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Summary 

A hot topic in recent cold-atom physics is furnished by collisions between ultra-cold 
atoms (T :::; 1 mK). This ultra-cold temperature regime is particularly interesting because 
of the possibilities for very high resolution spectroscopy, as has recently been shown by 
several experimental groups. Comparison of the experimental spectroscopie data, such 
as the so-called photo-association spectra, and theoretica! model calculations can be used 
to improve the (badly known) interaction potential between two colliding ground-state 
atoms. These potentials are crudal for experimentsin the ultra-cold temperature regime. 
For instanee atomie collisions put severe limits on the present attempts to improve the Cs 
atomie doek by means of an atomie fountain. Furtherm9re they determine whether the 
condensate in future Bose-Einstein condensation experiments will be stable. 

This graduation report deals with the theoretica! description of photo-association of 
ultra-cold alkali atoms. In that conneetion the following subjects have been studied: 

The potentials of the excited states of identical alkali dimers have been calculated and 
the symmetry properties of these states have been determined. 
The (internal) molecular states have been extended in that the molecular rotation has 
been taken into account, resulting in "generalised" kets that also explicitly specify the 
total molecular angular momenturn (including molecular rotation) and its projection on a 
space-fixed axis. 

In the calculation of photo-association spectra two further ingredients are of fundamen­
tal importance: the relative contributions of the relative atomie orbital angular momenta 
(i.e. the rotational quanturn numbers) in the ground-state and the matrix elements asso­
ciated with the photo-association transitions. 
The former have been determined using a a simplified model. The angular dependent part 
of the transition matrix element has been calculated exactly, using the above-mentioned 
"generalised" kets. This part entails the important selection rules that govern the photo­
association process. 
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Chapter 1 

Introduetion 

The origin of this work is a direct consequence of the rapid and fascinating developments 
in recent cold-atom physics. In 1985 it was fi.rst demonstrated that it is possible to cool 
Na-atoms to temperatures of 50-100 mK [1]. Only a few years laterit was shown that these 
cold atoms could be stored in so-called traps [2]. Sirree then, the possibility to cool and trap 
neutral atoms near absolute zero has led to many new experiments. These developments 
for example, resulted in the construction of a high precision Cs atomie doek [3]. 
Furhtermore, the way is now paved towards new experiments, such as the possible demon­
stration of Bose-Einstein Condensation (B.E.C.). This collective quanturn phenomenon can 
only be achieved at extremely low temperatures because. the thermal atomie De Broglie 
wavelength Àv needs to be of the sameorder of magnitude as the average distance between 
the atoms. Another prerequisite to achieve B.E.C. is a positive sign of the so-called scat­
tering length that is determined by the particular behaviour of the potential governing the 
collision between two atoms. 
In allexperimentsin the ultracold temperature regime atomie collisions play a crudal role. 
In the Cs-do~k for example, these collisions determine the stability of the doek [4] and, 
as was already mentioned, the particular collisional behaviour of two atoms determines 
whether or not B.E.C. can occur. Clearly, for a good description of ultracold collisions 
detailed knowledge of the scattering-potentials is required. There are a couple of ways to 
determine these scattering potentials. 
The most accurate potentials for alkali-dimers are generally obtained spectroscopically, 
from which data the bound-state (rovibrational) energy levels in the potential can be de­
termined. An RKR-procedure is then used to derive the dassical turning points associated 
with these levels, yielding a first approximation to the potentials. These potentials can 
then be improved by the so-called IPA method [5]. This is the procedure foliowed for 
the Cs+Cs singlet levels in [6]. The problem with a potential of this kind is that usually 
only the lower energy part of the potential (i.e. radially its inner part) is determined this 
way. This is partly due to the fact that the RKR method is less suitable for the highest 
bound states and for heavier alkali atoms it is due to the highest states being too strongly 
mixed by the atomie hyperfine coupling which destroys the pure singlet and triplet char­
acter. In our group we have been able to use collisional frequency shifts in high-precision 
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atomie clocks to show that the Cs+Cs triplet and singlet scattering lengths are negative 
(7]. Also for the light elements Li and Na our group has been succesful in obtaining similar 
information applying an IPA procedure + a new cumulated radial phase method (8]. 

Apart from K2, the Rb2-ground-state potentials, however, are worst known of all alkali­
dimers at this moment. The inaccuracy in these potentials for instanee prohibits to make 
de:finite predictions about the possibilty to achieve B.E.C. in an ultracold Rb-gas. So 
in view of present and future experiments it is important to determine accurate Rb2-
potentials. 
Fortunately there are two experiments at ultra-cold temperatures that look very promising 
to extract accurate ground-state potentials for Rb. In the :first experiment the atoms are 
trapped by means of a de magnetic field. The collisions between the atoms in this Magnetic 
Trap (MT) result in loss of atoms from the trap. These trap-loss collisions can be used 
to determine the potential between the colliding atoms. For the other experiment an 
optical Far-Off-Resonance Trap (FORT) is used. In this experiment, the so-called photo­
association spectra associated with the absorption and emission of laser photons during the 
callision of two atoms, can be used to derive very accurate information about the potentials 
of the colliding atoms. Both experiments are discussed in chapter 2. 

In chapter 3 we will :first discuss the "state of the art" Rb2-potentials. It will be shown 
that these potentials can effectively be described by several parameters. Given the large 
inaccuracy in the potentials, however, it is very important to decide which of the above 
mentioned experiments looks most promising to improve the Rb2-potential parameters. 
This appears to be the FORT-experiment, because it is possible in this set-up to exclude 
singlet scattering so only triplet potential parameters are involved in the analysis of these 
experimental spectra. Our further discussion will therefore be restricted to the analysis of 
cold atomie collisionsin the FORT. 

The rest of this report prepares the ingredients for this analysis. In chapter 4 we shall 
introduce a set of "generalised" kets for the characterisation of atomie collisions (read: 
molecular states). These kets not only specify "internal" molecular quanturn numbers 
(like the electronk spin S), but also contain information about molecular rotation. In 
chapter 5 we discuss the interactions between two ground-state atoms and the interactions 
between a ground and an excited atom. Upon using the "kets" from chapter 4, we can 
assign several symmetry labels to the molecular states that emerge in the FORT photo­
association experiment and we will calculate the long-range molecular potential curves 
corresponding to these states. 

Using the results of chapters 4 and 5, we are able to calculate the relative transi­
tion probabilty ("production rate") of excited molecular states out of Rb2 continuurn 
ground-states. This calculation is rather subtle because it is not clear befarehand how 
the wave-function of the initial free Rb2-state must be "normalised". Furhtermore the 
relative contributions of the relative atomie orbital angular momenta in the ground-state 
will be determined. In the second part of chapter 6 the angular dependent part of the 
matrixelement associated with the above mentioned transition will be calculated exactly. 
This part entails the important selection rules that govern the photo-association spectra. 

A summary of the conclusions of this work is given in chapter 7. 
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Chapter 2 

Magnetic and far-off-resonance trap 

In this chapter we will discuss two kinds of traps in which (ultra)cold Rb-atoms can be 
stored. In the first section we discuss two new cooling mechanisms in magnetic traps 
(MT). The first mechanism is the so-called gravitational 'Sisyphus cooling and is stuclied 
by Cornell et al. at JILA. The second one is the so-called rf-induced evaporative cooling 
method which is currently being stuclied by Ketterle et al. at MIT. 
In the second section we discussis the (optical) Far-Off-Resonance Trap (FORT), stuclied 
by Heinzen et al. at the university of Texas. In both sorts of traps collisions occur that can 
lead to lossof atoms from the trap which can be measured experimentally. These so-called 
trap-loss collïsions look very promising to determine accurate Rb2 ground-state potentials. 

2.1 Magnetic traps 

In this section we will discuss two experiments that are currently performed by Cornell et 
al. at JILA, Boulder and by Ketterle et al. at MIT, Cambridge. These experiments look 
very promising to extract Rb2 ground-state potential parameters from the measured loss 
of atoms from the trap. 

In both experiments the atoms are trapped by means of the well-known magnetic 
dipole-force. In the traps that we shall discuss the atoms are cooled by new and rather 
subtle cooling techniques. In the experiment by Cornell et al. the atoms are cooled 
by "gravitational Sisyphus cooling" while in the experiment of Ketterle et al., so-called 
evaporative cooling, resulting from an rf-field is used to. reduce the temperature of the 
trapped atoms. 
Before turning to the description of these cooling techniques, we will first discuss the 
trapping principle in a de magnetic trap. We shall therefore consider the internal potential 
energy of a ground-state atom in a de magnetic field. 

The Hamiltonian that effectively describes a ground-state atom in a magnetic field, is 
given by · 

int a ... 7 ( ... 7) ... H = n2 s. t + {eS -{nt . B, (2.1) 
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where 8 and i denote the electon and nuclear spin respectively, /e and In are the electronic 
and nuclear gyromagnetic factors and Ë is the magnetic field; the constant a determines 
the hyperfine-splitting of the ground-state levels in zero magnetic field. 
The first term is the Fermi-contact term and the second term represents the Zeeman­
interaction. The Fermi-contact term is invariant under simultaneous rotations of 8 and i, 
while the Zeeman term remains invariant under seperate rotations of 8 and i around Ë. 
Therefore the component of the total atomie spin f = 8 +i in the direction of the magnetic 
field, m,, is conserved. The eigenstatesof (3.1) can thus be labeled by the quanturn number 
m,. Note that in the limit B--+ 0, the totalspin quanturn number f also becomes a good 
(conserved) quanturn number. For the sake of convenience, an m,-eigenstate for which the 
total spin quanturn number in the limit B -+ 0 tends to the value f shall therefore be 
denoted by IJ, m1 >. 

For 87Rb, i = 3/2 and s = 1/2, so there are three eigenstates (m1 = -1, ., 1) that 
conneet tothef = 1-level and five states ( m1 = -2, ... , 2) that conneet tothef = 2-level. 
Th ere are two eigenstates corresponding to each of the labels m J = -1, . , 1; one of these 
eigenstates connects to the f = 1-level, the other one connects to the f = 2-level. The 
associated eigenvalues and eigenstates are thus found upon diagonalising 2 x 2-matrices 
[13]. The resulting internal potent i al energies, as a function of the magnet ie field, are 
shown in fig 2.1. 
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Figure 2.1: .,Potential energy of the hyperfine states of 87Rb in a magnetic field 
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In the next two subsections we will show that, for the cooling mechanisms we are 
interested in, the f = 1 states play an important role. Note that of these states only the 
m1 = -1-state, for small values of B, experiences an increasing internal potential energy 
if the magneiic field increases. A small external magnetic field can therefore be used to 
provide a confining potential well (=trap) for 11,-1 >-atoms: the 11,-1 >-state can thus 
be trapped near the minimum of the magnetic field. 
In the next subsections we shall discuss the two earlier-mentioned cooling mechanisms in 
a de magnetic trap. 
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2.1.1 Gravitational Sisyphus cooling 

Gravitational Sisyphus cooling is a new and promising method to cool neutral atoms. In 
the JILA-experiment 87Rb-atoms are optically pumped into the (trappable) 11,-1 >-state 
and held in a de magnetic trap. 
This trap is generated by a "baseball" coil that provides. a confining magnetic field that 
increases quadratically in all three coordinates x, y and z. In order to keep the atoms near 
the geometrie center of this trap, an extra (vertical) magnetic field gradient, provided by 
two anti-Helmholz coils, that cancels the gravity on the 11,-1 >-state, is applied. The 
atoms in the 11,-1 >-state are then pumped into the (also trappable) 12,1 >-state by a 
two-photon excitation using rf and micro-wave radiation [14]. 

The intern al potential energies of the 11, -1 > and the 12, 1 > states are given by 

(2.2) 

(2.3) 

Thus in the limit for small values of B (only keeping terms linear in B), these energies 
become 

3a 1 
E12,1> = 4 + 41iB( Ie- 31n), (2.4) 

-5a 1 
E11,-1> = 4 + 41iB( Ie+ 51n)· (2.5) 

Since B varies quadratically in z, the corresponding internal energy curves are parabolas. 
Note, however, that the magnetic moment of the 12,1 > state (= 1i(!e- 31n)/4) is just 
slightly smaller than the magnetic moment of the 11,-1 >state(= 1i(!e + 51n)/4), so the 
11,-1 >-parabola has a greater curvature than the 12,1 >-parabola. 

In addition to this internal energy, the atoms also have gravitational potential energy. 
The total potèntial energy ofthe two statesin the magnetic field B = LBz2 - [4mgf1i(!e + 51n)]z] 
therefore becomes 

In the first line, the term (3z 2 represents the quadratic magnetic field generated by the 
"baseball" coil. The second (linear) term in the square brackets accounts for the extra 
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Figure 2.2: Total potential energy of the 11, -1 > and the 12, 1 > states. The additional 
0.328 mK offset of the 12, 1 > state is not shown. The arrows indicate one cooling cycle, 
as explained in the text. 

internal potential energy of the 12, 1 > state due to the magnetic field gradient that cancels 
the force of gravity for the 11, -1 >-state. The term mgz denotes the gravitational potential 
energy. The corresponding energy curves are shown in fig 2.2 . 
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Clearly the positions of the minima of the corresponding energy curves do not coincide. 
The resulting shift, ~z, 

(2.8) 

which for 87Rb is of the order of (6.2 10-4 / (3) m, ((3 in Tm-2
), lays the basis for the 

gravitational Sisyphus cooling mechanism: atoms that are initially in the lower poten­
tial well are selectively excited at z < 0 to the 12, 1 >-potential, using a two-photon 
excitation. This can he accomplished e.g. by using micro-wave radiation to make the tran­
sition 11,-1 >---+ 12,0 >, foliowed by absorption of rf radiation, inducing the transition 

12,0 >---+ 12, 1 >. 
After halfan oscillation intheupper potential, at classica! turning-point at z > 0 (right in 
figure), the atoms are de-excited into the lower potential well by pulsed optical pumping 
through the P1; 2 or P3; 2 states, in which process spontaneous emission occurs (14]. Note, 
however, that the atoms are now closer to the minimum of the 11, -1 >-parabola than at 
the excitation. This means that the atoms in the de-excitation process loose more energy 
than they initially gained in the excitation process. Clearly this cycling between 11,-1 > 
and 12, 1 > states leads to cooling of the atoms. 
Using this method, atoms have been cooled in the vertical dirneusion toabout 1.5j.tK (14]. 
Note, that although the atoms are cooled only in the vertical direction, elastic collisions 
cause equilibration of the temperature in all three directions. Thus, continuous cooling in 
the z-direction results in cooling in all three directions. The cross-section for elastic ground­
state collisions between two 11,-1 >-state atoms can he derived from the rethermalisation 
ra te of the gas (15]. 
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2.1.2 Rf-induced evaporative cooling 

In this subsection we will discuss another novel cooling technique which is very promising 
for achieving very low temperatures: rf induced evaporative cooling of atoms. In this set­
up, 23Na atoms (i= 3/2) have been trapped in a de magnetic field [16]. 
Figure 2.3 shows the potential energy of the f = 1-states in a contiguration in which the de 
magnetic field increases linearly with z, B(z) = B0 z. By applying rf-radiation of frequency 
Wr 1 one can make a "hole" in the trapping potential of the j1, -1 >-state. For at the 
position zh, defined by 

(2.9) 

(where -11 is the magnetic moment of the j1, -1 >-state), the rf-radiation is resonant with 
the transition to the non-trappable 11,0 > and jl, 1 > states. Thus at this particular mag­
netic field (i.e. at a certain z), the rf-radiation removes the atoms which are in resonance 
from the trap by spinflipping them to the non-trappable hyperfine states. 

Clearly, the energy of the atoms that are removed from the trap can be varied by 
changing the rf-frequency. Thus, if the rf-frequency is tuned such that atoms with the 
highest energy are removed from the trap, after rethermalisation of the remairring atoms, 
the temperature of the gas is reduced. This motivates the term " rf-induced evaporative 
cooling". The cooling procedure can be repeated by decreasing the rf-frequency, so atoms 
that after rethermalisation have the highest energy can be extracted from the trap. 
In recent experiments 23N a atoms were trapped and cooled using the above-mentioned 
method and the temperature was observed to decrease by a factor of five at constant 
density [16]. 
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Figure 2.3: Potential energy of the f = 1 states in a magnetic field B(z) = Boz. At the 
position Zh the rf:~radiation is resonant with the non-trappable hyperfine states. The atoms 
can leave the trap through the "hole". 
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2.2 Experimental setup of the FORT 

The FORT uses optical methods to store atoms. It consists of a single linearly polarised 
focussed Gaussian laser beam that has a wavelength À tuned between 4 and 67 nm to the 
red of the S112 - P1; 2 (D1)-transition of 795 nm [9]. The atoms in this beam are trapped 
by the so-called optical dipole force. To illustrate the operation of this optical dipole force, 
we consider a two-level atom of resonance (transition) frequency w0 in the field of a laser 
of frequency WL· The electric field ËL(f) of the laser induces an electric dipole moment 
in the trapped atoms. This, in turn, leads to a negative change in internal energy of the 
atom, proportional to Ei, which acts as a potential energy term on the atom. It thus 
experiences a trapping force directed to the focal point of the laser beam. The associated 
trapping potential U on the atom is given by [10]: 

(2.10) 

where nR = < 1/Jeldi1/Jg > ·ËL(f)jn is the Rabi-frequency, 1/Jg and 1/Je are the internal ground­
and excited state wavefunctions, J is the atomie dipole operator and ËL(f) is the electric 
field of the laser, which is a function of the position f'; ~ = WL- Wo is the laser detuning 
from atomie resonance. 
In equation (2.10) we assumed that ~ >> nR and ~ >> r where r is the line width of 
the excited state. 

The ra te at which atoms spontaneously scatter ( absorb and subsequently spontaneously 
emit) the las~r photons, Is, is given by [11] : 

rnk 
Is= 4~2' (2.11) 

The advantage of large detuning can now beseen from equations (2.10) and (2.11): Upon 
increasing the detuning ~ , we can get the same trapping potential when the laser intensity 
(prop. Ok) is increased simultaneously. Moreover, as can be seen from equation (2.11), 
the spontaneous scatter rate decreases so the heating due to recoil in spontaneous emission 
also decreases. 

Another advantage of the large detuning in the FORT is the fact that unlike in usual 
optical traps (not far detuned), in which a large fraction of the confined ground-state atoms 
are pumped to an excited state, the collisions between ground- and excited state atoms are 
minimised in the FORT; the cross-section associated with ~hese collisionsis proportional to 
flk/ ~2 [12]. These collisions lead to heating of the trapped gas and to loss of atoms from 
the trap. Therefore the loss of atoms from the trap due to the trapping laser is drastically 
decreased in the FORT. 

Typical parameter values at À = 814 nm, P = 0.8 W and a waist of about 10 pm, are 
a trap depth of 6.0 mK and a photon scatter rate Is = 4.0 * 102s-1 • The temperatures 
achieved in t~e FORT typically range from 0.5-2 mK [9]. As we shall see, the FORT is well 
suited for studying cold atomie collisions between ground and excited state atoms that 
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are induced by a second independent laser beam (the so-called catalysis beam). In the 
next chapter we will discuss these collisions and the way they can be used to determine 

ground-state potential parameters. 
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Chapter 3 

Optical collisions 

As was already mentioned in the introduction, it is our aim to improve the theoretica! Rb2 

ground-state potentials using experimental information contained in trap-loss processes. 
In this chapter we will first discuss the "state of the art" Rb2-ground-state potentials 
and introduce the parameters by which these potentials can be described. In the sec­
ond section, we will motivate our choice to analyse first the data obtained in the FORT 
photo-association experiments by Heinzen et al., insteadof the data from the MT. In the 
subsequent section, we will briefl.y go into some aspects of cold atomie collisions that take 
place in optical atom traps. We will confine our attention to so-called optica[ collisions 
that lead to loss of atoms from the trap. For a detailed and comprehensive discussion on 
optical collisions we refer to reference [17]. 

3.1 Rb2 ground-state potentials 

As a starting point for the calculation of atomie collisions, in principle we need to know 
the potential in detail over the whole interatomie range R E (0, oo ). In practice, however, 
the interatomie region can be divided into two intervals. At small internuclear distances 
the interaction between the atoms becomes very complicated and the potential is badly 
known. At large internuclear distances, the exact interaCtion between two ground-state 
atoms is much better known and can be given in termsof several ( dispersion) parameters, 
depending on the particular colliding atoms. 

3.1.1 Short range Rb2-potentials 

The only Rb2 ground-state potential based on spectroscopie research ( and consequently 
restricted to relatively small internuclear distances) that is known to us is the singlet 
poten ti al obtained by Amiot [18]. This poten ti al is obtained from extensive spectroscopie 
data using the inverse perturbation approach (IPA), and ranges from 6 to 21 ao. 
However, no spectroscopie Rb2 triplet potential is known to us, so for the short-range 
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triplet potential we must use a theoretically calculated potential. The only triplet potential 
presently available is that of Krauss & Stevens who have theoretically calculated this 
potential in the range 7-20 a0 [19). Both potentials, including their long-range tail, are 
shown in fig 3.1 in the next subsection, from which it can heseen that the singlet potential 
has its mimimum near R = 8 a0 and has a depth -0.018 a.u.; the triplet potential has its 
minimum at R = 11.5 a0 and has a depth -0.0009 a.u., which is approximately 20 times 
less than the singlet minimum. 

These curves yield reasonable starting potentials but at short range the singlet and 
triplet interactions are badly known. The influence of this part of the potential on the 
radial wavefuntion, however, can, for each energy E and rotational quanturn number N, 
he accounted for by one parameter only, the accumulated phase <P at a certain distance 
Ro: </J0 . This accumulated phase essentially contains the "history" of the wavefundion 
due to the short-range potential in the region R < Ro. Therefore we need not know the 
detailed form of the short-range potential: changing the potential in the region (0, Ro) is 
equivalent to changing the accumulated phase at R0 • The phase <Po depends on energy E 
and rotational angular momenturn N. In section 3.5 we shall see that in practice <Po shows 
a linear dependenee on E and N ( N + 1) in the relevant range of E and N. 

SUMMARIZING: knowledge of the exact form of the short-range potential behaviour 
is equivalent to knowledge of <Po(N, E). 

3.1.2 Intermediate and long-range Rb2-potentials 

At relatively large internuclear distances (R > 20a0 ) the interaction between the two 
ground-state atoms is caused by the dispersion interaction and the exchange interaction 
'Vexch· The well-known dispersion interaction arises from instantaneous fluctuations in the 
charge distril;mtion of the two atoms. These fluctuations momentarily cause an electric 
dipole moment in the neutral atom. This in turn will induce a dipole moment in the 
other atom and the atoms will interact via the electric dipole interaction. Using second 
order time independent perturbation theory it can he shown that one finds in this way the 
-C6 / R6 term representing the van der Waals interaction. Taking also higher multipoles 
and higher orders into account, one finds the exact form of the dispersion interaction 

V ( R) = - f: C~: . 
n=3 R 

(3.1) 

The exchange interaction arises from the gradual overlap of the two electron clouds 
when the atoms are brought together. lts tail is commonly taken to have the form 

'Vexch ( R) = ae -bR. (3.2) 

The singlet (S=O) and the triplet (S=1) interactions have the same long-range dispersion 
tail; the splitting between the two potentials is caused by the exchange interaction. 
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At "intermediate" and long-range distauces the triplet(S=1 )-potential is in good approxi­
mation given by 

c6 Cs clO -bR 
1/;(R) = - R6 - RB - RIO + ae ' (3.3) 

and the singlet(S=O)-potential by 

V. (R) = - c6 - Cs - Cio - -bR 
s R6 RB RIO ae . (3.4) 

We determine the exchange parameters a and b from the constraint that the short-range 
potentials must be connected differentiably totheir short-range limits. However, we must 
fi.rst determine acceptable values for the dispersion coe:fficients C6 , C8 and C10 . In the fol­
lowing table we have listed the most recent values for these dispersion coe:fficients. 

reference 10 -;j c6 a.u. 10 ·f> Cs a.u. 10 "7 clO a.u. 
[31] 4.768 5.244 6.863 
(30] 5.726 6.115 6.316 
(32] 4.426 5.506 7.665 
[33] 4.350 
[34] 4.700 

The values obtained by Marinescu ([32]) are believed to be most reliable. In view of 
the large scatter among the values reported in literature, we choose 

10-3 c6 a.u. 5.0 ± 0.7 
10-5 Cs a.u. 5.7 ± 0.5 
10-7 Cw a.u. 7.5 ± 0.5 

Using these values the individual dispersion terms at R = 30 a0 become 

v6 - (6.86 ± 0.96) 10-6 a. u., 

Vs = (8.69 ± 0.76) 10-7 a.u., 

Vio = (1.27 ± 0.08) 10-7 a.u .. 

(3.5) 

Upon using the central values for C6 , C8 and C10, differentiable conneetion to the Krauss 
& Stevens triplet-potential results in 

a= 136.86 a.u., 

b = 0.8818 a0I, (3.6) 

so the exchange potential at R = 30 a0 is 4.44 10-IO a.u., which is negligible compared to 
the dispersion terms. 
In the long-range region where the photo-association occurs, the potentials can even be 
described by the C6 and the C8-terms only: 

C6 Cs 
V(R) =- R6 - RB. (3.7) 
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3.2 Choice between the MT and the FORT 

We now come to the choice between analysing MT or FORT-data. In the previous chapter 
we have discussed the trapping principlesoftheMT and the FORT. The collisional states 
are in principle always a mixture of both singlet and triplet components. Therefore in the 
analysis of the experimental data one must simultaneously take singlet and triplet param­
eters into account. This means that the parameters effectively descrihing the short-range 
potentials, that is <l>os(N, E) for the singlet and <Pot(N, E) for the triplet are involved in 
calculation of trap loss-processes. In addition to these short-range parameters, the "inter­
mediate" exchange parameters a and b and the long-range dispersion coefficients Ca, Cs 
and clO must be taken into account in collisional calculations. 
Thus as much as seven parameters must be determined as wellas the distribution over the 
hyperfine ground-states contained in the initial state! If the Rb2-potentials that we want 
to improve were reasonably well-known, implying "good" starting values for the above­
mentioned parameters, there might have been a possibility to extract accurate parameter 
values from comparison of theoretica! calculations and experiment. But even in that hy­
pothetical situation we would have faced a Herculean task. 

However, these problems can be evereome in the FORT if the experimentalset-up is 
changed. If the ground-state atoms are continuously pumped into the (!, m 1 )=(3,3) state, 
the nuclear and electrooie spins are fully "stretched", i.e. mi = 5/2 and m 8 = 1/2. Because 
these so-called doubly-polarised atoms have the same projections of the electronic spin in 
the direction of the magnetic field, they can only interact via the triplet interaction. So 
within this experimentalset-up the collisions are fully determined by the triplet potential. 
In the MT, however, the atoms can not be doubly-polarised so the collisional states always 
consist of a mixture of singlet and triplet states. 

An additional advantage of the FORT is the fact that the trap-losses are externally 
induced by means of a laser that excitates the ground-s~ate atoms to an excited state. 
When this state decays, the atoms predominantly leave the trap (see next section). This 
laser has a tunable frequency and this frequency determines the internuclear distance at 
which the atoms make the transition to the excited state. The laser frequency WL can 
even be chosen such that the transition occurs in the very long ground-state tail that is 
effectively described by Ca only! This provides a very promising strategy to determine the 
ground-state parameters. Comparison of theoretica! calculations with experimental data 
should yield ~n accurate value for Ca. Then WL is set to such value that the laser excitation 
occurs in the region of smaller internuclear distances where the ground-state potential is 
to a very good approximation determined by the dispersion coefficients Ca and Cs. Since 
Ca is "known", Cs can now be determined. This strategy can then be repeated: werking 
inwards, starting from large internuclear distances allows the determination of the required 
potential parameters. 

We conclude that it is much more promising to analyse the trap-losses from the doubly­
polarised atoms in the FORT. Our further discussion is therefore restricted to the analysis 
of the trap-loss mechanisms in the FORT. 
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3.3 Optical collisions: photo-association 

In the preceding section we pointed out that it is possible to deduce the ground-state Rb2-

potential parameters from the experimentally measured lossof atoms from the FORT. But 
how can the FORT-experiment then be used to derive potential parameters if the main 
reason for far-off-resonance trapping is to minimize the lossof atoms from the trap? 
The answer simply is: the actual atomie trap-loss is not induced by the FORT trapping 
laser (of constant frequency Wt), but by a second independent laser of variabie frequency 
WL· This laser will cause so-called optical collisions that give rise to the measurable loss of 
atoms from the FORT. Therefore we will now fi.rst discuss these important optical collisions. 

A collision of two atoms (in presence of a laser field), one of which resonantly absorbs 
a laser photon during this collision, is called an optica[ collision. In the FORT for example 
we initially have two colliding ground-state atoms in the 5112 - S112-state. This colliding 
pair of atoms initially has an energy of the order of kT relative to the ground-state Rb2 

dissociation limit, where k is the Boltzmann constant and T denotes the temperature of 
the gas. During the collision, at a certain distance, the so-called Condon radius Re, the 
laser field of frequency WL becomes resonant with the transition to an excited state. 
At this resonant distance, the ground-state "molecule" ca~ make an electric dipole transi­
tion to this excited state. In particular the ground-state can make a transition to a bound 
state of the excited potential 

Rb+ Rb+ nwL ~(Rb+ Rb*), (3.8) 

which is called photo-association. This process is illustrated in figure 3.2. When WL is being 
changed, resonances will occur whenever nwL matches the energy difference between the 
bound excited molecular states and the initially free state. It is of importance to emphasize 
the fact that the colliding atoms in the FORT are ultra-cold. The resulting energy spread 
of the initial collisional states is so small that the sharpness (resolution) of the free-bound 
absorption lines can be comparable to that of a transition between two bound states [20] ! 
Even rotational structure can be resolved. 
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Figure 3.2: Schematic picture of the photo-association process. Vg and Ve are the ground 
and excited state potentials, respectively. The dashed line represents the initia! energy of 
the colliding atoms. By absorption of a laser photon of energy 1iwL, the initial free state 
makes a transition to a bound state in the excited potential. 
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At the large internuclear distances (R > 30a0 ) we are first interested in, the resonant 
distance Re lies in the long-range potential part. Since the long-range van der Waals 
ground-state potential is negligible compared to the -C3 / R3 tail of the excited state, the 
atoms constituting the excited molecule are rapidly accelerated towards each other and 
gain extra relative kinetic energy when the internuclear distance decreases. 

Any subsequent spontaneous decay of the bound state to the ground-state, by emission 
of a photon, will generally lead to loss of the two atoms from the trap. This follows from 
conservation of energy: if we denote the energy of the emitted photon, which is a function 
of R, by 1iw,(R) and the relative kinetic energy of the atoms in the initial ground-state 
and in the bound excited state by Ek; and Ek1(R), respectively, then 

(3.9) 

Thus the emittedphoton is redshifted by an amount 1i8(R) = Ek1(R)-Ekil which increases 
as C3 / R3

• Therefore decay will predominantly occur tofree states of much higher kinetic 
energy than the initial relative kinetic energy Ek;. This increase in relative kinetic energy 
is divided among the two atoms and generally is large enough to let the atoms escape from 
the FORT, causing the above-mentioned trap-loss, as is iliustrated in fig 3.3. Similarly, by 
emission of a photon of frequency WJ > WL, the atoms decayintoa bound Rb2 ground-state 
molecule, which also results in loss of trapped atoms. 
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dl stance 

Figure 3.3: Schematic picture of the trap loss process, as described in the text. The 
ground-state potential Vg is taken to be zero; the excited state potential varies as -C3 / R3

• 

The relative kinetic energy in the ground-state is supposed to be negligible. The initial 
state absorbs a laser photon of energy 1iwL. Due to the rapid gain of relative kinetic energy 
of the atoms, however, the excited stateemits a photon of energy 1iwf < WL. 

In the next section we will discuss the FORT-experiment by Heinzen et al. and discuss 
how the measured trap-losses can be used to derive ground-state potential parameters . 

. , 
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3.4 Experimental photo-association spectra 

We shall now briefly discuss the experirnents by Heinzen et al., in which ultracold 85Rb­
atorns are confined in a FORT. The photo-association is perforrned by the so-called photo­
association laser (PAL), which has a tunable frequency WL· If the associated photon energy 
1iwL matches the energy difference between an excited bound state and the continuurn 
ground-state, it is possible to have a transition to that bound excited state. The resulting 
photo-association spectrum rnay therefore be used to deterrnine the positions of the bound 
excited states, as was first pointed out by Thorsheirn, Weiner and Julienne (20]. 

In the experiment the photo-association bearn is on fora time of 100 ms. After this time 
both the trapping laser bearn and the PAL bearn are turned o:ff. The remairring atorns in the 
trap are then detected using laser-induced fluorescence. The rneasured fluorescence signal 
is proportional to the nurnber of atorns probed, so this signal can be used to deterrnine the 
arnount of atorns left in the trap. The rneasured fluorescence signal is sametirnes called the 
photo-association spectrum. 
Obviously, when the PAL is tuned to a resonance, the fluorescence signal shows a dip. This 
can be seen frorn fig 3.4, obtained by Heinzen et al. (21 ]. It shows the fluorescence signal, 
obtained from photo-association near the sl/2 - pl/2 dissociation limit, as a function of 
the PAL frequency WL· Note that the signal intensity is plotted to increase downward: 
the "upward peaks" therefore correspond to resonance transitions to bound excited states. 
The peaks shown in fig 3.4 correspond to resonance transitions to vibrationallevels of the 
o; and 1g potentials that asyrnptotically conneet to the sl/2 - pl/2 state. 
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Figure 3.4: Photo-association spectrum of ultra-cold Rb atoms, obtained by Heinzen et. 
al .. The spectrum consistsof two vibrational series corresponding to transitions to bound 
stat es in the 19 ( dashed verticalline above peaks) and in the o; ( solid verticalline above 
peaks) states as a fuction of the PAL laser frequency (cm -l). The inset shows the Franck­
Condon oscillations 
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An important feature of the photo-association spectra is the oscillation of the intensity 
of the peaks, the so-called Franck-Condon oscillations, which is illustrated in the upper 
part of fig 3.4. This oscillation reflects the structure of the ground-state wavefundion as 
can be explained from a simplified but physically acceptable model, in which the excited 
state wave-function is concentrated near its outer classica! turning point. By virtue of the 
Franck-Condon principle, the transition probability from the ground-state to the bound 
excited state is proportional to the product of the wavefunctions near the outer classica! 
turning point of the bound ( vibrational) level. If this turning point coincides with a node 
in the ground-state wavefuction the probability for transition to excited state will be very 
small. Therefore nocles in the ground-state wavefunction generate minima in the photoas­
sociation spectrum. The Franck-Condon oscillations may therefore be used to determine 
the position of the nocles in the ground-state wavefunction. These in turn can be used to 
calculate the long-range ground-state potential parameters. 

Upon resolving the vibrational peaks, they turn out to show an additional rotational 
structure. Essentially these rotational peaks are the convolution of the Lorentzian profile 
descrihing the resonance behaviour of the excited state with the initial velocity distribution 
over the ground-states and the associated transition matrix-element. Since the resulting 
shape is very sensitive to modifications in the ground-state potential, comparison of ex­
perimental and theoretica! spectra evidently provides a way to determine the ground-state 
potentials most accurately. 

In the next section we will discuss the behaviour of the ground-state wavefuction, 
which is of great importance in the analysis of the data from the FORT. In particular the 
dependenee of the accumulated phase on the total energy and the relative orbital angular 
momenturn is investigated. 
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3.5 Behaviour of the ground-state wavefunction 

In order to extract accurate ground-state potential parameters from the experimental data, 
it is important to know the behaviour of the ground-state wavefundion as a funcion of en­
ergy E and relative orbital angular momenturn N of the atoms. The position of the nocles in 
the ground-state wavefundion e.g. can be used to derive the ground-state dipersion coeffi­
cient C6 • Because the atoms inthetrap are supposed to obey a Maxwell-Boltzmann energy 
distribution, and since the position of the nocles in the ground-state wavefundion depend 
on E, there is always a large range of allowed collision energies for which the resulting 
nocles in the ground-state wavefunction must be determined. Furthermore, we must also 
consider the influence of the relative atomie orbital momenturn N, since the centrifugal har­
rier resulting from N also affects the position of the nocles in the ground-state wavefunction. 

In order to determine the influence of fluctuations in E and N on the (position of 
the nocles in the) triplet ground-state wavefunction, we consider the dependenee of the 
accumulated triplet phase <Pot on these two parameters. For the change in the wavefundion 
caused by changing E and N is equivalently accounted for by the dependenee <Po on E and N. 
This can be seen if we write the wavefundion in the JWKB-approximation. This JWKB­
approximation is valid if the potential does not vary appreciably over the local wavelength 
of the ground-state wavefunction, i.e. everywhere except. in the far dispersion tail. The 
wavefunction can then be approximated by: 

\li(R) =A sin( ji. <Pot). (3.10) 

Here A is a normalisation constant, <P(R) = Jfio k(R)dR, is the accumulated triplet phase 

at internucle~r distance Rand k(R) = J~[E- V(R)] is the R-dependent wavenumber, 
where E is the energy and V(R) represents the total (=triplet + centrifugal) potential: 

V(R) = vt(R) + 1i
2 

~~: 1). (3.11) 

Here N denotes the rotational quanturn number. 
The accumulated phase can be calculated from the value of the wavefuction and its 

derivative with respect to the internuclear distance ( denoted by the primes): 

7r 'Ij;' 1 k' 
<P = 2 - arctan(-:;;;- . k + 2k2 ) . (3.12) 

This equation can be used to calculate the dependenee of the accumulated triplet phase 
on E and N. To that end the short-range Rb2 triplet potential vt(R) of Krauss & Stevens 
[19] was differentiably connected to the long-range tail for which the dispersion coefficients 
of [32] were used. 
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Figure 3.5: Accumulated triplet phase at R = 30 ao as a function of N(N+1) 

We then numerically solved the radial Schrödinger-equation 

(3.13) 

for several values of N and E. 
The dependenee of 4Jot on E and N was determined using equation (3.12). The results 

for the triplet ph~e.at Ra= 30ao are shown in the figures helow. · 
From fig 3.5 it can he seen that the accumulated triplet phase 4Jot decreases linearly 

with N(N+1). This is a consequence of the centrifugal harrier that tends to push the 
wavefunction away from the origin, so at R = 30a0 the wavefunction has completed less full 
oscillations ( counted from R=O) than the wavefunction of the same energy corresponding 
to N=O. . 
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Figure 3.6: Accumulated triplet phase at R = 30 ao as a function of E 

However, as can be seen from fig 3.6, the accumulated triplet phase increases linearly 
in energy when E increases: the wavenumber increases when E increases so the local 
wavelength decreases, thus at R = 30ao a wavefundion of higher energy has completed 
more oscillations than a wavefundion (of the same N) of less energy . 

. , 
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Since the temperature in the FORT appromimately is 1 mK and since only small 
rotational quanturn numbers participate in the photo-association process, these figures 
show that both </>'Nt := (;

31
(:SS+l)))IN=o and <l>kt := (W)IE=o are constant over the range 

that is of interest to us. 
Therefore to an excellent approximation the dependenee of the accumulated phase on 

energy and orbital angular momenturn is given by 

4>ot(N, E) = 4>ot(O, 0) + N(N + 1)</>~u + E<I>Ét· (3.14) 

This equation confirms the statement in section 3.1 that ·the influence of the smali-range 
potential part on the wavefuction is equivalently accounted for by the three parameters 

4>ot(O, 0), <l>'tvt and <l>kt • 
The prerequisites for the analysis of the experimental photo-association spectra are the 
atomie collisional model and accurate excited state potentials. These are the subjects of 
the next two chapters: in chapter 4 we will introduce an appropriate set of basis states for 
the characteiisation of the collision. In chapter 5 we will calculate the potentials of the 
excited states involved in the optical collisions. 
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Chapter 4 

Rotating diatomic molecules 

In this chapter we will discuss some aspects of diatomic molecules that lay the foundation 
for the description of optical collisions. These include the conneetion between space- and 
molecule-fixed molecular states and the derivation of anomalous commutation rules for the 
total angular momenturn with respect to the molecular frame. At the end of this chapter 
we will introduce the "generalised" kets that we use as the basis set the state-vector of the 
diatomic molecule. To avoid confusion, we will first define the coordinate systems we use 
and derive the conneetion between them. 

4.1 Space- and molecule-fixed frames; Eulerian an­
gles 

There are two coordinate systems that are particularly useful in the description of atomie 
collisions: the space-fixed (x,y,z)-frame and the molecule-fixed (Ç, 71, ()-frame. The space­
fixed frame does not change its orientation in time, the molecule-fixed frame is anchored 
to the molecule. If the molecule rotates, the orientation of the molecule-fixed frame with 
respect to the space-fixed system changes. The origin of both frames is chosen to be the 
midpoint of the line joining the two identical nuclei. This means that the origin coincides 
with the center of mass. The orientation of the molecule-fixed frame with respect to the 
space-fixed system can be given in terms of the three Eulerian angles a:, f3, r [22). Their 
definition in literature greatly varies, so in order to prevent confusion we shall now explicitly 
define them. · We suppose that the two frames initially coincide, the internuclear axis 
directed along the z-axis. Starting from this configuration we then perferm the following 
three rotations: 

• first we rotate the molecule-fixed frame through r around the z-axis 

• then we rotate the molecular frame through f3 around the space-fixed y-axis 

• finally we rotate the molecular frame through a around the space-fixed z-axis. 
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Figure 4.1: Orientation of the internuclear axis after rota ti on through the Eulerian angles 
as indiciated in the text. · 

The resulting orientation of the internuclear axis ( with respect to the space-fixed sys­
tem) is shown in fig 4.1 below. Note that a and (3 equal the familiar polar angles 4> and () 
of the internuclear axis, respectively. 

4.2 Transformation of electronic states. 

In callision calculations, molecular states are mostly implicitly defined with respect to 
the molecular frame because the symmetry labels that identify these states are related 
to symmetry operations in the molecular frame. In the experiment however when the 
distribution of the atoms over the different states is specified, these states are (nearly) 
always supposed to be defined with respect to the space-fixed (laboratory) frame. For 
example in the case of doubly-polarised atoms, the projection of the spins of the atoms is 
known with respecttoa space-fixed direction, determined by the direction of the magnetic 
field by which the spins are oriented. The same is true for the laser polarisation that 
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induces the photo-association. It is therefore necessary to be able to switch between the 
two descriptions used. The transformation that allows us to express a space-fixed defined 
state in termsof its molecule-fixed defined equivalent and vice versa is easily obtained if we 
consider the behaviour of an electronic state under active rotations. These active rotations 
rotate the shape of the wavefuntion. 

Let us start with an (atomie) electronic state with total angular momenturn quanturn 
number j and projection m1i on the space-fixed z-axis, denoted by ljm; z >. In this notation 
the "z" explicitly reminds us of the fact that the state is defined with respect to the space­
fixed coordinate system. An active rotation through Eulerian angles ( a, /3, 1) transfarms 
this state into 

-ia}z -i{3jy .=.b1L . 
e 11 e 11 e 11 IJm; z >, ( 4.1) 

where Jz and }y are the generators of infinitesimal active rotations around the space-fixed 
z- and y-axis, respectively. Upon multiplication with the unit operator 

1 = L jjm'; z >< jm'; zl, 
j,m' 

(4.1) transfarms into 

Lm' < jm'; z!e -if:Jz e -i:Jy e~jjm; z > 0 jjm'; z > = 
Lm' D~'m( a, /3, l)jjm'; z >, 

where we made use of the famous Wigner-D-functions. 
From this we immediately obtain: 

)jm;( > = l:D~'m(a,/3,/)ljm';z >, 
m' 

( 4.2) 

(4.3) 

( 4.4) 

in which )jmj ( > is an electronic state with quantumnumbers j and m defined with respect 
to the molecule-fixed frame. The inverse transformation that expresses a state jjm; z > in 
its equivalent linear combination of states defined with respect to the molecule-fixed frame, 
is found using the unitarity of the D-functions: 

jjm;z > = l:D~m'(a,/3,/)ljm';( > (4.5) 
m' 

The above two definitions, lay the basis for transformation of molecular states whenever 
we must switch between space- and molecule-fixed descriptions. 
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4.3 Commutation rules for the total angular momen­
t urn. 

In conneetion with our particular choke of basisfundions for diatomic molecules in the 
next section, it will prove useful to consider the commutation rules for the total angular 
momenturn of the diatomk molecule. However, we will firstly explain the notation we use 
throughout this report. 

4.3.1 Notation. 

In order to avoid lenghty explainations of the symbols in every following formula and for 
the sake of reference, we supply the following table of frequently used symbols: 

• L denotes the total electronk orbital angular momentum; its component on the space­
fixed z-axis is denoted by ML, its component on the (-axis is A. 

• S denotes the total electronic spin; its component on the space-fixed z-axis is Ms and 
the component on the ( -axis is ~ 

• j is the total electronk spin j = L + S. lts component on the space-fixed z-axis is 
denoted by MJ and its component on the (-axis is n. 

• N is the relative orbital angular momenturn of the atoms; its component on the 
space-fixed z-axis is MN . lts component on the (- axis vanishes identkally. 

• P is the total angular momenturn of the molecule: P = N + 1 lts component on the 
space-fixed z-axis will be denoted by Mp; its component on the (-axis is n. 

4.3.2 Anomalous commutation rules 

In conneetion with the analysis of the collision processof two atoms, one encounters a pe­
culiar (" anomalous") commutation relation for the molecule-fixed components of the tot al 
angular momenturn P. This results in the unusual property that the effect of the associated 
ladder operat-ors is reversed compared to the space-fixed ladder operators. Since these lad­
der operators appear in the coupled channels equations (which will be derived in section 
5. 7), we will discuss them here. In the second part of this section we will demonstrate 
that the molecule-fixed components and the space-fixed components of the total molecular 
angular moment urn, in particular the operators P, and Pz, commute; this latter property 
is of fundamental interest in the construction of basis kets for the diatomic states. 

In order to derive the anomalous commutation rules using a geometrical argument, we 
consider the effect of active rotations on a vector. Since the operators Px and PY generate 
active rotations about the space-fixed x- and y-axis, the effect of [1\, Py] can be determined 
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from the behaviour of a solid body under rotations. If the rotations are performed with 
respect to space-fixed axes, it can easily be seen that 

(4.6) 

in accordance with the usual commutation rules. But in the molecule-fixed frame the 
components Pe, P'TI and ft, do not obey (4.6). To see this, we consider the behaviour 
of a vector V with components ~, V'TI and V( under active rotations with respect to the 
molecular frame. We first rotate the vector V through a about the 77-axis, changing V 
into W. Thus the componentsof W with respect to the initia[ orientation of the molecular 
frame is different from those of V with respect to this frame. But now comes the trick! The 
second rotation though f3 about the Ç-axis is to be performed about the new Ç-axis because 
the frame is anchored to the vector. Moreover the numerical values of the components 
of the vector W with respect to the (simultaneously rotated) molecular frame are ~' ~ 
and v,. If we subtract from the resulting vector the vector that is obtained form reversing 
the order of the rotations, then simple matrix-calculation shows that the commutator 
[Re(/3), R'TI( a)] = R,( -af3) - 1, where the R's denote rotation operators. This equation 
implies that the vector Re(f3)R,/a)V can be obtained from the vector R'TI(a)Re(f3)V upon 
rotating the latter through -(a/3) about the (-axis. However, if the rotations had been 
performed with respect to the space-fixed system (i.e. Ç --+ x, 7] --+ y and ( --+ z), then 
the vector Rx(f3)Ry(a)V would have been obtained from the vector Ry(a)Rx(f3)V upon 
rotating the -latter through +af3 around the z-axis. This means that the sense of the 
rotation is reversed! Therefore the commutation relations for the components of total 
angular momenturn P in the molecular frame become "anomalous": 

The anomalous commutation rules also imply anomalous ladder operators: 

P+ = Pe + iP'TI decreases n by 1 

ft_ = Pe- iP'TI increases n by 1. 

(4.7) 

(4.8) 

Let us now show that [J\, Ê'<] = 0. To do so, again we consider the effect of rotations on 
asolid body with some body-fixed axis (for example a knitting pin piercing a potato). The 
result obtained from a rotation about the space-fixed z-axis through, say a, foliowed by a 
rotation through f3 about the body-fixed axis is indistinguishable from the result gotten by 
interchanging the order of the rotations. This simple argument yields the above-mentioned 
very important result: 

(4.9) 

Obviously, equation ( 4.9) allows for the construction of molecular basis states with well­
defined projections on both the molecular and space-fixed frames simultaneously! 
In view of the foregoing discussion one might be tempted to think that all body-fixed 
angular momenta obey anomalous commutation rules e.g. [Je, J'TI] = -i1iJ,. 
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However, this is not so! Except for the tot al angular momenturn P, all other angular 
momenta obey normal commutation rules because they do not change the orientation of 
the molecular frame, thus e.g.: 

(4.10) 
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4.4 Basis kets for rotating diatomic molecules 

Since there is no prefered direction in space, the total angular momenturn P and its pro­
jection Pz are conserved. Moreover [Pz, Pc] = 0 (see equation (4.9)) so Mp and n can 
simultaneously be used within one ket. We are therefore led to define basiskets whkh we 
shall denote by IJOP Mp >. Note that neither z, nor ( appear in this notation; indeed 
this reminds US of the "mixed" character of the states: 0" is the projection on the ( -axis, 
while Mp is the projection on the z-axis of P. 
So these kets specify the total angular momenturn quanturn number P of the molecule and 
its projections on the space-fixed z-axis and on the internuclear axis; the particular orien­
tation of the moleculeinspace is specified by their dependenee on the Eulerian angles; the 
information about the electronk configuration is contained in the total electronk angular 
momenturn J and its projection on the internuclear axis, n. The explicit form of these 
"generalised" kets is given by [23] 

I J2P + 1 p• ( ) I JOPMp >:= S1r2 DMpO a,/3,/ ® JO; ( >. 

The complex conjugate Wigner-D-functions satisfy: 

1i2 P(P + 1) Dft~0 (a, /3, 1), 

nMp Df:p0 (a, /3, !), 
1i0 Dl{;P0(a,/3,/). 

( 4.11) 

( 4.12) 

The kets ( 4.11) constitute a convenient set of basisstates· at relatively small internuclear 
distances: the interatomie interactions are strong in this region and the angular momenta 
will couple to the internuclear axis. It is then appropriate to consider the internuclear 
axis as axis of quantisation. At very large internuclear distances however, the "molecule" 
essentially consists of two separate atoms and there is hardly any interaction between 
them. Consequently the angular momenta no longer couple to the internuclear axis so this 
axis looses its physical meaning as axis of quantisation. The physically appropriate states 
then are uncoupled states that have the space-fixed z-axis as axis of quantisation. These 
uncoupled states are products of electronic states IJ MJ; z > and the nuclear rotational 
eigenfundions IN MN; z >. These products can be coupled to states of total molecular 
angular momenturn P: 

I(JN)PMp;z > = L < JMJNMNIPMp > IJMJNMN;z >. (4.13) 
MJ,MN 

The distance where it is physically more approriate to switch from the space-fixed basis­
states to molecule-fixed basis-states can be defined by the so-called locking-radius RL [24]. 
We will comeback to this point in chapter 5 when we discuss the influence of non-adiabatic 
coupling terms. 
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Summarizing: at small internuclear distances IJ OP Mp > provides a good basis while 
at large internuclear distances I ( J N)P M p; z > is physically more appropriate to specify 
molecular states. Of course, from the mathematica! point of view both sets are equivalent. 
Needless to say, we will often have to perform the transformation between the two bases 
IJOPMp > and I(JN)PMp;z >. The required transformation can be obtained upon 
using the prqperties of Clebsch-Gordan coe:fficients and of Wigner-D-functions; we shall 
here only give the final results [23] 

IJOPMp >= (-1)J-O L: < J- OPOINO > I(JN)PMp;z > 
N 

and the inverse is given by 

I(JN)PMp;z > = L:(-1)J-O < J- OPOINO > IJOPMp >. 
0 

( 4.14) 

( 4.15) 

Now that we are finally equipped with two appropriate sets of basisstates for diatomic 
molecules, we can go over to the determination of the symmetry properties of these states. 
Furthermore, we can now calculate the potentials of excited states of alkali-dimers that are 
needed in the calculation of optical collisions. 
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Chapter 5 

Molecular potential curves for alkali 
dimers 

In this chapter we shall discuss the molecular potentials that are of interest in optical 
collisions. These are the potentials between two ground-state atoms (A+ A) and those 
between an excited and a ground-state atom (A+ A*). We are only interested in the 
application to Rb-collisions but because essentially the interaction between two identical 
alkali-atoms is the same, we confine our attention to the "model-alkali" A. 

5.1 The Born-Oppenheimer approximation. 

For thermal and cold collisions, the atomie veloeities are almost negligible compared to the 
electronic velocities. Thus the timescale for the atomie collision is very large compared to 
the timescale of electronic processes. Therefore the electrous adapt themselves more or less 
adiabatically to the slow nuclear motion: we can visualise the electronic wavefundion to 
be anchored to the nuclei, forced to make the same rotations as the nuclei do. This picture 
allows us to refer the electronic wavefundion to the internuclear axis rather than to the 
space-fixed system. In essence this is the famous Born-Oppenheimer approximation [25], 
in which the electronic wavefundion W is solved within the molecular frame, the nuclei 
supposed fixed. Thus we have to solve: 

1i2 .... .... .... .... 
{-

2
m 4= ~~ + V(r, R)}w(r; R) = E(R)w(f'; R), 

' 
(5.1) 

in which i runs over all electrous and V represents the interaction potentials between all 
electrous and nuclei, depending on all electroncoordinates rand on the internuclear vector 
R. Note that both the eigenvalue E and the eigenvector W are parametrie functions of R. 

Subsequently the motion of the nuclei is calculated using the electronic eigenvalue E(R) 
as an additional potential term, giving rise to the total wavefundion F(R)W(r; R), in which 
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the "nuclear" wavefunction F(R) satisfies the equation: 

{- ~: ó.R + E(R)}F(R) = EF(R), (5.2) 

where E den·otes the total energy. The approximation made in this way is the neglect 
of terms in the Schrödinger equation arising from the operation of the nuclear kinetic 
energy operator on the parametrie dependenee of the electrooie wavefunction. What can be 
"cheaply" included in (5.2) is the so-called adiabatic correction energy, i.e. the expectation 
value of the V wterm in the electrooie state. This leads to the so-called adiabatic Born­
Oppenheimer approximation. 

Note that the Born-Oppenheimer approximation is expected to break down near val­
ues of R where the distance of two eigenvalues of E(R) ( corresponding classically to an 
electrooie eigenfrequency) is small relative to a typical nuclear frequency. In the case of 
such an avoided crossing one has to solve a coupled set of equations, rather than a single 
one like (5.2). 
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5.2 Interactions between ground-state atoms 

The ground-state "molecule" constisting of two ground-state atoms is effectively described 
by the Hamiltonian: 

2 2 
A A """' A hf """' A z H = T + Vc(R) + Li Hk + Li Hk, (5.3) 

k=l k=l 

in which 'Î' is the kinetic energy operator, Vc(R) represents the central interaction, ÎI~f 
is the hyperfine interaction in atom k and Î!ff is the Zeeman interaction. The central 
interaction corresponds with the electronic energy E(R) of equation (5.2) and embodies 
the influence of all Coulombic interactions between the neutral ground-state atoms. It is 
given by 

t 

Vc(R) = L Va(R)ia ><ai, (5.4) 

where Vs(R) and Yt(R) are the singlet and triplet potentials respectively, that were intro­
duced in chapter 3, and ia >< ai are the corresponding projection operators. 
The hyperfine interaction accounts for the interaction between the electronic and nuclear 
spin within one atom. In the case of a ground-state atom, the only non-vanishing contri­
bution sterns from the so-called Fermi-contact term: 

(5.5) 

in which Sk and ik are the ( valenee) electronic and nuclear spin of a torn k and the constant 
a determines the splitting of the hyperfine levels in zero magnetic field. As can be seen 
from this equation, the hyperfine interaction is invariant under simultaneous rotations of 
Sk and ik and consequently conserves the total atomie spin f: = Sk +ik and its projection 
on an arbitrary axis, e.g. the internuclear axis. This term can therefore be written as: 

ÎI~f = L i[f(f + 1)- i( i+ 1)- s(s + 1)]i(si)fmJ; ( >< (si)fmJ; (i. (5.6) 
J,m! 

The last term in (5.3) represents the Zeeman interaction that describes the interaction of 
the atomie spins with an external magnetic field Ë. 

(5.7) 

Here /e and Ïn denote the gyromagnetic factors of the valenee electron and the nucleus 
respectively. Because the magnetic field in the FORT is very weak, the Zeeman-term can 
safely be neglected. 

For very large internuclear distances, the central interaction Vc(R) becomes negligible 
compared to the atomie hyperfine interaction and the asymptotic atomie eigenstates then 
are the atomie hyperfine eigenstates. For 85 Rb, the total atomie spin f can take the values 
2 and 3. The asymptotic molecular ground-states therefore are linear combinations of the 
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combinations of atomie total spins (ft, /2) = (2,2), (2,3) and (3,3). The asymptotic energy 
difference !:1E between these states is 3a. The relative importance of the hyperfine inter­
action compa.red to the central interaction clearly depends on the internuclear distance be­
tween the atoms and can be estimated by camparing !:1E and the energy-difference between 
the singlet- and triplet potentials (i.e. the exchange energy): when !:1E < < 2"Vexch(R), the 
infiuence of the hyperfine interaction reduces to a constant offset with respect to the singlet 
and triplet curves. At internuclear distances where !:1E "' Vexch(R), however, the role of 
flhJ becomes very prominent: the potentials show avoided crossings in this region and the 
hyperfine interaction causes coupling of the asymptotically different hyperfine eigenstates 
[26]. When the atoms are doubly-polarised however, (!, m1) can only be (3,3) or (3,-3). 
In this situation ( doubly-polarised atoms) we only have triplet scattering states and the 
infiuence of the hyperfine interaction reduces to a constant offset. The Hamiltonian (5.3) 
in that case simplifies to: 

(5.8) 

The infiuence of the nuclear spin in our further discussion then only appears in connee­
tion to the fundamental selection rule for bosons [27]: 

N + I + S = even. (5.9) 

This rule severely limits the possible scattering states. In the doubly polarised 85Rb-gas 
for example, I and S are odd so N can only be even! 
In general, the orthogonal solutions of (5.3), when the last two terms are abandoned, are 
denoted by: 

(5.10) 

where 1r e denotes the electronic inversion symmertry ( electronic parity) with respect to the 
midpoin~ of the line joining the nuclei. The eigenvalues of these adiabatic states (i.e. the 
singlet and triplet potential) are parametrie functions of R. For large internuclear distances 
we may neglect overlap effects and a molecular state then asymptotically corresponds to 
two ground-state atoms A. Within the Heitler-London approximation [28], the singlet and 
triplet states are then given by linear combinations of products of atomie wavefunctions: 

1 
i25+1A1re > = y'2{is >~is >1 + {-1)5 !s >~is >1}, (5.11) 

where we have suppressed the spin part and in addition, have only considered the valenee 
electron states. 
The electronk parity 'lre is given by ( -1) 5 . In this notation is >1 means that electron 1 
is in an s-state at nucleus A. Introducing the factor ( -1) 5 assures that the states (5.11) 
are antisymmetrie under electron interchange. In the special case of doubly-polarised 
atoms, the only possible molecular state is the 3I:u-triplet state, where we have used the 
usual spectroscopie notation I: to express that A = 0. It is emphasised that the Heitler­
London approximation (5.11) describes almost perfectly the ground-state channel in the 
photo-association process at the interatomie distances where this process takes place in 
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the experiments to be analysed. 
For the moment this completes our discussion on the ground-states. In the next section 
we will discuss the interactions between the atoms in the excited molecule A+ A"'. 
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5.3 Interactions between a ground-state and an ex­
cited atom. 

The second ingredient necessary in the calculation of optical collisionsis thesetof excited­
state (A+ A*) potentials and corresponding basis states. The Hamiltonian that describes 
a ground- and an excited state alkali atom at large distance is given by: 

2 2 

ÎI = t + Î!dd + 2: ÎIZO + 2: Ht'' (5.12) 
k=l k=l 

where 'Î' is the kinetic energy operator, Îfdd is the electric dipole-dipole operator, Îfso is 
the spin-orbit interaction and ÎJhf is the hyperfine interaction. The electric dipole-dipole 
interaction accounts for the resonant electric dipole interaction between the atoms. It is 
given by: 

A d~ 0 ~- 3(d~ 0 Îl)(d~ 0 Îl) 
Hdd = 4 R3 ' 

7r€o 
(5.13) 

in which d~ and d~ are the electric dipole-moment operators of atom 1 and 2, respectively, 
Ris the internuclear distance and Îl the internuclear unit-vector. It is convenient in our 
further calculations to express Îfdd in the molecular frame. Therefore we introduce the 
molecule-fixed spherical tensor operators 

dke ± idk11 

- =F J2 ' 
dk,, (5.14) 

in which dke is the çth component of the dipole operator of a torn k. Equation ( 5.13) then 
transfarms into: 

(5.15) 

in which all operators are defined with respect to the molecular frame. From this expres­
sion it is also easily seen that Îfdd conserves A: Jl+l increases, d2_ 1 decreases the respective 
atomie orbital angular momenturn projections; furthermore, dko does not alter the projec­
tion of the orbital angular momenturn of atom kso the net change in A is zero. Moreover 
the spin coordinates and the electronic inversion symmetry are not affected by Îfdd, so its 
eigenstates can be denoted by: 

(5.16) 

The spin-orbit interaction describes the interaction between the orbital angular roo­
menturn rand the ~in s within the excited atom: rand s couple to total electronk 
angular momentumj. In an excited alkali atom A*, j = 1/2 or 3/2. The energy difference 
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between these atomie P1; 2 and P3; 2 levels is the fine-structure splitting D.E. For the rela­
tively large internuclear distances we are interested in, the interaction may be taken to be 
R-independent and can then effectively be represented by: 

HA so 2 D.El... ... 
k = ~k'Sk, (5.17) 

in which 4 and sk are the orbital and spin angular momenturn of atom k ( = effectively the 
orbital and spin angular momenturn of the valenee electron). Since Hso is invariant under 
simultaneous rotations of f and 8, the interaction is diagonal in the total electronic angular 
momenturn quanturn number j and its projection on an arbitrary axis. In the body-fixed 
frame Îiso therefore transforms into: 

Îiso = ?: a~o [j(j + 1) -l(l + 1)- s(s + 1)]1(ls)jmj; ( >< (ls)jmj; (I 
J,mj 

(5.18) 

The term ÎJhf represents the hyperfine interactions in the ground-state and in the 
excited state atom. The hyperfine interaction in the ground-state atom is the Fermicontact 
term, that was discussed in the preceding section. The hyperfine interaction in the excited 
atom is much weaker than the interaction in the ground-state a torn [26). Of all interactions 
in the Hamiltonian only the dipole interaction is R-dependent. 1f we imagine to slowly 
bring together the ground- and excited atom, then the dipole interaction will successively 
overwhelm all other interactions, starting with the hyperfine interaction in the excited 
atom. The distance where the dipole interaction becomes comparable to the hyperfine 
interaction in the excited atom is of the order of several thousands of a0 • The distance 
where the dipole interaction equals the hyperfine interaction in the ground-state atom is 
several hundreds of a0 • Therefore at the distances we are interested in, only the spin-orbit 
interaction needs to be taken into account and the influence of the hyperfine interaction 
can be neglected. 

The adiabatic molecular potential curves for the A + A* -molecule are then found by 
diagonalisation of the Hamilton-matrix H, defined by 

(5.19) 

in which the set {!<Pk >} provides a repesentation for the molecular eigenstates. The R­
dependent eigenvalues of this matrix are the required adiabatic molecular potentials. The 
term adiabatic is used in this context because we suppose the nuclei to move so slowly that 
their motion does not generate transitions between different adiabatic electronic states. 
Therefore the eigenveetors corresponding to the adiabatic potentials are the ( adiabatic) 
molecular eigenstates. Since (Î!dd + Îiso) conserves the projection 0 of the total internal 
molecular angular momenturn J and the electronic inversion symmetry 7re, we shall use the 
corresponding quanturn numbers to label the adiabatic molecular states. 
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5.4 Basis states for alkali-dimer eigenstates. 

In order to calculate the adiabatic Rb+ Rb"' potentials, we must choose a set of basis states 
for the Rb+Rb"' molecule. With respect to this, it is convenient to have basis states that 
reflect the conservation laws (i.e. the symmetry properties) of the particular individual 
interactions. As we have seen in the previous section, at ~mall inter-atomie distauces the 
spin-orbit interaction is negligible compared to the dipole interacion. Because the electric 
dipole interaction conserves A, at these distances, the Hamiltonian will to a very good 
approximation be diagonal in A. It is therefore convenient to label the set of basiskets 
among others by the quanturn number A, since the matrix representation of the Hamilton 
operator will then be approximately diagonal at small internuclear distances. The total 
projection of.the molecular angular momenturn on the internuclear axis (!1) is rigorously 
conserved throughout the whole range of internuclear distances. Therefore in order to 
specify this quanturn number, we need only add ~ in the notation, since A is already 
included. Finally, 1r e is also conserved and therefore basiskets specifying L,A,S ,~ and 1r e 
provide a physically attractive set to specify the internal degrees of freedom of the molecule. 

Put in formula, the above mentioned normalised kets are 

(5.20) 

In this equation the part j25+1 LA, 7re > in the Heitler-London appoximation is given by: 

I25+1A,7re >=~[{Is >11PA >1 + (-1) 5 is >~iPA >1} -7re{is >11PA >~ + (-1)
5

is >11PA >1}], 
. (5.21) 

where we have used the same notation as in the case of two ground-state atoms. These 
states satisfy the required antisymmetry under exchange of electrous and have electronk 
parity 7r e· 
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5.4.1 Reflection symmetry 

In diagonalising the electronic Hamilton matrix (5.19) we will find it to be possible to 
assign an additional useful quanturn number to the electronic eigenstates in cases that 
n = 0, namely the reflection (anti)symmetry of the eigenstates relative to an arbitrary 
plane through the (-axis, for definiteness the Ç- (-plane·. Note that for n # 0 it is not 
useful to introduce states with a definite reflection symmetry, since one needs definite su­
perpositions of n and -n for another purpose, i.e. to form states of definite total parity. 

Since we know beforehand that states with definite reflection symmetry will be eigen­
states of the Hamilton matrix (5.19), we can profitably use this property in diagonalising 
the Hamiltonian matrix. To that end it is useful to point out that under reflection in the 
Ç- (-plane, denoted by the operator Se(, we have 

Bed 125+1 LA,7re >®IS~> } = 
(-1)L'i(-1)L-A(-1)s-I: 12S+1L-A,7re >®IS-~>, (5.22) 

where li denotes the atomie orbital angular momenturn of atom i (i= 1, 2). 
This follows from the fact that Sec can be written as the product R1rnP of a rotation 
operator which rotateseach electronic wavefundion over 1r about an axis through its nucleus 
parallel to the TJ-axis and an electronic inversion operation (parity operation) with respect 
to its own nucleus. Note that the s (p) state has even ( odd) parity, which is accounted for 
by the factor ( -1 )EI;. 
Furthermore, the transformations 

!LA> ~ ( -1)L-AIL- A> 
IS~> ~ ( -1) 5-I:IS- ~ >, 

(5.23) 

(5.24) 

reflect the usual behaviour under the above-mentioned 1r-rotation. As a consequence we 
find the linear combinations 

(5.25) 

for A > 0 and ~ = -A to have ± reflection symmetry. 
The state I25+1LA = 0,7re >®IS~= 0 > has refiection symmetry type (-1)L+S+l by 

itself. 
Now that we have appropriate basiskets, we can calculate the matrixelements 
Hkt =< ci>kiÎidd + Îiso lc/>1 > and the adiabatic (A+ A*) potentials. This will be done in the 
next sections. 
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5.5 A4iabatic electric dipole-dipole potentials 

Before turning to diagonalisation of the (Hdd + H80)-matrix, we shall first diagonalise the 
Hdd matrix. The resulting potentials will approximate the real molecular potentials rather 
accurately in the region where Îldd( R) > > Îlso. This region is particularly large for light 
elements (e.g. Li), si nee the spin-orbit interaction because the fine-structure splitting D.E 
is very small in those atoms. In the limit of small internuclear distances the adiabatic 
molecular potentials of any alkali dimer asymptotically coalesce with the electric dipole 

potentials Vdd because Vso < < Vdd is then always satisfied. 
The matrix Vt,d(R) ==< cPkiÎiddlcf>z >, is diagorral in A: 

( -1)8 +17re<f2 
A - ±1 : Vdd(R) == 

4 
R3 8ss,8r;r.'81re'lr~' 

7refo 
2(-1)8 7re<f2 · 

A == 0: Vdd(R) == 4 R3 8ss,8r.r.'81re1r~' 
7refo 

(5.26) 

where d is the atomie dipole matrix element, d ==< l' == 1 m/ == Oldcll == 0 mz == 0 >, in 
which the quanturn numbers used in the bra and the ket are the orbital atomie angular 
momenturn of the valenee electron and its projection on the internuclear axis. The resulting 
potentials, fu!nished with their Hund's case (a) labels 28

+1IAI;;u are shown below. 
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Fi~re 5.1: (Rb+Rb*) adiabatic electric dipole-dipole potentials 
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5.6 Adiabatic potentials including spin-orbit inter­
action 

As we have seen in the section 5.3, both fidd and Hso conserve n. Therefore the total 
Hamilton matrix defined by Hkl =< <f>klfidd + Hsol</>z > consistsof three submatrices, cor­
responding to molecular states with the quanturn numbers n = 0, 1 and 2. 
Those with n = -1 and -2 are identical tothen = 1, 2 matrices. 

In order to illustrate the calculation of some adiabatic potentials, we confine our atten­
tion to the n = 0 states. In abbreviated notation, we have the two basis states 

<t>t(n = o) 

<t>t(n = o) 

= IA = 0, S = 0, E = 0, 'lf'e >, 
1 

= y'2{ IA= 1, S = 1, E = -1, 'lf'e > -IA= -1, S = 1, E = 1, 'lf'e > } 

(5.27) 

for + reileetion symmetry (o+ subspace) and 

</>ï(n = o) 

</>2(n = o) 

=IA= O,S = 1,E = O,'lf'e >, 
1 

= y'2{ IA= 1, S = 1, E = -1, 'lf'e >+IA= -1, S = 1, E = 1, 'lf'e > } 

(5.28) 

for - refl.ecti.on symmetry (o- subspace). Therefore, in order to calculate the adiabatic 
n = 0-potentials, we must diagonalise simple 2 x 2 matices. Upon calculation these turn 
out to be 

o-: 

In a similar way, n = 1 states originate from the basis states 

<!>1(n = 1) = IA= o, s = 1, E = 1 >, 
<1>2 ( n = 1) = 1 A = 1, s = 1, E :._ o >, 
<l>3(n = 1) = IA= 1, s = o, E = o > 

and the corresponding matrix can be calculated analogously. 

(5.29) 

(5.30) 

(5.31) 

The adiabatic potentials are found upon solving the charaderistic equations of the 
associated matrices. The resulting potentials are shown below. 
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Figure 5.2: (Rb+Rb*) adiabatic potentials. The appropriate labels of the potentials are 
given in fig 5.3. ., · 
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In conneetion with the calculations above it is convenient to introduce new variables 

Y·- V- E112 .- !:;}.E 
J2 

(5.32) X·-.- 127l'€0R3 !:;}.E. 

This means that the adiabatic potentials (V) are defined relative to the energy of the 
asymptotic atomie P112 level (which has energy E1;2), expressed in terms of the fine­
structure splitting !:;}.E. The charaderistic equations then become: 

o;e Y2 
- (1 + 97reX)Y + ( 47reX + 18X2

) = 0 (5.33) 
o;e Y2 

- (1 - 37reX)Y- 18X2 = 0 (5.34) 
111"e Y3 + (67reX- 2)Y2 + (1- 87reX- 9X2)Y + (27reX + 6X2

- 547rEX3
) = 0 

(5.35) 
211"e Y = 1 + 371' eX (5.36) 

The corresponding solutions are presented below. 
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Figure 5:3: (Rb+Rb*) adiabatic potentials, scaled using X and Y 
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As mentioned in the preceding section, the adiabatic potentials approach the four elec­
tric dipole potentials for small internuclear distances, where the R-independent spin-orbit 
interaction becomes negligible compared to the 1/ R3 dipole interaction. In this region the 
potentials are commonly denoted by the Hund-ease (a) labels <25+1)A11"e· 

In the limit R ~ oo, the electric dipole interaction varrishes and the "molecule" dissoci­
ates into a ground-state and an excited atom. At these large distances the energy relative 
to the sl/2 - sl/2 ground-state asymptote sterns entirely from the excited atom. 
Thus for R ~ oo all adiabatic molecular potentials correlate either to the 51; 2 - P1; 2 or the 
S1; 2 - P3; 2 state, differing in energy by the amount of the atomie fine-structure splitting 
D.E, as can beseen from fig 5.3 for X~ 0. 

In the construction of the set for the molecular states we made heavily use of internally 
conserved observables, neglecting molecular rotation. But the molecules are allowed to 
rotate and associated with this motion is the relative molecular orbital angular momenturn 
N. It is therefore natural, in order to squeeze as many cernmuting observables as possible 
from a given molecular state, to extend the kets with P and Mp as has already been 
discussed in chapter 4. 
Then the general conservation of the total angular momenturn P, (P = J + N), and its 
projection Mp on the space-fixed z-axis can be applied to. the molecule. 

Put in formula, the above mentioned normalised "generalised" kets become 

I,),. 12S+l IS j2P + 1 p• ( (3 ) '+' > := LA, 7r e > ® ~ > · S1r2 DMpf! a, , 'Y . (5.37) 

These kets will be used in the next section, where we will derive the coupled channels 
equations resulting from non-adiabaticity due to molecular motion. 
Furthermore they play an important role in section 6.2 in the calculation of the angular 
dependent part of the transition matrix element associated with the photo-association. 
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5. 7 Coupled channels equations 

As was already mentioned in the preceding section, the nuclear motion generates coupling 
between different adiabatic states, i.e. the local Hund's case c electronic eigenstates found 
insection 5.6, supplemented by the P, n and Mp dependent rotational part. To derive the 
equations that describe this coupling, we start from the Schrödinger equation for the two 
atom system: 

iiw(R, r) = Ew(R, r), (5.38) 

where E is the total energy of the two-atom system and 

A n,2 2 
H = - 21-L \1 R + Ek(R). (5.39) 

Here Ek(R) is the adiabatic electronic eigenvalue with R-dependent adiabatic electronic 
eigenfundions jKO; (, R; P Mp >, K summarizing any other quanturn numbers needed 
to specify tl~e electronic state uniquely. For the sake of simplicity we have denoted 
jKO; (, R; p Mp > by Ik>, where k specifi.es thesetof quantumnumbers K, n p and Mp. 

The fi.rst term in (5.39) represents the kinetic energy operator for the motion of the 
nuclei. This motion can be separated into radial and angular motion: 

(5.40) 

The fi.rst term sterns from the radial motion of the nuclei. It induces coupling between 
the different adiabatic electronic eigenstates, because these eigenstates are R-dependent 
linear combinations of the states ILASEP Mp > ; if we denote an adiabatic eigenstate 
by jKO; (, R; PMp >, where K and n are the quanturn numbers to specify the adiabatic 
eigenstate uniquely then: 

jKO; (,R;PMp >= 2: gÏ,Asr.(R)ILASEPMp >. (5.41) 
LASE 

The second term in ( 5.39) represents the rotational motion of the nuclei. It in duces coupling 
between adiabatic eigenstates differing in n. 
This can be seen using the identity IJ = P- J; substituting this in the second term of 
(5.39) yields · 

(5.42) 

Obviously the fi.rst four terros in (5.42) are diagorral in P, Mp, J and n. The last two terms, 
however, consist of ladder operators that ~ener a te coupling be}ween adiabatic eigenstates 
that differ in n by one. Remember that P+ decreases n and p_ increases n by one sirree 
these operators are defi.ned with respect to the molecular frame here. 
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If we now set 
l\li(R, T) >= ~ Fk(R) Ik >, 

k R 

substitution in the Schrödinger equation leads to the coupled equations: 

(5.43) 

F~'(R) + [~(E-Ek(~)- P(P + 1) + 0 2 ]Fk(R) = (5.44) 

A .J, A

2 
A ,. A A 

L;[-2F!(R) < k[:R[i > +Fi(R)( k[J; J, [i>-< k[P+J-;, LP+[i >- < k[:~2 [i >)]. 

Depending on the particular dependenee of the states li > on R, some termsin (5.44) may 
be neglected,, e.g. if I i > is a slowly varying function of R, then the terms < kl 8~ I i > 
and < kl 8~2li > can be omitted. This latter approximation is in fact introduced for the 
relevant large distances in the actual calculations. In the next section we will consider the 
importance of the rotational coupling between the excited states. 
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5.8 Rotational coupling 

In this section we will discuss the non-adiabatic rotational coupling terms in (5.44), that 
induce transitions between adiabatic eigenstates. This coupling reflects the fact that instead 
of the molecule ( space) fixed coordinate system in which the wavefundion is specified, the 
space (molecule) fixed system becomes physically more appropriate as a reference system: 
at large distances, the interaction between the atoms i~ weak and Ï and N are more 
or less independently conserved so the space fixed z-axis is most appropriate as axis of 
quantisation. When the atoms approach each other, however, the coupling between Ï and 
N becomes more prominent and J becomes locked to the internuclear axis, following the 
rotation of the internuclear axis, leading to the adiabatic eigenstates of section (5.6). In 
case the adia~atic eigenstates are selectedas basis states, it will be neccesary in generalto 
include the coupling between these induced by the finite rotational angular velocity. This 
is called the rotational coupling, which should be viewed as a second type of non-adiabatic 
coupling in addiation to the radial coupling induced by the 8/8R and the 82 j8R2 non­
adiabatic coupling terms in (5.44). It is due to the fact that the rotation of the molecule 
fixed frame can be so rapid that the total electronic angular momenturn Ï can no longer 
follow this motion. Alternatively this can be visualised as if the molecule-fixed frame slips 
away under the electonic angular momenturn Ï. Consequently, the projection of Ï on the 
internuclear axis will change, thus implying a transition to another adiabatic eigenstate 
characterised by 0', with 0' = 0 ± 1. 

From an energetic point of view, the relative importance of these non-adiabatic transi­
tions depends on the magnitude of the rotational energy Erot(R) compared to the energy­
splitting of the adiabatic potentials, D.Enri'(R) = En(R)- Erl'(R). 
When Erot < < D.Enn•, Ï can be considered anchored to the internuclear axis and 0 is 
conserved. If, on the other hand, Erot >> D.Enn• , non-adiabatic coupling becomes very 
important. The latter is anyhow the situation for large internuclear distances. 
Often the so-called locking-radius, RL, defined by the relation [24] 

D.E ·(R ) = n? N(N + 1) 
nn L 2J.LR'i , (5.45) 

is used as a measure for the distance at which the adiabatic description breaks down, i.e. 
the distance where Ï is no longer "locked" (anchored) to the internuclear axis. 
In order todetermine the importance of the rotational coupling termsin the case of 85Rb, 
we have compared the energy difference between the o; and the 19 (S112 - P112 ) potentials 
with some typical rotational energies over the relevant range of internuclear distances 5 to 
80 ao. 
To that end, we have first constructed model potentials for the o; and 19 excited states. 
For the short-range part 8 to 20 ao of the potentials we have used the potentials given by 
Spiegelmann [29]. These potentials, however, do not include spin-orbit coupling. Therefore, 
in order to include this interaction in the adiabatic eigenpotentials, we have added an R­
independent non-diagorral coupling term in the Hamiltonian and subsequently diagonalised 
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the resulting Hamilton matrices, according to the procedure that was outlined in section 
(5.6). The resulting potentials were then connected di:fferentiably totheir long-range tails. 

Fig 5.4 shows the resulting energy di:fference between the o; and 10 curves as well as 

the rotational energies for two typical N-values. 
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Figure 5.4: Energy splitting between the o; and 19 (S1; 2-P1; 2) curves and rotational ener­
gies for N = 1 and N = 3 

As can be seen from this figure, in our case of 85Rb, the rotational energy is very 
small compared to the energy splitting of the o; and 19 curves over the whole range of 
relevant internuclear distances. Note that the range of very large distances where the 
rotational coupling is important (i.e. outside the locking-radius), is not relevant for the 
photo-association calculations. Moreover we point out that the energy splitting between 
the o; and the 1-' (81; 2 - P1; 2 ) states, as wellas that between the states that differ in n 
by 1 that asymptotically conneet to the 81; 2 - P312 level, is even larger than the above 
depicted splitting of the o; and 19 curves. 
This means that we do not need to take rotational coupling. into account in our calculations. 

61 



Chapter 6 

Laser-coupling 

In this chapter we discuss the transition, induced by laser radiation, from the two-particle 
continuurn ground-state (A+ A) to a bound "molecular" state in the excited (A+ A*) 
potential, i.e. photo-association. Since the initial state is a continuurn ground-state it is 
not at all clear beforehand, how to take care of the normalisation of the ground-state wave­
function. Furthermore, we must derive the distribution (coherent or incoherent?) of the 
relative atomie orbital angular momenta (N) in the ground-state, since this distribution 
determines the form of the photo-association spectrum. 
In order not to tackle all problems at once, we divide the problem into two subproblems: 
we first concentrate on the "normalisation" and the relative distribution of the relative 
atomie orbital angular momenta in the ground-state, using a simple two-channel model for 
the photo-association process. Once this problem is solved, insection 6.2 we shallleave the 
assumption of a spherically symmetrie coupling potential, and we introduce the angular 
dependenee of the coupling. To that end we shall consider the angular dependenee of both 
the wavefundions and the ( angular dependent) laser-coupling. This angular dependent 
part of the transition matrix element entails the important selection rules that govern the 
photo-association. 
Combining the distribution of the relative atomie orbital angular momenta in the ground­
state and the angular part of the transition matrix element, which incorporates the im­
portant selection rules, we have at our disposal the instruments nessecary to calculate the 
(theoretica!) photo-association spectrum! 
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6.1 Normalisation of the ground-state wavefuntion 
and the distribution of the relative orbital angu­
lar momenta in the ground-state 

Our final goal is to derive an expression for the transition probability per unit time from 
the initial two-particle continuurn ground-state wavefundion (A+ A) toa bound state in the 
excited (A+ A*) potential. A complication arises with respect to this because the initial 
ground-state is in the continuurn energy spectrum and consequently can not be normalised 
in the usual sense. Therefore one cannot use Fermi's Golden Rule directly. As was already 
pointed out above, we must also find the distribution of the relative atomie orbital angular 
momenta in the ground-state. 

In order to discuss these matters, let us start from a simple two-channel model. The 
ground-state potential Vg(R) is taken to be zero, so the initial motion corresponds to the 
free motion of a two-particle "wave-packet". This simplification will prove quite practical: 
it is physically acceptable since indeed for large internuclear distauces the atomie inter­
action vanishes so the motion asymptotically corresponds to free motion. Moreover this 
model incorporates all features that arise in conneetion with the actual photo-association 
i.e., the "normalisation" of the continuurn states and the distribution over the relative 
atomie orbital angular momenturn eigenstates. 
The potential of the excited state is denoted by Ve(R). The coupling between the two 
channels due toa la~er _?f frequenc_y WLJ is d~noted by Vc. 
In our case Vc = -d ·EL, where d = d1 + d2 , the sum of the atomie electric dipole mo­
ments and ËL is the electric field of the laser. As was already mentioned, in this section 
we want to focus on the problems associated with the ground-state so we take Vc to be a 
spherically symmetrie potential, independent of the internuclear distance R; the angular 
dependenee of Vc will be the subject of the next section. The wave-functions '1/J will be 
taken to have the form '1/J = 4>x, where 4> denotes the "external" orbital motion of the 
two-particle wave-packet and x specifies the internal and angular degrees of freedom of the 
"molecular" system. 
In the ground-state e.g. 4>"' ékR and x = IJ MJ >. Once the decomposition of 4> in states 
of well-defined relative orbital angular momenta (i.e. the partial wave decomposition) is 
known, we can combine this information with the kets IJ MJ > to form the "generalised" 
kets !JOP Mp > that were introduced in chapter 4. 

In order to get a firmer grasp on the physical meaning of 4>, let us consider the atoms 
in the gas. 
At large distauces the interaction between two colliding atoms is negligible, so 4> is propor­
tional to the plane wave eikR. If we assume that the gas is distributed homogeneously and 
in thermal equilibrium in all directions, then the wave-veetors k are distributed isotropi­
cally in k-space since there is no preferred direction in space for the atoms to align their 
collision trajectory. The resulting (ensemble) dis tribution of the wave-packets in k-space 
shall be denoted by P(k). This distri bution can be deco~posed into a part f( k) that is 
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... "' "' ... 
only dependent on the magnitude k, k = lkl and a part g(k), where k = kjk, that describes 
the angular distribution of k. Thus 

P(k) = J(k). g(Îc). (6.1) 

By assumptiön k is distributed isotropically, so g( k) red u ces to a constant function. The 
distribution of k, J(k), of course depends on the temperature of the gas and is generally 
taken to correspond to the Maxwell-Boltzmann distribution. 

The transition probability per unit time for a transition from a continuurn ground-state 
with energy Eg to the bound state with energy Ee in the excited potential, denoted by 
Pg_e, is obtained by generalising the famous Fermi's Golden Rule 

27!' r~ J A A 2 A 

Pg-e = h Jo dE dkl < ~ei"Vcl~g(E, k) > I P(E, k)8(Ee- Eg -1iwL)· (6.2) 

In this expression we have replaced P(k) by its equivalent (Maxwell-Boltzmann) energy 
distri bution P( E, k ), which is the probability to find in the ground-state a collision energy 
E and a "collision trajectory" in the Îc direct ion. 
The ground-state functions ~g(E, Îc), proportional to the·plane waves eik.R., are supposed 
to be energy and direction normalised: 

< ~g(E, k)i~g(E', Îc') >= 8(E- E')8(Îc- Îc'). (6.3) 

Note that the 8-function in (6.2) guarantees conservation of energy during the photo­
association transition. 

Furthermore, from (6.2), we readily obtain the relative distribution of the relative 
atomie orbital angular momenta N. To that end, we replace the plane wave travelling in 
the direction k by its partial wave decomposition 

oo N 
eik.R. = 47r L L iNjN(kR)YNMN(R)Y.NMN(Îc). (6.4) 

N=OMN=-N 

Here, YNMN is the well-known spherical harmonie and iN(kR) denotes the spherical Bes­
selfuction. 

Substitution of (6.4) in (6.2) and integrating over Îc, learns that coherent contributions 
(interference of partial waves differing in N) cancel out, so eventually only incoherent 
terms remain in (6.2). Therefore, the relative contribution of the partial waves in (6.2) is 
in particular determined by the factor (2N + 1), as can b~ verified from (6.4) 

So, we have solved the first part of the photo-association calculation in that we were led 
to the incoherence of the ground-state partial wave contributions to the photo-association 
rates as well as their relative abundance. Clearly, detailed knowledge of this distribution is 
of crudal importance since the form of the theoretica! photo-association spectrum (i.e. the 
relative height of the peaks) is very sensitive to fluctuations in the partial wave distribution. 
Note that the method outlined above is easily generalised to more complex situations in 
which Vg(R) is a non-trivial function of R. 
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6.2 Laser-coupling: angular dependenee 

In order to calculate the relative "production rate" of the excited states out of ground­
states, we must know both the relative contribution of the relative atomie orbital angular 
momenta in the ground-state and the matrix elements associated with these transitions. 
Since the distribution of the relative atomie orbital angular momenta in the ground-state 
has been determined in the previous section, we are left to calculate the matrix elements 
< 1Peld· ËL!1Pg(E, k) >. 

As was already pointed out in the previous section, the molecular states 1jJ9 (E, k) and 
1Pe can be separated into two parts: the one part ( ,P) describes the external motion of 
the wave-packet and is R-dependent, the other part (x) contains information about the 
angular and -internal degrees of freedom. The calculation of the matrix-element above 
therefore essentially reduces to an integral over the radial motion, times a matrix-element 
that contains the internal and angular dependence. The integral over R depends on the 
particular form of the potentials Vg(R) and Ve(R) and in practice can only be evaluated 
numerically. The angular part, however, can be evaluated exactly, as will be shown below, 
and it is this part that entails the important selection rules. 
We shall take the radial integral for granted and concentrate on the internal and angular 
part of the above-mentioned matrix element. To that end we combine the internal part 
(x) with the rotational part IN MN; z > to form "generalised" kets (see chapter 4), i.e. we 
concentrate on 

(6.5) 

The explicit appearence of the relative orbital angular momenturn N in the ket, once more, 
stresses the important role of the distribution of N in theoretica! calculations. 

Here, the ground-states are defined with respect to the space-fixed system because in 
the case of doubly-polarised atoms, which we are particularly interested in, the orientation 
of the atomie spins is known with respecttoa space-fixed axis. Thesestatescan be linearly 
combined to form states of well-defined total angular momenturn P: 

.jSMsNMN;z > = L < SMsNMNIPMp >I(SN)PMp;z >. (6.6) 
PMp 

In order to calculate the matrixelements above, we express I(SN)P Mp; z > in the body­
fixed states, using equation (4.15): 

I(SN)PMp; z > = L:(-1)5
-
0 < S- OPOINO > ISOPMp >. (6.7) 

n 
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In order to calculate the matrix-element in the molecular frame, the components of the 
electric field of the laser, ËL, must he determined in that frame. This is most easily clone 
if we express them in spherical components: 

(6.8) 

The spherical components E~ of ËL with respect to the molecular frame are related to 
those in the space-fixed system, En, by the transformation 

E~ = 'LD;q(a,/3,/)En. (6.9) 
n 

Furthermore, 

1 1 1 

. J. ËL = L (-1)qd~E~q = L L (-1)qd~EnD; -q(a,/3,1)· (6.10) 
q=-1 n=-1q=-1 

The state 1n;e..P Mp > consistsof linear combinations of the states 

Calculation of< n;e..P Mpld· ËLISMsN MN; z > therefore typically reduces to calculation 

of terms like: (6.12) 
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Upon using (6.6) and (6.7) we get 

K = I: I:(-1)s-O < SMsNMNIPMp > < s- OPOINO > < LA.sf:.PMPIJ.ËLIOOSOPMp >. 
P,Mp O (6.13) 

The electric dipole operator only affects the orbital degrees of freedom, so the matrixele­
ment (6.12) is diagorral in the electronk spin. After substitution of (6.10) and (6.11) into 
(6.13) and integrating over a, {3 and /,we finally obtain (see appendix): 

1 1 _ 1 -
K = 2 J2(1 + 8Äo8r.o) V (2P + 1)8ss 

I: I: I: I:J2P + 1(-1)q < SMsNMNIPMp > < S- OPOjNO > 
n q P,Mp 0 

[
8-·

0 
< 1Ajd'j00 > (-1)5+Mp( ? 1 

p ) ( p 
1 

p )El ~ q Mp n - Mp fi -q -0 n + 

(-1/'+Mp+l [8-r.o < 1- Ald~IOO > ( M?p n
1 

p ) ( ~ 1 
p )El (6.14) -Mp -0 -q -0 n . 

This is a very important formula since it allows us to calculate the angular part of the 
transition matrix elements exactly! It is of great importance in the calculation of theoretica! 
spectra since it entails the important selection rules that govern the photo-association, 
embodied e.g. in the three-j-symbols. Apart from determining the relative peak heights in 
the photo-association spectra, equation (6.14) reflects conservation of total (= molecular 
+ photon) angular momentum: when the initial state, which has total angular momenturn 
P, absorbs a photon, then the final state can only have total angular momenturn P equal 
to P-1, Por P+1, as is guaranteed by the upper rows in the three-j-symbols. Similarly, the 
second rows express conservation of the projection of the total angular momentum, both 
in the space-fixed and in the molecular coordinate frame. 

Since this graduation work, this formula has already succesfully been applied in the 
description of experimental photo-association specta. 

67 



Chapter 7 

Conclusions 

From this graduation report we may extract the following results: 

• The photo-association process has been studied. Photo-association experiments pro­
vide a very elegant way to perform very high resolution spectroscopy on ultra-cold 
atoms. The spectroscopie data can be used to derive the interaction potential of 
colliding atoms. 
In this report, we have worked out the model to theoretically calculate such spectra, 
in particular: 

• The excited-state potentials of alkali atoms have been calculated in the long-range 
part where the photo-association process takes place. The symmetry properties of 
these states have been determined since these play ah important role in the selection 
rules for photo-association transitions. 

• Generalised "kets" have been introduced in order to explicitly include the influence of 
the relative atomie orbital angular momenturn of the atoms. In particular all molec­
ular states have been extended by specifying the total molecular angular momenturn 
quanturn number P and its projection Mp on the space-fixed z-axis. 

• These generalised kets allow for exact calculation of callision processes since we can 
now apply the very fundamental conservation of total angular momenturn in the 
system ( = "molecule" + laser field). 

• Starting from a simplified model, that yet contains all relevant features of a general 
continuurn ground-state, an expression for the transition probability per unit time 
from this continuurn state to a bound state has been derived. In particular the inca­
herenee and the relative distribution of the relative atomie orbital angular momenta 
in the ground-state has been determined. 

• The angular part of the transition matrix element associated with the photo-association 
process has been determined exactly and explicitly. This part contains the important 
selection rules for the transitions. · 
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Summarising the above conclusions: 

Using the methods outlined in this report, one can calculate the theoretical photo­
association spectra that entail the important selection rules based on general conservation 
laws. Comparison of these theoretica! spectra and experimental high resolution data may 
be used to extract accurate values for the potential parameters that describe the interaction 

between two colliding atoms. 
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Appendix 

In this appendix, we give the derivation that takes us from (6.13) to (6.14). Thus we 

start with: 
K :=< LIAIStP Mpld· ËLISMsN MN; z > ( .1) 

Now we express ISMsN MN; z > in the body-fixedstates, using equation ( 4.15) 

ISM
5
NMN;z > = 2: 2:(-1)5 - 0 < SMsNMNIPMp > < S- OPOINO > ISOPMp > 

P,Mp O (.2) 

and for ILIAIStP Mp > of well-defined total parity we substitute 

( .3) 

Upon these r~placements K transforms into: 

K = !. 1 v2p + 1 ('' da r sin(f3)df3 ('' d"{ 
2 J2(1 + 8x

0
8to) 871' 2 Jo Jo Jo 

ntl ,t,p~, :t P~~ 1{-1)S-l1+o < SMsNMN\PMp > < S- !1Pl1\NO > 

[< iASË\<f,\OOS!l > D~,(l(a, [3, "t)D~_,(a, [3, "t)Di;, 11 (a, [3, "!)En] + 

( -1)1>+1+5 [ < t...:A§ --E\<{, \OOS!l > D~r(l( a, [3, "t)D~_,( a, [3, 1)Di;,n (a, [3, i)En] (.4) 
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Since the electron spin is not affected by the electronic transitions, this simpli:fies to: 

1 1 J 2P + 1 r'' r r'· 1 

1 

K = 2 j2(1 + ÓÄoÓtol Su' Jo da Jo sin((3)d(3 Jo d"f n~1 q~1 

E Eóssl~~ 1 
(-1)5- 0 +• < SMsNMNlPMp > < S- f!Pf!lNO > 

P,Mp S1 

[ < ÎÁ lef, 100 > ótnD~,i'l (a, (3, 7 )D~-• (a, (3, 'Y )D:':,o (a, (3, 'Y )En] + 

+( -1l+L+s [ < Ï--AI<f,IOO > 6 _tf!D~,-Ö (a, (3, -y)D~_,( a, (3, 1 )D:':,o( a, (3, -y)En] (.5) 

In order to further simplify this large expression, we use some properties of the Wigner-D­

funcions (see for example Edmonds [22) ): 

D~k(a,/3,/) = (-1)m-kD~m-k(a,/3,!) (.6) 

and 

{
2

7r da r sin(/3)d/3 {
2

7r d1Dr:n k (a,/3,/)D~ k (a,/3,/)Dr:n k (a,/3,!) = (.7) 
Jo Jo Jo a a b b c c 

81!'2 ( a b c ) ( a b c ) 
ma mb ·me ka kb kc 

Then the expression for K simpli:fies to 

1 1 _ 1 -
K= 

2 
y(2P+1)8ssl:L: L: L: 

)2(1 + 8À08t,0 ) n q P,Mp S1 

J2P + 1(-1)q < SMsNMNIPMp > < S- S1PS1INO > 
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Furthermore, since n is an integer and since all excited states have L = 1 we :finally arrive 

at: 
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