
https://research.tue.nl/en/studentTheses/baf97ca0-a0e1-410c-83fa-2e4f1e2a4364

f~L~j~Oc~

Designing a numerical solver for
the optimal estimation problem

A.N.J. Thissen

30 January, 2000

Intel7zal Rtpon~ NR-21 69

Student: A.N.J. Thissen, ID 307217

Chair: Prof. dr. ir. Jj. Kok

Coaches: Dr. Ir. M.J.G. van de Molengraft
Jr. G.Z. Angelis

Master of Science thesis carried out at the Eindhoven University of Technology, Department of
Applied Physics, Systems and Control Group.

Systems and Control Group P.O. Box 513
Faculty of Applied Physics 5600 MB Eindhoven
Tel: +31(0)40 2472530 The Netherlands
Fax: +31(0)40 2437170 nstr@tue.nI

1

Summary
This graduate project focuses on the optimal estimation of white-modeled state-space systems. The
optimal estimation consists of the estimation of unknown parameters and the reconstruction of the
state. In practice a two-point boundary value problem for a set of differential equations must be
solved. So far no methods are available to find a guaranteed solution to the aforementioned
problem.
For general systems a workable algorithm for identification has already been presented. The theory
and algorithm have been examined and reformulated to be applicable to a larger range of state-
space systems.
From the theoretical basis an abstract model description has been made. In the abstract model
identifiable building blocks are represented by objects. Each object has an interface consisting of
attributes and methods, although no implementation has been given yet. Between the objects
relationships are defined to represent the type of relation or interaction. A workable iterative
process to derive such an abstract model has been presented.
For the implementation of the abstract model the object-oriented programming language C++ was
chosen. From the abstract model a new implementation model has been derived. Classes are
defined that correspond to the objects of the abstract model. In these classes the actual
implementation of the interfaces is conceived. The set of classes forms the core of the functionality
needed to perform the identification of state-space systems. The most important surplus value is
code reusability and platform independence.
For the Windows 95 and Windows NT 4.0 platform an application has been written to act as a
controlling and interacting shell for the functionality of the core classes. Since Matlab was chosen to
provide the capabilities of pre- and post-processing of data, a connection through Matlab files has
been made. The program, called TUE OptEst 98, is a 32-bit multi-threading application with a
graphical user interface. Also, because of the object oriented design the set of systems that are
available for identification can be extended with only a minimum of programming.
The application has been tested and used by others. The algorithm has proven to function well and
interesting results have been achieved. Among these are the identifications of laboratory systems
described by extended mechanical and polytopic models. The robustness of the algorithm has not
been investigated nor has a mathematical proof for convergence to a solution been given. These
latter issues remain to be examined.

2

Contents

Summary 1

Chapters

Introduction 3

Theory of system identification 5

Object oriented analysis and design 12

Analysis and design results 18

Experiments results 21

Conclusions and suggestions 29

Appendices

User guide 30

Tutorial 42

Abstract model description 44

The implementation model 49

Application creation 57

Systems descriptions 66

Class descriptions 69

3

Introduction
In this first chapter the problem definition for the research project will be stated. Although the
definition is precise its context and background deserves some clarification. An assessment of the
technologies involved and position of the problem within the current time frame is made. Finally, a
strategy and approach to tackle the problem in a structured way is suggested with a short preface to
the next chapters.
Problem definition
At this point it is difficult to prelude or elaborate on the definition of the problem. The exact
context and explanation of the terms are not given yet. In the chapters to follow everything will be
explained and clarified. The statement of the problem definition for this research project will be
given as is.

Problem definition

Development of a generic numeric tool for the optimal estimation problem.

The problem definition does not come out of nowhere. The theory behind the identification of
state-space systems is a well-developed part of physics and fundamental engineering. It is not
intended that the theory be an important innovative factor. It will make an excellent basis for the
definition of the context and the algorithms. Already other applications have been written to solve
the optimal estimation problem. The application that must be developed will address several issues
that are drawbacks for the existing programs.
Technology assessment
More often than not a particular automation problem is handled by finding an ad hoc, sometimes
even a prima vista solution. As a short-term and fast result this can be considered useful. However,
taking into account long-term factors, one will find that such an approach to solving problems and
implementing these is highly inadequate and often a waste of effort. Providing automation solutions
thusly has no surplus value and does not contribute to a structured approach aimed at the future.
One of the latest trends in the world of software development is the use of object-oriented design
methodologies and the use of component technologies. The components are used to build
applications from reusable building blocks that are conceived by adhering to object-oriented design
guidelines. This approach is taken especially for business application. The knowledge,
methodologies and strategy are applicable to many other fields, not in the least scientific research.
Strangely enough, one hardly ever finds these techniques in the physics field, even though there is a
great demand for custom solutions to particular problems.
In physical research dedicated software is used for a variety of reasons. For example, equipment for
experiments use computers for their data acquisition and corresponding software is developed and
used to perform the acquisition and all sorts of calculations involved in the research. The research
projects, where such software is developed, are often long term occupations, ranging from one to
several years. Especially in this area it is extremely valuable to invest in a structured development of

Chapter

1

I N T R O D U C T I O N

4

reusable software. Yet, researchers tend to prefer the quick solution on short notice to the long-
term benefits of structured design. Experience shows that a well-planned route from start to end is
only partially taken. The start of the abstraction process of object-oriented design is second nature
to scientists and the implementation in software is the desired result. It is the section in between that
is often skipped or suffers from negligence.
The intention of this study is to produce results that are valuable in a larger context and applicable
to more than the particular problem at hand. Not only should terms such as reusability hold for the
developed source code, but also for the results and the way they are achieved. It is the intention that
this report offers an overview of the entire route from problem definition to the final product.
In the end the whole project will prove to contain several valuable elements that are well worth the
time invested. It contains several steps in a design and implementation process that can be used for
almost any other situation in software design. The central message is that results and the way these
results are achieved should be reusable in similar and other situations. In this light the project can be
seen as a case study for the development of an application along a practical and guided route,
regardless of its use and design.
Project strategy
The problem definition explicitly states the creation of an application. Several issues must be
addressed for the application to work. As the core functionality is a calculation it is logical to think
of the application as a calculating core with a graphical user interface. The project is broken into
several parts, each with a clearly defined goal and purpose. For non-trivial problems an object-
oriented strategy is desirable as it is intended to break down the main problem into smaller ones. In
physical science one can find similar approaches to tackle a large research by isolating sub-problems
and solving these.
The project strategy can be best described as follows. The main problem will be split into the
development of a reusable core that performs system identifications and the design of a graphical
user interface with file-based support and interconnectivity to other applications. Object-oriented
analysis and design will form the foundation upon which the creation of the core is based. The first
phase will be the setting of a clearly specified problem definition for the core after a thorough
examination of the identification theory. Once the core has been designed it can be implemented in
a programming language. Finally, the graphical application can be created and tested. The results
that are achieved by the following system identifications will be discussed in the end. The next
paragraph will give some additional information.
Chapter preface
First of all the existing theory is examined and reformulated to form a solid basis from an object-
oriented point of view. Chapter 2 presents the theory in the new form and introduces a set of
conditions for which a workable algorithm to identify systems will hold.
Based upon the theory Chapter 3 first focuses on the principles of object-oriented analysis and
design. A scheme to identify objects for an abstract model of the problem definition is presented
and used to create a model for the core functionality of the application, i.e. the optimal estimation
of state-space systems. The next step towards implementation is taken by translating the abstract
model into an implementation model. The objects of the abstract model are converted into classes
that form. The choice of programming language will be discussed as well. Lastly, Chapter 3 covers
the implementation of the application for a specific platform. The basics of the creation of an
application with the use of an application framework are skipped. The emphasis is on the
peculiarities of the new classes and their use.
The results of the object-oriented design and implementation and the results from the identification
of systems with the application for three particular cases are given in Chapter 4 and 5.
The entire approach and strategy will lead to some conclusions. These are summarized in Chapter 6.
Recommendations for the continuation of this project are made as well.

5

Theory of system identification
In this chapter the theoretical basis of system identification will be explained. First, the concept of
system identification will be outlined with the intention to supply a framework in which the theory
can be placed. System modeling will be briefly discussed whereupon the mathematical theory of the
optimal estimation problem is explained. At the end of the theory a recap is given that will set the
boundaries of the area where system identifications can be performed. Moreover, the recap aids in
the formulation of an identification algorithm based upon certain system description types. The
algorithm is to be implemented, which will be exhaustingly discussed in the following chapters.
Modeling of systems
For real-life systems one often needs a workable abstraction of reality. The process of creating an
abstract representation of a system is referred to as the modeling of systems. The three major types
of models currently used are black, gray and white models. From black to white models the a priori
theoretical physical knowledge increases. As this knowledge increases more individual physical
entities are introduced and used in the description.
Black models incorporate no system knowledge at all and merely mimic the input-output behavior
of the systems. They rely purely on the data of measurements. One of the methods by which this
can be accomplished is a black box construction, i.e. a model with many adjustable parameters that
are tuned to fit the measured input-output relations. In general, the parameters do not correspond
directly to any of the physical entities that the system has, whether they are modeled or not.
White models on the other hand are based upon the physical laws that describe the system. Starting
with an abstraction and knowledge of the system, internal dynamics are described by means of the
physical equations that apply. A common class of models defines an internal state for the system.
The corresponding systems are called state-space systems.
Grey modeling is in effect the combination of black and white models. A priori knowledge can be
used to create a white model of the system that suites up to a certain degree. A black model
compensates the hiatus in this description. For example, a linear theoretical model could be used to
describe the motion of a non-linear system. Because the chosen description does not cover all of
the system’s dynamics, a neural network, a type of black modeling, is added to represent the non-
linear behavior of the system. Grey modeling is often a form of hybrid modeling. Other recent
topics of gray modeling are polytopic models, which will be used as one of the examples in later
chapters.
So far no statements are made about the validity of the model and the extent to which the model
adequately describes the system. It may very well be possible that the model introduces errors
regarding the actual behavior. Such a model is said to less correctly describe the system.
Identification, an introduction
Whenever a model for a system has one or more unknown parameters, one needs to perform an
identification of the system. In the process of identifying a system the parameters are determined to
correctly describe the input-output relation of the system. In other words, unknown parameters are
estimated.
Since the range of types of models differ greatly from black to white, no general method of

Chapter

2

12

Object Oriented
Analysis and Design
In the first chapter a problem definition was made. The theoretical basis was set from which a
solution algorithm to the optimal estimation problem was deduced. In this chapter the problem is
analyzed from an object-oriented point of view and objects are designed in a model that offers the
key to the solution of the problem. The design forms the translation or first intermediate step
between the theoretical basis and the final implementation. The implementation model is the
formulation of the abstract model in terms of C++ classes that follows. This approach of creating
an abstract model and implementing it is more fundamental and structured than an arbitrary ad hoc
solution. The importance of such an approach has already been discussed in the first chapter.
It is assumed that the reader is at least familiar with some of the aspects of object-oriented analysis
(OOA) and design (OOD). Some knowledge of object-oriented programming languages is
advantageous as well. The presentation of the models is perhaps not as strict as hardcore object-
oriented designers would take it. The theoretical backbone does not extent to modeling languages
such as Universal Modeling Language (UML), but uses a common sense version thereof.
Nevertheless it makes a workable guide to the formulation and modeling of the problem towards
the implementation.
Analysis and design
The analysis and design can be categorized into several phases. First, the problem is analyzed and
defined and formulated accordingly. The emphasis lies on what must be accomplished, not how.
After the description of the problem the design of an abstract model is started. The main part of
this model is the identification of various objects in a hierarchic structure.
One starts which the isolation of a primary top object. This object will become clearly described.
During the process of establishing a clear description of the object more insights into the problem
are gathered. Within the top object it may be possible to isolate and identify additional sub objects.
For these new component objects the entire exercise is repeated, from problem definition to
description of the details.
Throughout this iterative process one slowly migrates from a ‘what’ towards a ‘how’ formulation of
the problem definitions. The design phase, in contrast to the analysis phase, concentrates much
more on how the solution to the problem can be accomplished. However, the possibilities and
impossibilities of the implementation phase are not taken into account.
Problem definition
The analysis phase can only start when a clear description of the problem is available. A problem
definition must therefore be free of the possibility of assumptions regarding the functionality of the
objects. The problem definition in the first chapter is broad in the sense that it describes the
problem whose solution is the goal of the project and this thesis: an application must be written that
can solve the optimal estimation problem of state-space systems. In this stage the focus is on the
core of the problem. In other words, a more to the point formulation in terms of OOA and OOD
is needed.

Chapter

3

O B J E C T O R I E N T E D A N A L Y S I S A N D D E S I G N

17

application. These libraries are conceived in much the same way as our abstract and
implementation model, except that these apply to a general application. When choosing a
framework one should consider the targeted platform and the programming language of the
implementation model. The framework is usually closely connected with a RAD tool.

Using classes from the implementation model
As mentioned before, it is an often-occurring scenario that after designing an abstract and creating
an implementation model the classes from the latter model have to be incorporated into the
application. At this particular moment there are a couple of points to take note of:
Care must be taken not to mix the original code with the code for the application. The files that
contain the implementation model code should be kept apart and not be altered because of the
particular needs of the application itself. If the application demands a recoding of the classes, the
implementation model is obviously not correct or complete enough. It will need redesigning apart
from the application. Furthermore, keeping a single set of source code files simplifies the versioning
control over the code. Creating multiple copies of the same source code inevitably leads to
problems.
When instantiating objects from the classes, one could refer to the rules of thumb for converting an
abstract into an implementation model. These are some general guidelines for the use of pointers
versus references and moments of creation of objects and their respective consequences. These
should provide some advantage in the decisions that one must make when using objects from the
classes.

 18

Analysis and design results
In this chapter the results of the object oriented design and application development will be given.
The results from identifying several systems with the application are discussed in the next chapter
Abstract model results
The entire exercise of the creation of the abstract model description is described in appendix D.
The results are listed in this paragraph, together with a short description of the important parts.
In Figure 1 the abstract model for the optimal estimation problem can be seen without any of the
refinements, which are present. It gives an overview of the most important parts (top objects) and
relations in the model. The complete interfaces of the various objects are listed in Appendix G. The
logic of the optimal estimation model is embedded in the Identifier object. It holds all physics and
mathematical equations of the algorithms from the optimal estimation. As can be seen, the
Identifier object uses a State Space System object. This object represents a state-space system in
the broadest sense. It can also be a derived system type. These derived types are not shown in the
figure, nor are derived identifier types shown. For each derived State Space System object there is
a derived Identifier object as well. The Uses-a relation is retained between similar derived types.
The derived Identifier types implement their own, more sophisticated logic to perform the optimal
estimation of the corresponding derived State Space System object.

Identifier Integrator

Derivative

Matrix

Vector

State-space
System

has has

has

has

uses a is a

Figure 1: Overall abstract model description (without refinements)

Both the Identifier and the State Space System rely heavily upon the use of both matrices and
vectors in their computations. Matrices and Vectors are identified as objects in the abstract model.
Because the Identifier object must solve differential equations, an Integrator object is chosen as a
composing part of the identifier. As will be seen in the next paragraph, there are several types of
derived integrators, such as RungeKutta78 and VariableOde. Each have their own
implementation in the implementation model. For the abstract model description it suffices to
illustrate the top object as a part of the Identifier object.
The Integrator effectively solves differential equations, but it actually performs the integration of a
derivative function over a given time interval. Derivative is recognized as an object and
encapsulates the differential equation in the form of the derivative function. The combination of the
Integrator that uses a Derivative is applicable in a far larger context. In our case the State Space

Chapter

4

A N A L Y S I S A N D D E S I G N R E S U L T S

 19

System object supplies mechanical laws needed to compute the derivative for the Identifier
object. The latter is derived from Derivative.
Implementation model results
In the implementation model each of the objects from the abstract model is implemented in object-
oriented classes. Taking into account the points from Chapter 3, the language of choice is C++. An
elaborate discussion of the choice of the programming language is given in Appendix E. Instead of
restating the top objects from Figure 1 as classes, the derived classes from a specific part of the
complete set of top objects is discussed. The Integrator and related objects are chosen because
they can be used in numerous other situations that require integrator functionality.
The largest section of Figure 2 is composed by the CIntegrator base class as the implementation of
the top object Integrator. The figure also shows the derived classes CVariableOde and
CAdaptiveRungeKutta. CIntegrator is a pure base class and does not have any particular
implementation. It merely defines the structure of the class, to which all derived classes have to
adhere. This way all derived classes have to meet the requirements imposed by the pure base class.
The main difference between the various derived classes is the implementation of the Integrate
function, which performs the actual integration. Consequently each class has a set of corresponding
helper attributes and functions needed in the computation.
CAdaptiveRungeKutta is in itself a base class that cannot perform an integration by itself. Although
the algorithms are part of the class, the derived CRungeKutta45 and CRungeKutta78 provide the
coefficients of the particular order of the Runge-Kutta equations they represent.

CIntegrator CDerivative CMatrix

CJacobian CVariable
Ode

CAdaptive
RungeKutta

CRungeKutta
45

CRungeKutta
78

User
Derivatives

User
Jacobians

Other
Integrators

Figure 2: Set of integration related classes

All of the integrator classes perform an integration of a derivative equation supplied in the
CDerivative class. Again, this is a pure base class that defines the structure of all classes that a user
derives from CDerivative. These user-derived classes at least hold the implementation of the
GetDerivative function, where the derivative function is supplied. Through the polymorphism
mechanism of object-oriented programming, an arbitrary CIntegrator class can use a CDerivative
derived class’s GetDerivative function without knowing the actual type of the class.
CVariableOde also uses a Jacobian in its calculation. Since a Jacobian is a matrix function, the
CJacobian class is derived from CMatrix. Similar to the use of the CDerivative class, a CJacobian also
has user defined derived classes that hold the equations that form the Jacobian.
In Figure 2 the arrows represent pointers to other objects instantiated from the corresponding
classes. They are the result of using the rules for converting the abstract model, which defines a
Uses-A relationship, into an implementation attribute.

A N A L Y S I S A N D D E S I G N R E S U L T S

 20

More of the implementation model and it’s design and development is listed in Appendix E. It also
shows the algorithms used for the optimal estimation and the way they are derived from the theory
of Chapter 2.
Application development
The application OptEst98 calculates solutions to the optimal estimation problem and provides a
GUI to control and set the specific variables. It is a program targeted for the Windows 95/98/NT
4.0 platforms. It ises the results of the implementation model to perform the calculations. This
paragraph discusses some of the design considerations during the creation of the application.
Application functionality
The functionality that the application supplies is that of simulation, identification and validation of
systems. Having chosen a particular system description, existing measurement files can be used to
perform an identification. The set of user-defined system descriptions can easily be extended by
deriving new types from the existing base class CStateSpaceSystem. Before starting the calculations
several variables from the optimal estimation problem must be entered. The same holds for
simulation and validation.
The application supplies full incorporation of Matlab file-based functionality. The Matlab file format
has been chosen a a native format for the results of the calculations and source of measurement
files. Pre- and post-processing can be performed using the Matlab environment. Graphing
capabilities have not been included into the application, since Matlab already supplies an abundance
of graphical output possibilities.
One of the shortcomings of regular application or calculation environments is the inability to pause
the calculations being performed. The OptEst application uses multithreading to allow the user to
start several calculations at the same time, pause one or more calculations or set the relative priority
of each of the tasks. Each of the threads is a isolated optimal estimation task, that runs in its own
memory space.
User interface development
OptEst98 has been developed by using the Microsoft Visual C++ 5.0 development environment.
This RAD environment supplies the Microsoft Foundation Classes 4.21 that were used for the
creation of the user interface. MFC classes were used to built the graphical interface. The entire
class framework minimized the programming efforts of the application. The supplied classes from
the framework were enhanced by deriviation to provide specific functionality for the user interface
and core system parts.
The implementation model classes were easy to integrate with the application framework classes of
MFC that are also written in C++ [MSDN98]. Care has been taken to keep the implementation
classes from the object oriented design separate from the MFC framework. One exception was
made: the CIdentifierThread class uses multiple inheritance to combine the characteristics and
functionality of a thread with the CIdentifier class that holds the logic for the optimal estimation
problem. The consideration taken is the extra ease of use versus the small effort that should be
made when separating the classes.
The user interface adheres to the UI design guidelines of Microsoft [Clu95]. The application has a
Multiple Document Interface (MDI) that allows one to interact with a variety of document types,
such as Matlab and text-based files. All files relating to a single identification task are collected in a
project file. This file is the base of operation for the application. It stores user settings and the last
used values when performing a simulation, identification or validation.

 21

Experiments results
The process of designing an abstract and implementation model and creating and application from
these models, as described in the previous chapter is a result in itself. Yet, the surplus value and
additional goal is the optimal estimation of various systems. Three different cases of identification
problems will be treated: first a simulation and optimal estimation for a completely fictional system
is discussed. Next, using real measurements an identification and validation of a real laboratory
system of a rotating arm has been performed. Finally, for a Philips VRS robot arm a one-
dimensional translating system has been identified and validated.
Case 1: The two mass system
The fictitious system depicted in Figure 1 consists of two translating masses with mass m1 and m2,
both unknown. The masses are connected with a spring and a damper with respective constants c
and k both of which are known. The general and mechanical descriptions of the system are listed in
Appendix E.

Mass m2 Mass m1
Damper k

Spring c

Figure 1: Simple representation of two mass spring-damper system

This system has been simulated using the OptEst98 application. The mechanical system description
was used for the simulation. An initial value x0 = [1 –2,5 1 0,25 1,25 3,5] and a generated input
signal for the external force F on mass m1 have been used. Figure 2 shows the input signal and the
resulting output signals of the system for the simulation.
From the simulation both the input signal and the position of mass m1 are used as measurements
for the subsequent optimal estimation of the "unknown" parameters for the masses. No error is
introduced in the measurement series.
Although the exact values of the initial state x0 are known, none of this knowledge is used in the
identification of the system with the generated
measurements. The initial positions and velocities of the
system are taken to be zero and the masses are guessed at
1,0 kg each. Again, the mechanical model description is
used, now to perform the optimal estimation. Since the
initial state is based on no observations whatsoever, the
confidence in q0 is low, which is reflected in weight
matrix
R0 = [0,01 0,01 0,01 0,01 0,001 0,001]. The other weight matrices are V = [100 100 1000 1000
1000], W = [0,1 0,1 0,1 0,1 100 100] expressing our faith in the measurement's correctness

Chapter

5

Literature

[Vel93] Modeling and optimal estimation of mixtures; a simulation study
F.E. Veldpaus, M.J.G. van de Molengraft and O.M.G.C. op de Camp
Inverse problems in engineering, Vol.2, pages 273-287
[Rum91] Object-oriented modeling and design
James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lorensen
Prentice-Hall International Inc., 1991
[Bou94] Systeemidentificatie met neurale netwerken
W.J. Bouman
Final report NR-1853 (1994-01-21) Systems and Control Group
Faculty of Technical Physics, Eindhoven University of Technology
[Mol90] Identification of non-linear mechanical systems for control application
M.J.G. van de Molengraft
ISBN 90-9003596-6
Faculty of Mechanical Engineering, Eindhoven University of Technology
[Mol93] An optimal filter for mechanical systems
F.E. Veldpaus, M.J.G. van de Molengraft and Jan J. Kok
American Society of Mechanical Engineers Winter Annual Meeting 1993
Faculty of Mechanical Engineering, Eindhoven University of Technology
[Kok92] Parameter- en toestandschatten
F.E. Veldpaus, J.P.A. Banens and Jan J. Kok
Course 4J800/4J803
Faculty of Mechanical Engineering, Eindhoven University of Technology
[Oos98]
Nog invullen
Agnes van Oosterum
[MSDN98] Microsoft Development Library CD-ROM April 1996 – January 1998
Visual C++ 5.0 Development System Reviewer's guide
Microsoft Foundation Classes Library Development Guidelines
Articles from Microsoft Systems Journal
Programming Windows 95 with MFC, Part I - VIII, Jeff Prosise, June till December 1995
Meandering through the Maze of MFC Message and Command, Paul DiLascia, Juli 1995

Chapter

6

L I T E R A T U R E

 29

[Clu95] Programming for the Windows 95 User Interface
The insider’s guide to coding the new UI
Nancy Winnick Cluts
Microsoft Press, June 1995, ISBN 1-55615-884-X
Inside Visual C++, Second Edition:
The standard reference for programming with Microsoft Visual C++ version 4.0, Third Edition
David J. Kruglinski
Microsoft Press 1996, ISBN 1-55615-891-2
Advanced Windows:
The Developer’s Guide to the Win32 API for Windows NT 3.5 and Windows 95
Jeffrey Richter
Microsoft Press, ISBN 1-55615-677-4
Programmer’s Guide to Microsoft Windows 95
Key Topics on Programming for Windows from the Microsoft Windows Development Team
Microsoft Corporation
Microsoft Press, ISBN 1-55615-834-3
The Window Interface Guidelines for Software Design
Microsoft Corporation
Microsoft Press, ISBN 1-55615-679-0
Programming Windows 95 with MFC
Jeff Prosise
Microsoft Press, ISBN 1-55615-902-1
OLE Controls Inside Out
Adam Denning
Microsoft Press, ISBN 1-55615-824-6
Articles from Dr. Dobb’s Journal
[Kum95] A practical strategy for OO Design, Kanchan Kumar, Juni 1995
Inside MFC Serialization, Jim Beveridge, Oktober 1995
[Con95] A C++ Integrator Class, Darrel J. Conway, December 1995
[Ler96] Multiple Inheritance for MFC 4.0: inheriting from CObject, Jean-Louis Leroy, Januari 1996

30

User Guide
General overview
The package Identification is designed to perform identifications of several types of state-space systems. In
addition it can also perform simulations and validations of these systems, edit Matlab files and text files
such as Matlab M-files, log files et cetera.
The pre- and post-processing is performed within the Matlab environment where the data is received
from experiments or created in other ways. The Matlab files are used by the application to load and save
the data signals. In its turn Matlab can load the results and perform the post-processing and visualization.
In the application various variables such as the weight matrices and options can be set for identification,
simulation and validation. The last used settings are retained for easy access and speedy operation. The
settings are saved in so called projects.
The TUE OptEst environment uses multithreading to allow multiple tasks (either identification,
simulation or validation) to run concurrently. The importance and status of these individual tasks can be
controlled by the Task Manager.
With a minimum of programming the set of available systems can be expanded. The user can create new
systems if so desired, and customize the application to its own needs. Based upon a set of templates and a
simple step process both the novice and experienced programmer can implement new (types of) systems.
Easy to use scripts have been made to facilitate the entire process.
Projects
The main document type you will be using is called project. Projects are a way to keep files, settings and
options concerning a series of tasks together. This way tasks can be resumed, recreated or retraced on a
later moment, if so desired.
A project consists of a selected system, settings and options and one or more files. The system will be
selected on the creation of a new project. The settings and options of the last task are remembered within
a project and stored if the project itself is stored. Files that are included in the project are visible in a
project window and are available for easy access. Typically, they are Matlab files, text and M-files.
There should always be at least one Matlab file with either input signals or measurements present. Without
such a Matlab file no tasks with systems can be performed.
Creating a new project
Before any of the available tasks can be started, a new project is needed. You can created a new project by

clicking from the toolbar, selecting File, New from the menu or pressing Ctrl+N from the keyboard.
When creating a new project a list of available systems is presented in a listbox. The desired system is
selected from this list. Once a system for a project has been selected, the selection cannot be altered. If a
different system is needed, a new project must be created.
Working with projects
A newly created project does not have any files included in it. Before any tasks can be performed, you

should include files into it. Click from the toolbar, select Project, Insert Files from the menu or press
the Insert key to open the Insert Files into Project dialog. From this dialog you can locate and select single

Appendix

A

A P P E N D I X A : U S E R G U I D E

31

or multiple files to include in the project. The files will be added to the file list in the project window.
Setting the filter using the dropdown box at the bottom of the dialog can filter files of a specific type. Files
that are no longer needed or desired in a project can be deleted by selecting them and pressing Delete on

the keyboard, selecting Project, Delete Files from the menu or clicking on the toolbar. These options
are not available if no active selection of files is made.
The project window
All files that are available within a project are shown in the project window. This window represents files
as items in a list. Each item corresponds to a single file. The name of the item is the same as the name of
the file that the item represents. Normally, only these names are shown in the window. This view mode is
referred to as the List view. Additional details can be viewed by switching to the Detail view. You can

switch from detail to list view and vice versa by selecting and respectively. The details of a file
show its size, type and the date on which the file was last modified.
Files can be opened in the Identification program by double-clicking the corresponding item in the project
window.
Multiple items can be selected as you are used to doing in the Windows Explorer. The available operations
include dragging rectangles and individual right clicking in combination with Shift or Ctrl key.
Performing a simulation
You will need a set of input signals available in a Matlab file in order to perform a simulation. The input
signals are to be stored in the Matlab file as a single array. They should be in the correct order according to
your system description and oriented as columns. Optionally the Matlab file can contain a time array with
the start and end value of the time interval for which the input signals were measured. An array that stores
the time can also contain other signals and does not necessarily need to have as many points as there are
samples present for the input signals. Only the first and last value of the first column will be taken if an
array is used in calculations.
Once a correct Matlab file has been inserted into the project, you can start a simulation task be selecting
Project, Simulation from the menu. A dialog titled Start Simulation Task as shown below will be
presented. Before pressing OK to start the simulation some essential information has to be provided.
Refer to the paragraph Start … Task dialog for details. A warning will be presented if some piece of vital
information is not provided.

By clicking the OK button the simulation task will be started. The task is added to the Task Manager’s list
where its status and progress can be checked. See also Task Manager and Task information.
On startup of the simulation task some vital information will be written to the output Matlab file. These
include the input signal used, a time array and the initial state x0. Upon completion of the simulation

	Summary
	Contents

