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1 

Introduetion 

The construction of a software model was an essential step in the process of 
upgrading and porting EPEP (Eindhoven Program Editor and Processor) to 
multitasking operating system (MOS) platforms such as UNIX (System V) 
and the multiprocessor EMPS (Eindhoven MultiProcessor System) platform. 

1.1 Automation of physics experiments 

At the Department of Physics of the Eindhoven University of Technology, 
a standardized system was developed for the automation of physics experi­
ments. 

Automation of a physics experiment has two aspects, viz. experiment 
control and data acquisition. These are largely independent tasks that can 
best be handled in a multitasking environment that has a predictabie real 
time behaviour. 

The standardized automating system is composed of: 

hardware: a general-purpose Physics Data Acquisition System (PhyDAS), 

software: an interpretative development environment, the Eindhoven Pro­
gram Editor and Processor (EPEP). 

PhyDAS integrates the experiment control and data acquisition hard­
ware. It is an assembly of standardized, general-purpose interface mod­
ules. Data transport and communication are performed via a specialized 
bus (PhyBUS). PhyBUS is separated from the computer bus, and hence 
the measuring hardware and measuring performance are independent of the 
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Introduetion 

computer that is used. In addition, the real time behaviour of the system is 
much better predictable. 

EPEP is the combination of an object-based, multitasking operating sys­
tem, an interactive program development environment, and an interpreta­
tive processor. The application language is a function-oriented (procedural) 
PASCAL-like programming language. 

1.2 The object-oriented model 

Figure 1.1 shows the schematic of the currently operating multitasking 
EPEP configuration (standard-EPEP). Because the EPEP System is the 
lowest software layer it must provide its own operating system. The most 
common EPEP application is the Program Editor. 

EPEP application 

EPEP System 

M68030 hardware 

Figure 1.1. A standard-EPEP contiguration consistsof two software layers: the EPEP 
System, that runs on the Motorola M68030 processor, and an EPEP application pro­
gram, usually the Program Editor. 

Ongoing developments in multiprocessor systems, e.g., dependable dis­
tributed computing, tagether with the need for more computing power and 
increasing real time demands in physics experiment control, have led to 
the design and implementation of the Eindhoven MultiProcessor System 
(EMPS) and the EMPS multiprocessor executive [12] for distributed com­
puting. 

The EMPS platform was, apart from presenting an environment for de­
pendable distributed computing, developed to control the PhyDAS hard­
ware. It was designed to (gradually) replace the currently used single pro­
cessor M68030-based system. The new multiprocessor implementation of 
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1.2. The object-oriented model 

EPEP, forshort called MPEP (Multiprocessor Program Editor and Proces­
sor), was primarily designed to run on the multiprocessor EMPS platform. 
Recent developments however, indicate that commercially available inte­
grated microprocessor systems (RISC architecture) could easily replace the 
EMPS platform, and might very well present a cost-effective alternative. 

The new MPEP implementation will use the external MOS kernel to 
handle all operating system tasks, which farm an integrated part of the 
(single processor) standard-EPEP software. 

Hence, MPEP must have a well defined interface to the MOS kernel. In 
addition, MPEP must provide multiprocessor primitives. The first step in 
the development of MPEP is the realization of a clear working model for 
EPEP. 

On the occasions that specific MOS kernel issues must be addressed, the 
description of the EMPS executive will be used to provide the definitions. 
The facts that the EPEP design was object based [14], and the description 
of the EMPS executive is object-oriented, have led to the choice for an 
object-oriented description of EPEP. 

A brief introduetion to object-oriented design is presented below, full 
descriptions can be found in [8] and [9]. 

1.2.1 Object-oriented design 

The object-oriented paradigm offers the combination of data-abstraction and 
information-hiding as a salution that makes complex roodels easier to design 
and verify. It does so by concentrating on the objects that are handled, in 
contrast to the conventional function-oriented paradigm, that focusses on 
the tasks to be performed. 

The essence of the object-oriented model is the structured variabie type 
class. An object-oriented model consists of class definitions and the rela­
tionships between these classes. 

Instauces of a class are called objects. A class is a collection of features, 
where a feature can be an attribute, representing a data field of an object, 
or a routine, specifying operations on objects. A class is the definition of 
one are more data structures, supplemented by a set of specific operations 
that can be used to manipulate an object's data. 

The general idea of object-oriented design is to create a small but com­
plete set of routines for each class. Attributes and low-level routines are 
preferably hidden within the class. A feature that is accessible to other 
classes, is called an export feature. From the outside, a class looks like a 
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black box of which only the relevant (i.e. accessible, exported) features can 
be seen; details of the implementation of the class are hidden. The total 
set of export features a class provides for use by other classes is called the 
interface of the class. 

From a parent class child classes can be derived. A child class inherits 
the features from its parent class, but can also add or substitute some fea­
tures. Constructing a whole family of classes that have the same interface, 
i.e. look quite similar from the outside, all memhers of this family can be 
handled alike, while each individual member will take care of its specific 
implementation aspects. In this manner a greater level of abstraction is 
achieved, which helps to concentrate on the essence, not troubled by the 
details of implementation. 

1.3 Overview 

The Object-Oriented Model presented for EPEP consists of two separate 
parts, viz. the Processor (EPEP System) and the Program Editor (User 
Interface). 

The static part of EPEP is modelled in Chapter 2. lt gives a new and 
clear view of the static part of standard-EPEP. 

The model for the dynamic, mul ti processor version of EPEP (MPEP) is 
presented in Chapter 3. This dynamic model was designed as an extension 
of the static model. lt has been the basis for the implementation of the 
multitasking and multiprocessor aspects of MPEP. 

Chapter 4 describes the Program Editor. lt provides the user interface 
for writing and executing EPEP application programs. 

The Program Editor is actually an EPEP program that is interpreted 
by the EPEP System. lt is, however, indispensable for the EPEP concept. 
Using the mechanisms of the EPEP System in an advanced way, it realizes 
a unique concept of modularity. 

Classes and their relationships are represented using the graphical rep­
resentation method of class diagrams [13]. Class definitions are described in 
the Eiffel object-oriented programming language [8]. 
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2 

EPEP: The Static Model 

In this chapter, the model for the static part of standard-EPEP is presented. 
The model is based on the object-oriented programming paradigm. It 

was designed using an internal report [16] and other literature [4, 5, 15, 17] on 
EPEP. The EPEP sourees were consulted and various tests were performed 
to assure an accurate description. Although EPEP was not implemented in 
an object-oriented programming language, its design was object-based and 
hence EPEP is perfectly suitable for object-oriented modelling. 

The goal of this first model is to get a clear picture of the internal struc­
ture of EPEP, viz. theEPEP application language interpreter, the operating 
system, the Library, and the user interface. This will form the basis for the 
multiprocessor model of MPEP. 

Standard-EPEP is constructed of two software layers (Fig. 2.1). The 
lower layer is the EPEP System, that provides its own operating system. 
It consists of the Library (LIB), the operating system, and the Interpreter 
(INT). In this model, the operating system primitives are contained within 
the Library. 

The operating system can be split-up into a static part, which includes 
basic input and output routines (I/0) and other static system primitives 
(STD), and a dynamic part. The dynamic system primitives (DYN) include 
memory management (MM), time management (TM), process management 
(PM), process synchronization (PS), and interrupt handling (INTH). These 
must, in the new version MPEP, be provided by the MOS kernel, and are 
not described in the static model for EPEP. 

From outside the EPEP System, the only item that can be accessed 
through the system interface is the Interpreter. In the standard configura-
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~f"::""'-:"'-::::"":::"-":::.:.c.:-'""-:·:·"'-=-:""'-':-"-":-:"'-·:·"":···"-"· ·~~~~ userinterface 

I 
I EDITOR 

i ........... ~=~ systeminterface 

LIB I uo I STD I DYN INT 

~interface 

- no interface 

M68030 

Figure 2.1. Standard-EPEP consists of the Program Editor and the EPEP System. 
The EPEP System is the lowest software layer. 

tion, the only user of this interface is the Program Editor, when it invokes 
the Interpreter to handle the execution of an application program. Library 
maintenance and the use of Library primitives can only be performed from 
within an application program. When an application program is executed, 
it is handled by the Interpreter, that has access to the Library and thus to 
the operating system primitives. 

In Chapter 4 the possibilities of using the operating system from within 
the Program Editor are explained by arguing that the Program Editor ac­
tually is a special kind of application program. 

Configurations other than the one shown in Figure 2.1 would be possible, 
e.g. with the Program Editor replaced by another application program that 
has access to the system interface, but these are not very common. Normally, 
the Program Editor is used to start a subsequent application program. The 
Program Editor uses the primitives of the EPEP System to implement the 
'library mechanism' as a part of the user interface. 

2.1 Modular structure of applications 

Software development is not confined to the merely correct implementation 
of an algorithm. Some basic aspects, which in fact help a correct implemen­
tation, have to be taken into account: 

simplicity / clarity: In spite of the inherent complexity of certain tasks, it 
must be reasonably easy to verify whether a computer programmeets 
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the specified requirements. 

reusability: For the performance of similar tasks, it should be possible to 
use the same program code. 

extendibility fmaintenance: A computer program should be rather easily 
adaptable to small changes in the specifications. 

A software developing environment does a fine job if it encourages the 
programmer to write structured programs. This was the main reason to 
design the EPEP application language [4] based on a PASCAL-like struc­
ture [14]. Similar to a PASCAL program, an EPEP application program 
consists of a declaration part, declaring global routines and variables, and 
a preferably simple main loop. In addition, a user-extendible library is in­
cluded within the system. This library holds global routines and variables 
for use by application programs. 

2.1.1 The Library 

A 'high-level' software developing environment, such as EPEP, must provide 
tools for creating modularly structured application programs. 

The Library and the 'library mechanism' play an important role in this 
modularity. The Library is constructed of units, that define global routines 
and variables, which can be used by application programs. The EPEP Sys­
tem supplies the first unit that is stored in the Library, the system unit, that 
is always available. It provides basic input and output routines (1/0), stan­
dard mathematica! functions and other general-purpose primitives (STD). 
After this first unit, other, user-defined units may be stored in the Library. 

The hardware of the automating system, that is based u pon standardized 
hardware interface modules, is complemented by standardized library units. 
Although most hardware interfaces are rather simple and easy to control, 
with several hardware interfaces goes a library unit, supplying standardized 
low-level control software. In this way, a programmer does not have to 
know the specific programming of complex hardware modules, and, more 
importantly, an application program does not 'need to know' how to operate 
some specific piece of hardware. High and low level tasks are separated, 
and hardware interfaces can he added or interchanged with a minimum of 
software redesign. 

Applications that are designed to control complex experiments, often 
consist several standardized interface control units and one or more user­
defined units. 
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2.1.2 Program vs. unit 

In the previous section, the unit was introducedas a library building block, 
supplying global routines and variables for an application program. There 
exists, however, a close relationship between unit and application program. 

When an application program is executed, all external routines and vari­
ables that the program uses, are obtained from the Library. U pon execution, 
the global declarations made in the program, the 'unit part', is split-off as 
an actual unit, which is subsequently stored in the Library. 

Then, as stated above, these globals are available from the Library for 
any application program. The only candidate for using this new library unit 
is, of course, the application program itself. When an application program 
has reached the end of execution, the unit it defined is removed from the 
Library. 

2.1.2.1 Application program vs. library program 

The souree of a library unit is written in the EPEP application language, 
using the Program Editor, in quite the same manner as an application pro­
gram. As a unit is a library element, it is convenient to introduce the name 
library program for the 'souree of a unit'. Library programs are used to group 
more generally reusable, to some extent experiment independent routines, 
or to structure large application programs. 

A library program is executed just like an application program, and its 
'unit part' is put in the Library. The difference with respect to executing 
an application program is that the new library unit must remain in the 
Library, so that other units may be added, or an application program may 
be executed, making use of the newly expanded Library. This is achieved by 
simply preventing the library program from reaching the end of execution, 
since at the end of execution, the newly stored unit would be removed from 
the Library. Just befare a library program would reach the end of execution 
it invokes the Program Editor, which offers the user the opportunity to 
extend the Library once more, i.e. to execute another library program, or 
to execute an application program. 

In Chapter 4 the implementation and the practical use of this feature 
of the Program Editor, that has become known as the 'library mechanism', 
are discussed. 
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2.1.3 The internal structure of a program 

Is was mentioned above that the the EPEP application language is function­
oriented and has a PASCAL-like structure. lt is designed for the implemen­
tation and execution of algorithms, is highly structured, and has additional 
interface control features. 

The implementation of a program consists of two parts. The first part de­
fin es global variables and routines. These definitions are called declarations. 
The second part is the routine where program execution starts, known as 
main. A variabie represents some specific value or data, e.g., a number or a 
series of characters. A routine may define local variables, and specifies a list 
of actions. These actions are referred to as statements. A single statement 
can only be used to manipulate a variabie or direct the program flow. 

The structure of a program is aften improved if certain statements are 
grouped, by forming a lists of statements. A list of statements, optionally 
preceded by a list of declarations, is called a block. Within this framework 
a routine is a block, and even an entire program can be seen as a block. 
Another grouping of statements is provided by the structured statement. A 
structured statement contains one or more blocks and may direct program 
flow to one of these blocks, depending upon certain conditions. 

2.1.4 The cell concept 

In the object-based design of EPEP, the cellis a key concept. For each type 
of routine and variabie of the application language, a specific cell type was 
designed. At run time, an instanee of each identifier is implemented as a cell 
of the conesponding type. All different cell types can be basically handled 
in the same way, which is one of the cornerstanes of object-based design. 

A cell holds the information that is associated with a particular identifier, 
i.e., the 'value' or 'meaning' of the instance. This may be a simple integer 
value for the instanee of an integer, or a piece of program code for the 
instanee of a procedure. Every operation on an identifier is actually an 
operation on the cell it represents. Similar to units, that construct the 
Library, cells are the elementary building blocks of a unit. 

2.2 The Classes of EPEP 

In the previous sections the main concepts of EPEP were presented with­
out introducing any software classes. In the following sections the software 
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model is presented by descrihing the main classes and their relationships. 
Befare examining these classes one by one, they are summarized below. 

Internal Interface Parameters 
s Interpreter CELL PROGRAM SOURCE 
y STATEMENT 

s BLOCK 

T Library CELL UNIT NAME 

E NAME LIST of UNIT CELL 

M 

Editor SOURCE EDITOR_COMMAND 

Figure 2.2. The internal and interface classes of static EPEP. 

EPEP: The root class of the static model is the class EPEP. EPEP HOLDS 
THE LIBRARY, THE SYSTEM UNITAND THE SOURCE OF THE 
PROGRAM EDITOR 

SOURCE: The class SOURCE represents the souree of an application pro­
gram written in the application language. 

UNIT: The class UNIT contains global routines and variables. These are 
made available to library programs or application programs when the 
UNIT is put in the Library. The class UNIT is a basic element of the 
class PROGRAM. 

PROGRAM: The class PROGRAM is the executable form of SOURCE. 
A PROGRAM can only be created from a class SOURCE. To be 
executed it offers the routine interpret. 

CELL: A cell in EPEP is represented by a class CELL. There is a whole 
family of CELLs, for each specific type of cell there is a matching 
CELL. CELLis an elementary buildingblockof the UNIT. 

STATEMENT: A statement is represented by a class STATEMENT. A 
whole family of STATEMENTs exists; for each specific statement of 
the application language there is a matching STATEMENT. 
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2.3. The EPEP Root structure 

BLOCK: The class BLOCK represents the block in EPEP. lt will be 
shown that a PROGRAM is a kind of BLOCK, and that a BLOCK 
handles program execution. 

In Figure 2.2 the use of these classes is shown. The interface of the 
system is formed by the class PROGRAM, which takes the class SOURCE 
as a parameter. The system can only be used through the system interface. 
The only direct user of this interface is the Program Editor, when invoking 
the system to handle the execution of a library program or an application 
program. The task of the Program Editor is to provide a user interface 
for writing and executing library programs and application programs, i.e. 
providing means to construct a SOURCE, 'hand it over' to the Interpreter 
that creates a UNIT and a PROGRAM, and extends the Library with the 
UNITand starts the execution of the PROGRAM. 

2.3 TheEPEP Root structure 

The graphical representation metbod for classes and their relationships [13] 
as shown in Figure 2.3 and below, is summarized in Appendix A. The Eiffel 
object-oriented programming [8] is used to describe the class definitions. 
The standard class interfaces from the Eiffellibrary used in this model, are 
described in Appendix B. 

2.3.1 The root class EPEP: EPEP at start-up 

Starting EPEP implies the creation of an instanee of the class EPEP (see 
Fig. 2.3). The main object EPEP initially contains the empty LIST library, 
the UNIT system_unit and the SOURCE editor. The library is a generic 
LIST of UNIT; items to be put in this list must also have the class UNIT as 
a base class (In this model only UNITs, that may be part of a PROGRAM, 
are put in the Library), items got from the library are always expected to 
be, and can therefore only be treated as, UNITs. The library is a global 
attribute of the system; every PROGRAM is allowed to use this list. 

In this static model, the operating system is merely a set of system prim­
itives for the performance of basic input and output (1/0). These system 
primitives, together with a standard library of mathematica! functions and 
several other general-purpose primitives (STD), are contained within the 
system_unit. This system_unit is an instant UNIT, it is the only UNIT 
that is not created from a SOURCE. The create routine of EPEP, that is 
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Figure 2.3. The Root of EPEP. lnitially, an empty Library, the system unit, and 
the Program Editor are present in the system. The implementation of the Library, as 
a global, generic LIST of UNIT, and the use of a SOURCE for interface to create a 
PROGRAM is clearly shown. The classes UNITand BLOCK are slightly simplified in 
this first diagram, for readability reasons. 

invoked when creating the root object EPEP, perfarms four tasks, that quite 
obviously follow from the figure (see the class definitions, Appendix C): 

12 

1. the system_unit is put in the LIST library, using the routine 
library.put, 

n. from the SOURCE editor the PROGRAM editor _program is 
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2.3. The EPEP Root structure 

iii. the UNIT part of the editor _program is put next in the LIST 
library, 

1v. the editor _program is started by calling the routine 
editor _program.interpret. 

EPEP is now ready for a user. 
In the introduetion of this chapter it was stated that the goal of the 

static model for EPEP is to clearly distinguish EPEP's four basic parts. 
So far the (i) Library, the (ii) operating system and the (iii) user interface 
were located as separate objects in the system. The missing fourth part, 
the Interpreter (or Processor), will not be found as one single object. lts 
functionality is offered by the STATEMENT family. 

2.3.2 Class SOURCE: Writing an application 

It is common use to write program implementations using one's favorite 
fully featured text editor. Hence, often the name program text is used for 
such an implementation. EPEP, however, does not work with plain ASCII 
program sources. The built-in Program Editor eneodes the program text 
line by line, while it is being typed in. This encoding is fully reversible. The 
encoded program text produced by the Program Editor is used literally by 
the system interpreter. Using encoded program sourees speeds-up program 
execution. Furthermore, because the ( encoded) souree itself is interpreted 
it must be stored in foreground memory. Using encoded sourees that are 
shared between Program Editor and Interpreter saves substantial amounts 
of memory. 

A high-level application language text can be distinguished into reserved 
words, special characters, combinations of special characters and identifiers. 
Encoding a souree implies the representation of all these items by simple 
tokens. Each reserved word, special character, and special character com­
bination has a specific token. Every identifier is assigned a special kind of 
token, a tag, numbered in order of appearance in the source. 

A program souree is principally encoded into two tables (Fig. 2.4): 

code : a generic ARRAY of TOKEN. The intermediate program code, 
TOKENs and TAGs, that can be interpreted, 

narnes : a generic TABLE of TAG to NAME of all identifiers used in the 
program. 
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NAME 

Figure 2.4. The class SOURCE implements the EPEP standard souree of application 
programs. lt mainly groups a number of tables. The layout tables are not shown in 
detail, which improves the readability; they are not discussed further in the model. 

Besides these two tables that are needed for exeeution, a program souree 
may eontain four tables of layout information, used by the Program Editor 
only, to reeonstruet the souree text so that it may be viewed and re-edited. 
These are: 
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line_table: a table of line numbers, 

index_table: a table of line breaks, 

indenLtable: a table registering the horizontal line indentation, 

remark_table: a table of all comments. 

All six souree tables are grouped forming the class SOURCE (Fig. 2.4). 
The tables are placed on the class interface instead of being hidden within the 
class. The reason for choosing this solution is that many different operations 
of diverse origin may be performed on these tables, and on combinations 
of them. The Program Editor, that creates the SOURCE, has a variety of 
additional commands for filling and inspecting these tables or parts of them. 

2.3.3 Class UNIT: The Library revisited 

NAME 

CELL 

Figure 2.5. The class UNIT. The class NAME covers the name of an identifier; for 
the moment the explicit implementation is of little importance. 

In sections 2.1.1 and 2.1.4 the unit was introduced as an elementary 
library building block that is consists of cells. The unit is represented in the 
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model by the class UNIT. (Fig. 2.5). The UNIT is a simple class with only 
two features, the attribute cells, a generic TABLE of NAME to CELLand 
the routine find_name, using the classes NAME and CELLas parameters. 

To explain the action of the class UNIT and its key position in the model, 
it is necessary to briefl.y consider the program execution. Interpreting the 
program code, which as a whole seems to be an arbitrary series of tags and 
tokens, implies grouping it into statements, small pieces of code that belong 
together, defining basic tasks that must be performed. A statement defines 
one, or a combination, of the following elementary operations: 

i. reading the value of a constant or variable, 

ii. assigning a value to a variable, 

iii. evaluating an expression, 

1v. comparing two values, 

v. directing the program flow. 

At a certain point a conneetion must be made between an identifier tag in 
the code and the cell it represents. The TAG is used to obtain the NAME of 
the identifier from the TABLE narnes (Fig. 2.4). From the library the most 
recently added UNIT is fetched (Fig. 2.3). Invoking its routine find_name 
returns the CELL that corresponds to the specific NAME (Fig. 2.5). lf the 
identifier was defined in another, 'earlier' UNIT, the NULL cellis returned, 
indicating that the CELL of the identifier must be looked up in the next 
recently added UNIT. It is obvious now, why cells is a TABLE of NAME 
to CELL. By using the name of an identifier when searching the successive 
UNITs, it is avoided that an identifier, defined in an early UNIT must have 
the sameTAG in every level of program code (remember that every UNIT 
results from a souree that was tokenized by the Program Editor). 

2.3.4 Class PROGRAM: A glimpse of the Interpreter 

The new class PROGRAM, that is to be discussed here, cannot be pre­
sented without introducing the class BLOCKas well. The class PROGRAM 
is an heir of the class BLOCK, adding one feature, i.e., the routine inter­
pret (Fig. 2.6). For now it is sufReient to know that BLOCK embodies an 
executable SOURCE and takes care of its execution. The class BLOCK is 
discussed later. The PROGRAM's Create routine is of great importance. 
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Figure 2.6. The classes BLOCK and PROGRAM. 

It shows that from a SOURCE a PROGRAM can be created. The two 
tables of a SOURCE that are needed for the execution of a PROGRAM, 
viz. narnes and code, appear in BLOCK, where they will be used. Note 
that the routine interpret is added, but, the routines syntax_check and 
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execute, that will be discussed in section 2.4.2, are 'no longer' available 
on the interface; the only thing one can do with a PROGRAM, besides to 
create and store it, is, as would be expected, to interpret it. 

2.4 The Interpreter 

The last part of static EPEP that remains to be located, is the Interpreter. 
It is the most complex of all, because it involves most classes of static EPEP. 
It was mentioned above that in the object-oriented model, the Interpreter 
is not visible as a single class, but has a rather fragmented nature. lts 
functionality is affered by the individual contributions of the memhers of 
the STATEMENT family. 

2.4.1 Class STATEMENT: the fragmented Interpreter 

Figure 2.7. The base class STATEMENT offers the deferred routines syntax_check 
and execute on the interface. For every statement of the application language there 
is a specific class, that has the class STATEMENT as parent class, and implements the 
routines syntax_check and execute. 

As the function-oriented EPEP application language has a PASCAL-like 
structure, an EPEP program souree generally contains a list of declarations 
and statements. This fact is taken as the basis for the description of the 
Interpreter. 

The Interpreter is modelled using the object-oriented techniques of in­
heritance and dynamic binding. The starting point is the class STATE­
MENT, shown in Figure 2.7. STATEMENT is a base class, it is designed 
only to serve as a parent class for a new group of classes. This 'group of 
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classes' forms the family of STATEMENT-related classes; for every state­
ment of the application language, a matching memher class is developed, 
e.g., the class ASSIGNMENT, the class WHILE..LOOP, the class PRO­
CEDURE_CALL. The only features the class STATEMENT has, are the 
routines syntax_check and execute, both 'dummy' routines in the imple­
mentation of STATEMENT. These are deferred routines, each memher of 
the STATEMENT family provides its own implementation of both routines. 

Summarizing, every statement of the application language is represented 
in the model by a unique class of the STATEMENT family. All STATE­
MENT classes can therefore be treated similarly, each class providing the 
routines that handle its specific execution. Examples of statement classes 
are presented in section 2.4.3. 

2.4.2 Class BLOCK: the task list 

The program souree defines a list of actions to be performed, expressed in the 
application language. In section 2.3.3 such an action was further specified 
to be a statement, a small piece of code in the ARRAY code of a BLOCK 
(Fig. 2.6). Besides statements, a program souree contains declarations. Just 
like the STATEMENT family, a DECLARATION family of related classes 
is designed. For every type of constant and variable, there is a specific 
DECLARATION member. Processing a constant or variabie declaration 
described in the program souree results in the creation of a CELL and a 
NAME, and subsequent storage of CELL in cells and NAME in names. 
This is the reason that a DECLARATION has the class CELL as parent 
class (Fig. 2.6). 

The table code is parsed creating a matching class DECLARATION for 
each declaration and a matching class STATEMENT for each statement in 
the program source. 

2.4.2.1 Creating the task list 

As already mentioned above, STATEMENTs and DECLARATIONs are 
created parsing the table code. Creating a DECLARATION implies the 
dynamica! creation of a CELL. STATEMENTs use these CELLs and are 
therefore also created dynamically, that is, each STATEMENT is created 
just before being executed. 

The BLOCK embodies the general unit for executing the table code 
(Fig. 2.6). The table code of a BLOCK may represent an entire program, 
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a piece of it, or even a single statement. 
It was stated above that the table code represents a list of deelara­

tions and statements. It is the first task of the class BLOCK to interpret 
the code, creating CELLs and STATEMENTs. This task is performed by 
the private routines get_declaration and get_statement. As Figure 2.6 
shows, the routine get_declaration returns a DECLARATION and the rou­
tine geLstatement returns a STATEMENT, which they create by parsing 
the code. 

The execution of a program follows the tracks of its block-structured 
implementation in the application language. Although discussed as 'ap­
plication language detail', the concept of the structured statement must 
be mentioned here. A structured statement is defined to be a statement 
that groups, in any way, a number of statements. The class STRUC­
TURED_STATEMENT is an heir of the class STATEMENT. It is in turn 
the base class for the STRUCTURED_8TATEMENTs. Just like all STATE­
MENTs, a STRUCTURED_STATEMENT may be created from the table 
code. The simplest of the STRUCTURED_STATEMENTs is the class 
BLOCK (Fig 2.6). A BLOCK groups statements, can be syntax-checked 
and executed. For further information see section 2.4.3. 

The parsing of the program code during run time, which includes as­
sociating each statement expressed in the application language with spe­
cific executable routines just before it will be executed, is the essence of an 
interpreter-based system. 

2.4.2.2 Executing the task list 

The interpretation of a PROGRAM is split-up into two parts: syntax check 
and execution. The syntax of the code of a PROGRAM is completely 
checked before it is executed. This speeds-up the actual execution and, 
perhaps more importantly, it prevents a measuring or experiment control 
program from exiting due to a syntax error, which could mean the loss of 
valuable data or leaving the experiment in an undefined state. 

Syntax check The routine syntax_check performs a syntax check in 
a broad sense. Besides the mere checking of the syntax, the library is 
searched for used library routines and variables, whose CELLs are copied 
(by reference) to the table cells of the PROGRAM that is to be executed. 
These CELLs remain in the table cells, ready to be used during execution­
they have a global scope in the application program. All other CELLs are 
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created dynamically and added to the table cells during execution by the 
interpretation of identifier declarations. This can save considerable amounts 
of memory and is a condition for reentrant or recursive routines. 

The checking of the syntax of a BLOCK is performed in two steps: 

1. The routine geLstatement (or geLdeclaration) tries to create a 
STATEMENT (or DECLARATION) from the table code. Upon fail­
ure, a syntax error is found. 

11. lf successful, the syntax of the newly created STATEMENT ( or DEC­
LARATION) is checked. 

This process is repeated until all DECLARATIONs and STATEMENTs 
grouped in the BLOCK are syntax checked. 

The creation of a SIMPLE...STATEMENT will only succeed from a valid 
syntax. The second step only has effect for STRUCTURED...STATEMENTs, 
and is therefore not very interesting if the newly created STATEMENT (i) 
happens to be a SIMPLE_STATEMENT (see section 2.4.1). 

Consider the newly created STATEMENT to be a BLOCK. Check­
ing the syntax of this STRUCTURED...STATEMENT implies the perfor­
mance of both steps that are indicated above; the STATEMENTs grouped 
in this 'second' BLOCK are to be created and syntax checked (by the second 
BLOCK) too. 

Execute The routine execute is quite similar to syntax_check. It per­
farms both steps indicated above, the only difference being that instead of 
syntax_check, the execute routine on the interface of the newly created 
STATEMENT is invoked. Examples of specific implementations of execute 
routines are presented in the following sections. As this model shows, the ta­
bie code is being parsed twice and therefore every STATEMENT is created 
twice (at least, think of loops), once during syntax check and once during 
execution. The second creation of STATEMENTs during execution takes 
up unnecessary execution time. 

2.4.3 Details of the EPEP application language 

The model presented so far is independent of the actual EPEP appli­
cation language. It was shown how a function-oriented program, analyzed 
as a list of declarations and statements, is handled and executed by the 
system, without the necessity of introducing application language specifics. 
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Figure 2.8. The STATEMENT is the base class of all STATEMENTs. The 
routines syntruccheck and execute are deferred, and are implemented by 
child classes. The routines syntruccheck and execute of the classes RE­
PEAT _STATEMENT and CONDITIONAL_STATEMENT are still deferred, as both 
these statements are a base class of respectively the group REPEAT _STATEMENTs 
and CONDITIONALSTATEMENTs. 

This remarkable fact is a consequence of the adoption of the object-oriented 
paradigm. Basically, the execution of a program is the sequenced execution 
of single statements, which obviously are language-dependent. This exactly 
defines the gap that was left yet unfilled, the explicit execution of specific 
statements. To round off the description of this static model, the language 
specific statement details are presented, and examples of statements are 
given. 
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Statements are divided in two main subgroups, the simple statements 
and the structured statements. All STATEMENTs have the class STATE­
MENT as a base class and can therefore be treated in a quite similar way. 
The hierarchy of STATEMENTs is shown in Figure 2.8. 

2.4.3.1 The simple statements 

Figure 2.9. The ASSIGNMENT statement. No syntax check routine is provided, 
for it is already implemented by its base class SIMPLE_$TATEMENT. For the ex­
ecution of an ASSIGNMENT a VARIABLE_CELL and an EXPRESSION are needed. 
The VARIABLLCELL is fetched from the table cells of the current BLOCK, the EX­
PRESSION is created parsing the array code of the current BLOCK. Executing the 
ASSIGNMENT implies calculating the value of the EXPRESSION and assigning it to 
the VARIABLLCELL. 

There are three simple statements, viz. the empty statement, the proce­
dure call, and the assignment. When parsing the table code, the structured 
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statements are easily identified hy their unique taken. This is not the case for 
simple statements; simple statements do not (cannot) have unique tokens. 

The procedure for the identification of simple statements is as follows. lf 
the routine geLstatement finds the starting taken to he a statement delim­
iter, this indicates an empty statement. lf the starting taken is an identifier 
tag, the statement must he either a procedurecalloran assignment. These 
statements are distinguished hy looking at the following tokens, e.g., an 
assignment contains an assignment operator foliowed hy an expression. 

The ASSIGNMENT statement As an example of a simple statement, 
the ASSIGNMENT statement is presented (Fig. 2.9). The UPDATE state­
ment is very similar to the ASSIGNMENT statement. The only difference 
is that the old value of the variahle, that is to he assigned the new value, is 
used first to evaluate that new value. 

2.4.3.2 The structured statements 

There are three groups of structured statements: the hlock, the repeat 
statement, and the conditional statement. A structured statement gen­
erally groups one or more statement lists. All statements must he syntax 
checked and executed individually, which implies that a structured state­
ment must he ahle of creating and executing statements. In all STRUC­
TURED_STATEMENTS BLOCKs are used to perfarm these tasks. 

The IF statement The creation of a STRUCTURED__8TATEMENT 
from the tahle code involves the creation of one ore more BLOCKs. As 
an example of a STRUCTURED_STATEMENT, the IF statement is pre­
sented (Fig. 2.10). 

24 



2.4. The Interpreter 

'...•Y.•taJ<-'hed __ ... · 
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Figure 2.10. The IF statement. Syntax checking an IF statement involves syntax 
checking both true and false BLOCKS. Executed will only be one of these BLOCKS, 
depending on what the condition evaluates to. 
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MPEP: The Dynamic Model 

The dynamic model for MPEP, described in this chapter, is presented as a 
logica! continuation of the static model for EPEP. Besides the use of time 
and process management primitives, as suggested by the qualifier 'dynamic', 
this new model handles multitasking and multiprocessor aspects, and hence 
the name change to MPEP. As suggested in Chapter 1, this dynamic model 
is used for the implementation of the multitasking and multiprocessor as­
pects of the MPEP software. The essence of EPEP, the static model, is 
maintained, and its description given in the previous chapter will be used 
almast literally. MPEP assumes the target platform to provide elementary 
multitasking, and optionally multiprocessor, facilities. A list of MOS kemel 
requirements is presented in Appendix F. 

The dynamic model has three layers of software (Fig 3.1). The figure 
has three interesting starting points. Firstly, the figure does not explicitly 
show a multiprocessor environment. Although the multiprocessor EMPS 
system is an important target platform for MPEP (see Appendix D), it 
should work quite as well in single processor EMPS configurations and single 
processor systems. This leads to the second point of interest, the MPEP 
module. An MPEP module operates standalone, while providing means 
of communication withother MPEP modules. Therefore, MPEP does not 
have global control over all (MPEP) activities on a MOS platform, as more 
than one MPEP module may be present. The third point of importance the 
figure shows, is the fact that MPEP, uses the MOS kemel. Whereas the 
standard-EPEP software has an embedded operating system, MPEP does 
not have to provide the lowest layer of software, because MPEP does not 
'run directly on the hardware'. The operating system of EPEP is substituted 
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Program Editor Program Editor 

................................ ................................ MOS Application 

MPEP module MPEP module 

MOS kemel 

hardware 

Figure 3.1. An MPEP configuration consists ofthree software layers. The lowest layer 
is the MOS kernel, that provides the multitasking (multiprocessor) operating system. 

by an operating system interface (OSI), that provides access to the (MOS) 
operating system. This is a major step towards portability, see Appendix D. 

3.1 Multitasking aspects 

In the following sections, the definitions invalving multitasking aspects are 
taken from the (object-oriented) description of the EMPS multiprocessor 
executive [12]. Two reasans for this are that (i) the description is ob­
ject oriented, and (ii) the EMPS system is an important target platform 
for MPEP. Although the EMPS platform is a multiprocessor system, it is 
above all a multitasking system. On a multitasking platform several tasks 
may be executed simultaneously, or, when running on the same processor, 
quasi simultaneously. Standard-EPEP is multitasking and has therefore 
several time and process management primitives that are substituted by the 
MOS kemel, see Figure 2.1. This means that multitaskingEPEPand more­
over the EPEP application language have certain conventions that must be 
maintained. On the other hand, upgrading from a single to a multiprocessor 
or multitasking system requires additional features, especially for interpro­
cess communication, in MPEP as well as in the upward compatible MPEP 
application language. In the following sections both aspects are considered. 
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3.1.1 Processes: Concurrent tasks 

Separate tasks that may be performed simultaneously are called processes. 
Simply spoken, in a multitasking system the process replaces the program 
in a conventional single tasking system. Thus, the multitasking system is 
capable of executing several programs, now referred to as processes, simul­
taneously. As a consequence, any separate task may run as a standalone 
process, instead of being part of a larger program. 

3.1.1.1 The EMPS kernel process 

Every EMPS application (and every system program) is based on one or 
more EMPS kernel processes. The execution of a program implies creating 
and starting a new EMPS kernel process. 

A very illustrative example forms the cammand line process. The EMPS 
kern el provides a command line process (known as shell on other platforms) 
for loading and starting processes. Starting a process is performed similarly 
to executing a program from the command line in a single tasking environ­
ment. The major difference is that just after giving the command that starts 
the new process, the command line process is ready for the next command. 
In this way a number of processes can be started to run at the same time. 

Processes that run concurrently on the same processor ( CPD), must 
share the real CPD execution time. The process and time management 
techniques, performed by the EMPS kernel, are described in [12]. Here only 
the major process scheduling aspects will be mentioned. 

A process always is in one of the three major states, viz. CDRRENT, 
READY, and BLOCKED. A process is said to be CDRRENT when it is 
allocated the CPD and is thus actually taking up processor time. A process 
that is eligible for execution, but is not CDRRENT, is in the READY state. 
A process not ready for execution is said to be BLOCKED. 

Every process is assigned a level of priority. The process that is CDR­
RENT will always have a priority that is higher than or equal to all other 
READY processes. This implies that only processes of equal priority will 
run truly simultaneously, a process of higher priority will not share but take 
up all CPD time, a process of lower priority will not get any CPD time as 
long as higher priority processes are READY. High priority processes are 
commonly used for quick tasks that must have a short response time (gran­
ularity). Such processes are 'sleeping' (state BLOCKED) most of the time, 
to become 'active' (state READY) only at the moment they have to handle 
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their task. 
The EMPS kemel provides the process concept fully transparent with re­

spect to the physical process location. The difference between two processes 
running on the same CPU and two processes running on separate CPUs, is 
that in the latter case each process will get more real execution time, and 
therefore they will run faster. 

3.1.1.2 The MPEP process 

The MPEP model also defines processes. From here on, an EMPS kemel 
process will be referred to as kemel process. An MPEP process, or process 
for short, is created using a kemel process, but offers additional MPEP 
features. 

MPEP supports three related kinds of processes. 
The first to be mentioned is the process MPEP itself, the process that 

is created and started to form an MPEP module. This is a unique process, 
there is only one process MPEP in an MPEP module. 

The other two are processes defined in an application program. One 
of these matches the processes found in multitasking EPEP. The EPEP 
application language offers commands to deelare and control child processes, 
for handling separate tasks. Such a child process is, quite like a routine, a 
block, i.e., a list of statements expressed in the application language. To 
allow standalone execution of these processes, each process has a Library, 
similar to the Library of the EPEP system. When a child process is started, 
the child receives a copy of the entire Library of the parent process, so that 
it can access all global variables that were declared before. 

The remairring kind of process handles an entirely new concept, which 
does not exist in the currently used form of EPEP, the remote procedure 
call. The remote procedure call is discussed in section 3.1.3. 

3.1.2 Semaphores: Process synchronization 

For processes that run concurrently on the same processor, the EMPS kemel 
provides the sernaphare tö ensure mutual exclusion [6]. The multitasking 
EPEP kemel supported a similar solution for the problem, called the signal. 
In addition, a signal could be associated with a PhyBUS interrupt, providing 
an easy way of responding to a request of a hardware interface. 

In MPEP, the signal will be replaced by the EPMS semaphore, while 
maintaining its original (EPEP) functionality and (confusing) language syn-
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tax. 

3.1.3 The dynamic Library: Remote procedure call 

So far, solely multitasking aspects of MPEP have been highlighted. This is 
partly caused by the concept of MPEP, since MPEP is composed of single 
processor modules that resembie the multitasking implementation of EPEP. 
To take full advantage of the EMPS multiprocessor system, there is a need 
for means of communication between independent MPEP modules. The 
salution is presented in the form of the remote procedure call mechanism. 

The MPEP application language is equipped to define specific routines 
as import or export routines. A routine is enabled to be exported by adding 
the reserved word export to its header. Such a routine can still be invoked 
in the normal way, but in addition it becomes available to other MPEP 
modules. An imported routine is declared only as a heading: the type, 
name and actual parameter list. The reserved word import indicates that 
the routine is implemented in another MPEP module, where it is defined as 
export. 

Although the most interesting case occurs when MPEP modules running 
on different processors supply such an import/export pair, this is not a 
requirement. This has the advantage that even multi-module applications 
are largely independent of the actual hardware configuration. 

3.2 The Classes of MPEP 

The object-oriented model for MPEP defines, besides the introduetion of 
EMPS kemel interface classes, only three new major classes. 

MPEP: The root class MPEP is a redesign of the root class EPEP of the 
static model. MPEP, like EPEP, holds the Library, the system unit, 
and the souree of the Program Editor, but defines in addition a list of 
exported routines and is derived from the base class PROCESS. 

PROCESS: The class PROCESS is the base class of the new classes of 
the dynamic model. It is based on a kemel process and simulates the 
process of multitasking EPEP. 

REMOTE_FROCEDURE: The class REMOTE_FROCEDURE handles 
a remote proeed ure call. 
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3.3 The MPEP Root structure 

Figure 3.2. The Root of MPEP is an extension ofthe Root of EPEP. The class PRO­
CES$ is introduced, based on the class [KERNEL_]PROCESS. The library has been 
'moved' from the Root to its base class PROCESS. The EMPS kernel class PROCESS 
is, in line with the convention assumed in the text, renamed to [KERNEL]PROCESS. 

3.3.1 The root class MPEP: MPEP at start-up 

An MPEP module is initiated by creating an instanee of the class MPEP 
(Fig. 3.2). In agreement with EPEP, the main object MPEP initially con­
tains a library, a UNIT system_unit and a SOURCE editor. 

The system_unit maintains the functionality of its static counterpart, 
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but instead of the implementation of operating system routines, in the dy­
namic model it contains mainly an interface ( OSI) between MPEP and the 
MOS kemel primitives. 

A user starting an MPEP module will not notice any important differ­
ences compared tostarting EPEP. The MPEP starting procedure is identi­
cal to the EPEP starting procedure given in section 2.3.1. The last step is 
the execution of the Editor, that awaits user input. 

The process aspects of MPEP that it inherits from its base class PRO­
CESS are discussed in the following section. 

3.3.2 The class PROCESS: Concurrent tasks 

The class PROCESS was already presented in Figure 3.2. A PROCESS can 
be created and started from within an application program. This is clone 
in an indirect way, with the aid of DECLARATIONs and STATEMENTs; 
the application language is function-oriented and does not handle objects. 
Similar to a routine declaration, the statement list is assigned to a BLOCK. 
As mentioned above, each PROCESS has its own Library, that may be 
expanded for exclusive use by the owner, which probably will never be clone, 
but is supported because of compatibility with multitasking EPEP. 

Most statements that operate on a PROCESS, e.g., suspending or reini­
tiating execution, readingor setting priority, etc., are implemented by direct 
access of the [KERNEL_]PROCESS myself and invoking the EMPS kemel 
scheduler [12]. The start and abort routines are explicitly defined by 
the PROCESS itself, as these tasks comprise more than simply readying or 
killing a [KERNEL_]PROCESS. When starting a PROCESS, the library 
must be copied; a PROCESS that is aborted must clean-up the library and 
abort all child PROCESSes. The details of both routines are described in 
Appendix C. 

3.3.3 The class REMOTE_pRQCEDURE: RPC 

The remote procedurecallis implemented by the class REMOTE_FROCE­
DURE, which is an heir of class PROCESS (Fig. 3.3). REMOTE_FRO­
CEDURE uses, besides the [KERNEL_]PROCESS myself, that is inher­
ited from PROCESS, the EMPS kemel classes MAILBOX and RESPON­
DER_FORT. 

lt must be stressed that the class REMOTE_FROCEDURE, that belongs 
to one MPEP module, the server, implements the execution of a procedure, 
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PROCESS 

~-
1 

BLOCK 

Figure 3.3. REMOTLPROCEDURE handles the execution of a remote procedure call 
request. For readability reasons several implementations that were shown in detail in 
Figure 3.2 are not displayed, and the EMPS kernel class RESPONDER_PORT has been 
simplified. 

in response to a request from another MPEP module, the dient. Note that 
the procedure that is executed is localto the module of the REMOTE_FRO­
CEDURE (server), and that, although REMOTE_FROCEDURE is an heir 
of PROCESS, the elient module does not start a remote process, but only 
invokes a remote procedure. When a process invokes a remote procedure, it 
will be BLOCKED until the remote execution has been completed (if only 
to assign the return parameter). This implies that an MPEP application 
intended to distribute certain tasks by invoking remote procedures must de­
fine separate child processes that do so. In addition, such procedures should 
be exported by MPEP modules that preferably run on different processors. 

3.3.3.1 Handling an RPC request 

The REMOTE_FROCEDURE owns two attributes, viz. a MAILBOX and 
a RESPONDER_FORT that is linked to this MAILBOX. The process of 
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the REMOTE_FROCEDURE is BLOCKED until an RPC request is deliv­
ered in the MAILBOX. At that time the MESSAGE..BUFFER that contains 
the actual parameter list is obtained from the MAILBOX using the routine 
get of the RESPONDER_FORT. Next the blockis executed and the reply 
routine of the RESPONDER_FORT is invoked with a MESSAGE..BUFFER 
containing the return parameter. The handling of the RPC request is now 
completed and the REMOTE_FROCEDURE will be BLOCKED until an­
other request is clone. 

3.4 Details of the MPEP application language 

The MPEP application language is upward compatible with theEPEP appli­
cation language. This has not been too difficult, as up to now only two new 
reserved words, viz. import and export, were introduced. The justification 
for the present section on language details is that in Chapter 2 all multi­
tasking aspects of EPEP were not considered. These multitasking aspects 
have implications for the application language that were not discussed in 
the static model, e.g., the definition and implementation of specific process 
related STATEMENTs. 

3.4.1 The class SIGNAL 

The variabie type SIGNAL, as defined in the EPEP application lan­
guage[4], provides means of process synchronization. Signal is an alias for 
the more commonly used name semaphore. The type SIGNAL has a set 
of two routines, viz. wait and send. The send routine is an alias for the 
signal operation on a semaphore. (Fig. 3.4). 

The signal of EPEP is implemented by MPEP using the class SEMA­
PHORE of the EMPS kemel, described in [12]. In the EPEP application 
language, the user can create and initialize a SIGNALat one time, and may 
decide later to associate this SIGNAL with a specific PhyBUS interrupt. 
The EMPS kemel, however, does not allow such an implementation. lt has 
a static list of semaphores, one for each PhyBUS interrupt, the PhyBUS 
semaphores. New semaphores can be created, but these cannot be associ­
ated with PhyBUS interrupts. 

The MPEP application language therefore defines two kinds of SIG­
NALs, signals that are associated with a PhyBUS interrupt and SIGNALs 
that are not. The only difference between both kinds occurs in the dec­
laration. If a PhyBUS interrupt number is supplied with the declaration 
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SION AL 

phybus_int 

Figure 3.4. SIGNAL provides the functionality of the EPEP signal. lf with the dec­
laration of a SIGNAL a {valid) PhyBUS interrupt number is supplied, the SIGNAL 
is associated with the corresponding EMPS PhyBUS [KERNEL]SEMAPHORE. lt is 
merely an interface to the [KERNEL]SEMAPHORE, that is responsible for the imple­
mentation. 

of a variabie of type SIGNAL, this SIGNAL is associated with the corre­
sponding EMPS PhyBUS semaphore. Declaringa variabie of type SIGNAL 
without an interrupt number resuits in the creation of an EMPS kernei 
object SEMAPHORE. In bath cases, subsequentiy an object SIGNAL is 
created and is put in the Library. The SIGNAL provides the interface to 
respectiveiy the corresponding PhyBUS semaphore, or the newiy created 
[KERNEL_]SEMAPHORE. 

3.4.1.1 The signai wait and send operations 

Executing a wait or send operation on an earlier declared SIGNAL is ex­
pressed in the appiication Ianguage simpiy as a procedure call, that has 
as actuai parameter a reference to the specific SIGNAL. The system_unit 
defines these two routines, wait and send. 

Upon calling a wait or send routine, the specified SIGNAL cell is 
fetched from the library and the matching routine of the corresponding 
[KERNEL_JSEMAPHORE is invoked. 
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The Program Editor 

In this Chapter, a briefdescription of the Program Editor is presented. The 
Editor, which itself is an EPEP application program, implements a user in­
terface to EPEP. Reasons for including the Editor in this model are that 
(i) because the Editor is an EPEP application program, it shows the con­
neetion between theEPEP system and EPEP application programs, (ii) the 
Editor can be considered to be an essential part of EPEP, and (iii) the Ed­
itor introduces the concept of modularity in an interesting way (this is the 
so-called 'library mechanism', that is commonly appreciated as a standard 
part of EPEP). This means that a more comprehensive discussion of the 
Editor would not add any really interesting aspects to the model for EPEP. 

To find out more about Editor specifics, a user manual of the Editor is 
presented in [4]. 

4.1 The Editor characteristics 

In an EPEP contiguration that is set-up for normal day use, the Program 
Editor is automatically executed at startup. These are its main features: 

• The Editor is used to write, examine, and alter application programs 
and to 'run' them. Running a program implies the creation of a PRO­
GRAM using the SOURCE, and the subsequent interpreting of this 
PROGRAM. 

• The Editor is command line based, which is common for interpreter 
based systems. This has the advantage that command execution and 
entering a program can be interchanged. The program souree text 
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must be entered line by line, the user can't 'walk up and down the 
screen'. 

• The Editor offers a transparent and interactive environment. The 
user can inspeet and change Library variables and also use Library 
routines directly, by entering EPEP statements as if they were Editor 
commands. 

• The Editor offers a number of simple commands and several standard 
EPEP routines. One of these routines is the 'magical' routine moni­
tor, that can be invoked to put the 'library mechanism' into effect. 

4.2 The Editor operation 

The Editor is driven by editor commands (Fig. 4.1). The editor commands 
form the user interface to the Editor, and to EPEP. The editor _loop reads 
a line of text entered by the user, parses it to create the matching editor 
command, and executes this command. After that, another line of input is 
read, and the procedure is repeated. 

There are three types of editor commands: the command, the program 
line, and the direct statement. 
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• The Editor supplies a range of commands that are useful when creat­
ing a souree or running a program, such as LIST (display the souree 
currently edited) and RUN (create program and interpret). Program 
sourees that were created with the Editor can be SAVEed to, and 
LOADed from background memory. 

• If a cammand line begins with a line number, this line is encoded and 
inserted into the SOURCE that is currently being edited. 

• Otherwise, if an entered line is neither a command, nor a program line, 
the Editor assumes a direct statement. First, the line is enclosed within 
a BEGIN and an END. Next, a temporary SOURCE is created and 
the line is encoded into this SOURCE. Finally, using this SOURCE a 
PROGRAM is created and interpreted. So typing for example 

WRITE( <library string> ) <enter> 

will directly display <li brary string> on the screen. 



----- --- ----

4.3. The library mechanism 

Figure 4.1. The EDITOR is driven by the EDITOR_COMMANDs. There are three 

different types of EDITOR_COMMAND, viz. the COMMAND, DIRECT_STATEMENT 

and PROGRAM_LINE. LISTand RUN are typical examples of the type COMMAND. 

4.3 The library mechanism 

The Editor has a main routine called monitor that invokes the command 
line input handler ( the editor _loop). Wh en a program is interpreted it will 
first he put in the Lihrary, that is, its UNIT is added to library. The Editor 
is the first PROGRAM to he interpreted, and is the second UNIT in the 
Lihrary (first is always the system unit), supplying the routine monitor as 
a lihrary routine. 
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environment 

LffiRARY 

PROGRAM 

G) putinllibrary 

\
1--:_::__:_:_:.::...:_:_---1~ ~ .. G) erealePROGRAM 

library program I SOURCE 

EdiiDr 11'" .................................. 0 
f---------1 (Ï) createSOURCE 

,_sy.:..._ste_m=-_un_il __ _j 

Figure 4.2. The library mechanism provides modularity in an interesting way. 

A new souree created with the Editor will be added to the Library, 
when the user enters the command RUN. If this program calls the routine 
monitor, the user finds himself in the command line Editor again; it may 
seem to him (m/f) that the program was added to the Library and that the 
Editor is ready for a new souree to be entered (Fig. 4.2). 

By entering the command UNLOAD the command line routine monitor 
is left. Usually, calling the routine monitor is the last statement of a library 
program, so that when monitor is left the execution of this program is 
completed. The program is then removed from the the Library and program 
flow returns to the caller of interpret on the PROGRAM's interface. If 
this caller was the routine monitor, the user once again finds himself in the 
command line Editor. The current SOURCE in this case is the souree of 
the executed PROGRAM; from this SOURCE the program was created! 

4.4 More efficient Program editing 

As explained above, the Program Editor eneodes program lines immediately 
after they have been typed in. A program souree that is stored in background 
memory also has this encoded form. Although the Program Editor provides 
several features that make the command line based input a bit more user­
friendly, it is often preferabie to write EPEP program sourees using an 
external text editor; an EPEP System charged with dedicated hardware 
for experiment control is not exactly the most appropriate platform for the 
mere entering of program sources. Therefore the Program Editor provides 
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the feature of reading and encoding a plain text file. 
The procedure of using an external text editor as described above has 

the disadvantages that (i) the program cannot be easily checked online (not 
even the syntax), (ii) each new version must be converted before it can be 
used (executed or checked), which, in addition, makes version control error­
prone, and (iii) the Program Editor is still needed for the conversion and 
execution of the program. 

In Appendix D a possible improverneut on these problems is presented, 
offering the additional feature of online (context) help. 

41 



Appendix A 

Graphical representation 

In this Appendix classes and their relationships are represented using the 
graphical representation method of class diagrams [13]. The symbols and 
relationships are defined in the figures below. 

•· CLASS with FEATUREs 

•• Create: create routine 

•• a: bidden attribute 

•• b: exported aaribute 

•· c: bidden routine 

•. d: exported routine 

Figure A.l. A Class with features. 

~ -sbaredattribute 

~ - implemenled routine 

•. deferred routine 

Figure A.2. The scope of routines and attributes. 
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- USES for INTERF ACE 

routine parameter CLASS function resultCLASS 

~Gf--------1 _______ ...7 

Figure A.3. The uses for interface relationship defines the routine parameter spec­
ifications, including the function result parameter. 

•• USES for IMPLEMENT A TION 

attribute attribute CLASS routine LOCALclass 

·I 

I I 

Figure A.4. The uses for implementation relationship defines the class type of an 
attribute, or the class type of an essential local variable. 

- INHERIT ANCE 

heirCLASS parent CLASS 

I 

•• 

1 I 

Figure A.S. The inheritance relationship shows the base class( es) from which a class 
is derived. 
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- GENERfCITY 

auribute generic CLASS 

0 
arameter CLASS 

Figure A.6. Representation of genericity. Genericity is used to create parameterized 
types. This involves a generic class (or template) and a parameter class. 

·· NESTED GENERfCITY 

attribute generic CLASS(T) 

0 
T 

·· ... s 

Figure A. 7. Representation of nested genericity. Nested genericity is used to ere a te 
parameterized types of a parameterized type. This involves a generic class (or template) 
takinga generic class (or template) as a parameter class. 
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U sed class interfaces 

This Appendix describes the class interfaces of standard Eiffellibrary types 
that were used for the creation of generic types, viz. the ARRAY, the LIST, 
and the TABLE. 

B.l Array 

class ARRAY [T] . 
export count, empty, item, put 
feature 

count: INTEGER is 
do 

re sult : = - - number of indices in array 
end; 

empty: BOOLEAN Is 

do 

end; 

if - - array is empty 
then 

result := TRUE 
el se 

result := FALSE 
end 

item( i: INTEGER ):T is 
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do 
result - - item at index i 

end; 

put( item:T; i: INTEGER ) is 
- - insert item at index i 

end-- ARRAY 

B.2 List 

class LIST [T] . 
export caunt, empty, item, put remave 
feature 

caunt: INTEGER is 
do 

result := -- number of items in list 
end; 

empty: BOOLEAN is 
do 

end; 

if - - list is empty 
then 

result := TRUE 
el se 

result := FALSE 
end 

item: T is 
do 

re sult : = - - item at cursor position 
end; 

put ( item: T ) is 
- - insert item at cursor position 

remave IS 

- - remave item at cursor position 
end-- LIST 
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class TABLE[T~ANY, u~HASHABLE]. 
export entry, item, has, put, remove 
feature 

entry( i: INTEGER): T is 
do 

re sult : = - - the i-th entry in table 
end; 

has( key: U): BOOLEAN is 
do 

end; 

if - - key in use 
then 

result := TRUE 
el se 

result := FALSE 
end 

item( key: U): T ~ 
do 

re sult : = - - item associated with key 
end; 

put( item:T; key: U ) is 
- - insert item with key 

remove( key: U ) is 
- - remave item associated with key 

end-- TABLE 

B.3. Table 
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Software design 

In this Appendix the software architecture of the static model (EPEP), and 
also the dynamic model (MPEP) is described. 

C.l The static model 

C.l.l EPEP 

class EPEP 
global library: LIST[UNIT]; 
feature 

system_unit: UNIT; 
editor: SOURCE; 

Create is 
local editor_program: PROGRAM; 
do 

end; 
end--EPEP 

C.1.2 Souree 

class SOURCE 

library.put( system_unit ); 
editor_program.Create( editor); 
editor_program.interpret 

export code, name, layout 
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feature 

code: ARRAY[CODE]; 
names: TABLE[NAME, TAG]; 
layout: - - line_table, index_table, indenLtable, remark_table 

end -- SOURCE 

C.1.3 Unit 

class UNIT 
export f ind..name 
feature 

cells: TABLE [NAME, CELL]; 

find..name ( name: NAME ) : CELL is 
do 

result := cells.item( name ) 
end; 

end-- UNIT 

C.1.4 Statement 

deferred class STATEMENT 
export syntax_check, execute 
feature 

syntax_check is deferred end; 

execute is deferred end; 
end-- STATEMENT 

C.l.4.1 Simple statement 

class SIMPLE_STATEMENT 
inherit STATEMENT 
export syntax_check, execute 
feature 
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end; 
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execute is deferred end; 
end - - SIMPLE_STATEMENT 

C.1.4.2 Structured statement 

deferred class STRUCTUREDJ3TATEMENT 
inherit STATEMENT 
export syntax_check, execute 
feature 

syntax_check is deferred end; 

execute is deferred end; 
end -- STRUCTURED_STATEMENT 

C.1.5 Block 

class BLOCK 
inherit STRUCTURED_STATEMENT, UNIT 
export syntax_check, execute, find~ame 
feature 

code: ARRAY [TOKEN]; 
names: TABLE [TAG, NAME]; 
cells: TABLE [NAME, CELL]; 

Create ( block: BLOCK ) is 
do 

end; 

cells := block.cells; 
code := block.code; 
narnes := block.names 

get_declaration:DECLARATION is 
local declaration: DECLARATION; 
do 

end; 

- - parse code 
deelaratien : = - - create specific declamtion 
result := declaration 

get_statement: STATEMENT is 
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local statement: STATEMENT; 
do 

- - parse code 
statement : = - - create specific statement 
result statement 

end; 

syntax_eheek is 
local deelaratien: DECLARATION; 
statement: STATEMENT; 
do 

end; 

exeeute is 

deelaratien := get_deelaratien; 
from 
until not deelaratien 
do 

- - put declamtion in names and cells 
end; 
statement := get_statement; 
from 
until not statement 
do 

statement.syntax_eheek 
end - - empty cells except for static declamtions 

local deelaratien: deelaratien; 
statement: statement; 
do 

deelaratien := get_deelaratien; 
from 
until not deelaratien 
do 

- - put declamtion in names and cells 
end; 
statement := get_statement; 
from 
until not statement; 
do 

statement.exeeute 



end - - empty cells 
end; 

end-- BLOCK 

C.1.6 Program 

class PROGRAM 
inherit BLOCK 
export interpret 
feature 

Create( source: SOURCE ) is 
do 

code := source.code; 
narnes 

end; 

interpret IS 

do 

source.names 

syntax_check; 
execute 

end; 
end - -PROGRAM 

C.1.7 Empty statement 

class EMPTY_STATEMENT 
inherit SIMPLE_STATEMENT 
export syntax_check, execute 
feature 

execute is 
do 
end; 

end-- EMPTY_STATEMENT 

C.1.8 Assignment statement 

class ASSIGNMENT 
inherit SIMPLE_STATEMENT 
feature 

C.l. The static model 
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variable: VARIABLE_CELL; 
expression: EXPRESSION; 

execute is 
do 

end; 
variable.setvalue( expression.value ) 

end - - ASSIGNMENT 

C.1.9 If statement 

class IF 
inherit STRUCTURED_STATEMENT 
feature 

condition: BOOLEAN; 
true: 
false: 

BLOCK; 
BLOCK; 

syntax_check is 
do 

end; 

execute is 
do 

true.syntax_check; 
false.syntax_check 

if condition then 
true.execute 

el se 
false.execute 

end 
end; 

end-- IF 

C.2 The dynamic model 

C.2.1 Process 

class PROCESS 
export myself, start, abort 
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global library: LIST[UNIT]; 
feature 

myself: [KERNEL]PROCESS; 
childs: LIST [[KERNEL]PROCESS] ; 
block: BLOCK; 

Create is 
local cell: PROCESS_CELL; 
do 

end; 

abort is 
do 

end; 

start is 
do 

cell.Create( process_size + unit_chain_size ); 
library.put( cell ); 
if syntax then 

block.syntax_check; 
el se 

- - copy unit chain 

end 

if - - process was started 

then 
myself.abort; 
- - abort all childs 
-- cleanup 

end 

if not syntax then 

end 

myself.Create( block.execute, ... ); 
- - put patch in effect 
- - initialize PEP process 

myself. start 

end; 
end - - PROCESS 
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C.2.2 MPEP 

class MPEP 
inherit PROCESS 
feature 

system_unit: UNIT; 
editor: SOURCE; 

Create is 
local editor_program: PROGRAM; 
do 

library.put( system_unit ); 
editor_program.Create( editor); 
editor_program.interpret 

end; 
end-- MPEP 

C.2.3 Remote procedure 

class REMOTEJ?ROCEDURE 
inherit PROCESS 
feature 
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mailbox: MAILBOX; 

Create is 
do 

end; 

loop 1s 

process.Create; 
if not syntax then 

myself.Create( loop, ... ); 
myself.start 

end; 
mailbox.Create 

local client: RESPONDERJ?ORT; 
parameters: MESSAGE; 
function_result: MESSAGE; 
do 

port.connect( mailbox ); 
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end; 

from 
until FALSE 
do 

end; 

parameters := client.get; 
- - put parameters on stack 

black.execute; 
functian_result := -- result cell 
client.reply( functian_result ); 
- - get parameters from stack 

end - - REMOTE_PROCEDURE 

C.2.4 Signal 

class SIGNAL 
feature 

sernaphare: [KERNEL]SEMAPHORE; 

Create( phybus_int: INTEGER) Is 
do 

end; 

send is 
do 

end; 

wait is 
do 

end; 
end-- SIGNAL 

if phybus_interrupt then 
sernaphare := get_sernaphare( phybus_int ) 

else 
sernaphare := create_sernaphare( 1 ) 

end 

sernaphare.signal 

sernaphare.wait 
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lmplementation aspects 

D.l Introduetion 

The first implementation of EPEP dates from the late 1970s. lt was based 
on the Digital PDP 11 and LSI 11 systems, and was written in assembly 
language. In the 1980s, a new implementation was written for the M68000 
microprocessor, still in assembly language. With the M68000, the increase in 
enabled the introduetion of new features, viz. multitasking, and later, mul­
tiuser facilities. The M68000 version was designed to operate directly on the 
M68000 hardware, and therefore it had to provide its own operating system 
and multitasking kemel. lt still defines the standard EPEP implementation 
(standard-EPEP). 

In the early 1990s, a start was made to reimplement EPEPin the C pro­
gramming language. This would enhance portability and simplify, if not 
allow, 'software maintenance'. The first goal was to implement the static 
part ofEPEP, i.e. without multiprocessing or multiuser aspects, which would 
follow later. This static C version of EPEP has now the state of a stabie 
beta release and is approaching completion. lt is commonly referred to as 
CPEP. 

The reimplementation process of EPEP was divided into two stages, 
(i) the static stage, or (statie) CPEP, and (ii) the dynamic stage, or multi­
tasking/multiprocessor MPEP (which, of course, is also implemented in the 
C programming language). The second stage ofimplementation is performed 
after the model described in Chapter 3. 
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D.2 Portability 

Although MPEP was primarily intended to be designed uniquely for the 
multiprocessor EMPS platform, target platforms now potentially include 
any multitasking operating system (MOS) platform. Apart from this, it 
proves to be quite convenient to have large programs, such as MPEP, run 
on different platforms. The static part (CPEP) was developed on other 
platforms than the target EMPS platform. Practical reasons for this were, 
besides cost aspects, the lacking of a C compiler and operational debugger 
for the EMPS platform, and the very time consuming data transport to the 
EMPS platform. 

D.2.1 Software aspects 

As mentioned above, the assembler version of EPEP provides its own oper­
ating system. If reimplemention of EPEP in the C programming language 
would has to support portability, all low-level operating system routines 
must be substituted by standard C language primitives. 

Static CPEP should be portable to any C platform. MPEP however, 
expects the operating system to provide, besides a number of static C prim­
itives, basic multitasking primitives. These can be divided into memory 
management (MM), time management (TM), process management (PM), 
process synchronization (PS), interrupt handling (INTH), and interprocess 
communication (IPC). If MPEP is run on a single-processor MOS platform, 
this does not imply loss of functionality, as a multiprocessor MPEP ap­
plication consists of multiple stand-alone modules that communicate with 
eachother (see Chapter 3). The practical use for multiple module MPEP 
applications on single-processor platforms, is however, questionable. Only a 
reduced version of MPEP, may be ported to static (or single-tasking) plat­
forms, presenting the functionality of static CPEP. 

For full lists of static and dynamic operating system requirements see 
Appendix F. 

D.2.2 Hardware aspects 

From a hardware point of view, CPEP is not very portable. This had to 
be expected because EPEP as well as CPEP were developed for real time, 
multitasking experiment control and data-acquisition using the PhyDAS 
hardware. The EMPS hardware makes use of two computer busses, viz. 
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a VME bus and a VSB bus, and a VME/PhyBUS converter to control 
the PhyDAS hardware. A computer module that is VME compatible can 
therefore he used to control the PhyDAS hardware. The real time aspect 
will remain an issue open for discussion. 

D.3 The implementation of static CPEP 

CPEP is written in ANSI C, without using any C++ features. As stated 
above, CPEP is in the beta release state. The platform on which it is being 
developed and tested, is an INTEL 386+ using the the WATCOM C++ com­
piler. The WATCOM C++ compiler offers the programmer a linear memory 
addressing mode (LAM) on one hand, and on the other hand a library of 
operating system related routines, based on MS-DOS system calls, that is 
compatible in functionality with the TURBO C++ library. In addition, the 
WATCOM C++ compiler package contains an extensive debugger with, e.g., 
the possibility of protected mode debugging. To avoid confusion, this 'host' 
platform of CPEP, will from hereon he called MS-DOS LAM. The normal 
MS-DOS platform will referred to as plain MS-DOS. 

D.3.1 The EMPS platform 

One of the most interesting systems to port CPEP to, is the EMPS multi­
processor system. Although the EMPS system is also based on the M68000 
microprocessor family, it would he quite an understatement classifying this 
operation as 'software maintenance'. For a start, all operating system as­
pects must he handled by the EMPS kemel. 

The CPEP souree code is compiled on a remote system, and sent to the 
EMPS system using the Motorola S-format. The remote system is a SUN 
Sparc-solaris station, the compiler used is the Oasys gc68000 x-compiler [1]. 
The Oasys x-compiler provides a full ANSI C library. However, low-level 
operating system routines, e.g., for file 1/0 and system time, should he 
supplied/modified by the user to satisfy the conditions of the target system's 
(in this case the EMPS) multitasking operating system. 

For the programmer's convenience, the EMPS kemel provides a library 
that implements all these low-level, and even some higher-level, routines. To 
he able to access these routines, the CPEP object code must he linked with 
a small assembler file, that provides the necessary interface to the EMPS 
kemel primitives. 
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There have been quite some diffi.culties befare CPEP did run on the 
EMPS platform. The EMPS kernel interface was completed and adapted 
for more standardized use. The first test runs showed that the interpreter 
seemed to work, interpreting at least a few thousand lines of EPEP code, 
successfully loading two subsequently interpreted EPEP code files from disk. 
It then failed, however, to recognize the correctness of the syntax of the 
Program Editor (EDl.CPC), flagging the error 'identifier declared before'. 

Although, when familiar with CPEP, it has a quite clear internal struc­
ture, the process of debugging and getting acquainted to the program began 
to take toa much time. 

The over 25.000 lines of C souree code, are nat very self-documenting, 
which is mostly due to the use of cryptic narnes and abbreviations, and are 
only documented on routine level, if documented at all. 

Oasys failed to deliver a working x-debugger for the EMPS system and 
data transport was very slow. The problem was postponed, also because of 
promising test runs on a UNIX platform. After the successful port of CPEP 
to a UNIX platform, that is discussed in the following section, simultaneous 
debugging on the UNIX and the EMPS platform ultimately resulted in a 
working CPEP version on the EMPS platform. 

D.3.2 The UNIX platform 

The description given in the previous section, i.e. invoking a cross-compiler 
for the CPEP C sourees on a MOS platform (in this case a SUN Spare-salaris 
station) to try the portability of CPEP toanother MOS platform (the EMPS 
platform) may seem a bit taking two steps at a time. The reason for trying 
the port to the EMPS platform first, was that there had no C compiler been 
installed on the SUN Spare station. 

After CPEP failed to perfarm properly on the EMPS platform, it was 
successfully ported to ULTRIX on a Digital workstation, DEC 2100. CPEP 
was compiled using the GNU C compiler (gcc). To allow CPEP to run 
on this UNIX platform, several operating system interface eaUs had to be 
implemented. These include explicit file path conversion, and two simple 
routines that handle character I/0, in relation with the control of terminal 
settings, such as echoing, translation of carriage return, line feed and break 
(Control C). Apart from the GNU compiler being somewhat fussier about 
ANSI C type conversions, the CPEP sourees compiled smoothly. Features 
that imply user directory searching were nat implemented. 
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D.3.3 The plain MS-DOS platform 

As the host platform (MS-DOS LAM) already is a MS-DOS machine, but 
provides the feature of linear addressing and so wiping away all segment­
anci-offset troubles, including the 64kB data limit, CPEP should be made 
to run under MS-DOS without major problems. For testing, CPEP may be 
compiled with TURBO C++ (versions 1.0, 3.0), which works as long as the 
EPEP workspace is kept unacceptably small. No attempts were made to 
introduce huge pointers for the EPEP workspace, as this platform has not 
very high priority, if priority at all. 

D.4 The implementation of MPEP 

Although EPEP has been multitasking for quite some years, multitasking 
had not yet been introduced to CPEP. Here 'introduced' is not an eu­
phemism for 'implemented'; it is probably not favorable to have multitasking 
fully embedded in CPEP. In the assembler version, EPEP handled multi­
tasking aspects such as time slicing, scheduling, and process synchronization 
itself. 

There are three ways of introducing multitasking CPEP: 

1. Writing an in CPEP embedded kemel, that takes care of all multi­
tasking aspects, ignoring any multitasking services provided by the 
operating system, 

u. Writing an in CPEP embedded kemel, but using operating system 
services if available, 

m. Relying only on operating system services, possibly polished-up by 
supplementary routines in CPEP. Whenever the operating system 
fails to provide a needed service, it should be provided for by writing 
an extemal (i.e. not in CPEP embedded) driver. 

The first option had been chosen in the M68000 assembler implementa­
tion, led by the fact that this was the only target platform for EPEP, and 
EPEP would be the only application to run on that platform. As MPEP 
may run on different platforms in the future, the third option seems the only 
one to achieve a somewhat universa! tackling of the multitasking aspects. 

One of the new platforms will be the EMPS mul ti processor system, that 
offers a complete set of multitasking facilities. In the future, more and more 
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platforms will offersome kind of multitasking services, e.g., UNIX/LINUX, 
OS/2, WINDOWS-NT/-95. Should no multitasking services be provided, 
the system will probably be non-complicated, so that these services may 
relatively easy be implemented as an extension of the operating system, see 
section D.4.6. 

For further discussion of the implementation aspects of multitasking, it 
is necessary to introduce a few definitions. The definitions suggested in [12] 
are used, which follow insection D.4.1. 

D.4.1 Tasks and processes in the EMPS system 

Although the EMPS system is a multiprocessor system, reaching beyoud 
merely multitasking systems, it must in the first place handle all multitask­
ing aspects. It is a transparent system, which means that any description 
and any mode of operation will hold for a true multiprocessor configuration 
as well as for a single-processor configuration. The definitions concerning 
multitasking given in [12] are therefore perfectly suitable to describe single­
processor multitasking systems as well. 

A task is defined as a set of class definitions and a set of process def­
initions. A set of class definitions stands for the routines, data, and heap 
in a function-oriented programming environment. Inside one task, multiple 
processes may therefore share the same address space for code, data and 
heap, the task address space. A processis sametimes referred to as a thread 
in other systems. 

Each process has a private address space for its stack, the process address 
space. So each task has private memory in the form of its task address space, 
which only is truly private if the task contains just one process definition. 
Private to a process are its current CPU register values and its stack; in 
general a process does not have additional private memory. Processes that 
want to have any true private memory, that is, apart from their stack, must 
therefore be separate tasks and hence cannot share code or heap. 

D.4.2 The CPEP C sourees 

The static part of EPEP is almost completely covered by the de facto CPEP 
souree code. No multitasking aspects were implemented, but CPEP was said 
to be 'prepared for multitasking', partly because the implementation had the 
the multitasking M68000 assembler version of EPEP as an example. 
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The Interpreter works with a data structure that contains all process re­
lated information about the currently interpreted code. This main structure 
(mn...str) contains data items as the code table, and location pointer, name 
table, cell table, cell heap, etc. Whenever a process is created in EPEP, a 
new main structure is set up, so for each EPEP process such a main struc­
ture exists. Putting these main structures in a ready list, the Interpreter 
was supposed to perform a context switch by simply getting the next main 
structure in that list. The pointer Current Process (mn...str*) should always 
point to the main structure of the EPEP process that is being interpreted. 

The above description fits the M68000 assembler version as well as the 
'multitasking preparation' of the CPEP version. There are, however, two 
differences between the two implementations: 

1. In the assembler implementation, the pointer Current Process is always 
stored in the CPU register A5 [16], whereas in the CPEP implementa­
tion Current Process is a global pointer value, which implies that its 
access scope has changed, i.e., from private (to a process) to shared, 

u. The assembler implementation would run on the M68000 system, and 
use an embedded process scheduler, whereas the MPEP implementa­
tion will use operating system process scheduling facilities (see intro­
duetion of section D.4). This implies that, where an EPEP process 
could previously be handled by the embedded scheduler as a special 
entity with its own characteristics, in the MPEP implementation an 
EPEP process must meet the conditions of an operating system pro­
cess; the operating system scheduler cannot make any distinctions 
between EPEP-and non-EPEP processes. 

From the above observations it can be concluded that the de facto CPEP 
sourees required a process to have both private memory, to store the pointer 
Current Process, and shared memory, where the (shared) cell tables, code 
tables and name tables must be stored. 

As will be shown in the following sections, these are most unusual, if not 
conflicting, demands on most platforms. 

D.4.3 The host MS-DOS LAM platform 

On the host platform no attempts to introduce multitasking were made. 
Foreseen problems and solutions are expected to be quite similar to those 
discussed for the plain MS-DOS platform, section D.4.6. 
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D.4.4 The EMPS platform 

Implementation of multitasking on this platform must deal with the fact 
that an EMPS process cannot have both private memory (apart from the 
stack), and shared memory (see section D.4.1 and [12]). The first alter­
native is that all EPEP processes run within one task, and share all data 
address space, including the pointer Current Process. However, this pointer 
should be private to a process, because for it should always point to the 
process' main structure. This solution therefore preelucles the implementa­
tion of multitasking MPEP. As a second alternative, each EPEP process is a 
complete task, so that the creation of a new EPEP process involves copying 
all code and data, which in turn makes it impossible for EPEP processes 
to access each other's global variables. This is in conflict with the EPEP 
Application Language definition [4]. 

Of three possible solutions, (i) providing the operating system (EMPS 
kemel) with additional knowledge a bout the peculiarities of EPEP processes, 
(ii) providing the operating system (EMPS kemel) with facilities to let tasks 
share memory, and (iii) changing the access scope of the pointer Current 
Process back from shared to private, only the third option was considered 
(The first option is unacceptable, whereas the second option would still 
imply copying all code and data for each new EPEP process, which hardly 
seems to be an elegant solution). 

Rejecting the options (i) and (ii) above, the access scope of a variable, 
in particular the access scope of Current Process, could be made private in 
two ways: 

i. Exclusive storage in one of the CPU registers, 

n. Storage on stack. 

D.4.4.1 The blunt C solution 

The ANSI C standard does not support global register variables; the storage 
specifier register is only available for variables declared in a block, and for 
formal arguments [2]. This leaves only the possibility of storage on stack. 
The regular way to achieve this in the C programming language, is by passing 
Current Processas a parameter (the first) to all routines of the lnterpreter. 
This would imply the changing of all formal parameter lists, as well as all 
actual parameter lists; an enormous operation. 
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D.4.4.2 The elegant C++ solution 

If there were plans for future implementation of CPEP in the C++ program­
ming language (which should he considered as a possibility, as on all target 
platforms already hybrid C/C++ compilers are used), the object-oriented 
nature of the language could elegantly cape with the problem of the global 
pointer Current Process. Current Process would be made a class member 
of the class INTERPRETER As such it would be private to a process, and 
at the same time available to all memher functions of the INTERPRETER 
In this way, no formal parameter lists, nor any actual parameter lists would 
have to be changed to achieve the passing of Current Process between IN­
TERPRETER routines. 

A change from C to C++ will also be quite an operation. Although C is 
a subset of C++, C++ is more than 'C with classes'; it is a different language. 
Whereas most C code will remain usable without change, and hybrid code 
would do fine for an intermediate phase, a true C++ implementation involves 
library design and class modelling. 

Incidentally, in the object-oriented paradigm that was adopted to model 
dynamic MPEP, these kind of access scope problems can be avoided in an 
elegant way. The class concept allows the routines of a class to share private 
class data. The programmer does not need to pass the private data explicitly 
over the stack. This makes the object-oriented approach especially suitable 
for dealing with multitasking environments (see Chapter 3 and [10]). 

D.4.4.3 The patch 

So far, no decision for a specific salution was made. Because all options 
mentioned above involve toa much additional work, the problem has been 
patched, temporarily. The pointer Current Process is declared with an extra 
level of indirection, i.e., it is now a pointer to a pointer to a main structure 
(mn..str**). 

The basic reason for this patch to work, lies in the fact that the EMPS 
kemel uses virtual memory addressing, and memory mapping for kemel pro­
cesses. Thus, it proved to be possible, using M68000 assembler statements, 
to cheat the effective Current Process pointer value onto the stack, making 
it private to processes after all. Because this patch is clearly not portable, 
and should as such only be used temporarily, for testing, it will not be ex­
plained in detail. The patch is documented quite thoroughly in the MPEP 
C sources. 
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D.4.4.4 Practical EMPS application problems 

MPEP would be the first major application for the EMPS platform. There­
fore, apart from the above 'EPEP related problems', the EMPS platform 
still presented some other development areas: e.g., performance, utilities, 
debugging, and how and when to redirect terminal 1/0. Because an MPEP 
configuration with a Program Editor cannot operate without user input (as 
can hardly any serious application), a UNIX-like solution for the redirection 
of terminal 1/0 was chosen and implemented. 

EMPS applications can now be loaded and started by simply entering the 
name of the executable (without extension) in the EMPS kemel command 
interpreter. lf an application is started in this way, the EMPS kemel will 
redirect all terminal 1/0 to this application. Once the application is started, 
the user can switch (redirect) his (m/f) terminal 1/0 to any process that 
requests user input. by typing Control Z. One of these processes, of course, 
is the command interpreter. When the process associated with terminal 1/0 
is stopped or killed, terminal 1/0 is redirected to the process that is awaiting 
user input for the longest time. 

D.4.5 The UNIX platform 

On the UNIX platform (see section D.3.2), the first attempt to the imple­
mentation of multitasking was made. 

The CPEP sourees were expanded with two modules (about 2500 lines): 
one to handle the declaration and starting of processes, and another imple­
menting the semaphore interface. 

The main structure was expanded with four additional fields: the par­
ent's main structure, the child's main structure, a location pointer to the 
( optional) expression of the requested process size and ( once calculated) the 
requested process size. In this preliminary code 

• each process can only have one child, and 

• the only operation on processes that is available is the start routine. 

According to the definitions give above, the specific UNIX platform does 
not support processes; it only supports tasks (see section D.4.1). On the 
UNIX platform, child tasks are created with the system call fork() [11]. A 
fork() is commonly explained as a routine that is invoked once, but returns 
twice, the parent task with a nonzero return value (1 on success, -1 on failure) 
and the child task with zero return value. Because not only a new process 
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(or thread) is created, but in fact an entire new task, upon a fork() all data, 
static and heap, is copied (Depending on the specific implementation, UNIX 
might copy all program code as well). 

Contrary to the EMPS platform, under UNIX the problem that occurs 
when assigning a complete task to each new EPEP process, can be solved. 
A task can apply for skared memory by issuing a UNIX system call. The cell 
tables, code tables, and name tables, etc. are stared in this shared memory, 
so that EPEP child processes can iudeed use global EPEP variables. 

After fork()ing, the child task must issue another system call to get 
access to the shared memory segment. 

Interprocess communication (IPC) including the remote procedure call 
(see section 3.1.3), was implemented using the UNIX message primitives. 

D.4.6 The MS-DOS platform 

On the MS-DOS platform the first real multitasking version of MPEP was 
implemented. The implementation on the UNIX platform of a simple test of 
true multitasking MPEP seemed to be cumbersome, and no expertise on this 
subject was available nearby. Because even static CPEP did nat yet operate 
on the EMPS system, the MS-DOS platform was chosen to give a quick 
answer to the question whether multitasking could be easily introduced to 
CPEP, or any major changes had to be made. 

Following alternative iii given in section D.4, a small stand-alone kemel 
(about 5000 lines) was implemented, that must be loaded before EPEP is 
started. It consists of a timer, a simple scheduler, and a user interface, and 
provides means of process synchronization. This kemel is a fully object­
oriented, almast literal implementation of [12] (as far as the small imple­
mentation goes). It was written in the C++ programming language (and 
small parts in assembler). 

The scheduler maintains four ready lists, one for each EPEP priority, 
and perfarms time slicing by executing a context switch each 18.2 ms, i.e., 
each doek tick. Communication with the scheduler is handled by the class 
PROCESS. 

A kemel interface was designed for the communication between user and 
scheduler. A request for a certain service may be placed by generating a 
MS-DOS software interrupt with the appropriate service number in the AH 
register (a CP /M / MS-DOS convention). This kemel interface provides 
services to create, block, and kill a process to add or remave it from the 
ready list, to obtain a process's id (pid) or a process's parent's id (ppid), 
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and to preempt the current process. 
To allow the expanded CPEP sourees to offer real multitasking, the scope 

of the pointer Current Process has to be be forced from shared to private. 
The kemel achieves this by supporting the feature of virtual private memory. 
A process may designate a certain physical memory area as private memory. 
The kemel ensures that a process will always find the contents of this private 
memory area just as when the process left it. Thus, EPEP processes use 
four bytes of virtual private memory; the memory locations in which the 
pointer Current Process is stored. 

With the aid of this simple MS-DOS kemel, a simple multitasking EPEP 
application program was successfully executed. The program consisted of a 
process declaration and a main loop. Both program blocks contain a loop 
that prints an alive message and then issues a delay. After the main program 
block has start( ... )ed the child process, both processes keep printing their 
alive messages as expected. 

D.5 An integrated environment for EPEP 

As mentioned in Chapter 4 an attempt was made to present an example 
of a more efficient and user-friendly way to enter, edit and check EPEP 
application programs. 

As an example, an integrated desktop environment (IDE), for EPEP pro­
gram editing and EPEP program execution was implemented (6000 lines). 
It uses the object-oriented Borland Turbo Vision text-screen based window 
library for the MS-DOS platform. This EPEPIDE was named XPEP. 

XPEP provides a full-screen text editor, a turn-key interface to the 
CPEP interpreter, online (context) helpandan automatic indentation fea­
ture. 
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Future work 

Most urgent future work involves standardization of CPEP sourees and 
EMPS kemel sources. This is due to the facts that CPEP is still under 
development while the additional MPEP sourees are not yet incorporated 
into the CPEP sourees EPEP is the first serious EMPS application, and the 
EMPS kemel is still being reorganized and customized. 

Although two or more programmers work on the project simultaneously, 
no means of version control is used; that is why souree code must be man­
ually merged. 

E.l The EMPS kernel 

The EMPS kemel has several areas open for improvement, here only the 
urgent CPEP related problems are summarized. 

• Standardization of header files of the EMPS kemel (and CPEP). Tem­
porarily, parts of EMPS kemel header files are copied and used by 
MPEP because both cannot yet be included. 

• Standardization of EMPS kemel services, functionality and names. 

• Offering of kemel services using standard headers and library file. 

• Full use and support of customizable ANSI C libraries for EMPS ap­
plications, e.g., getchar instead of read(l, &c, 1). A number vital 
ANSI C functions for EPEP were implemented in customized EMPS 
library files. 
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• Control-C detection and support of user defined Control-C handlers. 
The implementation of UNIX signals might be a good idea. 

• Providing of delete....semaphore routine. 

• Providing of semaphore_inspect routine. 

• Fixing term_proc, and offering of functionality under name exit. 

• Provide primitives to turn the time-siicing mechanism on/off. EMPS 
kernel processes run at software level 0. A loek could therefore be 
performed by a simple piece of assembly code mov 2700, sr. 

• Real time doek. 

• Command interpreter: 

- progress indicator 

- kill process ( and other operations) by name e.g. kill cpep instead 
of kill 2000015. 

E.2 CPEP 

Static CPEP is still developing further. There are, however, some important 
tasks that should be handled before CPEP and MPEP can be merged. These 
are: 
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• Standardization of header files of CPEP and (EMPS kernel), see pre­
vious section. 

• Choice for and implementation of one of the options discussed in sec­
tion D.4.4, to allow a sound basis for MPEP processes, rather than 
the currently used patch. 

• When major changes in the CPEP sourees should be made (see pre­
vious item), it would be wise to consider the development and imple­
mentation of a naming convention for CPEP sources. In addition, the 
use of good and explicit names, instead of single letter variables and 
cryptic abbreviations would make CPEP a lot easier to read, debug 
and develop. 



E.2. CPEP 

E.2.1 CPEP naming convention 

The following sections on the CPEP naming convention, could be considered 
tostand somewhat besides the scope of this thesis. They are presented here 
because (i) CPEP seemsin want for such a discussion and a lot of interest 
on the subject was expressed, and (ii) in this Appendix all other suggestions 
for future work and changes to CPEP are summarized. Every programmer 
that is working (or going to work) on CPEP will be faced with this matter. 
Seen from this viewpoint this Appendix seems to be an appropriate place 
to discuss the CPEP naming convention. Aspectsof object-oriented naming 
are also considered. 

E.2.1.1 User defined types 

CPEP defines and uses integer types such as BYTE, SBYTE, WORD, SWORD, 
instead of using the predefined c-types (unsigned) char, int. The rea­
sous for this are obscure. There are, of course, some specific variables 
that should have a defined size. These include, e.g., the location pointer 
(unsigned char*) and the fieldsof cells. User defined types are not only 
used for specific CPEP tasks, but also strictly as parameter to ANSI C rou­
tines. Not always the corresponding user defined type is chosen. A most 
peculiar example is formed by the ANSI C string functions that take the 
type char*. Often the type BYTE* (unsigned char*) is used instead of 
char*. 

E.2.1.2 Cryptic narnes 

Similar to most conventional C programs, CPEP tends to use cryptic narnes 
for structures, variables and fields where possible. This may save the pro­
grammer some key-strokes, but it makes the program much harder to un­
derstand for an outsider or newcomer. lt is a known fact that variabie 
narnes that based upon some kind of abbreviation, often only seem logica! 
to the programmer of the code himself ( abbreviations may not seem so log­
ica! anymore when one is confronted with scarcely docup1ented code that 
was written some time (say two years) ago-did I write this?). The use of 
good narnes really is harder than it looks, but it makes the program much 
better readable. 
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E.2.1.3 Narnes of structures and fields 

Most structures in CPEP are typedefed with a name of the form XXX\_STR. 
lf instead the struct namespace would be used, a structure variabie dec­
laration could be identified by its prefix struct. The postfix _STR is made 
redundant and these four extra characters could be used instead for a clear 
name. In addition, if narnes of structure variables were chosen carefully, it 
would not be necessary to echo the name of the involved structure in its 
field nam es, as seems to be the convention in CPEP. 

In CPEP we may find something similar to this: 

typedef struct pu { 

BYTE* pu_nt; 

} PU_STR; 

{ 

PU_STR* pu_ptr; 

pu_prt->pu_nt = nt; 
} 

Compare this to: 

struct Unit { 

BYTE* nameTable; 

}; 

{ 

struct Unit* unit; 

unit->nameTable = nameTable; 
} 

In the second example, one can immediately understand what is hap­
pening. Note that the only differences between both examples result from 
the choice of names. 
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E.2.1.4 Suggestions fora naming convention 

There are several naming conventions commonly used for writing C code. It 
is not so important which convention is used, because readability is to some 
extent a question of personal taste and habit, as long as there is a clear 
definition that is universally applied by all programmers that work on the 
project, so that all code has a similar appearance, and programmers do not 
have to choose whether to use capitals, underscores or both, every time. 

With the advent of the object oriented programming techniques and C++, 
the naming problem easily gets out of hand. It often is convenient to have 
an object and an instanee that are described best by the 'same' name (e.g. 
String string; where String is the object and string is an instance). 

Borland defines a naming convention that handles all these problems in 
a simple way [3]: 

• From the mere spelling (ca pitals and lowercase) of a name, one can 
tell if it a a class or structure, a constant, or a class memher ( or shared 
variable). 

Borland spelling convention [3] 
type spelling example 

class, struct first letter is capital String 
only 

generic class concatenation of class StringList 
narnes 

class memher first word iCantReadThis 
lowercase, subsequent 
words start with capi-
tal 

constant, define all letters uppercase, LINE\_LENGTH 
words joined with un-
derscores 

• Only full narnes are used, except for obvious counters in simple loops 
e.g. for ( int i = 0; i < MAXIMUM; i++ ){ ... }. 

• Pointer variables end with Ptr. 
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E.3 MPEP 

The essential multitasking and multiprocessor primitives are implemented 
and tested. Several, most EPEP-related dynamic primitives however, re­
main to be implemented. This should be a rather straightforward job, be­
cause MPEP provides the necessary primitives on C souree level. The main 
reason for leaving this task open is the fact that these primitives imply some 
simple but essential changes in CPEP, while MPEP and CPEP sourees were 
not yet merged. lmplementation would have meant double work. 
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• lmplementation of ( connecting of) the process related EPEP primi­
tives abort, ask_priority, error_cause, main, myself, set_priori­
ty, show _ec. 

• The loekjunloek mechanism. The EMPS kemel must offer primitives 
to turn the time-siicing mechanism on/off. 



Appendix F 

Kernel requirements 

The requirements that MPEP imposes upon the operating system are pre­
sented in two parts, viz. static primitives and dynamic primitives. For a 
(dynamic) UNIX implementation the static C platform primitives are also 
required. 

In a number of tables the narnes of UNIX / EMPS functions are given, 
with a briefdescription of their functionality. 

For detailed descriptions of static ( C) primitives see [2] or [11]. De­
tailed descriptions of dynamic UNIX primitives can be found in [11], EMPS 
primitives are described in [7]. 

F .1 Static primitives 

F.l.l 1/0 primitives 

F.l.l.l File primitives 

Name Platform 
close C EMPS 

open C EMPS 

re ad CEMPS 

unlink CEMPS 

rename CEMPS 

write CEMPS 
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Description 
close file 

open file for reading or writing 

read from file 

delete file 

rename file 

write to file 
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F.1.1.2 Stream primitives 

Name Platform Description 
fclose C EMPS close stream 

fop en CEMPS open stream 

fprintf C EMPS formatted output to stream 

fread C EMPS read data from stream 

fscanf C EMPS formatted input from stream 

fseek C EMPS position file pointer of stream 

fwrite CEMPS write to stream 

perror UNIX system error messages 

printf C EMPS formatted output to stdout 

sprintf C EMPS formatted output to string 

scanf C EMPS formatted input from stdin 

sscanf CEMPS formatted input from string 

F.1.2 Mathematica! primitives 

Name Platform Description 
atan CEMPS are tangent 

atan2 C EMPS are tangent of y / x 

a tof CEMPS convert string to fioating point 

atol C EMPS convert string to long 

cos CEMPS cos me 

exp C EMPS calculate power of e 

fabs C EMPS absolute value of fioating point 

ft oor CEMPS round down 

log C EMPS logarithm ln(x) 

loglO CEMPS logarithm, base 10 

sm CEMPS sine 

sqrt C EMPS calculate square root 
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F.1.3 Memory management 

Name Platform Description 
AllocateMemory EMPS allocate memory 

malloc CEMPS allocate memory 

malloc EMPS allocate memory 

malloc_type EMPS allocate memory 

getrlimit c available memory 

F.1.4 String operations 

Name Platform Description 
memcmp C EMPS compare two strings of n bytes 

memcpy C EMPS copy string of n bytes 

memset C EMPS set n bytes of string 

strcpy C EMPS copy string 

strlen C EMPS calculate length of string 

strncmp C EMPS compare at most n characters of 
two strings 

strncpy C EMPS copy at most n characters of 
string 

tolower C EMPS translate character to lowercase 

toupper C EMPS translate character to uppercase 

F .1.5 Time management 

Name Platform Description 
clock CEMPS number of clock ticks since pro-

gram start 

localtime CEMPS convert date and time to tm 
structure 

time CEMPS get time of day 

81 



Kernel requirements 

F .1. 6 Error handling 

Name Platform Description 
longjmp 

setjmp 

C EMPS perform nonlocal goto 

C EMPS set up nonlocal goto 

F.2 Dynamic primitives 

The multitasking platforms currently supported, viz. the EMPS platfrom 
and the UNIX system V platform, offer similar dynamic operating system 
features, but with a different set of primitives. For future MPEP platforms, 
only the functionality of either one is required. 

F .2.1 Interprocess communication 

F.2.1.1 IPC creation 

Name Platform 
Conneet EMPS 

CreateMailBox EMPS 

msgctl UNIX 

F.2.1.2 IPC deletion 

Name 
RemoveMailBox 

msgctl 

msgget 

Platform 
EMPS 

UNIX 

UNIX 

F.2.1.3 IPC operation 

Name Platform 
ReceiveFromPort EMPS 

msgrcv UNIX 

SenciToPort EMPS 

msgsnd UNIX 
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Description 
conneet port to mailbox 

create mailbox 

message queue control 

Description 
remove mailbox 

message queue control 

set up message queue 

Description 
get message from mailbox 

get message from message queue 

put message in mailbox 

put message in message queue 



--------------------

F.2. Dynamic primitives 

F.2.2 Process management 

F.2.2.1 Process creation 

Name Platform Description 
CreateProcess EMPS set up new process 

StartProcess EMPS start process 

fork UNIX start new process 

F.2.2.2 Process deletion 

Name 
KillProcess 

exit 

Platform Description 
EMPS terminate process 

EMPS terminate process 

F.2.2.3 Process identification 

Name Platform Description 
getpid EMPS get process identifier 

getpid UNIX get process identifier 

F.2.2.4 Process scheduling 

Name Platform Description 
delay _process EMPS block process for amount of time 

sleep UNIX block process for amount of time 

F .2.3 Process synchronizaton 

F .2.3.1 Semaphore creation 

Name Platform Description 
GetSEM EMPS get PhyBUS sernaphare 

create_semaphore EMPS get new sernaphare 

semctl UNIX sernaphare control 

semget UNIX set up sernaphare 
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F .2.3.2 Semaphore deletion 

Name Platform Description 
EMPS delete semaphore 

semctl UNIX semaphore control 

F.2.3.3 Semaphore operation 

Name Platform Description 
signal EMPS perform signal operation on se-

maphore 

wait EMPS perform wait operation on sema-
phore 

sernop UNIX perform operation on semaphore 

F.2.4 Shared memory 

Name Platform Description 
shmat UNIX map shared memory 

shmctl UNIX shared memory control 

shmdt UNIX delete shared memory 

F.2.5 Signal handling 

Signal handling is not supported by the EMPS kemel. 

Name Platform Description 
signal UNIX specify signal-handling actions 

sigaction UNIX handle signal 

system UNIX execute shell command 
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