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Summary 
This graduate project focuses on the optimal estimation of white-modeled state-space systems. The 
optimal estimation consists of the estimation of unknown parameters and the reconstruction of the 
state. In practice a two-point boundary value problem for a set of differential equations must be 
solved. So far no methods are available to find a guaranteed solution to the aforementioned 
problem. 
For general systems a workable algorithm for identification has already been presented. The theory 
and algorithm have been examined and reformulated to be applicable to a larger range of state-
space systems. 
From the theoretical basis an abstract model description has been made. In the abstract model 
identifiable building blocks are represented by objects. Each object has an interface consisting of 
attributes and methods, although no implementation has been given yet. Between the objects 
relationships are defined to represent the type of relation or interaction. A workable iterative 
process to derive such an abstract model has been presented. 
For the implementation of the abstract model the object-oriented programming language C++ was 
chosen. From the abstract model a new implementation model has been derived. Classes are 
defined that correspond to the objects of the abstract model. In these classes the actual 
implementation of the interfaces is conceived. The set of classes forms the core of the functionality 
needed to perform the identification of state-space systems. The most important surplus value is 
code reusability and platform independence. 
For the Windows 95 and Windows NT 4.0 platform an application has been written to act as a 
controlling and interacting shell for the functionality of the core classes. Since Matlab was chosen to 
provide the capabilities of pre- and post-processing of data, a connection through Matlab files has 
been made. The program, called TUE OptEst 98, is a 32-bit multi-threading application with a 
graphical user interface. Also, because of the object oriented design the set of systems that are 
available for identification can be extended with only a minimum of programming. 
The application has been tested and used by others. The algorithm has proven to function well and 
interesting results have been achieved. Among these are the identifications of laboratory systems 
described by extended mechanical and polytopic models. The robustness of the algorithm has not 
been investigated nor has a mathematical proof for convergence to a solution been given. These 
latter issues remain to be examined. 
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Introduction 
In this first chapter the problem definition for the research project will be stated. Although the 
definition is precise its context and background deserves some clarification. An assessment of the 
technologies involved and position of the problem within the current time frame is made. Finally, a 
strategy and approach to tackle the problem in a structured way is suggested with a short preface to 
the next chapters. 
Problem definition 
At this point it is difficult to prelude or elaborate on the definition of the problem. The exact 
context and explanation of the terms are not given yet. In the chapters to follow everything will be 
explained and clarified. The statement of the problem definition for this research project will be 
given as is. 

Problem definition 

Development of a generic numeric tool for the optimal estimation problem. 

The problem definition does not come out of nowhere. The theory behind the identification of 
state-space systems is a well-developed part of physics and fundamental engineering. It is not 
intended that the theory be an important innovative factor. It will make an excellent basis for the 
definition of the context and the algorithms. Already other applications have been written to solve 
the optimal estimation problem. The application that must be developed will address several issues 
that are drawbacks for the existing programs. 
Technology assessment 
More often than not a particular automation problem is handled by finding an ad hoc, sometimes 
even a prima vista solution. As a short-term and fast result this can be considered useful. However, 
taking into account long-term factors, one will find that such an approach to solving problems and 
implementing these is highly inadequate and often a waste of effort. Providing automation solutions 
thusly has no surplus value and does not contribute to a structured approach aimed at the future. 
One of the latest trends in the world of software development is the use of object-oriented design 
methodologies and the use of component technologies. The components are used to build 
applications from reusable building blocks that are conceived by adhering to object-oriented design 
guidelines. This approach is taken especially for business application. The knowledge, 
methodologies and strategy are applicable to many other fields, not in the least scientific research. 
Strangely enough, one hardly ever finds these techniques in the physics field, even though there is a 
great demand for custom solutions to particular problems. 
In physical research dedicated software is used for a variety of reasons. For example, equipment for 
experiments use computers for their data acquisition and corresponding software is developed and 
used to perform the acquisition and all sorts of calculations involved in the research. The research 
projects, where such software is developed, are often long term occupations, ranging from one to 
several years. Especially in this area it is extremely valuable to invest in a structured development of 
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reusable software. Yet, researchers tend to prefer the quick solution on short notice to the long-
term benefits of structured design. Experience shows that a well-planned route from start to end is 
only partially taken. The start of the abstraction process of object-oriented design is second nature 
to scientists and the implementation in software is the desired result. It is the section in between that 
is often skipped or suffers from negligence. 
The intention of this study is to produce results that are valuable in a larger context and applicable 
to more than the particular problem at hand. Not only should terms such as reusability hold for the 
developed source code, but also for the results and the way they are achieved. It is the intention that 
this report offers an overview of the entire route from problem definition to the final product. 
In the end the whole project will prove to contain several valuable elements that are well worth the 
time invested. It contains several steps in a design and implementation process that can be used for 
almost any other situation in software design. The central message is that results and the way these 
results are achieved should be reusable in similar and other situations. In this light the project can be 
seen as a case study for the development of an application along a practical and guided route, 
regardless of its use and design. 
Project strategy 
The problem definition explicitly states the creation of an application. Several issues must be 
addressed for the application to work. As the core functionality is a calculation it is logical to think 
of the application as a calculating core with a graphical user interface. The project is broken into 
several parts, each with a clearly defined goal and purpose. For non-trivial problems an object-
oriented strategy is desirable as it is intended to break down the main problem into smaller ones. In 
physical science one can find similar approaches to tackle a large research by isolating sub-problems 
and solving these. 
The project strategy can be best described as follows. The main problem will be split into the 
development of a reusable core that performs system identifications and the design of a graphical 
user interface with file-based support and interconnectivity to other applications. Object-oriented 
analysis and design will form the foundation upon which the creation of the core is based. The first 
phase will be the setting of a clearly specified problem definition for the core after a thorough 
examination of the identification theory. Once the core has been designed it can be implemented in 
a programming language. Finally, the graphical application can be created and tested. The results 
that are achieved by the following system identifications will be discussed in the end. The next 
paragraph will give some additional information. 
Chapter preface 
First of all the existing theory is examined and reformulated to form a solid basis from an object-
oriented point of view. Chapter 2 presents the theory in the new form and introduces a set of 
conditions for which a workable algorithm to identify systems will hold. 
Based upon the theory Chapter 3 first focuses on the principles of object-oriented analysis and 
design. A scheme to identify objects for an abstract model of the problem definition is presented 
and used to create a model for the core functionality of the application, i.e. the optimal estimation 
of state-space systems. The next step towards implementation is taken by translating the abstract 
model into an implementation model. The objects of the abstract model are converted into classes 
that form. The choice of programming language will be discussed as well. Lastly, Chapter 3 covers 
the implementation of the application for a specific platform. The basics of the creation of an 
application with the use of an application framework are skipped. The emphasis is on the 
peculiarities of the new classes and their use.  
The results of the object-oriented design and implementation and the results from the identification 
of systems with the application for three particular cases are given in Chapter 4 and 5. 
The entire approach and strategy will lead to some conclusions. These are summarized in Chapter 6. 
Recommendations for the continuation of this project are made as well. 
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Theory of system identification 
In this chapter the theoretical basis of system identification will be explained. First, the concept of 
system identification will be outlined with the intention to supply a framework in which the theory 
can be placed. System modeling will be briefly discussed whereupon the mathematical theory of the 
optimal estimation problem is explained. At the end of the theory a recap is given that will set the 
boundaries of the area where system identifications can be performed. Moreover, the recap aids in 
the formulation of an identification algorithm based upon certain system description types. The 
algorithm is to be implemented, which will be exhaustingly discussed in the following chapters. 
Modeling of systems 
For real-life systems one often needs a workable abstraction of reality. The process of creating an 
abstract representation of a system is referred to as the modeling of systems. The three major types 
of models currently used are black, gray and white models. From black to white models the a priori 
theoretical physical knowledge increases. As this knowledge increases more individual physical 
entities are introduced and used in the description. 
Black models incorporate no system knowledge at all and merely mimic the input-output behavior 
of the systems. They rely purely on the data of measurements. One of the methods by which this 
can be accomplished is a black box construction, i.e. a model with many adjustable parameters that 
are tuned to fit the measured input-output relations. In general, the parameters do not correspond 
directly to any of the physical entities that the system has, whether they are modeled or not. 
White models on the other hand are based upon the physical laws that describe the system. Starting 
with an abstraction and knowledge of the system, internal dynamics are described by means of the 
physical equations that apply. A common class of models defines an internal state for the system. 
The corresponding systems are called state-space systems. 
Grey modeling is in effect the combination of black and white models. A priori knowledge can be 
used to create a white model of the system that suites up to a certain degree. A black model 
compensates the hiatus in this description. For example, a linear theoretical model could be used to 
describe the motion of a non-linear system. Because the chosen description does not cover all of 
the system’s dynamics, a neural network, a type of black modeling, is added to represent the non-
linear behavior of the system. Grey modeling is often a form of hybrid modeling. Other recent 
topics of gray modeling are polytopic models, which will be used as one of the examples in later 
chapters. 
So far no statements are made about the validity of the model and the extent to which the model 
adequately describes the system. It may very well be possible that the model introduces errors 
regarding the actual behavior. Such a model is said to less correctly describe the system. 
Identification, an introduction 
Whenever a model for a system has one or more unknown parameters, one needs to perform an 
identification of the system. In the process of identifying a system the parameters are determined to 
correctly describe the input-output relation of the system. In other words, unknown parameters are 
estimated. 
Since the range of types of models differ greatly from black to white, no general method of 
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Object Oriented 
Analysis and Design 
In the first chapter a problem definition was made. The theoretical basis was set from which a 
solution algorithm to the optimal estimation problem was deduced. In this chapter the problem is 
analyzed from an object-oriented point of view and objects are designed in a model that offers the 
key to the solution of the problem. The design forms the translation or first intermediate step 
between the theoretical basis and the final implementation. The implementation model is the 
formulation of the abstract model in terms of C++ classes that follows. This approach of creating 
an abstract model and implementing it is more fundamental and structured than an arbitrary ad hoc 
solution. The importance of such an approach has already been discussed in the first chapter. 
It is assumed that the reader is at least familiar with some of the aspects of object-oriented analysis 
(OOA) and design (OOD). Some knowledge of object-oriented programming languages is 
advantageous as well. The presentation of the models is perhaps not as strict as hardcore object-
oriented designers would take it. The theoretical backbone does not extent to modeling languages 
such as Universal Modeling Language (UML), but uses a common sense version thereof. 
Nevertheless it makes a workable guide to the formulation and modeling of the problem towards 
the implementation.  
Analysis and design 
The analysis and design can be categorized into several phases. First, the problem is analyzed and 
defined and formulated accordingly. The emphasis lies on what must be accomplished, not how. 
After the description of the problem the design of an abstract model is started. The main part of 
this model is the identification of various objects in a hierarchic structure. 
One starts which the isolation of a primary top object. This object will become clearly described. 
During the process of establishing a clear description of the object more insights into the problem 
are gathered. Within the top object it may be possible to isolate and identify additional sub objects. 
For these new component objects the entire exercise is repeated, from problem definition to 
description of the details. 
Throughout this iterative process one slowly migrates from a ‘what’ towards a ‘how’ formulation of 
the problem definitions. The design phase, in contrast to the analysis phase, concentrates much 
more on how the solution to the problem can be accomplished. However, the possibilities and 
impossibilities of the implementation phase are not taken into account.  
Problem definition 
The analysis phase can only start when a clear description of the problem is available. A problem 
definition must therefore be free of the possibility of assumptions regarding the functionality of the 
objects. The problem definition in the first chapter is broad in the sense that it describes the 
problem whose solution is the goal of the project and this thesis: an application must be written that 
can solve the optimal estimation problem of state-space systems. In this stage the focus is on the 
core of the problem. In other words, a more to the point formulation in terms of OOA and OOD 
is needed. 
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application. These libraries are conceived in much the same way as our abstract and 
implementation model, except that these apply to a general application. When choosing a 
framework one should consider the targeted platform and the programming language of the 
implementation model. The framework is usually closely connected with a RAD tool. 

Using classes from the implementation model 
As mentioned before, it is an often-occurring scenario that after designing an abstract and creating 
an implementation model the classes from the latter model have to be incorporated into the 
application. At this particular moment there are a couple of points to take note of: 
Care must be taken not to mix the original code with the code for the application. The files that 
contain the implementation model code should be kept apart and not be altered because of the 
particular needs of the application itself. If the application demands a recoding of the classes, the 
implementation model is obviously not correct or complete enough. It will need redesigning apart 
from the application. Furthermore, keeping a single set of source code files simplifies the versioning 
control over the code. Creating multiple copies of the same source code inevitably leads to 
problems. 
When instantiating objects from the classes, one could refer to the rules of thumb for converting an 
abstract into an implementation model. These are some general guidelines for the use of pointers 
versus references and moments of creation of objects and their respective consequences. These 
should provide some advantage in the decisions that one must make when using objects from the 
classes. 
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Analysis and design results 
In this chapter the results of the object oriented design and application development will be given. 
The results from identifying several systems with the application are discussed in the next chapter 
Abstract model results 
The entire exercise of the creation of the abstract model description is described in appendix D. 
The results are listed in this paragraph, together with a short description of the important parts. 
In Figure 1 the abstract model for the optimal estimation problem can be seen without any of the 
refinements, which are present. It gives an overview of the most important parts (top objects) and 
relations in the model. The complete interfaces of the various objects are listed in Appendix G. The 
logic of the optimal estimation model is embedded in the Identifier object. It holds all physics and 
mathematical equations of the algorithms from the optimal estimation. As can be seen, the 
Identifier object uses a State Space System object. This object represents a state-space system in 
the broadest sense. It can also be a derived system type. These derived types are not shown in the 
figure, nor are derived identifier types shown. For each derived State Space System object there is 
a derived Identifier object as well. The Uses-a relation is retained between similar derived types. 
The derived Identifier types implement their own, more sophisticated logic to perform the optimal 
estimation of the corresponding derived State Space System object. 

Identifier Integrator 

Derivative 

Matrix 

Vector 

State-space 
System 

has has 

has 

has 

uses  a is a 

 
Figure 1: Overall abstract model description (without refinements) 

Both the Identifier and the State Space System rely heavily upon the use of both matrices and 
vectors in their computations. Matrices and Vectors are identified as objects in the abstract model.  
Because the Identifier object must solve differential equations, an Integrator object is chosen as a 
composing part of the identifier. As will be seen in the next paragraph, there are several types of 
derived integrators, such as RungeKutta78 and VariableOde. Each have their own 
implementation in the implementation model. For the abstract model description it suffices to 
illustrate the top object as a part of the Identifier object. 
The Integrator effectively solves differential equations, but it actually performs the integration of a 
derivative function over a given time interval. Derivative is recognized as an object and 
encapsulates the differential equation in the form of the derivative function. The combination of the 
Integrator that uses a Derivative is applicable in a far larger context. In our case the State Space 
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System object supplies mechanical laws needed to compute the derivative for the Identifier 
object. The latter is derived from Derivative. 
Implementation model results 
In the implementation model each of the objects from the abstract model is implemented in object-
oriented classes. Taking into account the points from Chapter 3, the language of choice is C++. An 
elaborate discussion of the choice of the programming language is given in Appendix E. Instead of 
restating the top objects from Figure 1 as classes, the derived classes from a specific part of the 
complete set of top objects is discussed. The Integrator and related objects are chosen because 
they can be used in numerous other situations that require integrator functionality. 
The largest section of Figure 2 is composed by the CIntegrator base class as the implementation of 
the top object Integrator. The figure also shows the derived classes CVariableOde and 
CAdaptiveRungeKutta. CIntegrator is a pure base class and does not have any particular 
implementation. It merely defines the structure of the class, to which all derived classes have to 
adhere. This way all derived classes have to meet the requirements imposed by the pure base class. 
The main difference between the various derived classes is the implementation of the Integrate 
function, which performs the actual integration. Consequently each class has a set of corresponding 
helper attributes and functions needed in the computation. 
CAdaptiveRungeKutta is in itself a base class that cannot perform an integration by itself. Although 
the algorithms are part of the class, the derived CRungeKutta45 and CRungeKutta78 provide the 
coefficients of the particular order of the Runge-Kutta equations they represent.  

CIntegrator CDerivative CMatrix 

CJacobian CVariable 
Ode 

CAdaptive 
RungeKutta 

CRungeKutta
45 

CRungeKutta
78 

User 
Derivatives 

User 
Jacobians 

Other 
Integrators 

 
Figure 2: Set of integration related classes 

All of the integrator classes perform an integration of a derivative equation supplied in the 
CDerivative class. Again, this is a pure base class that defines the structure of all classes that a user 
derives from CDerivative. These user-derived classes at least hold the implementation of the 
GetDerivative function, where the derivative function is supplied. Through the polymorphism 
mechanism of object-oriented programming, an arbitrary CIntegrator class can use a CDerivative 
derived class’s GetDerivative function without knowing the actual type of the class. 
CVariableOde also uses a Jacobian in its calculation. Since a Jacobian is a matrix function, the 
CJacobian class is derived from CMatrix. Similar to the use of the CDerivative class, a CJacobian also 
has user defined derived classes that hold the equations that form the Jacobian. 
In Figure 2 the arrows represent pointers to other objects instantiated from the corresponding 
classes. They are the result of using the rules for converting the abstract model, which defines a 
Uses-A relationship, into an implementation attribute. 
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More of the implementation model and it’s design and development is listed in Appendix E. It also 
shows the algorithms used for the optimal estimation and the way they are derived from the theory 
of Chapter 2. 
Application development 
The application OptEst98 calculates solutions to the optimal estimation problem and provides a 
GUI to control and set the specific variables. It is a program targeted for the Windows 95/98/NT 
4.0 platforms. It ises the results of the implementation model to perform the calculations. This 
paragraph discusses some of the design considerations during the creation of the application. 
Application functionality 
The functionality that the application supplies is that of simulation, identification and validation of 
systems. Having chosen a particular system description, existing measurement files can be used to 
perform an identification. The set of user-defined system descriptions can easily be extended by 
deriving new types from the existing base class CStateSpaceSystem. Before starting the calculations 
several variables from the optimal estimation problem must be entered. The same holds for 
simulation and validation.   
The application supplies full incorporation of Matlab file-based functionality. The Matlab file format 
has been chosen a a native format for the results of the calculations and source of measurement 
files. Pre- and post-processing can be performed using the Matlab environment. Graphing 
capabilities have not been included into the application, since Matlab already supplies an abundance 
of graphical output possibilities. 
One of the shortcomings of regular application or calculation environments is the inability to pause 
the calculations being performed. The OptEst application uses multithreading to allow the user to 
start several calculations at the same time, pause one or more calculations or set the relative priority 
of each of the tasks. Each of the threads is a isolated optimal estimation task, that runs in its own 
memory space.  
User interface development 
OptEst98 has been developed by using the Microsoft Visual C++ 5.0 development environment. 
This RAD environment supplies the Microsoft Foundation Classes 4.21 that were used for the 
creation of the user interface. MFC classes were used to built the graphical interface. The entire 
class framework minimized the programming efforts of the application. The supplied classes from 
the framework were enhanced by deriviation to provide specific functionality for the user interface 
and core system parts.  
The implementation model classes were easy to integrate with the application framework classes of 
MFC that are also written in C++ [MSDN98]. Care has been taken to keep the implementation 
classes from the object oriented design separate from the MFC framework. One exception was 
made: the CIdentifierThread class uses multiple inheritance to combine the characteristics and 
functionality of a thread with the CIdentifier class that holds the logic for the optimal estimation 
problem. The consideration taken is the extra ease of use versus the small effort that should be 
made when separating the classes.  
The user interface adheres to the UI design guidelines of Microsoft [Clu95]. The application has a 
Multiple Document Interface (MDI) that allows one to interact with a variety of document types, 
such as Matlab and text-based files. All files relating to a single identification task are collected in a 
project file. This file is the base of operation for the application. It stores user settings and the last 
used values when performing a simulation, identification or validation. 
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Experiments results 
The process of designing an abstract and implementation model and creating and application from 
these models, as described in the previous chapter is a result in itself. Yet, the surplus value and 
additional goal is the optimal estimation of various systems. Three different cases of identification 
problems will be treated: first a simulation and optimal estimation for a completely fictional system 
is discussed. Next, using real measurements an identification and validation of a real laboratory 
system of a rotating arm has been performed. Finally, for a Philips VRS robot arm a one-
dimensional translating system has been identified and validated. 
Case 1: The two mass system 
The fictitious system depicted in Figure 1 consists of two translating masses with mass m1 and m2, 
both unknown. The masses are connected with a spring and a damper with respective constants c 
and k both of which are known. The general and mechanical descriptions of the system are listed in 
Appendix E. 

Mass m2 Mass m1 
Damper k  

Spring c  

 
Figure 1: Simple representation of two mass spring-damper system 

This system has been simulated using the OptEst98 application. The mechanical system description 
was used for the simulation. An initial value x0 = [1 –2,5 1 0,25 1,25 3,5] and a generated input 
signal for the external force F on mass m1 have been used. Figure 2 shows the input signal and the 
resulting output signals of the system for the simulation. 
From the simulation both the input signal and the position of mass m1 are used as measurements 
for the subsequent optimal estimation of the "unknown" parameters for the masses. No error is 
introduced in the measurement series. 
Although the exact values of the initial state x0 are known, none of this knowledge is used in the 
identification of the system with the generated 
measurements. The initial positions and velocities of the 
system are taken to be zero and the masses are guessed at 
1,0 kg each. Again, the mechanical model description is 
used, now to perform the optimal estimation. Since the 
initial state is based on no observations whatsoever, the 
confidence in q0 is low, which is reflected in weight 
matrix  
R0 = [ 0,01 0,01 0,01 0,01 0,001 0,001]. The other weight matrices are V = [100 100 1000 1000 
1000], W = [ 0,1 0,1 0,1 0,1 100 100 ] expressing our faith in the measurement's correctness 
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User Guide 
General overview 
The package Identification is designed to perform identifications of several types of state-space systems. In 
addition it can also perform simulations and validations of these systems, edit Matlab files and text files 
such as Matlab M-files, log files et cetera. 
The pre- and post-processing is performed within the Matlab environment where the data is received 
from experiments or created in other ways. The Matlab files are used by the application to load and save 
the data signals. In its turn Matlab can load the results and perform the post-processing and visualization. 
In the application various variables such as the weight matrices and options can be set for identification, 
simulation and validation. The last used settings are retained for easy access and speedy operation. The 
settings are saved in so called projects. 
The TUE OptEst environment uses multithreading to allow multiple tasks (either identification, 
simulation or validation) to run concurrently. The importance and status of these individual tasks can be 
controlled by the Task Manager. 
With a minimum of programming the set of available systems can be expanded. The user can create new 
systems if so desired, and customize the application to its own needs. Based upon a set of templates and a 
simple step process both the novice and experienced programmer can implement new (types of) systems. 
Easy to use scripts have been made to facilitate the entire process. 
Projects 
The main document type you will be using is called project. Projects are a way to keep files, settings and 
options concerning a series of tasks together. This way tasks can be resumed, recreated or retraced on a 
later moment, if so desired. 
A project consists of a selected system, settings and options and one or more files. The system will be 
selected on the creation of a new project. The settings and options of the last task are remembered within 
a project and stored if the project itself is stored. Files that are included in the project are visible in a 
project window and are available for easy access. Typically, they are Matlab files, text and M-files. 
There should always be at least one Matlab file with either input signals or measurements present. Without 
such a Matlab file no tasks with systems can be performed. 
Creating a new project 
Before any of the available tasks can be started, a new project is needed. You can created a new project by 

clicking  from the toolbar, selecting File, New from the menu or pressing Ctrl+N from the keyboard. 
When creating a new project a list of available systems is presented in a listbox. The desired system is 
selected from this list. Once a system for a project has been selected, the selection cannot be altered. If a 
different system is needed, a new project must be created. 
Working with projects 
A newly created project does not have any files included in it. Before any tasks can be performed, you 

should include files into it. Click  from the toolbar, select Project, Insert Files from the menu or press 
the Insert key to open the Insert Files into Project dialog. From this dialog you can locate and select single 
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or multiple files to include in the project. The files will be added to the file list in the project window. 
Setting the filter using the dropdown box at the bottom of the dialog can filter files of a specific type. Files 
that are no longer needed or desired in a project can be deleted by selecting them and pressing Delete on 

the keyboard, selecting Project, Delete Files from the menu or clicking  on the toolbar. These options 
are not available if no active selection of files is made. 
The project window 
All files that are available within a project are shown in the project window. This window represents files 
as items in a list. Each item corresponds to a single file. The name of the item is the same as the name of 
the file that the item represents. Normally, only these names are shown in the window. This view mode is 
referred to as the List view. Additional details can be viewed by switching to the Detail view. You can 

switch from detail to list view and vice versa by selecting  and  respectively. The details of a file 
show its size, type and the date on which the file was last modified. 
Files can be opened in the Identification program by double-clicking the corresponding item in the project 
window. 
Multiple items can be selected as you are used to doing in the Windows Explorer. The available operations 
include dragging rectangles and individual right clicking in combination with Shift or Ctrl key.  
Performing a simulation 
You will need a set of input signals available in a Matlab file in order to perform a simulation. The input 
signals are to be stored in the Matlab file as a single array. They should be in the correct order according to 
your system description and oriented as columns. Optionally the Matlab file can contain a time array with 
the start and end value of the time interval for which the input signals were measured. An array that stores 
the time can also contain other signals and does not necessarily need to have as many points as there are 
samples present for the input signals. Only the first and last value of the first column will be taken if an 
array is used in calculations. 
Once a correct Matlab file has been inserted into the project, you can start a simulation task be selecting 
Project, Simulation from the menu. A dialog titled Start Simulation Task as shown below will be 
presented. Before pressing OK to start the simulation some essential information has to be provided. 
Refer to the paragraph Start … Task dialog for details. A warning will be presented if some piece of vital 
information is not provided. 

 
By clicking the OK button the simulation task will be started. The task is added to the Task Manager’s list 
where its status and progress can be checked. See also Task Manager and Task information. 
On startup of the simulation task some vital information will be written to the output Matlab file. These 
include the input signal used, a time array and the initial state x0. Upon completion of the simulation 
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