CPEP 63
D.3.1 The EMPS platform 63
D.3.2 The UNIX platform 64
D.3.3 The plain MS-DOS platform 65

D.4 The implementation of MPEP 65
D.4.1 Tasks and processes in the EMPS system 66
D.4.2 The CPEP C sourees • 0 •• 0 •• 66
D.4.3 The host MS-DOS LAM platform 67
D.4.4 The EMPS platform . . 68
D.4.5 The UNIX platform 70
D.4.6 The MS-DOS platform 71

D.5 An integrated environment for EPEP . 72

E Future work 73
E.1 The EMPS kernel 73
E.2 CPEP ••••• 0 0 • 74

E.2.1 CPEP naming convention 75
E.3 MPEP •••••• 0 • 78

F Kernel requirements 79
F.1 Static primitives •• 0 0 0 ••• 79

F.l.1 I/0 primitives ••• 0 • 0 79
F.l.2 Mathematica! primitives . 80
F.l.3 Memory management 81
F.l.4 String operations . 81
F.l.5 Time management 81
F.l.6 Error handling .. 82

F.2 Dynamic primitives 82
F.2.1 Interprocess communication . 82
F.2.2 Process management . . 83
F.2.3 Process synchronizaton 83
F.2.4 Shared memory . 84
F.2.5 Signal handling 84

nz

List of Figures

1.1 The standard-EPEP configuration 2

2.1 The standard-EPEP System . 6
2.2 Classes of static EPEP . 10
2.3 Root of EPEP 12
2.4 Class SOURCE 14
2.5 Class UNIT 15
2.6 Classes BLOCK and PROGRAM . 17
2. 7 Class STATEMENT 18
2.8 The SIMPLE_STATEMENT and STRUCTURED_STATE-

MENT. 22
2.9 Class ASSIGNMENT 23
2.10 Class IF 25

3.1 The MPEP configuration 28
3.2 Root of MPEP 32
3.3 The Remote Procedure Call . 34
3.4 The Signal 36

4.1 The Editor 39
4.2 The library mechanism. 40

A.1 A Class with features 43
A.2 The scope of routines and attributes 43
A.3 The uses for interface relationship 44
A.4 The uses for implementation relationship 44
A.5 The inheritance relationship 44
A.6 Representation of genericity 45
A. 7 Representation of nested genericity 45

V

1

Introduetion

The construction of a software model was an essential step in the process of
upgrading and porting EPEP (Eindhoven Program Editor and Processor) to
multitasking operating system (MOS) platforms such as UNIX (System V)
and the multiprocessor EMPS (Eindhoven MultiProcessor System) platform.

1.1 Automation of physics experiments

At the Department of Physics of the Eindhoven University of Technology,
a standardized system was developed for the automation of physics experi­
ments.

Automation of a physics experiment has two aspects, viz. experiment
control and data acquisition. These are largely independent tasks that can
best be handled in a multitasking environment that has a predictabie real
time behaviour.

The standardized automating system is composed of:

hardware: a general-purpose Physics Data Acquisition System (PhyDAS),

software: an interpretative development environment, the Eindhoven Pro­
gram Editor and Processor (EPEP).

PhyDAS integrates the experiment control and data acquisition hard­
ware. It is an assembly of standardized, general-purpose interface mod­
ules. Data transport and communication are performed via a specialized
bus (PhyBUS). PhyBUS is separated from the computer bus, and hence
the measuring hardware and measuring performance are independent of the

1

Introduetion

computer that is used. In addition, the real time behaviour of the system is
much better predictable.

EPEP is the combination of an object-based, multitasking operating sys­
tem, an interactive program development environment, and an interpreta­
tive processor. The application language is a function-oriented (procedural)
PASCAL-like programming language.

1.2 The object-oriented model

Figure 1.1 shows the schematic of the currently operating multitasking
EPEP configuration (standard-EPEP). Because the EPEP System is the
lowest software layer it must provide its own operating system. The most
common EPEP application is the Program Editor.

EPEP application

EPEP System

M68030 hardware

Figure 1.1. A standard-EPEP contiguration consistsof two software layers: the EPEP
System, that runs on the Motorola M68030 processor, and an EPEP application pro­
gram, usually the Program Editor.

Ongoing developments in multiprocessor systems, e.g., dependable dis­
tributed computing, tagether with the need for more computing power and
increasing real time demands in physics experiment control, have led to
the design and implementation of the Eindhoven MultiProcessor System
(EMPS) and the EMPS multiprocessor executive [12] for distributed com­
puting.

The EMPS platform was, apart from presenting an environment for de­
pendable distributed computing, developed to control the PhyDAS hard­
ware. It was designed to (gradually) replace the currently used single pro­
cessor M68030-based system. The new multiprocessor implementation of

2

1.2. The object-oriented model

EPEP, forshort called MPEP (Multiprocessor Program Editor and Proces­
sor), was primarily designed to run on the multiprocessor EMPS platform.
Recent developments however, indicate that commercially available inte­
grated microprocessor systems (RISC architecture) could easily replace the
EMPS platform, and might very well present a cost-effective alternative.

The new MPEP implementation will use the external MOS kernel to
handle all operating system tasks, which farm an integrated part of the
(single processor) standard-EPEP software.

Hence, MPEP must have a well defined interface to the MOS kernel. In
addition, MPEP must provide multiprocessor primitives. The first step in
the development of MPEP is the realization of a clear working model for
EPEP.

On the occasions that specific MOS kernel issues must be addressed, the
description of the EMPS executive will be used to provide the definitions.
The facts that the EPEP design was object based [14], and the description
of the EMPS executive is object-oriented, have led to the choice for an
object-oriented description of EPEP.

A brief introduetion to object-oriented design is presented below, full
descriptions can be found in [8] and [9].

1.2.1 Object-oriented design

The object-oriented paradigm offers the combination of data-abstraction and
information-hiding as a salution that makes complex roodels easier to design
and verify. It does so by concentrating on the objects that are handled, in
contrast to the conventional function-oriented paradigm, that focusses on
the tasks to be performed.

The essence of the object-oriented model is the structured variabie type
class. An object-oriented model consists of class definitions and the rela­
tionships between these classes.

Instauces of a class are called objects. A class is a collection of features,
where a feature can be an attribute, representing a data field of an object,
or a routine, specifying operations on objects. A class is the definition of
one are more data structures, supplemented by a set of specific operations
that can be used to manipulate an object's data.

The general idea of object-oriented design is to create a small but com­
plete set of routines for each class. Attributes and low-level routines are
preferably hidden within the class. A feature that is accessible to other
classes, is called an export feature. From the outside, a class looks like a

3

Introduetion

black box of which only the relevant (i.e. accessible, exported) features can
be seen; details of the implementation of the class are hidden. The total
set of export features a class provides for use by other classes is called the
interface of the class.

From a parent class child classes can be derived. A child class inherits
the features from its parent class, but can also add or substitute some fea­
tures. Constructing a whole family of classes that have the same interface,
i.e. look quite similar from the outside, all memhers of this family can be
handled alike, while each individual member will take care of its specific
implementation aspects. In this manner a greater level of abstraction is
achieved, which helps to concentrate on the essence, not troubled by the
details of implementation.

1.3 Overview

The Object-Oriented Model presented for EPEP consists of two separate
parts, viz. the Processor (EPEP System) and the Program Editor (User
Interface).

The static part of EPEP is modelled in Chapter 2. lt gives a new and
clear view of the static part of standard-EPEP.

The model for the dynamic, mul ti processor version of EPEP (MPEP) is
presented in Chapter 3. This dynamic model was designed as an extension
of the static model. lt has been the basis for the implementation of the
multitasking and multiprocessor aspects of MPEP.

Chapter 4 describes the Program Editor. lt provides the user interface
for writing and executing EPEP application programs.

The Program Editor is actually an EPEP program that is interpreted
by the EPEP System. lt is, however, indispensable for the EPEP concept.
Using the mechanisms of the EPEP System in an advanced way, it realizes
a unique concept of modularity.

Classes and their relationships are represented using the graphical rep­
resentation method of class diagrams [13]. Class definitions are described in
the Eiffel object-oriented programming language [8].

4

2

EPEP: The Static Model

In this chapter, the model for the static part of standard-EPEP is presented.
The model is based on the object-oriented programming paradigm. It

was designed using an internal report [16] and other literature [4, 5, 15, 17] on
EPEP. The EPEP sourees were consulted and various tests were performed
to assure an accurate description. Although EPEP was not implemented in
an object-oriented programming language, its design was object-based and
hence EPEP is perfectly suitable for object-oriented modelling.

The goal of this first model is to get a clear picture of the internal struc­
ture of EPEP, viz. theEPEP application language interpreter, the operating
system, the Library, and the user interface. This will form the basis for the
multiprocessor model of MPEP.

Standard-EPEP is constructed of two software layers (Fig. 2.1). The
lower layer is the EPEP System, that provides its own operating system.
It consists of the Library (LIB), the operating system, and the Interpreter
(INT). In this model, the operating system primitives are contained within
the Library.

The operating system can be split-up into a static part, which includes
basic input and output routines (I/0) and other static system primitives
(STD), and a dynamic part. The dynamic system primitives (DYN) include
memory management (MM), time management (TM), process management
(PM), process synchronization (PS), and interrupt handling (INTH). These
must, in the new version MPEP, be provided by the MOS kernel, and are
not described in the static model for EPEP.

From outside the EPEP System, the only item that can be accessed
through the system interface is the Interpreter. In the standard configura-

5

EPEP: The Static Model

~f"::""'-:"'-::::"":::"-":::.:.c.:-'""-:·:·"'-=-:""'-':-"-":-:"'-·:·"":···"-"· ·~~~~ userinterface

I
I EDITOR

i ~=~ systeminterface

LIB I uo I STD I DYN INT

~interface

- no interface

M68030

Figure 2.1. Standard-EPEP consists of the Program Editor and the EPEP System.
The EPEP System is the lowest software layer.

tion, the only user of this interface is the Program Editor, when it invokes
the Interpreter to handle the execution of an application program. Library
maintenance and the use of Library primitives can only be performed from
within an application program. When an application program is executed,
it is handled by the Interpreter, that has access to the Library and thus to
the operating system primitives.

In Chapter 4 the possibilities of using the operating system from within
the Program Editor are explained by arguing that the Program Editor ac­
tually is a special kind of application program.

Configurations other than the one shown in Figure 2.1 would be possible,
e.g. with the Program Editor replaced by another application program that
has access to the system interface, but these are not very common. Normally,
the Program Editor is used to start a subsequent application program. The
Program Editor uses the primitives of the EPEP System to implement the
'library mechanism' as a part of the user interface.

2.1 Modular structure of applications

Software development is not confined to the merely correct implementation
of an algorithm. Some basic aspects, which in fact help a correct implemen­
tation, have to be taken into account:

simplicity / clarity: In spite of the inherent complexity of certain tasks, it
must be reasonably easy to verify whether a computer programmeets

6

2.1. Modular structure of applications

the specified requirements.

reusability: For the performance of similar tasks, it should be possible to
use the same program code.

extendibility fmaintenance: A computer program should be rather easily
adaptable to small changes in the specifications.

A software developing environment does a fine job if it encourages the
programmer to write structured programs. This was the main reason to
design the EPEP application language [4] based on a PASCAL-like struc­
ture [14]. Similar to a PASCAL program, an EPEP application program
consists of a declaration part, declaring global routines and variables, and
a preferably simple main loop. In addition, a user-extendible library is in­
cluded within the system. This library holds global routines and variables
for use by application programs.

2.1.1 The Library

A 'high-level' software developing environment, such as EPEP, must provide
tools for creating modularly structured application programs.

The Library and the 'library mechanism' play an important role in this
modularity. The Library is constructed of units, that define global routines
and variables, which can be used by application programs. The EPEP Sys­
tem supplies the first unit that is stored in the Library, the system unit, that
is always available. It provides basic input and output routines (1/0), stan­
dard mathematica! functions and other general-purpose primitives (STD).
After this first unit, other, user-defined units may be stored in the Library.

The hardware of the automating system, that is based u pon standardized
hardware interface modules, is complemented by standardized library units.
Although most hardware interfaces are rather simple and easy to control,
with several hardware interfaces goes a library unit, supplying standardized
low-level control software. In this way, a programmer does not have to
know the specific programming of complex hardware modules, and, more
importantly, an application program does not 'need to know' how to operate
some specific piece of hardware. High and low level tasks are separated,
and hardware interfaces can he added or interchanged with a minimum of
software redesign.

Applications that are designed to control complex experiments, often
consist several standardized interface control units and one or more user­
defined units.

1

EPEP: The Static Model

2.1.2 Program vs. unit

In the previous section, the unit was introducedas a library building block,
supplying global routines and variables for an application program. There
exists, however, a close relationship between unit and application program.

When an application program is executed, all external routines and vari­
ables that the program uses, are obtained from the Library. U pon execution,
the global declarations made in the program, the 'unit part', is split-off as
an actual unit, which is subsequently stored in the Library.

Then, as stated above, these globals are available from the Library for
any application program. The only candidate for using this new library unit
is, of course, the application program itself. When an application program
has reached the end of execution, the unit it defined is removed from the
Library.

2.1.2.1 Application program vs. library program

The souree of a library unit is written in the EPEP application language,
using the Program Editor, in quite the same manner as an application pro­
gram. As a unit is a library element, it is convenient to introduce the name
library program for the 'souree of a unit'. Library programs are used to group
more generally reusable, to some extent experiment independent routines,
or to structure large application programs.

A library program is executed just like an application program, and its
'unit part' is put in the Library. The difference with respect to executing
an application program is that the new library unit must remain in the
Library, so that other units may be added, or an application program may
be executed, making use of the newly expanded Library. This is achieved by
simply preventing the library program from reaching the end of execution,
since at the end of execution, the newly stored unit would be removed from
the Library. Just befare a library program would reach the end of execution
it invokes the Program Editor, which offers the user the opportunity to
extend the Library once more, i.e. to execute another library program, or
to execute an application program.

In Chapter 4 the implementation and the practical use of this feature
of the Program Editor, that has become known as the 'library mechanism',
are discussed.

8

2.2. The Classes of EPEP

2.1.3 The internal structure of a program

Is was mentioned above that the the EPEP application language is function­
oriented and has a PASCAL-like structure. lt is designed for the implemen­
tation and execution of algorithms, is highly structured, and has additional
interface control features.

The implementation of a program consists of two parts. The first part de­
fin es global variables and routines. These definitions are called declarations.
The second part is the routine where program execution starts, known as
main. A variabie represents some specific value or data, e.g., a number or a
series of characters. A routine may define local variables, and specifies a list
of actions. These actions are referred to as statements. A single statement
can only be used to manipulate a variabie or direct the program flow.

The structure of a program is aften improved if certain statements are
grouped, by forming a lists of statements. A list of statements, optionally
preceded by a list of declarations, is called a block. Within this framework
a routine is a block, and even an entire program can be seen as a block.
Another grouping of statements is provided by the structured statement. A
structured statement contains one or more blocks and may direct program
flow to one of these blocks, depending upon certain conditions.

2.1.4 The cell concept

In the object-based design of EPEP, the cellis a key concept. For each type
of routine and variabie of the application language, a specific cell type was
designed. At run time, an instanee of each identifier is implemented as a cell
of the conesponding type. All different cell types can be basically handled
in the same way, which is one of the cornerstanes of object-based design.

A cell holds the information that is associated with a particular identifier,
i.e., the 'value' or 'meaning' of the instance. This may be a simple integer
value for the instanee of an integer, or a piece of program code for the
instanee of a procedure. Every operation on an identifier is actually an
operation on the cell it represents. Similar to units, that construct the
Library, cells are the elementary building blocks of a unit.

2.2 The Classes of EPEP

In the previous sections the main concepts of EPEP were presented with­
out introducing any software classes. In the following sections the software

9

EPEP: The Static Model

model is presented by descrihing the main classes and their relationships.
Befare examining these classes one by one, they are summarized below.

Internal Interface Parameters
s Interpreter CELL PROGRAM SOURCE
y STATEMENT

s BLOCK

T Library CELL UNIT NAME

E NAME LIST of UNIT CELL

M

Editor SOURCE EDITOR_COMMAND

Figure 2.2. The internal and interface classes of static EPEP.

EPEP: The root class of the static model is the class EPEP. EPEP HOLDS
THE LIBRARY, THE SYSTEM UNITAND THE SOURCE OF THE
PROGRAM EDITOR

SOURCE: The class SOURCE represents the souree of an application pro­
gram written in the application language.

UNIT: The class UNIT contains global routines and variables. These are
made available to library programs or application programs when the
UNIT is put in the Library. The class UNIT is a basic element of the
class PROGRAM.

PROGRAM: The class PROGRAM is the executable form of SOURCE.
A PROGRAM can only be created from a class SOURCE. To be
executed it offers the routine interpret.

CELL: A cell in EPEP is represented by a class CELL. There is a whole
family of CELLs, for each specific type of cell there is a matching
CELL. CELLis an elementary buildingblockof the UNIT.

STATEMENT: A statement is represented by a class STATEMENT. A
whole family of STATEMENTs exists; for each specific statement of
the application language there is a matching STATEMENT.

10

2.3. The EPEP Root structure

BLOCK: The class BLOCK represents the block in EPEP. lt will be
shown that a PROGRAM is a kind of BLOCK, and that a BLOCK
handles program execution.

In Figure 2.2 the use of these classes is shown. The interface of the
system is formed by the class PROGRAM, which takes the class SOURCE
as a parameter. The system can only be used through the system interface.
The only direct user of this interface is the Program Editor, when invoking
the system to handle the execution of a library program or an application
program. The task of the Program Editor is to provide a user interface
for writing and executing library programs and application programs, i.e.
providing means to construct a SOURCE, 'hand it over' to the Interpreter
that creates a UNIT and a PROGRAM, and extends the Library with the
UNITand starts the execution of the PROGRAM.

2.3 TheEPEP Root structure

The graphical representation metbod for classes and their relationships [13]
as shown in Figure 2.3 and below, is summarized in Appendix A. The Eiffel
object-oriented programming [8] is used to describe the class definitions.
The standard class interfaces from the Eiffellibrary used in this model, are
described in Appendix B.

2.3.1 The root class EPEP: EPEP at start-up

Starting EPEP implies the creation of an instanee of the class EPEP (see
Fig. 2.3). The main object EPEP initially contains the empty LIST library,
the UNIT system_unit and the SOURCE editor. The library is a generic
LIST of UNIT; items to be put in this list must also have the class UNIT as
a base class (In this model only UNITs, that may be part of a PROGRAM,
are put in the Library), items got from the library are always expected to
be, and can therefore only be treated as, UNITs. The library is a global
attribute of the system; every PROGRAM is allowed to use this list.

In this static model, the operating system is merely a set of system prim­
itives for the performance of basic input and output (1/0). These system
primitives, together with a standard library of mathematica! functions and
several other general-purpose primitives (STD), are contained within the
system_unit. This system_unit is an instant UNIT, it is the only UNIT
that is not created from a SOURCE. The create routine of EPEP, that is

11

EPEP: The Static Model

Figure 2.3. The Root of EPEP. lnitially, an empty Library, the system unit, and
the Program Editor are present in the system. The implementation of the Library, as
a global, generic LIST of UNIT, and the use of a SOURCE for interface to create a
PROGRAM is clearly shown. The classes UNITand BLOCK are slightly simplified in
this first diagram, for readability reasons.

invoked when creating the root object EPEP, perfarms four tasks, that quite
obviously follow from the figure (see the class definitions, Appendix C):

12

1. the system_unit is put in the LIST library, using the routine
library.put,

n. from the SOURCE editor the PROGRAM editor _program is
created,

2.3. The EPEP Root structure

iii. the UNIT part of the editor _program is put next in the LIST
library,

1v. the editor _program is started by calling the routine
editor _program.interpret.

EPEP is now ready for a user.
In the introduetion of this chapter it was stated that the goal of the

static model for EPEP is to clearly distinguish EPEP's four basic parts.
So far the (i) Library, the (ii) operating system and the (iii) user interface
were located as separate objects in the system. The missing fourth part,
the Interpreter (or Processor), will not be found as one single object. lts
functionality is offered by the STATEMENT family.

2.3.2 Class SOURCE: Writing an application

It is common use to write program implementations using one's favorite
fully featured text editor. Hence, often the name program text is used for
such an implementation. EPEP, however, does not work with plain ASCII
program sources. The built-in Program Editor eneodes the program text
line by line, while it is being typed in. This encoding is fully reversible. The
encoded program text produced by the Program Editor is used literally by
the system interpreter. Using encoded program sourees speeds-up program
execution. Furthermore, because the (encoded) souree itself is interpreted
it must be stored in foreground memory. Using encoded sourees that are
shared between Program Editor and Interpreter saves substantial amounts
of memory.

A high-level application language text can be distinguished into reserved
words, special characters, combinations of special characters and identifiers.
Encoding a souree implies the representation of all these items by simple
tokens. Each reserved word, special character, and special character com­
bination has a specific token. Every identifier is assigned a special kind of
token, a tag, numbered in order of appearance in the source.

A program souree is principally encoded into two tables (Fig. 2.4):

code : a generic ARRAY of TOKEN. The intermediate program code,
TOKENs and TAGs, that can be interpreted,

narnes : a generic TABLE of TAG to NAME of all identifiers used in the
program.

13

EPEP: The Static Model

NAME

Figure 2.4. The class SOURCE implements the EPEP standard souree of application
programs. lt mainly groups a number of tables. The layout tables are not shown in
detail, which improves the readability; they are not discussed further in the model.

Besides these two tables that are needed for exeeution, a program souree
may eontain four tables of layout information, used by the Program Editor
only, to reeonstruet the souree text so that it may be viewed and re-edited.
These are:

14

2.3. The EPEP Root structure

line_table: a table of line numbers,

index_table: a table of line breaks,

indenLtable: a table registering the horizontal line indentation,

remark_table: a table of all comments.

All six souree tables are grouped forming the class SOURCE (Fig. 2.4).
The tables are placed on the class interface instead of being hidden within the
class. The reason for choosing this solution is that many different operations
of diverse origin may be performed on these tables, and on combinations
of them. The Program Editor, that creates the SOURCE, has a variety of
additional commands for filling and inspecting these tables or parts of them.

2.3.3 Class UNIT: The Library revisited

NAME

CELL

Figure 2.5. The class UNIT. The class NAME covers the name of an identifier; for
the moment the explicit implementation is of little importance.

In sections 2.1.1 and 2.1.4 the unit was introduced as an elementary
library building block that is consists of cells. The unit is represented in the

15

EPEP: The Static Model

model by the class UNIT. (Fig. 2.5). The UNIT is a simple class with only
two features, the attribute cells, a generic TABLE of NAME to CELLand
the routine find_name, using the classes NAME and CELLas parameters.

To explain the action of the class UNIT and its key position in the model,
it is necessary to briefl.y consider the program execution. Interpreting the
program code, which as a whole seems to be an arbitrary series of tags and
tokens, implies grouping it into statements, small pieces of code that belong
together, defining basic tasks that must be performed. A statement defines
one, or a combination, of the following elementary operations:

i. reading the value of a constant or variable,

ii. assigning a value to a variable,

iii. evaluating an expression,

1v. comparing two values,

v. directing the program flow.

At a certain point a conneetion must be made between an identifier tag in
the code and the cell it represents. The TAG is used to obtain the NAME of
the identifier from the TABLE narnes (Fig. 2.4). From the library the most
recently added UNIT is fetched (Fig. 2.3). Invoking its routine find_name
returns the CELL that corresponds to the specific NAME (Fig. 2.5). lf the
identifier was defined in another, 'earlier' UNIT, the NULL cellis returned,
indicating that the CELL of the identifier must be looked up in the next
recently added UNIT. It is obvious now, why cells is a TABLE of NAME
to CELL. By using the name of an identifier when searching the successive
UNITs, it is avoided that an identifier, defined in an early UNIT must have
the sameTAG in every level of program code (remember that every UNIT
results from a souree that was tokenized by the Program Editor).

2.3.4 Class PROGRAM: A glimpse of the Interpreter

The new class PROGRAM, that is to be discussed here, cannot be pre­
sented without introducing the class BLOCKas well. The class PROGRAM
is an heir of the class BLOCK, adding one feature, i.e., the routine inter­
pret (Fig. 2.6). For now it is sufReient to know that BLOCK embodies an
executable SOURCE and takes care of its execution. The class BLOCK is
discussed later. The PROGRAM's Create routine is of great importance.

16

2.3. The EPEP Root structure

...... ~~tax_chcck .·
··:::::.T::::: .

. ···
execute .. -·

UNIT

I cells

.. :1 ··.
ex ecu te

CELL y
DECI.ARATION

D

Figure 2.6. The classes BLOCK and PROGRAM.

It shows that from a SOURCE a PROGRAM can be created. The two
tables of a SOURCE that are needed for the execution of a PROGRAM,
viz. narnes and code, appear in BLOCK, where they will be used. Note
that the routine interpret is added, but, the routines syntax_check and

17

EPEP: The Static Model

execute, that will be discussed in section 2.4.2, are 'no longer' available
on the interface; the only thing one can do with a PROGRAM, besides to
create and store it, is, as would be expected, to interpret it.

2.4 The Interpreter

The last part of static EPEP that remains to be located, is the Interpreter.
It is the most complex of all, because it involves most classes of static EPEP.
It was mentioned above that in the object-oriented model, the Interpreter
is not visible as a single class, but has a rather fragmented nature. lts
functionality is affered by the individual contributions of the memhers of
the STATEMENT family.

2.4.1 Class STATEMENT: the fragmented Interpreter

Figure 2.7. The base class STATEMENT offers the deferred routines syntax_check
and execute on the interface. For every statement of the application language there
is a specific class, that has the class STATEMENT as parent class, and implements the
routines syntax_check and execute.

As the function-oriented EPEP application language has a PASCAL-like
structure, an EPEP program souree generally contains a list of declarations
and statements. This fact is taken as the basis for the description of the
Interpreter.

The Interpreter is modelled using the object-oriented techniques of in­
heritance and dynamic binding. The starting point is the class STATE­
MENT, shown in Figure 2.7. STATEMENT is a base class, it is designed
only to serve as a parent class for a new group of classes. This 'group of

18

~----

2.4. The Interpreter

classes' forms the family of STATEMENT-related classes; for every state­
ment of the application language, a matching memher class is developed,
e.g., the class ASSIGNMENT, the class WHILE..LOOP, the class PRO­
CEDURE_CALL. The only features the class STATEMENT has, are the
routines syntax_check and execute, both 'dummy' routines in the imple­
mentation of STATEMENT. These are deferred routines, each memher of
the STATEMENT family provides its own implementation of both routines.

Summarizing, every statement of the application language is represented
in the model by a unique class of the STATEMENT family. All STATE­
MENT classes can therefore be treated similarly, each class providing the
routines that handle its specific execution. Examples of statement classes
are presented in section 2.4.3.

2.4.2 Class BLOCK: the task list

The program souree defines a list of actions to be performed, expressed in the
application language. In section 2.3.3 such an action was further specified
to be a statement, a small piece of code in the ARRAY code of a BLOCK
(Fig. 2.6). Besides statements, a program souree contains declarations. Just
like the STATEMENT family, a DECLARATION family of related classes
is designed. For every type of constant and variable, there is a specific
DECLARATION member. Processing a constant or variabie declaration
described in the program souree results in the creation of a CELL and a
NAME, and subsequent storage of CELL in cells and NAME in names.
This is the reason that a DECLARATION has the class CELL as parent
class (Fig. 2.6).

The table code is parsed creating a matching class DECLARATION for
each declaration and a matching class STATEMENT for each statement in
the program source.

2.4.2.1 Creating the task list

As already mentioned above, STATEMENTs and DECLARATIONs are
created parsing the table code. Creating a DECLARATION implies the
dynamica! creation of a CELL. STATEMENTs use these CELLs and are
therefore also created dynamically, that is, each STATEMENT is created
just before being executed.

The BLOCK embodies the general unit for executing the table code
(Fig. 2.6). The table code of a BLOCK may represent an entire program,

19

EPEP: The Static Model

a piece of it, or even a single statement.
It was stated above that the table code represents a list of deelara­

tions and statements. It is the first task of the class BLOCK to interpret
the code, creating CELLs and STATEMENTs. This task is performed by
the private routines get_declaration and get_statement. As Figure 2.6
shows, the routine get_declaration returns a DECLARATION and the rou­
tine geLstatement returns a STATEMENT, which they create by parsing
the code.

The execution of a program follows the tracks of its block-structured
implementation in the application language. Although discussed as 'ap­
plication language detail', the concept of the structured statement must
be mentioned here. A structured statement is defined to be a statement
that groups, in any way, a number of statements. The class STRUC­
TURED_STATEMENT is an heir of the class STATEMENT. It is in turn
the base class for the STRUCTURED_8TATEMENTs. Just like all STATE­
MENTs, a STRUCTURED_STATEMENT may be created from the table
code. The simplest of the STRUCTURED_STATEMENTs is the class
BLOCK (Fig 2.6). A BLOCK groups statements, can be syntax-checked
and executed. For further information see section 2.4.3.

The parsing of the program code during run time, which includes as­
sociating each statement expressed in the application language with spe­
cific executable routines just before it will be executed, is the essence of an
interpreter-based system.

2.4.2.2 Executing the task list

The interpretation of a PROGRAM is split-up into two parts: syntax check
and execution. The syntax of the code of a PROGRAM is completely
checked before it is executed. This speeds-up the actual execution and,
perhaps more importantly, it prevents a measuring or experiment control
program from exiting due to a syntax error, which could mean the loss of
valuable data or leaving the experiment in an undefined state.

Syntax check The routine syntax_check performs a syntax check in
a broad sense. Besides the mere checking of the syntax, the library is
searched for used library routines and variables, whose CELLs are copied
(by reference) to the table cells of the PROGRAM that is to be executed.
These CELLs remain in the table cells, ready to be used during execution­
they have a global scope in the application program. All other CELLs are

20

2.4. The Interpreter

created dynamically and added to the table cells during execution by the
interpretation of identifier declarations. This can save considerable amounts
of memory and is a condition for reentrant or recursive routines.

The checking of the syntax of a BLOCK is performed in two steps:

1. The routine geLstatement (or geLdeclaration) tries to create a
STATEMENT (or DECLARATION) from the table code. Upon fail­
ure, a syntax error is found.

11. lf successful, the syntax of the newly created STATEMENT (or DEC­
LARATION) is checked.

This process is repeated until all DECLARATIONs and STATEMENTs
grouped in the BLOCK are syntax checked.

The creation of a SIMPLE...STATEMENT will only succeed from a valid
syntax. The second step only has effect for STRUCTURED...STATEMENTs,
and is therefore not very interesting if the newly created STATEMENT (i)
happens to be a SIMPLE_STATEMENT (see section 2.4.1).

Consider the newly created STATEMENT to be a BLOCK. Check­
ing the syntax of this STRUCTURED...STATEMENT implies the perfor­
mance of both steps that are indicated above; the STATEMENTs grouped
in this 'second' BLOCK are to be created and syntax checked (by the second
BLOCK) too.

Execute The routine execute is quite similar to syntax_check. It per­
farms both steps indicated above, the only difference being that instead of
syntax_check, the execute routine on the interface of the newly created
STATEMENT is invoked. Examples of specific implementations of execute
routines are presented in the following sections. As this model shows, the ta­
bie code is being parsed twice and therefore every STATEMENT is created
twice (at least, think of loops), once during syntax check and once during
execution. The second creation of STATEMENTs during execution takes
up unnecessary execution time.

2.4.3 Details of the EPEP application language

The model presented so far is independent of the actual EPEP appli­
cation language. It was shown how a function-oriented program, analyzed
as a list of declarations and statements, is handled and executed by the
system, without the necessity of introducing application language specifics.

21

EPEP: The Static Model

Figure 2.8. The STATEMENT is the base class of all STATEMENTs. The
routines syntruccheck and execute are deferred, and are implemented by
child classes. The routines syntruccheck and execute of the classes RE­
PEAT _STATEMENT and CONDITIONAL_STATEMENT are still deferred, as both
these statements are a base class of respectively the group REPEAT _STATEMENTs
and CONDITIONALSTATEMENTs.

This remarkable fact is a consequence of the adoption of the object-oriented
paradigm. Basically, the execution of a program is the sequenced execution
of single statements, which obviously are language-dependent. This exactly
defines the gap that was left yet unfilled, the explicit execution of specific
statements. To round off the description of this static model, the language
specific statement details are presented, and examples of statements are
given.

22

2.4. The Interpreter

Statements are divided in two main subgroups, the simple statements
and the structured statements. All STATEMENTs have the class STATE­
MENT as a base class and can therefore be treated in a quite similar way.
The hierarchy of STATEMENTs is shown in Figure 2.8.

2.4.3.1 The simple statements

Figure 2.9. The ASSIGNMENT statement. No syntax check routine is provided,
for it is already implemented by its base class SIMPLE_$TATEMENT. For the ex­
ecution of an ASSIGNMENT a VARIABLE_CELL and an EXPRESSION are needed.
The VARIABLLCELL is fetched from the table cells of the current BLOCK, the EX­
PRESSION is created parsing the array code of the current BLOCK. Executing the
ASSIGNMENT implies calculating the value of the EXPRESSION and assigning it to
the VARIABLLCELL.

There are three simple statements, viz. the empty statement, the proce­
dure call, and the assignment. When parsing the table code, the structured

23

EPEP: The Static Model

statements are easily identified hy their unique taken. This is not the case for
simple statements; simple statements do not (cannot) have unique tokens.

The procedure for the identification of simple statements is as follows. lf
the routine geLstatement finds the starting taken to he a statement delim­
iter, this indicates an empty statement. lf the starting taken is an identifier
tag, the statement must he either a procedurecalloran assignment. These
statements are distinguished hy looking at the following tokens, e.g., an
assignment contains an assignment operator foliowed hy an expression.

The ASSIGNMENT statement As an example of a simple statement,
the ASSIGNMENT statement is presented (Fig. 2.9). The UPDATE state­
ment is very similar to the ASSIGNMENT statement. The only difference
is that the old value of the variahle, that is to he assigned the new value, is
used first to evaluate that new value.

2.4.3.2 The structured statements

There are three groups of structured statements: the hlock, the repeat
statement, and the conditional statement. A structured statement gen­
erally groups one or more statement lists. All statements must he syntax
checked and executed individually, which implies that a structured state­
ment must he ahle of creating and executing statements. In all STRUC­
TURED_STATEMENTS BLOCKs are used to perfarm these tasks.

The IF statement The creation of a STRUCTURED__8TATEMENT
from the tahle code involves the creation of one ore more BLOCKs. As
an example of a STRUCTURED_STATEMENT, the IF statement is pre­
sented (Fig. 2.10).

24

2.4. The Interpreter

'...•Y.•taJ<-'hed __ ... ·

.... ----~~~u~ ·-

Figure 2.10. The IF statement. Syntax checking an IF statement involves syntax
checking both true and false BLOCKS. Executed will only be one of these BLOCKS,
depending on what the condition evaluates to.

25

3

MPEP: The Dynamic Model

The dynamic model for MPEP, described in this chapter, is presented as a
logica! continuation of the static model for EPEP. Besides the use of time
and process management primitives, as suggested by the qualifier 'dynamic',
this new model handles multitasking and multiprocessor aspects, and hence
the name change to MPEP. As suggested in Chapter 1, this dynamic model
is used for the implementation of the multitasking and multiprocessor as­
pects of the MPEP software. The essence of EPEP, the static model, is
maintained, and its description given in the previous chapter will be used
almast literally. MPEP assumes the target platform to provide elementary
multitasking, and optionally multiprocessor, facilities. A list of MOS kemel
requirements is presented in Appendix F.

The dynamic model has three layers of software (Fig 3.1). The figure
has three interesting starting points. Firstly, the figure does not explicitly
show a multiprocessor environment. Although the multiprocessor EMPS
system is an important target platform for MPEP (see Appendix D), it
should work quite as well in single processor EMPS configurations and single
processor systems. This leads to the second point of interest, the MPEP
module. An MPEP module operates standalone, while providing means
of communication withother MPEP modules. Therefore, MPEP does not
have global control over all (MPEP) activities on a MOS platform, as more
than one MPEP module may be present. The third point of importance the
figure shows, is the fact that MPEP, uses the MOS kemel. Whereas the
standard-EPEP software has an embedded operating system, MPEP does
not have to provide the lowest layer of software, because MPEP does not
'run directly on the hardware'. The operating system of EPEP is substituted

27

MPEP: The Dynamic Model

Program Editor Program Editor

................................ MOS Application

MPEP module MPEP module

MOS kemel

hardware

Figure 3.1. An MPEP configuration consists ofthree software layers. The lowest layer
is the MOS kernel, that provides the multitasking (multiprocessor) operating system.

by an operating system interface (OSI), that provides access to the (MOS)
operating system. This is a major step towards portability, see Appendix D.

3.1 Multitasking aspects

In the following sections, the definitions invalving multitasking aspects are
taken from the (object-oriented) description of the EMPS multiprocessor
executive [12]. Two reasans for this are that (i) the description is ob­
ject oriented, and (ii) the EMPS system is an important target platform
for MPEP. Although the EMPS platform is a multiprocessor system, it is
above all a multitasking system. On a multitasking platform several tasks
may be executed simultaneously, or, when running on the same processor,
quasi simultaneously. Standard-EPEP is multitasking and has therefore
several time and process management primitives that are substituted by the
MOS kemel, see Figure 2.1. This means that multitaskingEPEPand more­
over the EPEP application language have certain conventions that must be
maintained. On the other hand, upgrading from a single to a multiprocessor
or multitasking system requires additional features, especially for interpro­
cess communication, in MPEP as well as in the upward compatible MPEP
application language. In the following sections both aspects are considered.

28

3.1. Multitasking aspects

3.1.1 Processes: Concurrent tasks

Separate tasks that may be performed simultaneously are called processes.
Simply spoken, in a multitasking system the process replaces the program
in a conventional single tasking system. Thus, the multitasking system is
capable of executing several programs, now referred to as processes, simul­
taneously. As a consequence, any separate task may run as a standalone
process, instead of being part of a larger program.

3.1.1.1 The EMPS kernel process

Every EMPS application (and every system program) is based on one or
more EMPS kernel processes. The execution of a program implies creating
and starting a new EMPS kernel process.

A very illustrative example forms the cammand line process. The EMPS
kern el provides a command line process (known as shell on other platforms)
for loading and starting processes. Starting a process is performed similarly
to executing a program from the command line in a single tasking environ­
ment. The major difference is that just after giving the command that starts
the new process, the command line process is ready for the next command.
In this way a number of processes can be started to run at the same time.

Processes that run concurrently on the same processor (CPD), must
share the real CPD execution time. The process and time management
techniques, performed by the EMPS kernel, are described in [12]. Here only
the major process scheduling aspects will be mentioned.

A process always is in one of the three major states, viz. CDRRENT,
READY, and BLOCKED. A process is said to be CDRRENT when it is
allocated the CPD and is thus actually taking up processor time. A process
that is eligible for execution, but is not CDRRENT, is in the READY state.
A process not ready for execution is said to be BLOCKED.

Every process is assigned a level of priority. The process that is CDR­
RENT will always have a priority that is higher than or equal to all other
READY processes. This implies that only processes of equal priority will
run truly simultaneously, a process of higher priority will not share but take
up all CPD time, a process of lower priority will not get any CPD time as
long as higher priority processes are READY. High priority processes are
commonly used for quick tasks that must have a short response time (gran­
ularity). Such processes are 'sleeping' (state BLOCKED) most of the time,
to become 'active' (state READY) only at the moment they have to handle

29

MPEP: The Dynamic Model

their task.
The EMPS kemel provides the process concept fully transparent with re­

spect to the physical process location. The difference between two processes
running on the same CPU and two processes running on separate CPUs, is
that in the latter case each process will get more real execution time, and
therefore they will run faster.

3.1.1.2 The MPEP process

The MPEP model also defines processes. From here on, an EMPS kemel
process will be referred to as kemel process. An MPEP process, or process
for short, is created using a kemel process, but offers additional MPEP
features.

MPEP supports three related kinds of processes.
The first to be mentioned is the process MPEP itself, the process that

is created and started to form an MPEP module. This is a unique process,
there is only one process MPEP in an MPEP module.

The other two are processes defined in an application program. One
of these matches the processes found in multitasking EPEP. The EPEP
application language offers commands to deelare and control child processes,
for handling separate tasks. Such a child process is, quite like a routine, a
block, i.e., a list of statements expressed in the application language. To
allow standalone execution of these processes, each process has a Library,
similar to the Library of the EPEP system. When a child process is started,
the child receives a copy of the entire Library of the parent process, so that
it can access all global variables that were declared before.

The remairring kind of process handles an entirely new concept, which
does not exist in the currently used form of EPEP, the remote procedure
call. The remote procedure call is discussed in section 3.1.3.

3.1.2 Semaphores: Process synchronization

For processes that run concurrently on the same processor, the EMPS kemel
provides the sernaphare tö ensure mutual exclusion [6]. The multitasking
EPEP kemel supported a similar solution for the problem, called the signal.
In addition, a signal could be associated with a PhyBUS interrupt, providing
an easy way of responding to a request of a hardware interface.

In MPEP, the signal will be replaced by the EPMS semaphore, while
maintaining its original (EPEP) functionality and (confusing) language syn-

30

3.2. The Classes of MPEP

tax.

3.1.3 The dynamic Library: Remote procedure call

So far, solely multitasking aspects of MPEP have been highlighted. This is
partly caused by the concept of MPEP, since MPEP is composed of single
processor modules that resembie the multitasking implementation of EPEP.
To take full advantage of the EMPS multiprocessor system, there is a need
for means of communication between independent MPEP modules. The
salution is presented in the form of the remote procedure call mechanism.

The MPEP application language is equipped to define specific routines
as import or export routines. A routine is enabled to be exported by adding
the reserved word export to its header. Such a routine can still be invoked
in the normal way, but in addition it becomes available to other MPEP
modules. An imported routine is declared only as a heading: the type,
name and actual parameter list. The reserved word import indicates that
the routine is implemented in another MPEP module, where it is defined as
export.

Although the most interesting case occurs when MPEP modules running
on different processors supply such an import/export pair, this is not a
requirement. This has the advantage that even multi-module applications
are largely independent of the actual hardware configuration.

3.2 The Classes of MPEP

The object-oriented model for MPEP defines, besides the introduetion of
EMPS kemel interface classes, only three new major classes.

MPEP: The root class MPEP is a redesign of the root class EPEP of the
static model. MPEP, like EPEP, holds the Library, the system unit,
and the souree of the Program Editor, but defines in addition a list of
exported routines and is derived from the base class PROCESS.

PROCESS: The class PROCESS is the base class of the new classes of
the dynamic model. It is based on a kemel process and simulates the
process of multitasking EPEP.

REMOTE_FROCEDURE: The class REMOTE_FROCEDURE handles
a remote proeed ure call.

31

MPEP: The Dynamic Model

3.3 The MPEP Root structure

Figure 3.2. The Root of MPEP is an extension ofthe Root of EPEP. The class PRO­
CES$ is introduced, based on the class [KERNEL_]PROCESS. The library has been
'moved' from the Root to its base class PROCESS. The EMPS kernel class PROCESS
is, in line with the convention assumed in the text, renamed to [KERNEL]PROCESS.

3.3.1 The root class MPEP: MPEP at start-up

An MPEP module is initiated by creating an instanee of the class MPEP
(Fig. 3.2). In agreement with EPEP, the main object MPEP initially con­
tains a library, a UNIT system_unit and a SOURCE editor.

The system_unit maintains the functionality of its static counterpart,

32

3.3. The MPEP Root structure

but instead of the implementation of operating system routines, in the dy­
namic model it contains mainly an interface (OSI) between MPEP and the
MOS kemel primitives.

A user starting an MPEP module will not notice any important differ­
ences compared tostarting EPEP. The MPEP starting procedure is identi­
cal to the EPEP starting procedure given in section 2.3.1. The last step is
the execution of the Editor, that awaits user input.

The process aspects of MPEP that it inherits from its base class PRO­
CESS are discussed in the following section.

3.3.2 The class PROCESS: Concurrent tasks

The class PROCESS was already presented in Figure 3.2. A PROCESS can
be created and started from within an application program. This is clone
in an indirect way, with the aid of DECLARATIONs and STATEMENTs;
the application language is function-oriented and does not handle objects.
Similar to a routine declaration, the statement list is assigned to a BLOCK.
As mentioned above, each PROCESS has its own Library, that may be
expanded for exclusive use by the owner, which probably will never be clone,
but is supported because of compatibility with multitasking EPEP.

Most statements that operate on a PROCESS, e.g., suspending or reini­
tiating execution, readingor setting priority, etc., are implemented by direct
access of the [KERNEL_]PROCESS myself and invoking the EMPS kemel
scheduler [12]. The start and abort routines are explicitly defined by
the PROCESS itself, as these tasks comprise more than simply readying or
killing a [KERNEL_]PROCESS. When starting a PROCESS, the library
must be copied; a PROCESS that is aborted must clean-up the library and
abort all child PROCESSes. The details of both routines are described in
Appendix C.

3.3.3 The class REMOTE_pRQCEDURE: RPC

The remote procedurecallis implemented by the class REMOTE_FROCE­
DURE, which is an heir of class PROCESS (Fig. 3.3). REMOTE_FRO­
CEDURE uses, besides the [KERNEL_]PROCESS myself, that is inher­
ited from PROCESS, the EMPS kemel classes MAILBOX and RESPON­
DER_FORT.

lt must be stressed that the class REMOTE_FROCEDURE, that belongs
to one MPEP module, the server, implements the execution of a procedure,

33

MPEP: The Dynamic Model

PROCESS

~-
1

BLOCK

Figure 3.3. REMOTLPROCEDURE handles the execution of a remote procedure call
request. For readability reasons several implementations that were shown in detail in
Figure 3.2 are not displayed, and the EMPS kernel class RESPONDER_PORT has been
simplified.

in response to a request from another MPEP module, the dient. Note that
the procedure that is executed is localto the module of the REMOTE_FRO­
CEDURE (server), and that, although REMOTE_FROCEDURE is an heir
of PROCESS, the elient module does not start a remote process, but only
invokes a remote procedure. When a process invokes a remote procedure, it
will be BLOCKED until the remote execution has been completed (if only
to assign the return parameter). This implies that an MPEP application
intended to distribute certain tasks by invoking remote procedures must de­
fine separate child processes that do so. In addition, such procedures should
be exported by MPEP modules that preferably run on different processors.

3.3.3.1 Handling an RPC request

The REMOTE_FROCEDURE owns two attributes, viz. a MAILBOX and
a RESPONDER_FORT that is linked to this MAILBOX. The process of

34

3.4. Details of the MPEP application language

the REMOTE_FROCEDURE is BLOCKED until an RPC request is deliv­
ered in the MAILBOX. At that time the MESSAGE..BUFFER that contains
the actual parameter list is obtained from the MAILBOX using the routine
get of the RESPONDER_FORT. Next the blockis executed and the reply
routine of the RESPONDER_FORT is invoked with a MESSAGE..BUFFER
containing the return parameter. The handling of the RPC request is now
completed and the REMOTE_FROCEDURE will be BLOCKED until an­
other request is clone.

3.4 Details of the MPEP application language

The MPEP application language is upward compatible with theEPEP appli­
cation language. This has not been too difficult, as up to now only two new
reserved words, viz. import and export, were introduced. The justification
for the present section on language details is that in Chapter 2 all multi­
tasking aspects of EPEP were not considered. These multitasking aspects
have implications for the application language that were not discussed in
the static model, e.g., the definition and implementation of specific process
related STATEMENTs.

3.4.1 The class SIGNAL

The variabie type SIGNAL, as defined in the EPEP application lan­
guage[4], provides means of process synchronization. Signal is an alias for
the more commonly used name semaphore. The type SIGNAL has a set
of two routines, viz. wait and send. The send routine is an alias for the
signal operation on a semaphore. (Fig. 3.4).

The signal of EPEP is implemented by MPEP using the class SEMA­
PHORE of the EMPS kemel, described in [12]. In the EPEP application
language, the user can create and initialize a SIGNALat one time, and may
decide later to associate this SIGNAL with a specific PhyBUS interrupt.
The EMPS kemel, however, does not allow such an implementation. lt has
a static list of semaphores, one for each PhyBUS interrupt, the PhyBUS
semaphores. New semaphores can be created, but these cannot be associ­
ated with PhyBUS interrupts.

The MPEP application language therefore defines two kinds of SIG­
NALs, signals that are associated with a PhyBUS interrupt and SIGNALs
that are not. The only difference between both kinds occurs in the dec­
laration. If a PhyBUS interrupt number is supplied with the declaration

35

MPEP: The Dynamic Model

SION AL

phybus_int

Figure 3.4. SIGNAL provides the functionality of the EPEP signal. lf with the dec­
laration of a SIGNAL a {valid) PhyBUS interrupt number is supplied, the SIGNAL
is associated with the corresponding EMPS PhyBUS [KERNEL]SEMAPHORE. lt is
merely an interface to the [KERNEL]SEMAPHORE, that is responsible for the imple­
mentation.

of a variabie of type SIGNAL, this SIGNAL is associated with the corre­
sponding EMPS PhyBUS semaphore. Declaringa variabie of type SIGNAL
without an interrupt number resuits in the creation of an EMPS kernei
object SEMAPHORE. In bath cases, subsequentiy an object SIGNAL is
created and is put in the Library. The SIGNAL provides the interface to
respectiveiy the corresponding PhyBUS semaphore, or the newiy created
[KERNEL_]SEMAPHORE.

3.4.1.1 The signai wait and send operations

Executing a wait or send operation on an earlier declared SIGNAL is ex­
pressed in the appiication Ianguage simpiy as a procedure call, that has
as actuai parameter a reference to the specific SIGNAL. The system_unit
defines these two routines, wait and send.

Upon calling a wait or send routine, the specified SIGNAL cell is
fetched from the library and the matching routine of the corresponding
[KERNEL_JSEMAPHORE is invoked.

36

4

The Program Editor

In this Chapter, a briefdescription of the Program Editor is presented. The
Editor, which itself is an EPEP application program, implements a user in­
terface to EPEP. Reasons for including the Editor in this model are that
(i) because the Editor is an EPEP application program, it shows the con­
neetion between theEPEP system and EPEP application programs, (ii) the
Editor can be considered to be an essential part of EPEP, and (iii) the Ed­
itor introduces the concept of modularity in an interesting way (this is the
so-called 'library mechanism', that is commonly appreciated as a standard
part of EPEP). This means that a more comprehensive discussion of the
Editor would not add any really interesting aspects to the model for EPEP.

To find out more about Editor specifics, a user manual of the Editor is
presented in [4].

4.1 The Editor characteristics

In an EPEP contiguration that is set-up for normal day use, the Program
Editor is automatically executed at startup. These are its main features:

• The Editor is used to write, examine, and alter application programs
and to 'run' them. Running a program implies the creation of a PRO­
GRAM using the SOURCE, and the subsequent interpreting of this
PROGRAM.

• The Editor is command line based, which is common for interpreter
based systems. This has the advantage that command execution and
entering a program can be interchanged. The program souree text

37

The Program Editor

must be entered line by line, the user can't 'walk up and down the
screen'.

• The Editor offers a transparent and interactive environment. The
user can inspeet and change Library variables and also use Library
routines directly, by entering EPEP statements as if they were Editor
commands.

• The Editor offers a number of simple commands and several standard
EPEP routines. One of these routines is the 'magical' routine moni­
tor, that can be invoked to put the 'library mechanism' into effect.

4.2 The Editor operation

The Editor is driven by editor commands (Fig. 4.1). The editor commands
form the user interface to the Editor, and to EPEP. The editor _loop reads
a line of text entered by the user, parses it to create the matching editor
command, and executes this command. After that, another line of input is
read, and the procedure is repeated.

There are three types of editor commands: the command, the program
line, and the direct statement.

38

• The Editor supplies a range of commands that are useful when creat­
ing a souree or running a program, such as LIST (display the souree
currently edited) and RUN (create program and interpret). Program
sourees that were created with the Editor can be SAVEed to, and
LOADed from background memory.

• If a cammand line begins with a line number, this line is encoded and
inserted into the SOURCE that is currently being edited.

• Otherwise, if an entered line is neither a command, nor a program line,
the Editor assumes a direct statement. First, the line is enclosed within
a BEGIN and an END. Next, a temporary SOURCE is created and
the line is encoded into this SOURCE. Finally, using this SOURCE a
PROGRAM is created and interpreted. So typing for example

WRITE(<library string>) <enter>

will directly display <li brary string> on the screen.

----- --- ----

4.3. The library mechanism

Figure 4.1. The EDITOR is driven by the EDITOR_COMMANDs. There are three

different types of EDITOR_COMMAND, viz. the COMMAND, DIRECT_STATEMENT

and PROGRAM_LINE. LISTand RUN are typical examples of the type COMMAND.

4.3 The library mechanism

The Editor has a main routine called monitor that invokes the command
line input handler (the editor _loop). Wh en a program is interpreted it will
first he put in the Lihrary, that is, its UNIT is added to library. The Editor
is the first PROGRAM to he interpreted, and is the second UNIT in the
Lihrary (first is always the system unit), supplying the routine monitor as
a lihrary routine.

• 39

The Program Editor

environment

LffiRARY

PROGRAM

G) putinllibrary

\
1--:_::__:_:_:.::...:_:_---1~ ~ .. G) erealePROGRAM

library program I SOURCE

EdiiDr 11'" 0
f---------1 (Ï) createSOURCE

,_sy.:..._ste_m=-_un_il __ _j

Figure 4.2. The library mechanism provides modularity in an interesting way.

A new souree created with the Editor will be added to the Library,
when the user enters the command RUN. If this program calls the routine
monitor, the user finds himself in the command line Editor again; it may
seem to him (m/f) that the program was added to the Library and that the
Editor is ready for a new souree to be entered (Fig. 4.2).

By entering the command UNLOAD the command line routine monitor
is left. Usually, calling the routine monitor is the last statement of a library
program, so that when monitor is left the execution of this program is
completed. The program is then removed from the the Library and program
flow returns to the caller of interpret on the PROGRAM's interface. If
this caller was the routine monitor, the user once again finds himself in the
command line Editor. The current SOURCE in this case is the souree of
the executed PROGRAM; from this SOURCE the program was created!

4.4 More efficient Program editing

As explained above, the Program Editor eneodes program lines immediately
after they have been typed in. A program souree that is stored in background
memory also has this encoded form. Although the Program Editor provides
several features that make the command line based input a bit more user­
friendly, it is often preferabie to write EPEP program sourees using an
external text editor; an EPEP System charged with dedicated hardware
for experiment control is not exactly the most appropriate platform for the
mere entering of program sources. Therefore the Program Editor provides

40 •

4.4. More efflcient Program editing

the feature of reading and encoding a plain text file.
The procedure of using an external text editor as described above has

the disadvantages that (i) the program cannot be easily checked online (not
even the syntax), (ii) each new version must be converted before it can be
used (executed or checked), which, in addition, makes version control error­
prone, and (iii) the Program Editor is still needed for the conversion and
execution of the program.

In Appendix D a possible improverneut on these problems is presented,
offering the additional feature of online (context) help.

41

Appendix A

Graphical representation

In this Appendix classes and their relationships are represented using the
graphical representation method of class diagrams [13]. The symbols and
relationships are defined in the figures below.

•· CLASS with FEATUREs

•• Create: create routine

•• a: bidden attribute

•• b: exported aaribute

•· c: bidden routine

•. d: exported routine

Figure A.l. A Class with features.

~ -sbaredattribute

~ - implemenled routine

•. deferred routine

Figure A.2. The scope of routines and attributes.

43

Graphical representation

- USES for INTERF ACE

routine parameter CLASS function resultCLASS

~Gf--------1 _______ ...7

Figure A.3. The uses for interface relationship defines the routine parameter spec­
ifications, including the function result parameter.

•• USES for IMPLEMENT A TION

attribute attribute CLASS routine LOCALclass

·I

I I

Figure A.4. The uses for implementation relationship defines the class type of an
attribute, or the class type of an essential local variable.

- INHERIT ANCE

heirCLASS parent CLASS

I

••

1 I

Figure A.S. The inheritance relationship shows the base class(es) from which a class
is derived.

44

- GENERfCITY

auribute generic CLASS

0
arameter CLASS

Figure A.6. Representation of genericity. Genericity is used to create parameterized
types. This involves a generic class (or template) and a parameter class.

·· NESTED GENERfCITY

attribute generic CLASS(T)

0
T

·· ... s

Figure A. 7. Representation of nested genericity. Nested genericity is used to ere a te
parameterized types of a parameterized type. This involves a generic class (or template)
takinga generic class (or template) as a parameter class.

45

Appendix B

U sed class interfaces

This Appendix describes the class interfaces of standard Eiffellibrary types
that were used for the creation of generic types, viz. the ARRAY, the LIST,
and the TABLE.

B.l Array

class ARRAY [T] .
export count, empty, item, put
feature

count: INTEGER is
do

re sult : = - - number of indices in array
end;

empty: BOOLEAN Is

do

end;

if - - array is empty
then

result := TRUE
el se

result := FALSE
end

item(i: INTEGER):T is

47

Used class interfaces

do
result - - item at index i

end;

put(item:T; i: INTEGER) is
- - insert item at index i

end-- ARRAY

B.2 List

class LIST [T] .
export caunt, empty, item, put remave
feature

caunt: INTEGER is
do

result := -- number of items in list
end;

empty: BOOLEAN is
do

end;

if - - list is empty
then

result := TRUE
el se

result := FALSE
end

item: T is
do

re sult : = - - item at cursor position
end;

put (item: T) is
- - insert item at cursor position

remave IS

- - remave item at cursor position
end-- LIST

48

B.3 Table

class TABLE[T~ANY, u~HASHABLE].
export entry, item, has, put, remove
feature

entry(i: INTEGER): T is
do

re sult : = - - the i-th entry in table
end;

has(key: U): BOOLEAN is
do

end;

if - - key in use
then

result := TRUE
el se

result := FALSE
end

item(key: U): T ~
do

re sult : = - - item associated with key
end;

put(item:T; key: U) is
- - insert item with key

remove(key: U) is
- - remave item associated with key

end-- TABLE

B.3. Table

49

Appendix C

Software design

In this Appendix the software architecture of the static model (EPEP), and
also the dynamic model (MPEP) is described.

C.l The static model

C.l.l EPEP

class EPEP
global library: LIST[UNIT];
feature

system_unit: UNIT;
editor: SOURCE;

Create is
local editor_program: PROGRAM;
do

end;
end--EPEP

C.1.2 Souree

class SOURCE

library.put(system_unit);
editor_program.Create(editor);
editor_program.interpret

export code, name, layout

51

Software design

feature

code: ARRAY[CODE];
names: TABLE[NAME, TAG];
layout: - - line_table, index_table, indenLtable, remark_table

end -- SOURCE

C.1.3 Unit

class UNIT
export f ind..name
feature

cells: TABLE [NAME, CELL];

find..name (name: NAME) : CELL is
do

result := cells.item(name)
end;

end-- UNIT

C.1.4 Statement

deferred class STATEMENT
export syntax_check, execute
feature

syntax_check is deferred end;

execute is deferred end;
end-- STATEMENT

C.l.4.1 Simple statement

class SIMPLE_STATEMENT
inherit STATEMENT
export syntax_check, execute
feature

52

syntax_check is
do
end;

C.l. The static model

execute is deferred end;
end - - SIMPLE_STATEMENT

C.1.4.2 Structured statement

deferred class STRUCTUREDJ3TATEMENT
inherit STATEMENT
export syntax_check, execute
feature

syntax_check is deferred end;

execute is deferred end;
end -- STRUCTURED_STATEMENT

C.1.5 Block

class BLOCK
inherit STRUCTURED_STATEMENT, UNIT
export syntax_check, execute, find~ame
feature

code: ARRAY [TOKEN];
names: TABLE [TAG, NAME];
cells: TABLE [NAME, CELL];

Create (block: BLOCK) is
do

end;

cells := block.cells;
code := block.code;
narnes := block.names

get_declaration:DECLARATION is
local declaration: DECLARATION;
do

end;

- - parse code
deelaratien : = - - create specific declamtion
result := declaration

get_statement: STATEMENT is

53

Software design

54

local statement: STATEMENT;
do

- - parse code
statement : = - - create specific statement
result statement

end;

syntax_eheek is
local deelaratien: DECLARATION;
statement: STATEMENT;
do

end;

exeeute is

deelaratien := get_deelaratien;
from
until not deelaratien
do

- - put declamtion in names and cells
end;
statement := get_statement;
from
until not statement
do

statement.syntax_eheek
end - - empty cells except for static declamtions

local deelaratien: deelaratien;
statement: statement;
do

deelaratien := get_deelaratien;
from
until not deelaratien
do

- - put declamtion in names and cells
end;
statement := get_statement;
from
until not statement;
do

statement.exeeute

end - - empty cells
end;

end-- BLOCK

C.1.6 Program

class PROGRAM
inherit BLOCK
export interpret
feature

Create(source: SOURCE) is
do

code := source.code;
narnes

end;

interpret IS

do

source.names

syntax_check;
execute

end;
end - -PROGRAM

C.1.7 Empty statement

class EMPTY_STATEMENT
inherit SIMPLE_STATEMENT
export syntax_check, execute
feature

execute is
do
end;

end-- EMPTY_STATEMENT

C.1.8 Assignment statement

class ASSIGNMENT
inherit SIMPLE_STATEMENT
feature

C.l. The static model

55

Software design

variable: VARIABLE_CELL;
expression: EXPRESSION;

execute is
do

end;
variable.setvalue(expression.value)

end - - ASSIGNMENT

C.1.9 If statement

class IF
inherit STRUCTURED_STATEMENT
feature

condition: BOOLEAN;
true:
false:

BLOCK;
BLOCK;

syntax_check is
do

end;

execute is
do

true.syntax_check;
false.syntax_check

if condition then
true.execute

el se
false.execute

end
end;

end-- IF

C.2 The dynamic model

C.2.1 Process

class PROCESS
export myself, start, abort

56

C.2. The dynamic model

global library: LIST[UNIT];
feature

myself: [KERNEL]PROCESS;
childs: LIST [[KERNEL]PROCESS] ;
block: BLOCK;

Create is
local cell: PROCESS_CELL;
do

end;

abort is
do

end;

start is
do

cell.Create(process_size + unit_chain_size);
library.put(cell);
if syntax then

block.syntax_check;
el se

- - copy unit chain

end

if - - process was started

then
myself.abort;
- - abort all childs
-- cleanup

end

if not syntax then

end

myself.Create(block.execute, ...);
- - put patch in effect
- - initialize PEP process

myself. start

end;
end - - PROCESS

51

Software design

C.2.2 MPEP

class MPEP
inherit PROCESS
feature

system_unit: UNIT;
editor: SOURCE;

Create is
local editor_program: PROGRAM;
do

library.put(system_unit);
editor_program.Create(editor);
editor_program.interpret

end;
end-- MPEP

C.2.3 Remote procedure

class REMOTEJ?ROCEDURE
inherit PROCESS
feature

58

mailbox: MAILBOX;

Create is
do

end;

loop 1s

process.Create;
if not syntax then

myself.Create(loop, ...);
myself.start

end;
mailbox.Create

local client: RESPONDERJ?ORT;
parameters: MESSAGE;
function_result: MESSAGE;
do

port.connect(mailbox);

C.2. The dynamic model

end;

from
until FALSE
do

end;

parameters := client.get;
- - put parameters on stack

black.execute;
functian_result := -- result cell
client.reply(functian_result);
- - get parameters from stack

end - - REMOTE_PROCEDURE

C.2.4 Signal

class SIGNAL
feature

sernaphare: [KERNEL]SEMAPHORE;

Create(phybus_int: INTEGER) Is
do

end;

send is
do

end;

wait is
do

end;
end-- SIGNAL

if phybus_interrupt then
sernaphare := get_sernaphare(phybus_int)

else
sernaphare := create_sernaphare(1)

end

sernaphare.signal

sernaphare.wait

59

Appendix D

lmplementation aspects

D.l Introduetion

The first implementation of EPEP dates from the late 1970s. lt was based
on the Digital PDP 11 and LSI 11 systems, and was written in assembly
language. In the 1980s, a new implementation was written for the M68000
microprocessor, still in assembly language. With the M68000, the increase in
enabled the introduetion of new features, viz. multitasking, and later, mul­
tiuser facilities. The M68000 version was designed to operate directly on the
M68000 hardware, and therefore it had to provide its own operating system
and multitasking kemel. lt still defines the standard EPEP implementation
(standard-EPEP).

In the early 1990s, a start was made to reimplement EPEPin the C pro­
gramming language. This would enhance portability and simplify, if not
allow, 'software maintenance'. The first goal was to implement the static
part ofEPEP, i.e. without multiprocessing or multiuser aspects, which would
follow later. This static C version of EPEP has now the state of a stabie
beta release and is approaching completion. lt is commonly referred to as
CPEP.

The reimplementation process of EPEP was divided into two stages,
(i) the static stage, or (statie) CPEP, and (ii) the dynamic stage, or multi­
tasking/multiprocessor MPEP (which, of course, is also implemented in the
C programming language). The second stage ofimplementation is performed
after the model described in Chapter 3.

61

Implementation aspects

D.2 Portability

Although MPEP was primarily intended to be designed uniquely for the
multiprocessor EMPS platform, target platforms now potentially include
any multitasking operating system (MOS) platform. Apart from this, it
proves to be quite convenient to have large programs, such as MPEP, run
on different platforms. The static part (CPEP) was developed on other
platforms than the target EMPS platform. Practical reasons for this were,
besides cost aspects, the lacking of a C compiler and operational debugger
for the EMPS platform, and the very time consuming data transport to the
EMPS platform.

D.2.1 Software aspects

As mentioned above, the assembler version of EPEP provides its own oper­
ating system. If reimplemention of EPEP in the C programming language
would has to support portability, all low-level operating system routines
must be substituted by standard C language primitives.

Static CPEP should be portable to any C platform. MPEP however,
expects the operating system to provide, besides a number of static C prim­
itives, basic multitasking primitives. These can be divided into memory
management (MM), time management (TM), process management (PM),
process synchronization (PS), interrupt handling (INTH), and interprocess
communication (IPC). If MPEP is run on a single-processor MOS platform,
this does not imply loss of functionality, as a multiprocessor MPEP ap­
plication consists of multiple stand-alone modules that communicate with
eachother (see Chapter 3). The practical use for multiple module MPEP
applications on single-processor platforms, is however, questionable. Only a
reduced version of MPEP, may be ported to static (or single-tasking) plat­
forms, presenting the functionality of static CPEP.

For full lists of static and dynamic operating system requirements see
Appendix F.

D.2.2 Hardware aspects

From a hardware point of view, CPEP is not very portable. This had to
be expected because EPEP as well as CPEP were developed for real time,
multitasking experiment control and data-acquisition using the PhyDAS
hardware. The EMPS hardware makes use of two computer busses, viz.

62

D.3. The implementation of static CPEP

a VME bus and a VSB bus, and a VME/PhyBUS converter to control
the PhyDAS hardware. A computer module that is VME compatible can
therefore he used to control the PhyDAS hardware. The real time aspect
will remain an issue open for discussion.

D.3 The implementation of static CPEP

CPEP is written in ANSI C, without using any C++ features. As stated
above, CPEP is in the beta release state. The platform on which it is being
developed and tested, is an INTEL 386+ using the the WATCOM C++ com­
piler. The WATCOM C++ compiler offers the programmer a linear memory
addressing mode (LAM) on one hand, and on the other hand a library of
operating system related routines, based on MS-DOS system calls, that is
compatible in functionality with the TURBO C++ library. In addition, the
WATCOM C++ compiler package contains an extensive debugger with, e.g.,
the possibility of protected mode debugging. To avoid confusion, this 'host'
platform of CPEP, will from hereon he called MS-DOS LAM. The normal
MS-DOS platform will referred to as plain MS-DOS.

D.3.1 The EMPS platform

One of the most interesting systems to port CPEP to, is the EMPS multi­
processor system. Although the EMPS system is also based on the M68000
microprocessor family, it would he quite an understatement classifying this
operation as 'software maintenance'. For a start, all operating system as­
pects must he handled by the EMPS kemel.

The CPEP souree code is compiled on a remote system, and sent to the
EMPS system using the Motorola S-format. The remote system is a SUN
Sparc-solaris station, the compiler used is the Oasys gc68000 x-compiler [1].
The Oasys x-compiler provides a full ANSI C library. However, low-level
operating system routines, e.g., for file 1/0 and system time, should he
supplied/modified by the user to satisfy the conditions of the target system's
(in this case the EMPS) multitasking operating system.

For the programmer's convenience, the EMPS kemel provides a library
that implements all these low-level, and even some higher-level, routines. To
he able to access these routines, the CPEP object code must he linked with
a small assembler file, that provides the necessary interface to the EMPS
kemel primitives.

63

Implementation aspects

There have been quite some diffi.culties befare CPEP did run on the
EMPS platform. The EMPS kernel interface was completed and adapted
for more standardized use. The first test runs showed that the interpreter
seemed to work, interpreting at least a few thousand lines of EPEP code,
successfully loading two subsequently interpreted EPEP code files from disk.
It then failed, however, to recognize the correctness of the syntax of the
Program Editor (EDl.CPC), flagging the error 'identifier declared before'.

Although, when familiar with CPEP, it has a quite clear internal struc­
ture, the process of debugging and getting acquainted to the program began
to take toa much time.

The over 25.000 lines of C souree code, are nat very self-documenting,
which is mostly due to the use of cryptic narnes and abbreviations, and are
only documented on routine level, if documented at all.

Oasys failed to deliver a working x-debugger for the EMPS system and
data transport was very slow. The problem was postponed, also because of
promising test runs on a UNIX platform. After the successful port of CPEP
to a UNIX platform, that is discussed in the following section, simultaneous
debugging on the UNIX and the EMPS platform ultimately resulted in a
working CPEP version on the EMPS platform.

D.3.2 The UNIX platform

The description given in the previous section, i.e. invoking a cross-compiler
for the CPEP C sourees on a MOS platform (in this case a SUN Spare-salaris
station) to try the portability of CPEP toanother MOS platform (the EMPS
platform) may seem a bit taking two steps at a time. The reason for trying
the port to the EMPS platform first, was that there had no C compiler been
installed on the SUN Spare station.

After CPEP failed to perfarm properly on the EMPS platform, it was
successfully ported to ULTRIX on a Digital workstation, DEC 2100. CPEP
was compiled using the GNU C compiler (gcc). To allow CPEP to run
on this UNIX platform, several operating system interface eaUs had to be
implemented. These include explicit file path conversion, and two simple
routines that handle character I/0, in relation with the control of terminal
settings, such as echoing, translation of carriage return, line feed and break
(Control C). Apart from the GNU compiler being somewhat fussier about
ANSI C type conversions, the CPEP sourees compiled smoothly. Features
that imply user directory searching were nat implemented.

64

D.4. The implementation of MPEP

D.3.3 The plain MS-DOS platform

As the host platform (MS-DOS LAM) already is a MS-DOS machine, but
provides the feature of linear addressing and so wiping away all segment­
anci-offset troubles, including the 64kB data limit, CPEP should be made
to run under MS-DOS without major problems. For testing, CPEP may be
compiled with TURBO C++ (versions 1.0, 3.0), which works as long as the
EPEP workspace is kept unacceptably small. No attempts were made to
introduce huge pointers for the EPEP workspace, as this platform has not
very high priority, if priority at all.

D.4 The implementation of MPEP

Although EPEP has been multitasking for quite some years, multitasking
had not yet been introduced to CPEP. Here 'introduced' is not an eu­
phemism for 'implemented'; it is probably not favorable to have multitasking
fully embedded in CPEP. In the assembler version, EPEP handled multi­
tasking aspects such as time slicing, scheduling, and process synchronization
itself.

There are three ways of introducing multitasking CPEP:

1. Writing an in CPEP embedded kemel, that takes care of all multi­
tasking aspects, ignoring any multitasking services provided by the
operating system,

u. Writing an in CPEP embedded kemel, but using operating system
services if available,

m. Relying only on operating system services, possibly polished-up by
supplementary routines in CPEP. Whenever the operating system
fails to provide a needed service, it should be provided for by writing
an extemal (i.e. not in CPEP embedded) driver.

The first option had been chosen in the M68000 assembler implementa­
tion, led by the fact that this was the only target platform for EPEP, and
EPEP would be the only application to run on that platform. As MPEP
may run on different platforms in the future, the third option seems the only
one to achieve a somewhat universa! tackling of the multitasking aspects.

One of the new platforms will be the EMPS mul ti processor system, that
offers a complete set of multitasking facilities. In the future, more and more

65

Implementation aspects

platforms will offersome kind of multitasking services, e.g., UNIX/LINUX,
OS/2, WINDOWS-NT/-95. Should no multitasking services be provided,
the system will probably be non-complicated, so that these services may
relatively easy be implemented as an extension of the operating system, see
section D.4.6.

For further discussion of the implementation aspects of multitasking, it
is necessary to introduce a few definitions. The definitions suggested in [12]
are used, which follow insection D.4.1.

D.4.1 Tasks and processes in the EMPS system

Although the EMPS system is a multiprocessor system, reaching beyoud
merely multitasking systems, it must in the first place handle all multitask­
ing aspects. It is a transparent system, which means that any description
and any mode of operation will hold for a true multiprocessor configuration
as well as for a single-processor configuration. The definitions concerning
multitasking given in [12] are therefore perfectly suitable to describe single­
processor multitasking systems as well.

A task is defined as a set of class definitions and a set of process def­
initions. A set of class definitions stands for the routines, data, and heap
in a function-oriented programming environment. Inside one task, multiple
processes may therefore share the same address space for code, data and
heap, the task address space. A processis sametimes referred to as a thread
in other systems.

Each process has a private address space for its stack, the process address
space. So each task has private memory in the form of its task address space,
which only is truly private if the task contains just one process definition.
Private to a process are its current CPU register values and its stack; in
general a process does not have additional private memory. Processes that
want to have any true private memory, that is, apart from their stack, must
therefore be separate tasks and hence cannot share code or heap.

D.4.2 The CPEP C sourees

The static part of EPEP is almost completely covered by the de facto CPEP
souree code. No multitasking aspects were implemented, but CPEP was said
to be 'prepared for multitasking', partly because the implementation had the
the multitasking M68000 assembler version of EPEP as an example.

66

D.4. The implementation of MPEP

The Interpreter works with a data structure that contains all process re­
lated information about the currently interpreted code. This main structure
(mn...str) contains data items as the code table, and location pointer, name
table, cell table, cell heap, etc. Whenever a process is created in EPEP, a
new main structure is set up, so for each EPEP process such a main struc­
ture exists. Putting these main structures in a ready list, the Interpreter
was supposed to perform a context switch by simply getting the next main
structure in that list. The pointer Current Process (mn...str*) should always
point to the main structure of the EPEP process that is being interpreted.

The above description fits the M68000 assembler version as well as the
'multitasking preparation' of the CPEP version. There are, however, two
differences between the two implementations:

1. In the assembler implementation, the pointer Current Process is always
stored in the CPU register A5 [16], whereas in the CPEP implementa­
tion Current Process is a global pointer value, which implies that its
access scope has changed, i.e., from private (to a process) to shared,

u. The assembler implementation would run on the M68000 system, and
use an embedded process scheduler, whereas the MPEP implementa­
tion will use operating system process scheduling facilities (see intro­
duetion of section D.4). This implies that, where an EPEP process
could previously be handled by the embedded scheduler as a special
entity with its own characteristics, in the MPEP implementation an
EPEP process must meet the conditions of an operating system pro­
cess; the operating system scheduler cannot make any distinctions
between EPEP-and non-EPEP processes.

From the above observations it can be concluded that the de facto CPEP
sourees required a process to have both private memory, to store the pointer
Current Process, and shared memory, where the (shared) cell tables, code
tables and name tables must be stored.

As will be shown in the following sections, these are most unusual, if not
conflicting, demands on most platforms.

D.4.3 The host MS-DOS LAM platform

On the host platform no attempts to introduce multitasking were made.
Foreseen problems and solutions are expected to be quite similar to those
discussed for the plain MS-DOS platform, section D.4.6.

67

Implementation aspects

D.4.4 The EMPS platform

Implementation of multitasking on this platform must deal with the fact
that an EMPS process cannot have both private memory (apart from the
stack), and shared memory (see section D.4.1 and [12]). The first alter­
native is that all EPEP processes run within one task, and share all data
address space, including the pointer Current Process. However, this pointer
should be private to a process, because for it should always point to the
process' main structure. This solution therefore preelucles the implementa­
tion of multitasking MPEP. As a second alternative, each EPEP process is a
complete task, so that the creation of a new EPEP process involves copying
all code and data, which in turn makes it impossible for EPEP processes
to access each other's global variables. This is in conflict with the EPEP
Application Language definition [4].

Of three possible solutions, (i) providing the operating system (EMPS
kemel) with additional knowledge a bout the peculiarities of EPEP processes,
(ii) providing the operating system (EMPS kemel) with facilities to let tasks
share memory, and (iii) changing the access scope of the pointer Current
Process back from shared to private, only the third option was considered
(The first option is unacceptable, whereas the second option would still
imply copying all code and data for each new EPEP process, which hardly
seems to be an elegant solution).

Rejecting the options (i) and (ii) above, the access scope of a variable,
in particular the access scope of Current Process, could be made private in
two ways:

i. Exclusive storage in one of the CPU registers,

n. Storage on stack.

D.4.4.1 The blunt C solution

The ANSI C standard does not support global register variables; the storage
specifier register is only available for variables declared in a block, and for
formal arguments [2]. This leaves only the possibility of storage on stack.
The regular way to achieve this in the C programming language, is by passing
Current Processas a parameter (the first) to all routines of the lnterpreter.
This would imply the changing of all formal parameter lists, as well as all
actual parameter lists; an enormous operation.

68

D.4. The implementation of MPEP

D.4.4.2 The elegant C++ solution

If there were plans for future implementation of CPEP in the C++ program­
ming language (which should he considered as a possibility, as on all target
platforms already hybrid C/C++ compilers are used), the object-oriented
nature of the language could elegantly cape with the problem of the global
pointer Current Process. Current Process would be made a class member
of the class INTERPRETER As such it would be private to a process, and
at the same time available to all memher functions of the INTERPRETER
In this way, no formal parameter lists, nor any actual parameter lists would
have to be changed to achieve the passing of Current Process between IN­
TERPRETER routines.

A change from C to C++ will also be quite an operation. Although C is
a subset of C++, C++ is more than 'C with classes'; it is a different language.
Whereas most C code will remain usable without change, and hybrid code
would do fine for an intermediate phase, a true C++ implementation involves
library design and class modelling.

Incidentally, in the object-oriented paradigm that was adopted to model
dynamic MPEP, these kind of access scope problems can be avoided in an
elegant way. The class concept allows the routines of a class to share private
class data. The programmer does not need to pass the private data explicitly
over the stack. This makes the object-oriented approach especially suitable
for dealing with multitasking environments (see Chapter 3 and [10]).

D.4.4.3 The patch

So far, no decision for a specific salution was made. Because all options
mentioned above involve toa much additional work, the problem has been
patched, temporarily. The pointer Current Process is declared with an extra
level of indirection, i.e., it is now a pointer to a pointer to a main structure
(mn..str**).

The basic reason for this patch to work, lies in the fact that the EMPS
kemel uses virtual memory addressing, and memory mapping for kemel pro­
cesses. Thus, it proved to be possible, using M68000 assembler statements,
to cheat the effective Current Process pointer value onto the stack, making
it private to processes after all. Because this patch is clearly not portable,
and should as such only be used temporarily, for testing, it will not be ex­
plained in detail. The patch is documented quite thoroughly in the MPEP
C sources.

69

Implementation aspects

D.4.4.4 Practical EMPS application problems

MPEP would be the first major application for the EMPS platform. There­
fore, apart from the above 'EPEP related problems', the EMPS platform
still presented some other development areas: e.g., performance, utilities,
debugging, and how and when to redirect terminal 1/0. Because an MPEP
configuration with a Program Editor cannot operate without user input (as
can hardly any serious application), a UNIX-like solution for the redirection
of terminal 1/0 was chosen and implemented.

EMPS applications can now be loaded and started by simply entering the
name of the executable (without extension) in the EMPS kemel command
interpreter. lf an application is started in this way, the EMPS kemel will
redirect all terminal 1/0 to this application. Once the application is started,
the user can switch (redirect) his (m/f) terminal 1/0 to any process that
requests user input. by typing Control Z. One of these processes, of course,
is the command interpreter. When the process associated with terminal 1/0
is stopped or killed, terminal 1/0 is redirected to the process that is awaiting
user input for the longest time.

D.4.5 The UNIX platform

On the UNIX platform (see section D.3.2), the first attempt to the imple­
mentation of multitasking was made.

The CPEP sourees were expanded with two modules (about 2500 lines):
one to handle the declaration and starting of processes, and another imple­
menting the semaphore interface.

The main structure was expanded with four additional fields: the par­
ent's main structure, the child's main structure, a location pointer to the
(optional) expression of the requested process size and (once calculated) the
requested process size. In this preliminary code

• each process can only have one child, and

• the only operation on processes that is available is the start routine.

According to the definitions give above, the specific UNIX platform does
not support processes; it only supports tasks (see section D.4.1). On the
UNIX platform, child tasks are created with the system call fork() [11]. A
fork() is commonly explained as a routine that is invoked once, but returns
twice, the parent task with a nonzero return value (1 on success, -1 on failure)
and the child task with zero return value. Because not only a new process

70

D.4. The implementation of MPEP

(or thread) is created, but in fact an entire new task, upon a fork() all data,
static and heap, is copied (Depending on the specific implementation, UNIX
might copy all program code as well).

Contrary to the EMPS platform, under UNIX the problem that occurs
when assigning a complete task to each new EPEP process, can be solved.
A task can apply for skared memory by issuing a UNIX system call. The cell
tables, code tables, and name tables, etc. are stared in this shared memory,
so that EPEP child processes can iudeed use global EPEP variables.

After fork()ing, the child task must issue another system call to get
access to the shared memory segment.

Interprocess communication (IPC) including the remote procedure call
(see section 3.1.3), was implemented using the UNIX message primitives.

D.4.6 The MS-DOS platform

On the MS-DOS platform the first real multitasking version of MPEP was
implemented. The implementation on the UNIX platform of a simple test of
true multitasking MPEP seemed to be cumbersome, and no expertise on this
subject was available nearby. Because even static CPEP did nat yet operate
on the EMPS system, the MS-DOS platform was chosen to give a quick
answer to the question whether multitasking could be easily introduced to
CPEP, or any major changes had to be made.

Following alternative iii given in section D.4, a small stand-alone kemel
(about 5000 lines) was implemented, that must be loaded before EPEP is
started. It consists of a timer, a simple scheduler, and a user interface, and
provides means of process synchronization. This kemel is a fully object­
oriented, almast literal implementation of [12] (as far as the small imple­
mentation goes). It was written in the C++ programming language (and
small parts in assembler).

The scheduler maintains four ready lists, one for each EPEP priority,
and perfarms time slicing by executing a context switch each 18.2 ms, i.e.,
each doek tick. Communication with the scheduler is handled by the class
PROCESS.

A kemel interface was designed for the communication between user and
scheduler. A request for a certain service may be placed by generating a
MS-DOS software interrupt with the appropriate service number in the AH
register (a CP /M / MS-DOS convention). This kemel interface provides
services to create, block, and kill a process to add or remave it from the
ready list, to obtain a process's id (pid) or a process's parent's id (ppid),

71

Implementation aspects

and to preempt the current process.
To allow the expanded CPEP sourees to offer real multitasking, the scope

of the pointer Current Process has to be be forced from shared to private.
The kemel achieves this by supporting the feature of virtual private memory.
A process may designate a certain physical memory area as private memory.
The kemel ensures that a process will always find the contents of this private
memory area just as when the process left it. Thus, EPEP processes use
four bytes of virtual private memory; the memory locations in which the
pointer Current Process is stored.

With the aid of this simple MS-DOS kemel, a simple multitasking EPEP
application program was successfully executed. The program consisted of a
process declaration and a main loop. Both program blocks contain a loop
that prints an alive message and then issues a delay. After the main program
block has start(...)ed the child process, both processes keep printing their
alive messages as expected.

D.5 An integrated environment for EPEP

As mentioned in Chapter 4 an attempt was made to present an example
of a more efficient and user-friendly way to enter, edit and check EPEP
application programs.

As an example, an integrated desktop environment (IDE), for EPEP pro­
gram editing and EPEP program execution was implemented (6000 lines).
It uses the object-oriented Borland Turbo Vision text-screen based window
library for the MS-DOS platform. This EPEPIDE was named XPEP.

XPEP provides a full-screen text editor, a turn-key interface to the
CPEP interpreter, online (context) helpandan automatic indentation fea­
ture.

72

Appendix E

Future work

Most urgent future work involves standardization of CPEP sourees and
EMPS kemel sources. This is due to the facts that CPEP is still under
development while the additional MPEP sourees are not yet incorporated
into the CPEP sourees EPEP is the first serious EMPS application, and the
EMPS kemel is still being reorganized and customized.

Although two or more programmers work on the project simultaneously,
no means of version control is used; that is why souree code must be man­
ually merged.

E.l The EMPS kernel

The EMPS kemel has several areas open for improvement, here only the
urgent CPEP related problems are summarized.

• Standardization of header files of the EMPS kemel (and CPEP). Tem­
porarily, parts of EMPS kemel header files are copied and used by
MPEP because both cannot yet be included.

• Standardization of EMPS kemel services, functionality and names.

• Offering of kemel services using standard headers and library file.

• Full use and support of customizable ANSI C libraries for EMPS ap­
plications, e.g., getchar instead of read(l, &c, 1). A number vital
ANSI C functions for EPEP were implemented in customized EMPS
library files.

73

Future work

• Control-C detection and support of user defined Control-C handlers.
The implementation of UNIX signals might be a good idea.

• Providing of delete....semaphore routine.

• Providing of semaphore_inspect routine.

• Fixing term_proc, and offering of functionality under name exit.

• Provide primitives to turn the time-siicing mechanism on/off. EMPS
kernel processes run at software level 0. A loek could therefore be
performed by a simple piece of assembly code mov 2700, sr.

• Real time doek.

• Command interpreter:

- progress indicator

- kill process (and other operations) by name e.g. kill cpep instead
of kill 2000015.

E.2 CPEP

Static CPEP is still developing further. There are, however, some important
tasks that should be handled before CPEP and MPEP can be merged. These
are:

74

• Standardization of header files of CPEP and (EMPS kernel), see pre­
vious section.

• Choice for and implementation of one of the options discussed in sec­
tion D.4.4, to allow a sound basis for MPEP processes, rather than
the currently used patch.

• When major changes in the CPEP sourees should be made (see pre­
vious item), it would be wise to consider the development and imple­
mentation of a naming convention for CPEP sources. In addition, the
use of good and explicit names, instead of single letter variables and
cryptic abbreviations would make CPEP a lot easier to read, debug
and develop.

E.2. CPEP

E.2.1 CPEP naming convention

The following sections on the CPEP naming convention, could be considered
tostand somewhat besides the scope of this thesis. They are presented here
because (i) CPEP seemsin want for such a discussion and a lot of interest
on the subject was expressed, and (ii) in this Appendix all other suggestions
for future work and changes to CPEP are summarized. Every programmer
that is working (or going to work) on CPEP will be faced with this matter.
Seen from this viewpoint this Appendix seems to be an appropriate place
to discuss the CPEP naming convention. Aspectsof object-oriented naming
are also considered.

E.2.1.1 User defined types

CPEP defines and uses integer types such as BYTE, SBYTE, WORD, SWORD,
instead of using the predefined c-types (unsigned) char, int. The rea­
sous for this are obscure. There are, of course, some specific variables
that should have a defined size. These include, e.g., the location pointer
(unsigned char*) and the fieldsof cells. User defined types are not only
used for specific CPEP tasks, but also strictly as parameter to ANSI C rou­
tines. Not always the corresponding user defined type is chosen. A most
peculiar example is formed by the ANSI C string functions that take the
type char*. Often the type BYTE* (unsigned char*) is used instead of
char*.

E.2.1.2 Cryptic narnes

Similar to most conventional C programs, CPEP tends to use cryptic narnes
for structures, variables and fields where possible. This may save the pro­
grammer some key-strokes, but it makes the program much harder to un­
derstand for an outsider or newcomer. lt is a known fact that variabie
narnes that based upon some kind of abbreviation, often only seem logica!
to the programmer of the code himself (abbreviations may not seem so log­
ica! anymore when one is confronted with scarcely docup1ented code that
was written some time (say two years) ago-did I write this?). The use of
good narnes really is harder than it looks, but it makes the program much
better readable.

75

Future work

E.2.1.3 Narnes of structures and fields

Most structures in CPEP are typedefed with a name of the form XXX_STR.
lf instead the struct namespace would be used, a structure variabie dec­
laration could be identified by its prefix struct. The postfix _STR is made
redundant and these four extra characters could be used instead for a clear
name. In addition, if narnes of structure variables were chosen carefully, it
would not be necessary to echo the name of the involved structure in its
field nam es, as seems to be the convention in CPEP.

In CPEP we may find something similar to this:

typedef struct pu {

BYTE* pu_nt;

} PU_STR;

{

PU_STR* pu_ptr;

pu_prt->pu_nt = nt;
}

Compare this to:

struct Unit {

BYTE* nameTable;

};

{

struct Unit* unit;

unit->nameTable = nameTable;
}

In the second example, one can immediately understand what is hap­
pening. Note that the only differences between both examples result from
the choice of names.

76

E.2. CPEP

E.2.1.4 Suggestions fora naming convention

There are several naming conventions commonly used for writing C code. It
is not so important which convention is used, because readability is to some
extent a question of personal taste and habit, as long as there is a clear
definition that is universally applied by all programmers that work on the
project, so that all code has a similar appearance, and programmers do not
have to choose whether to use capitals, underscores or both, every time.

With the advent of the object oriented programming techniques and C++,
the naming problem easily gets out of hand. It often is convenient to have
an object and an instanee that are described best by the 'same' name (e.g.
String string; where String is the object and string is an instance).

Borland defines a naming convention that handles all these problems in
a simple way [3]:

• From the mere spelling (ca pitals and lowercase) of a name, one can
tell if it a a class or structure, a constant, or a class memher (or shared
variable).

Borland spelling convention [3]
type spelling example

class, struct first letter is capital String
only

generic class concatenation of class StringList
narnes

class memher first word iCantReadThis
lowercase, subsequent
words start with capi-
tal

constant, define all letters uppercase, LINE_LENGTH
words joined with un-
derscores

• Only full narnes are used, except for obvious counters in simple loops
e.g. for (int i = 0; i < MAXIMUM; i++){ ... }.

• Pointer variables end with Ptr.

77

Future work

E.3 MPEP

The essential multitasking and multiprocessor primitives are implemented
and tested. Several, most EPEP-related dynamic primitives however, re­
main to be implemented. This should be a rather straightforward job, be­
cause MPEP provides the necessary primitives on C souree level. The main
reason for leaving this task open is the fact that these primitives imply some
simple but essential changes in CPEP, while MPEP and CPEP sourees were
not yet merged. lmplementation would have meant double work.

78

• lmplementation of (connecting of) the process related EPEP primi­
tives abort, ask_priority, error_cause, main, myself, set_priori­
ty, show _ec.

• The loekjunloek mechanism. The EMPS kemel must offer primitives
to turn the time-siicing mechanism on/off.

Appendix F

Kernel requirements

The requirements that MPEP imposes upon the operating system are pre­
sented in two parts, viz. static primitives and dynamic primitives. For a
(dynamic) UNIX implementation the static C platform primitives are also
required.

In a number of tables the narnes of UNIX / EMPS functions are given,
with a briefdescription of their functionality.

For detailed descriptions of static (C) primitives see [2] or [11]. De­
tailed descriptions of dynamic UNIX primitives can be found in [11], EMPS
primitives are described in [7].

F .1 Static primitives

F.l.l 1/0 primitives

F.l.l.l File primitives

Name Platform
close C EMPS

open C EMPS

re ad CEMPS

unlink CEMPS

rename CEMPS

write CEMPS

79

Description
close file

open file for reading or writing

read from file

delete file

rename file

write to file

Kernel requirements

F.1.1.2 Stream primitives

Name Platform Description
fclose C EMPS close stream

fop en CEMPS open stream

fprintf C EMPS formatted output to stream

fread C EMPS read data from stream

fscanf C EMPS formatted input from stream

fseek C EMPS position file pointer of stream

fwrite CEMPS write to stream

perror UNIX system error messages

printf C EMPS formatted output to stdout

sprintf C EMPS formatted output to string

scanf C EMPS formatted input from stdin

sscanf CEMPS formatted input from string

F.1.2 Mathematica! primitives

Name Platform Description
atan CEMPS are tangent

atan2 C EMPS are tangent of y / x

a tof CEMPS convert string to fioating point

atol C EMPS convert string to long

cos CEMPS cos me

exp C EMPS calculate power of e

fabs C EMPS absolute value of fioating point

ft oor CEMPS round down

log C EMPS logarithm ln(x)

loglO CEMPS logarithm, base 10

sm CEMPS sine

sqrt C EMPS calculate square root

80

F.l. Static primitives

F.1.3 Memory management

Name Platform Description
AllocateMemory EMPS allocate memory

malloc CEMPS allocate memory

malloc EMPS allocate memory

malloc_type EMPS allocate memory

getrlimit c available memory

F.1.4 String operations

Name Platform Description
memcmp C EMPS compare two strings of n bytes

memcpy C EMPS copy string of n bytes

memset C EMPS set n bytes of string

strcpy C EMPS copy string

strlen C EMPS calculate length of string

strncmp C EMPS compare at most n characters of
two strings

strncpy C EMPS copy at most n characters of
string

tolower C EMPS translate character to lowercase

toupper C EMPS translate character to uppercase

F .1.5 Time management

Name Platform Description
clock CEMPS number of clock ticks since pro-

gram start

localtime CEMPS convert date and time to tm
structure

time CEMPS get time of day

81

Kernel requirements

F .1. 6 Error handling

Name Platform Description
longjmp

setjmp

C EMPS perform nonlocal goto

C EMPS set up nonlocal goto

F.2 Dynamic primitives

The multitasking platforms currently supported, viz. the EMPS platfrom
and the UNIX system V platform, offer similar dynamic operating system
features, but with a different set of primitives. For future MPEP platforms,
only the functionality of either one is required.

F .2.1 Interprocess communication

F.2.1.1 IPC creation

Name Platform
Conneet EMPS

CreateMailBox EMPS

msgctl UNIX

F.2.1.2 IPC deletion

Name
RemoveMailBox

msgctl

msgget

Platform
EMPS

UNIX

UNIX

F.2.1.3 IPC operation

Name Platform
ReceiveFromPort EMPS

msgrcv UNIX

SenciToPort EMPS

msgsnd UNIX

82

Description
conneet port to mailbox

create mailbox

message queue control

Description
remove mailbox

message queue control

set up message queue

Description
get message from mailbox

get message from message queue

put message in mailbox

put message in message queue

F.2. Dynamic primitives

F.2.2 Process management

F.2.2.1 Process creation

Name Platform Description
CreateProcess EMPS set up new process

StartProcess EMPS start process

fork UNIX start new process

F.2.2.2 Process deletion

Name
KillProcess

exit

Platform Description
EMPS terminate process

EMPS terminate process

F.2.2.3 Process identification

Name Platform Description
getpid EMPS get process identifier

getpid UNIX get process identifier

F.2.2.4 Process scheduling

Name Platform Description
delay _process EMPS block process for amount of time

sleep UNIX block process for amount of time

F .2.3 Process synchronizaton

F .2.3.1 Semaphore creation

Name Platform Description
GetSEM EMPS get PhyBUS sernaphare

create_semaphore EMPS get new sernaphare

semctl UNIX sernaphare control

semget UNIX set up sernaphare

83

Kernel requirements

F .2.3.2 Semaphore deletion

Name Platform Description
EMPS delete semaphore

semctl UNIX semaphore control

F.2.3.3 Semaphore operation

Name Platform Description
signal EMPS perform signal operation on se-

maphore

wait EMPS perform wait operation on sema-
phore

sernop UNIX perform operation on semaphore

F.2.4 Shared memory

Name Platform Description
shmat UNIX map shared memory

shmctl UNIX shared memory control

shmdt UNIX delete shared memory

F.2.5 Signal handling

Signal handling is not supported by the EMPS kemel.

Name Platform Description
signal UNIX specify signal-handling actions

sigaction UNIX handle signal

system UNIX execute shell command

84

Bibliography

[1] Oasys I Green Hills 68K. "Cross developement guide, version 1.8.6".
PrenticeiHall Int., 1993.

[2] Mark Williams Company. "ANSI Ca lexical guide". PrenticeiHall Int.,
Englewood Cliffs, NJ, 1988.

[3] S. R. Davis. "Hands-on Turbo C++". Addison-Wesley, Amsterdam,
1991.

[4] W. M. Dijkstra. "PEP Programmeertaal voor de MicroGiant". Techni­
ca! Report BL 87-02, Eindhoven University of Technology, April 1987.

[5] J. H. Emck, J. H. Voskamp, and A. J. van der Wal. "EPEP: An oper­
ating system designed for experiment-control". Technica! report, Eind­
hoven University of Technology, 1985.

[6] M. Maekawa, A.E. Oldehoeft, and R. R. Oldehoeft. "Operating systems
- advanced concepts". The BenjaminiCummings Publishing Company,
Inc., 1987.

[7] R. Marissen. "The real-time EMPS-kernel: Memory management and
suitability for EPEP I PhyDAS". Eindhoven University of Technology,
October 1994.

[8] Eertrand Meyer. "Object-oriented software construction". Pren­
ticeiHall Int., 1988.

[9] B. Stroustrup. "The C++ programming language". Addison-Wesley,
Reading, Massachusetts, second edition, 1991.

[10] B. Stroustrup. "The design and evolution of C++". Addison-Wesley,
Reading, Massachusetts, 1994.

85

BIBLIOGRAPHY

[11] R. Thomas, L. R. Rogers, and J. L. Yates. "Advanced programmer's
guide to UNIX System V". Osborne McGraw-Hill, Berkeley, California,
1986.

[12] G. J. W. van Dijk. "The design of the EMPS multiprocessor execu­
tive for distributed computing". PhD thesis, Eindhoven University of
Technology, March 1993.

[13] 0. van Roosmalen. "A hierarchical diagramrnatic representation of class
structures". To be published.

[14] P.W. E. Verhelstand N. F. Verster. "PEP: an interactive programming
system with an algol-like programming language". Software-Practice
and Experience, 14(2), 119-133, February 1984.

[15] N. F. Verster. "Verschillen tussen EPEP en CPEP, deel 1". Discussi­
estuk Werkgroep FTL, October 1992.

[16] J. H. Voskamp. "An object-oriented approach in the software design
for experimental physics". Internal report, 1987.

[17]

86

J. H. Voskamp and A. J. van der Wal. "A database approach for the
control of teehuical processes". Technica! report, Eindhoven University
of Technology, 1985.

