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Summary 

One of the current projects in the Atomie Physics and Quantum Electronics group at Eindhoven 
University ofTechnology concerns a direct demonstration of the existence of the quantization of 
the electromagnetic field through an atomie diffraction experiment. In the proposed experiment 
the diffraction of a beam of helium atoms interacting with the electromagnetic field in a high
finesse optical cavity will be studied. 

For this experiment a highly sophisticated setup has been built to produce an extremely 
precise beam of helium atoms. The setup has been constructed, tested and used for preliminary 
experiments by two (former) graduate students. However, after the departure of the last graduate 
student, the machine bas been idle for more than half a year. Tuis report discusses the eff orts to 
'resurrect' the machine together with a second undergraduate student. Furthermore changes in 
the design, that proved necessary to improve reliability and operational ease, are described, as 
well as tests of new elements for the setup, needed for the real experiments. 

In the first chapter a review of the beam machine and changes in the mechanical design 
are presented. The remaining part of this report deals with the design and improvement of the 
stabilization configurations for the laser and the high finesse cavity. The stabilization method 
used is based on the Pound-Drever-Hall scheme. Some aspects of feedback control theory and 
its consequences for our setup are discussed, as well as the theory of Pound-Drever-Hall. 

As the high finesse cavity constitutes another fundamental part of the experiment, its opti
cal and mechanical properties and resonance conditions are investigated. Some general aspects 
of cavity theory are presented. An expression for the intemal, reflected, and transmitted light 
intensity and the relative phase of these beams is deduced using a purely classical model. The 
effect of polarization was not included in this model. However, in practice the cavity displays 
birefringence. The effect of this birefringence on the polarization of the cavity mode, is dis
cussed. Experimental results on the cavity birefringence are presented. 

Finally the route towards the stabilization of the high finesse cavity is explored. Exploiting 
the Pound-Drever-Hall scheme, the distance between the two mirrors of the cavity should be 
kept stable to within 1 pm. The stringent demands on the stabilization setup are discussed. The 
necessary electronics have been built and tested. In Chapter 7 the test results are presented and 
further improvements are proposed. 
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Chapter 1 

Introduction 

Quantum measurements, even in the form of textbook schemes applied to very simple systems, 
are generally not simple. For example, position measurements on single particles cannot be per
formed in the form of Quantum Non Demolition (QND) measurements, i.e., these experiments 
cannot be performed without disturbing the measured quantity. In measuring the position, the 
particle's momentum is changed and hence the position at later times. Successive position mea
surements can therefore not lead to the same result. Altematively, momentum measurements 
at the quantum limit may be QND. The basic and most interesting feature of a QND measure
ment is thus that it can be repeated; successive QND measurements on the same system will 
give identical results. Many QND measurements have been realized in quantum opties without 
achieving, however, sensitivity on the single photon scale and thus without addressing the basic 
axiom of field quantization. 

In the AQT group at Eindhoven University of Technology, a setup is currently being de
veloped that will allow such sensitive QND experiments through which we hope to provide a 
direct demonstration of the existence of the quantization of the electromagnetic field. In the 
proposed experiment the diffraction of a beam of atoms interacting with the electromagnetic 
field in a high-finesse optical cavity will be studied. The meter in this experiment is a single 
helium atom that crosses the light field in the cavity. After the interaction the atom exits the 
cavity, leaving the amplitude of the light field unchanged. The heliuÎn atom, however, carries 
away the information about the amplitude of the light field and hence the number of photons 
in the cavity, imprinted on its wave function. As the setup is designed such that the diffraction 
is observable even when the field in the cavity consists of only a single photon, the diffraction 
pattem will display a clear signature of quantization. 

The interaction effects for a single atom and a single photon in the cavity will be extremely 
small. To be able to observe these effects with the required precision, the requirements for the 
helium beam and the cavity are accordingly stringent. In the beam setup four laser cooling sec
tions are exploited to prepare the necessary ultra-bright, collimated and monochromatic beam 
of metastable helium atoms. Special stabilization techniques are necessary also to regulate the 
distance between the mirrors of the optica! cavity to within the required 1 pm stability. 

The development of the beam setup has already taken five years. Therefore, this precious 
QND setup is designed such that it can and will be used fora variety of other experiments 
studying atom-laser interactions. Kooien [2] already performed record-breaking Bragg scatter-
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ing experiments at a standing light wave in 2000. Further discussion and numerical simulations 
of these and future Bragg scattering experiments can be found in Jansen [7]. In 2002, a start 
will be made with the construction of a very large area interferometer based on the coherent 
splitting and recombination of the atomie beam, as well as the above-mentioned diffraction
measurement based demonstration of field quantization, leading to the QND experiment after 
which our project group bears its name. 

In this report a review of the operation of the helium beam setup is presented. The difficulties 
that we experienced using the machine and the improvements implemented in the design are 
discussed. 

The stabilization of the lasers used for the experiments, as well as of the high-finesse cavity, 
are discussed in the rest of the report. Both stabilizations are based on the so-called Pound
Drever-Hall scheme, which is treated in some detail. The properties of the high-finesse cavity 
and its stringent stability demands are considered. 

Finally, measurements of the electro-mechanical behavior of the cavity and of the polariza
tion properties of the cavity are presented as well as .th~ design of the sub-picometer stabilization 
system. 
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Chapter 2 

QND setup and improvements 

The present QND setup, a machine producing an extremely collimated and 'monochromatic' 
(single axial velocity) beam of metastable helium atoms, has been designed such that it suitable 
for a plethora of different experiments investigating light-matter interactions. Yet, the initial 
motive to start the project was to provide a direct demonstration of the existence of the quan
tization of the electromagnetic field through an atomie diffraction experiment. In the proposed 
experiment the diffraction of a beam of atoms interacting with the electromagnetic field in a 
high-finesse optical cavity will be studied. The diffraction should be observable even when the 
field in the cavity consists of only one photon. In this case, the diffraction pattem displays a 
clear signature of quantization. 

The choice for helium in our setup is mainly motivated by the fact that the interactions 
considered are rather small. In order to observe the diffraction effects on a 2D detector placed 
behind the interaction region, a light atom is preferred. For an atom such as helium relatively 
large de:flection angles will be induced even by a single photon recoil. U sing an atomie beam 
with a small axial velocity further increases the de:flection angle. 

Another necessary condition is that the initial angular spread of the atom beam is much 
smaller than the detection angle impact resulting from the absorption or emission of a single 
photon. Even fora light and slow atom, this implies that an extremely well-collimated beam 
is required. The application of laser laser cooling techniques is indispe11sable to obtain such a 
high quality slow atomie beam. Helium is both light and eminently suitable for laser cooling. It 
has therefore been selected for our QND setup. 

2.1 The QND setup 

At one end of the setup helium gas expands through a nozzle into the vacuum system. At the 
other end, nearly ten meters downstream from the source, we wish to have a high-quality helium 
beam that meets our stringent demands. To achieve the required beam collimation before the 
interaction region, the beam passes through two apertures of 60 µm and 25 µm in diameter 
respectively, positioned at 6 and 8 meter from the source. Between the source and the first 
aperture, the initially fast ( ~ 1300 ms- 1) helium atoms are decelerated by a counterpropagating 
laser beam to a uniform and low velocity of 250 ms- 1. Running numerical calculations Knops 
[1] found that the resulting count rate in such a simple setup would however be unacceptably 
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low for the experiments. In order to increase the count rate extensive manipulation of the 
atomie beam has to be performed before the first aperture. This requires several laser cooling 
techniques. 
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Figure 2.1: Partial energy level scheme for helium 

Figure 2.1 shows a partial energy level scheme for helium. Both the laser cooling sections 
and the experiment use the 23 S1 -1- 23 P2 transition at the infrared wavelength of À. = 1083 nm. 
It is a closed transition with a radiative lifetime of 98.8 ns for the upper state. The lower state 
23 S1 has a lifetime of more than two hours and is therefore referred to as a metastable state. 
Absorption of a single photon at 1083 nm by a metastable helium atom He* results in a velocity 
change VR = lik/ M = 0.092 ms- 1 (known as the recoil velocity), with k the wave vector of 
the light and M the mass of the helium atom. 

In Figure 2.2 a schematic view of the current QND beam setup is presented. References 
[ 1, 2] give a more detailed description, we con:fine ourselves to a short overview. 

A gas inlet system is used to inject helium gas into the source. The gas expands supersoni
cally through a boron-nitride nozzle with a 0.1 mm diameter, which is in contact with a liquid 
nitrogen reservoir. This cools the effective source temperature down to 200 K and reduces the 
average (longitudinal) velocity of the atoms down to ( v) = 1300 ms- 1. Metastable helium 
atoms are formed in a DC gas discharge drawn from the nozzle to a skimmer that is located 10 
mm downstream and has a 1 mm diameter aperture. Typical operating conditions of the source 
are 5-6 mA discharge current at a voltage of 760-800 V. 

The metastable atoms passing through the skimmer still form a unacceptably divergent gas 
flow. To prevent the atoms from deviating too much from the central beam line after the first 
few centimeters, a first laser cooling stage is positioned directly after the skimmer. This so
called collimator consists of a two-dimensional standing light wave with slightly red-detuned 
light (2-3 MHz). In the collimator the atoms are redirected into a parallel beam, thus securing 
sufficient input flux for further laser cooling stages. The collimator is driven by a temperature 
and frequency stabilized Distributed Bragg Reflection (DBR) diode laser. 

Next, a two meter long Zeeman slower reduces the broad thermal velocity distribution toa 
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Figure 2.2: Schematic overview of the QND beam setup 

narrow velocity distribution of around 250 ms-1. In the Zeeman slower the metastable helium 
atoms are decelerated by the radiation pressure of a counterpropagating laser beam. The chang
ing Doppler shift upon deceleration is compensated for by the Zeeman shift in an inhomoge
neous axial magnetic field. Unfortunately, during slowing the axial divergence and the diameter 
of the beam increase rapidly towards the end. To compensate for this effect a final two-stage 
beam compression section is added. The first stage, a magneto-optic lens (MOL), functions as a 
thin lens for the broad ( approx. 25 mm diameter) atomie beam with a focal length of 60 cm. The 
lens consists of a two-dimensional standing light wave, as for the collimator, combined with a 
two-dimensional magnetic quadrupole field with the zero-field axis coinciding with the center 
line of the atomie beam. At this point we possess a slowed and narrow beam which however 
is still highly divergent. A magneto-optic compressor, or MOC, positioned in the MOL's focal 
point funnels the atoms into a narrow (250 µm diameter) and collimated (angular divergence 10 
mrad) beam. The compressor is essentially identical to the lens, however a stronger quadrupole 
field results in 'funnelled' atom trajectories [1,2]. This beam provides sufficient brightness (flux 
5 .0 x 109 ç 1 through a 1 mm orifice) for the final mechanical selection by the pinholes. 

In order to check the performance of each laser cooling section in the machine and to make 
sure that it operates at maximum performance, three diagnostic devices are present. First, the 
global performance of the source and collimator is measured with a wire scanner positioned 
two meter behind the collimator, half-way the Zeeman slower. The performance of the MOL is 
measured with a second wire scanner positioned 0.50 m behind the end of the MOL, i.e., near 
the entrance of the MOC. Both wire scanners consist oftwo crossed stainless steel wires ofO.l 
mm diameter and are mounted on a computer-controlled translator. When a highly energetic 
metastable helium atom impinges on the surface of a steel wire, an Auger electron will be 
emitted from the metal. Measuring the current from the wire gives the number of impacting 
metastable atoms per second. The performance of the two stage beam compressor, finally, 
can be measured using a double knife-edge scanner that is situated 100 mm behind the end of 
MOC. The knife-edge scanners are made out of glass with a conducting coating. The current 
on the scanner's blade released by the impact of He* atoms is a direct measure for the total flux. 
In practice, it is virtually always this knife-edge scanner that is used to determine the overall 
performance of the four laser cooling stages. The wire scanners are used when more detailed 
profil es of the atomie beam are needed. 

The experiments performed thus far with the QND machine took place in the interaction 
chamber just behind the 25 µm pinhole, eight meter downstream from the source. As the experi-
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ments aim to measure the transverse velocity changes of the atoms, we need a two-dimensional 
position sensitive detector. This detector consists in essence of a large array (25 mm diame
ter) of microscopie electron-multipliers (15 µ,m diameter) forming a microchannel plate (MCP) 
over which typically a voltage of 800 volts is applied. Upon impact of a metastable helium atom 
a surface electron will be released and accelerated in the electric field, releasing more electrons 
on each subsequent collision with the channel walls. Three Z-stacked layers of these MCP's 
increase the signal gain. At the backside of the microchannel plates roughly 107 electrons are 
released for each initial electron. This electron cloud then hits a square surface resistor with 
charge sensitive preamplifiers attached to each of the four corners. The amount of charge that 
flows to each corner contains information on the position of the electron cloud and thus on the 
position where the metastable atom impacted on the detector. The charge signals are processed 
electronically and stored for later retrieval together with timing information with respect to a 
trigger pulse. This timing information can be used to perform time-of-flight measurements as 
an extra diagnostic tool. 

2.2 Guide line 

The machine described above has been constructed and tested by the former graduate students 
Knops [1] and Koolen [2]. They realized the envisioned highly collimated beam and were able 
to determine its main characteristics with several diagnostic tools. Koolen then was the first to 
perform atomie Bragg scattering experiments with the beam. It was concluded that the beam 
seemed to meet all of our requirements. The main properties of the beam are summarized in 
table (2.1 ). 

beam diameter 
velocity 
flux 
collimation 
monochromaticity 

25 µ,m. 
250 ms- 1 

250 s- 1 

av.i = 9 x 10-3 ms- 1 < 0.1 VR 

av11/v11 = 1.5 x 10-2 

Table 2.1: Properties of the helium beam as determined by Kooien [2] 

The QND setup for preparing a cold beam has thus been proven effective and ready to 
use. However, operating this highly complex and sensitive setup at its maximum capabilities 
requires not only thorough knowledge and skills but also the right Fingerspitzengefü,hl, qualities 
that were for this machine in the end mainly concentrated in one person. Considering the long 
term continuity of the project the need rose to at least preserve the present knowledge in our 
group. A 'reference manual' has been written by Koolen, offering a step-by-step guidance 
through the startup procedures that need to be followed in order to produce the desired beam. 
It also contains setup details and target figures for diagnostic comparison. Unfortunately it is 
not possible to record information down to the smallest details on mirror positions and magnet 
configurations nor to pass over the practical experience, let alone to put the Fingerspitzengefü,hl 
adequately on paper. 

January 2001, after a six months' period ofhibernation due to the lack of a graduate student 
in charge of the setup, the machine was breathed new life into by two undergraduate students 
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(myself and Maarten Jansen) in their graduation project. Thanks to the well-considered design 
and good maintenance most of the essential elements in the setup appeared to be still function
ing. After a period in which we had to acquire the right touch to manipulate every separate 
optical device and had to replace some parts that were broken in the meantime, the setup was 
ready for fine tuning. Using the available methods for diagnostics and following the target 
figures summarized in the reference manual we tuned the different laser cooling sections. In 
this way we gradually realized values for the flux of cold atoms on the knife-edge detector that 
closely approached the target figures. In other words, at the last diagnostics before the 2D detec
tor we were capable of generating an atom beam with the desired qualities. However, bridging 
the last obstacle towards the detection of a highly collimated cold beam on the 2D detector was 
hindered for two reasons: lack of reproducibility and difficulty of adjustment. Both problems 
were traced to the two-stage beam compressor. 

2.3 MOC revisited 

After a necessary overhaul of our beam machine, during which a high voltage source, a vacuum 
pump and some electronics were replaced, it turned out to be very difficult to re-attain the earlier 
measured wire-scan profiles and atom flux values on the knife-edge scanner downstream of the 
MOC. The setup's adjustment clearly suffered from irreproducibility. The question rose which 
part of the setup wasn't working properly. Since the two-stage beam compressor is far more 
difficult to align than the collimator and Zeeman slower, the first was suspected to cause most 
of the problems. From a series of time-of-fiight measurements currently done, it seems indeed 
that both the collimator and Zeeman section are functioning properly, although perhaps not yet 
optimally. The MOL and MOC systems thus require more attention. 

The operation of the MOC (and the MOL) is based on a force that depends on both the trans
verse position and the transverse velocity. The position dependency is a result of the magnetic 
quadrupole field which is zero on the beam axis and increases linearly with the distance from 
the axis. Unless an atom moves perfectly along the axis B = 0 with zero radial velocity Vr = 0, 
it experiences a force towards the center line. The MOL now acts as a thin lens, focussing the 
beam in the capture region of the MOC. In the MOC the atoms are funnelled towards the center 
line. The transverse motion is similar to that of an overdamped harmonie oscillator. 

In practice, however, the MOC may not be perfectly aligned, as was assumed in the afore
mentioned description. One of the possible errors to occur is a small error in the alignment of 
the angle of incidence of the incoming light field. However, the light field of the MOC extends 
over a length of more than 100 mm, so that the retroflected beam will still coincide with the 
incoming beam. The resultant light field therefore is not influenced much, except that we have 
now introduced a very small component of the force on the atom along the direction of the 
center line. This will not noticeably influence the atom's transverse motion. 

Secondly, the positioning of the quadrupole field can be slightly off-center or tilted over a 
small angle. This has important consequences for the atom's trajectory. As we saw, the atoms 
are guided towards the centerline, which is defined by the B = 0 axis of the quadrupole field. 
In other words, by adjusting the magnets of the MOC we should aim the atom beam through 
the pinholes. 
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In our current setup the four quadrupole magnets are firmly attached toa ring-shaped plex
iglass mount which in turn is suspended to a ring-shaped metal mount. Both plexiglass and 
metal mounts have the same outer diameter of 40 cm and an inner diameter that is about 20 
mm wider than the vacuum tube around which they are attached. Four screws, inwardly pierced 
through the metal ring, clamp the mount to a vacuum flange. When tightened, the whole con
struction thus rests only at the four screw tips. By tuming these screws the whole suspension 
and in consequence the axis of the quadrupole field can be shifted in a plane perpendicular to the 
centerline. Symmetrically around the rings and along the vacuum tube's axis four more screws 
are pierced through both mounts, such that with extra bolts the distance between the two rings 
can be fixed. In other words, when adjusting the screw at each 'corner' the plexiglass disc can 
be tilted over a small angle relative to the metal mount. On paper, we thus have at our disposal 
a construction that allows us to tune the required four degrees of freedom. In practice, however, 
this is not sufficient to be able to align the helium beam. 

The collimated and slowed atoms that leave the MOC still have another four meters to go 
before they can be detected on the 2D detector. In. this part the 60 µm and 25 µm apertures 
pick out those atoms that fulfill the extreme restrictions on the allowed transverse momentum 
spread. Apart from measuring the total flux we lack possibilities to monitor the beam's position 
after the last laser cooling stage. In order words, we don't possess any information on the 
beam's position and angle with respect to neither the vacuum pipeline's center-line nor to the 
positioning of the moveable pinholes: we are literally groping around in the <lark. Therefore we 
are looking at the feasibility of adding another diagnostic tool just in front of the second pinhole 
in the form of a second position sensitive detector. This detector will either have to have a small 
center hole or have to be moveable, in order to allow the beam to reach the second pinhole. 
However, it needn't be extremely sensitive nor have extreme resolution (and be accordingly 
expensive) compared to the 2D detector. At this point in the machine the helium flux will be 
relatively large and we are not interested in detecting one photon recoil effects. At present a 
final solution bas not yet been chosen. 

In the absence of this extra diagnostic tool, one could of course hope to find the optimal 
configuration by systematically adjusting the light field and the magnetic field in both MOL 
and MOC and monitoring the signal from the knife-edge scanner. Unfortunately the design of 
the suspension of the four permanent magnets that produce the quadrupole field as described 
above, doesn't offer flexible and reproducible adjustments. The main reason is that none of 
the components of the MOL and the MOC have scaled adjusting knobs that could provide any 
coordinates to hold on to. Furthermore the fragile suspension of the heavy permanent magnets 
at four screw tips doesn't allow displacements in a controlled manner. The solution to this 
problem was to design a more stabile and controllable way of suspending the magnets. The 
diameter of the beam exiting the MOC is estimated to be 200 - 280 µm. The divergence is 
on the order of 10 mrad rms, which translates into a velocity spread of 2.5 ms-1 rms. These 
measurements serve to estimate the required precision and range of the new suspension design. 
Logically the displacement should be adjustable to within a fraction of the beam's diameter, say 
50 µm over a range of at least as large as the adjustment range of the position of the first pinhole 
(5 mm). For the tilting angle we set the tolerance to 1 mrad. These demands are not extremely 
hard to meet. Further restrictions on the construction were imposed by limitations in available 
space on the optica! table. The design is shown in Fig. 2.3 and bas been recently implemented. 
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Figure 2.3: Front and rear view of the new quadrupele magnets suspension design. A 
square aluminum bleek (grey) is attached to the vacuum flange (not shown) and forms 
the rigid mount tor the MOC suspension. The four quadrupele magnets (light grey) are 
rigidly attached toa second aluminum plate (black). Through a suspension system of stift 
springs this second plate is firmly but not immovably attached to the suspension mount. 
Micrometer screws allow the controlled transverse displacement of the tour magnets with 
respect to the beam line, with micrometer precision over a 10 mm range. The three 
micrometer screws in triangle configuration in the front, allow tor a stable adjustment of 
the magnets' tilting angle with 0.01 mrad precision. 



Chapter 3 

Feedback control 

In the framework of the QND project several experiments are proposed that study the interaction 
between excited atoms and resonant light fields. This interaction is studied by looking at the 
diffraction of a narrow, collimated beam of helium atoms by a transverse field. The major 
part of the ten meter long QND setup is occupied by a series of laser cooling stages that are 
used to create the necessary ultra-high precision metastable helium beam. The laser power 
needed for the laser cooling stages and the experiments is provided by four diode lasers. For the 
experiments it is crucial that these lasers can be accurately locked to the helium 23 S1 -+ 23 P2 
transition. The cavity that is used in the QND experiment will in turn be resonantly locked to 
the laser frequency. Since the stability demands for all four lasers and especially for the cavity 
are extremely stringent, as we will see later, we can not passively rely on their inherent behavior. 
An active stabilization scheme needs to be designed to control the output of the lasers and the 
cavity in order to reduce their drift and fluctuations. A feedback controlled system offers the 
solution. In this chapter we will discuss some basic properties of feedback systems and the 
scheme used to obtain the error signal in our implementation. 

3.1 Elementary Feedback Control 

Suppose there is a process (or system) H we wish to control. Call the input to the process u 
and the output from the process y. In many cases there is one particular input, ü, that would 
result in the desired output value known as the 'setpoint', designated y. Should we now have 
exact knowledge of the behavior of H, i.e., we know the output y for any given input value, 
we could simply supply the system with input ü. This way of controlling the process is often 
called 'open-loop control'. However, in reality we never possess a complete description of the 
process, especially when there are extemal disturbances acting on the system. In such cases 
differences between the actual and desired output are likely to occur. This difference, y - y, 
is often referred to as the system error E. The performance of the process would improve if 
we could control it based on observations of this system error. In feedback (or closed-loop) 
controlled systems this error, suitably amplified, is then used as their input to the process. If the 
system is functioning well, the system error should be forced close to zero by the feedback. 

The block diagram in Figure 3.1 shows a basic feedback control system, with blocks rep
resenting the dynamic elements of the system and arrows representing the flow of information, 
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controler process 

setpoint Y G H 
output y, 

y 

Figure 3.1: Feedback control systems determine their output by observing the error E 

between the setpoint and the actual process output 

generally in the form of an electrical signal. 
Limiting ourselves to linear control theory, we suppose that the operation of the process can 

be described with the simple algebraic relation y = Hu and that for the amplifier a similar 
representation u = G E holds, where G is the open loop gain of the amplifier. In general the 
feedback network then subtracts a fraction of the output signal from the input. For simplicity 
we choose to set this fraction equal to one. It then follows that 

or, solved for the output y, 

The closed-loop gain, A, is just 

y =HG E = HG(y - y) 

HG _ 
y = 1 +HGY· 

y HG 
A=y=l+HG. 

(3.1) 

(3.2) 

(3.3) 

From this result it is clear that the output y can never be equal to the desired output y, hut 
that it can approach the desired value as closely as we wish by increasing the amplifier's (or 
total closed-loop) gain. 

Such feedback systems have several important eff ects such as changed input and output 
impedance. To us however, with the eye on process stabilization, the most significant are pre
dictability of gain and reduction of distortion. It is easy to show, by taking the partial derivative 
of A withrespect to H (i.e., 8A/8H), that relative variations in the system's open-loop gain HG 
are reduced by a factor 1 +HG which is sometimes called the return difference or desensitivity: 

8A 

A 

1 8H 

l+HG H 
(3.4) -= 

Thus, for good performance it is essential to have the loop gain G H larger than 1. In other 
words: the open-loop gain should be much larger than the closed-loop gain. An important 
consequence of this is that nonlinearities in the process H, which can be described as gain 
variations that depend on the signal level, are reduced in exactly the same way. 
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3.2 PID control 

In the system discussed sofar the amplifier G was nothing more than a simple proportional con
troller (or P-controller) in a linear system. The proportional behavior means that the controller's 
output is based on the current value of the error. As its gain is increased the system responds 
faster to changes in the setpoint or :fluctuations in the output signal. Moreover, according to 
Equation 3.2, we should generate the largest possible gain for the best result. However, the 
same formula also implies that although the actual output y can approach the the desired set
point ji as closely as we wish, it can never really become exactly equal to this value. A small 
offset cannot be avoided. 

In genera! however, the black box that we called an amplifier with gain G, is usually more 
thanjust an amplifier. It also changes the shape of the signal that passes through it. Inserting a 
integrating circuit, we create a proportional + integral or PI controller. The effect of the integral 
term is to adjust the output signal until the time-averaged value of the error is zero. The integral 
part thus eliminates the offset of the P-controller as can be seen as follows. 

Still assuming a linear system, the output y of a PI controller and its input E are related by 
the equation: 

y = GpE+G1 [1EdT (3.5) 
0 

where G P is the proportional tuning constant and G 1 the integral gain parameter also known as 
the controller 'reset level'. Knowing that the error signal E is equal to the difference ji - y, we 
find: 

y = Gp (Y- y) + G1 (1 (Y - y) dr 
0 

(3.6) 

Often the setpoint ji has a constant value. Differentiating y with respect to time t we find 
the time dependence of the output: 

dy = G ( - dy \ + G 1 (Y - y) 
dt p dt 

(3.7) 

Our interest goes to the stationary solution ofthis equation for which dy / dt = 0. That leads 
to: 

0 = G1(Y-y) y=y (3.8) 

Under the condition that we have a constant setpoint ji an integral controller is clearly ca
pable of eliminating the offset that occurs when a P-controller is used. Yet, the P-controller 
remains a very useful controller in those situations where it is necessary to regularly adjust or 
modulate the setpoint value. In such cases the behavior of the integral controller may simply 
be too slow for the process. The faster linear gain of a proportional controller than reduces the 
setpoint's dynamic deviations. Combining the advantages ofboth the proportional and integral 
controller into a PI controller provides us with a powerful tool that is indeed extremely common 
in feedback systems. 
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Unfortunately feedback is not always as simple as the above analysis suggests. The problem 
is that because of the process dynamics, the operation of the process under control can usually 
not simply be represented by a linear relation. A notorious problem is the system that exhibits 
a time lag. Such a system will, with increasing feedback gain, gradually become undamped 
and eventually unstable. The stability and overshoot problems that arise when the P-controller 
is used at a high gain can be warded off by adding a damping term that is proportional to the 
derivative of the error signal. Tuis is what we call a differential or D-controller. The combina
tion of a proportional + integral + differential (PID) controller is probably the most commonly 
used standard form of dynamic compensation in practice. By properly adjusting the damping 
parameters of the system a critically damped response to changes can be achieved. Sometimes 
this can however be extremely difficult: too little damping clearly doesn't settle the overshoot, 
hut too much causes an unnecessarily slow response. Particularly in cases when the process 
is susceptible to noise in the form of very sudden jumps or spikes, derivative action can cause 
the system to fluctuate wildly. Therefore, in those systems where accurately stabilized output 
signals are required, as is ours, it is often best to use a P-plus-I controller. PD control then, finds 
application in robot control where dynamic behavior and rapid responses have highest priority. 

In the description sofar we have only discussed feedback control in the time domain. The 
frequency dependence of the gain and phase shifts that may be imposed on the signal by the 
controller haven't been taken into account. This feature however is of vital importance. For 
example, if high-frequency noise is superimposed on the input, how can the system be designed 
to respond well to the input but still filter out the noise? Phase shift is important when it comes 
to stability considerations. These problems are tackled much easier when described in the 
frequency domain. 

The amplitude of the error signal E will in genera! not have a constant value hut may fluctuate 
in time: E(t). Feedback control is then described more conveniently by Fourier transforming 
our signals to the frequency domain. Our fluctuating error signal will now consist of a infinite 
spectrum of frequencies with matching frequency dependent amplitudes: 

1 roo . 
Ë(w) = -- E(t)e-iwt dt 

.j21i 00 

(3.9) 

For sake of simplicity for the moment only one component of specific frequency w of our 
signal is considered. The error signal can then be represented as ( omitting the tilde): 

(3.10) 

where Ew is the Fourier amplitude at this frequency component. 
If the controller G in Figure 3 .1 is a proportional plus integral controller, the relation be

tween its output u and input E now become in the frequency domain (analogous to Equation 
(3.6): 

y(w) GpE(w) + G1 rt E(w) dr: 
0 

G iwt + G1Ew iwt pEwe -.-e 
lW 

(3.11) 
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where G P still is the proportional gain parameter and G 1 the integral gain parameter. From 
this formula the so-called transfer function for the PI controller, that expresses the relationship 
between the system output and input in the frequency domain is found: 

G1 
GPJ(w) = Gp + -. (3.12) 

l (J) 

The controller's main characteristics, its open-loop gain and phase response, are best de
picted in a Bode plot (a log-log plot of gain and phase versus frequency) as in Figure 3.2. For 
high frequencies the gain approaches asymptotically to the value G P whereas the gain increases 
proportional to 1 / w for frequencies low er than G J/ G P. The gain actually reaches in:finitely 
high values for zero frequency. This is perfectly in agreement with the earlier found property of 
an integrator that it eliminates any offset in the output signal (see equation (3.8). 
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Figure 3.2: Bode plots for a PI controller. Left the gain versus the frequency is sketched, 
right the phase versus the frequency 

Having derived the transfer function G p 1 for the PI controller, we will next look at the 
performance of a closed loop system. Let's therefore assume that the process under control, 
H, is an amplifier. The gain of this amplifier is for this example fixed to unity and is constant 
over a wide range offrequencies. The transfer function Gampl for such amplifier is then simply 
equal to unity. Inserting G p 1 and G ampl in Equation 3 .3, the transfer function for the system as 
a whole (unity amplifier plus PI controlled feedback) then becomes: 

GPI 
Gsystem = l + G PI (3.13) 

For low frequencies we now see that the closed-loop gain, or the ratio of output signal to 
input setpoint, is equal to one (Figure 3.3). This simply means that for these frequencies the 
output exactly follows the input. For higher frequencies this behavior clearly breaks down as 
the gain of the controller drops. 

The importance of this result can perhaps be understood even more clearly from Figure 3.3 
where the desensitivity of the feedback loop versus frequency is depicted. The desensitivity 
is a measure for the fraction of the fluctuations in the amplifier's (open loop) gain that remain 
after the feedback loop has been closed. Should we thus wish to eliminate the noise of our 
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amplifier, we have to make the desensitivity as low as possible. Unfortunately, Figure 3.3 at the 
same time indicates that we can not completely suppress fiuctuations at any finite frequency. 
Always some fraction survives. This fraction increases rapidly with increasing frequency, until 
it becomes nearly one (depending on the value for Gp) which means that the noise propagates 
freely through the the circuit. In other words, the bandwidth of feedback is limited. For every 
system one thus has to assess over what range and by what factor noise should be suppressed. 
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Figure 3.3: Absolute value of the closed-loop gain (left) and the desensitivity (right) versus 
frequency 

As has become clear from the above discussion, controllers will play an essential role in the 
realization of high quality stabilization circuits for the laser and the cavity. In the next chapters 
we will discuss the criteria for our feedback systems in more detail and assign real values to the 
controller's parameters G1 and Gp. 

3.3 Pound-Drever-Hall: a quantitative model 

Feedback control thus (at least on paper) promises to stabilize our lasers and cavity to the right 
frequency by nullifying the system error signal. But before we can start to think about the exact 
design of our controllers, another part of the feedback loop demands our attention: the error 
signal E itself. Although quickly defined as the difference between the desired output ji and the 
realized output y, it is not always that trivial to measure ji - y and thus to provide a decent 
error signal. Often, the 'error detection' scheme measures asymmetrie function of ji - y. In 
this case, the controller has no way of deciding whether to adjust the output one or the other in 
order to reduce the error. In our case, the output variable of the system is the frequency of the 
laser or the resonance frequency of a cavity mode (adjusted through the distance between the 
cavity mirrors). The desired error signal in both cases is a frequency deviation that, however, 
cannot be measured directly. Absorption of the light by the atoms in a gas cell or transmission 
through the cavity are easily measured and depend strongly on the frequency deviations, hut 
are symmetrie functions of E. The scheme of Pound-Drever-Hall provides us with a beautiful 
scheme that breaks this symmetry. It provides an antisymmetric function of ji - y that, for a 
certain range around zero, is indeed proportional to E. The key to Pound-Drever-Hall (in this 
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discussion abbreviated to PDH) is that it looks at the signal 's phase instead of its amplitude. In 
order to do so, we must modulate the system's signal, which in our case is a laser beam. 

Generally experimentalists modulate the phase of laser light by using, e.g., an electro-optic 
modulator (EOM). However, we will modulate the instantaneous frequency of the light directly 
in the source by adding a AC signal to the laser driver's DC current. The results remain essen
tially the same for both approaches as is easily seen. 

(a) 

0 J l --
roerom roe roc+rom 

(b) 

0 

Figure 3.4: Schematic representation of the signals in the Pound-Drever-Hall scheme: (a) 
shows the sidebands in the frequency spectrum, (b) shows the shape of the error signal 

Consider the field of a simple laser beam of carrier frequency Wc that can be represented by 
E(t) = 1/2E(t) +e.c. with 

(3.14) 

where Eo is the electric field amplitude and </>c the phase. 
When modulating the laser's phase with a sinusoidal signal the total phase of the laser output 

is given by: 

</>(t) =Wet+ fJ sinwmt, (3.15) 

where fJ is the modulation depth or peak phase deviation in radians, and Wm the modulation 
frequency. Then the instantaneous frequency of this signal can be represented, using the usual 
definition, by: 

d</>(t) 
w(t) = -- =Wc+ fJwm COSWmf. 

dt 
(3.16) 

This is equivalent to saying that the frequency of the laser output signal oscillates around Wc at 
the modulation frequency with an amplitude {Jw,n. 

We now assume that we are phase modulating the laser source with a frequency Wm. The 
electric field E(t) of the laserbeam can then be described by E(t) = 1/2E(t) +e.c. with 
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E(t) = Eoei<p(t) = Eoei(wct+f3sinwmt). (3.17) 

Using one of the many standard Bessel function identities: 

00 

ei/3 sinwmt = } Jn (f3)einwmt (3.18) 
n=-oo 

we can approximate the electric field by: 

E (t) Eoei(wct+/3 sin(wmt)) 

~ Eo[Jo(/3) + 2i J1 (/3) sin(wmt)] ei wet 

Eo[-Ji (f3)ei(wc-wm)t + Jo(f3)eiwct + Ji (f3)ei(wc+wm)t] (3.19) 

where Eo is the electric field amplitude of the original beam and Jn(/3) the nth order Bessel 
function. The modulation depth or amplitude f3 is assumed to be small (/3 < 1) so that the 
approximation is justified. The obtained field is a FM optica! spectrum with sidebands in the 
frequency domain at Wc ± Wm. 

Let Po now be the total power of the beam. The power in the carrier itself, Pc, and in each 
side band, Ps, are then given by: 

Pc= J~(f3)Po 
Ps = J[(f3)Po 

(3.20) 

(3.21) 

Since we assumed that the modulation amplitude f3 is small, and that higher frequency sidebands 
can be neglected, we can also conclude that the total power is confined in the carrier and the 
first sidebands: 

(3.22) 

The modulated beam is sent into the optical active element, which can, e.g., be a cavity or a 
gas cell as we will later see. With a photodetector the outgoing signal is detected. 

We now make a plausible assumption for the properties of the inserted element: it can alter 
the amplitud~ of the electric field, introduce a certain phase shift, but does not influence the 
wavelength. Both phase shift and amplitude change may be functions of the optical frequency. 
This means that we can find a relation between incoming and outgoing signal of the form 
Eout = F E;n, or in other words: we represent the action of the optical element in the frequency 
domain by a complex transfer function F that is frequency dependent. 

To calculate the output beam when there is not only the carrier beam but also several side
bands impinging on the optica! active element, we have to multiply each of the incident beams 
by the transfer function F(w) at the appropriate frequency. In the approximation of only two 
sidebands this becomes: 

Eout - Eo[-F(wc - Wm)J1 (f3)ei(wc-wm)t + 
+F(wc)Jo(f3)iwct + F(wc + Wm)J1(f3)ei(wc+wm)t] 
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With our photodetector we now measure the power of this outgoing beam, which is proportional 
to the squared amplitude Pout = Eou1E;u1: 

Pout - PclF(wc)l 2 + PsflF(wc + Wm)l2 + IF(wc - Wm)l 2l 
+2.J?J>;f Re{F(wc)F*(wc + Wm) - F*(wc)F(wc - Wm)} COSWmt 

+ lm{F(wc)F*(wc + Wm) - F*(wc)F(wc - Wm)} sinwmt l 
+ (2wm terms). (3.24) 

This signal is subsequently mixed with the original modulation frequency Wm. By properly 
adjusting the demodulation, we can specifically extract the term proportional to either cos Wm 
or sin Wm which then serves as our operational error signal E ': 

(3.25) 

Both a dispersive phase behavior of F(w) around the setpoint-frequency and an asymmetry 
in sideband absorption when Wc varies across this frequency, can lead to the desired antisym
metric character of E'. Then, E1 can be used effectively as error signal for the feedback circuit. 
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Chapter 4 

Laser stabilization 

The laser power needed for the laser cooling stages is provided by three 1083 run Distributed 
Bragg Reflection (DBR) diode lasers that are locked to the 23 S1 --+ 23 P2 transition of helium. 
The output power is typically tens of milliwatts at working conditions. A fourth laser is needed 
to supply the laser power for the actual experiments, such as the Bragg scattering experiments, 
and later to feed light into the optical cavity. 

The drivers that are used for all four lasers are homemade and stabilize the temperature of 
the lasers within 1 mK. The free running linewidth of these DBR lasers is typically 3 MHz, 
which is larger than the natural linewidth r / (2n) = 1.6 MHz of the transition used for laser 
cooling. This will reduce the efficiency of the laser cooling section, especially in the compressor 
where low intensities are needed. For the QND experiments a laser linewidth broader than the 
cavity linewidth is also undesirable. The photon number spread due to fluctuations in the laser 
frequency should be kept smaller than the spread of the coherent state. Therefore the linewidth 
of the lasers will have to be reduced. Linewidth reduction is achieved by optical feedback from 
an extemal mirror. This is a well-known technique [8] and will not be discussed here. However, 
this optical feedback does not eliminate short-term frequency fluctuations or long-term drift 
due to inevitable ambient thermal fluctuations. These fluctuations must be compensated for 
by an extemal electronic feedback loop. This has been realized, based on saturated absorption 
spectroscopy in an RF helium discharge. 

4.1 Stabilization using saturated absorption 

The lasers for the collimator and the two-stage compression section (MOL/MOC combination) 
require only a small detuning from resonance (-1 to -10 MHz), while the laser used for the actual 
experiments needs no detuning. These three lasers can be be locked using saturated absorption 
spectroscopy. This technique uses two laser beams, a pump and a probe beam, that propagate 
through a helium RF discharge along a common axis hut in opposite direction (see Figure 4.1). 
The laser power is simply derived by splitting off a small fraction of the main laser beam with 
a beam splitter. Only the intensity of the transmitted probe beam is measured. 

The technique is based on the property that both counterpropagating beams saturate atoms 
with opposite velocity components for a given laser frequency provided the laser frequency is 
within the Doppler width of the spectral profile. However, around resonance those atoms that 
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Figure 4.1: Setup for saturated absorption spectroscopy. The intensity of the probe beam 
is measured with a photodetector. 

have zero velocity, are addressed to twice and thus saturated more. This results in a lower total 
absorption from the probe beam and a peak is detected when a transmitted power profile is made 
of the pro be beam. 

For the first two (laser cooling) lasers the saturated absorption peak is transformed into a 
dispersive signal by applying a small oscillating magnetic field over the helium gas cell. The 
resulting modulation of the transition frequency causes a modulation of the detector signal. 
Using a loek-in amplifier this signal can be transformed such that the amplifier's output is 
proportional to the derivative of the absorption profile. F eeding back this error signal, we can 
loek the laser to its zero crossing with a frequency stability of around 500 kHz. For detuning 
the laser from resonance, a DC magnetic field is added over the gas cell, hereby shifting the 
zero crossing in frequency. 

The scheme that will be used to actively stabilize the interaction laser (and later also the 
cavity) is based on the Pound-Drever-Hall scheme [9]. The regular Pound-Drever-Hall scheme 
locks the frequency of a laser to the resonance frequency of a stable high-finesse cavity with 
very high precision. Instead of the stable cavity we once more apply the saturated absorption 
technique. The arrangement of our setup is thus mainly identical to the one used for stabilizing 
the other two lasers. It consists of a combination of a pump and a probe beam, and a helium 
gas discharge. The main difference now is that not the transition frequency of the atoms but the 
frequency of the laser itself is modulated. 

4.2 Pound Drever Hall in saturated absorption 

As we saw, the key to PDH is to modulate the light instead of the magnetic field around the gas 
cells. We now have to find the transfer function F(w) fora modulated beam that passes through 
the helium gas discharge cell. 

The modulated beam passes in the gas cell through an optical active sample that is assumed 
to be of length L and to have intensity absorption coefficient a and refractive index n. These 
properties are all functions of the optical frequency. In order to write the field in terms of 

22 



attenuation and phase shift, we now define the optical transmission T in terms of attenuation 
and phase shift for each spectral component: 

with 

</>j 

aj/2L, 
n·L 
-

1-(wc + jwm), 
c 

j = 0, ±1 

(4.1) 

(4.2) 

(4.3) 

where j=O, ±1 indicates the carrier signal and the side bands respectively. We have used Ój to 
describe the amplitude attenuation and</> j to describe the optical phase shift. The resulting field 

Er(t) = !Er(t) +e.c. emerging after the interaction with the gas sample now becomes: 

Er(t) = Eo[-T_1fJ ei(wc-wm)t + Toeiwct + T1f3 ei(wc+wm)t] (4.4) 
2 2 

The photo-detector measures the impinging electrical field resulting in am output volt
age which is proportional to the intensity. The light intensity is related to the electric field 

by fr(t) = Eoc IEr(t),
2

• Dropping terms of order {3 2 and assuming that the differences 

l8o - 8±1 I « 1 and l</>o - </>±1 I « 1, we can approximate this intensity by: 

The eosine term is proportional to the difference in attenuation for both side bands while 
the sine term contains the information about the phase shifts for both modulation and carrier 
signal. Mixing the photodetector's signal with the original modulation frequency and adjusting 
the phase of this reference signal, we can separate both effects. Since we are not interested in 
displaying the amplitude of each single effect hut in maximizing the error signal's amplitude, 
we choose a combination of both effects by experimentally optimizing the phase. 

4.3 Stabilization setup 

The stabilization setup for our laser is schematically shown in Figure 4.2. A function generator 
produces a 10 MHz sine wave, with an amplitude of roughly 5 Volt. Tuis signal is split in 
two: one branch passes through an electronic circuit with which the phase of the signal can be 
adjusted, the other is directly added to the laser current input in order to frequency modulate the 
laser light. 

The laser output beam passes through a system of two lenses, creating a small and parallel 
laser beam. An optical isolator, positioned directly after the first lens, prevents back refiections 
back into the diode laser that could cause unwanted feedback. An adjustable half wave plate 
then ensures that the light is vertically polarized in order to avoid phase shifts upon refiection 
from the mirrors in the setup. 
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Figure 4.2: Setup for the laser stabilization based on Pound-Drever-Hall 

A first beam splitter then branches part of the modulated beam off towards the saturated 
absorption setup. With a second beam splitter this branch is split further: the transmitted signal 
will serve as the pump beam, the reflected beam as the probe beam. The vertically polarized 
pump beam fully reflects on a polarizing beam splitter cube (PBSC) and passes through a À/4 
wave plate. The now circularly polarized beam is then sent through the helium gas discharge. 
The partially transmitted signal is not used any further. 

Via two gold coated mirrors the second beam approaches the gas cell from the opposite 
direction. Before passing through the gas cell, this probe beam is also circularly polarized 
through a À/4 wave plate. The transmitted part of the pro be beam then passes once more through 
a À/4 wave plate such that it is now horizontally polarized and thus able to pass the PBSC. A 
final lens focusses the transmitted probe beam on a photodetector. 

The detector's output is amplified, filtered and then sent toa mixer. With the phase shifted 
signal from the function generator now serving as the reference signal, the signal that was 
obtained from the saturated absorption section is demodulated. The signal that emerges from 
the mixer's output is the discussed dispersive error signal. To reduce the high frequency noise 
on this signal, it is led through a low pass filter. The filtered error signal is now ready to be used 
in the active stabilization of the laser frequency through proportional and integral control. 

The error signal is split in two. The first part is integrated and sent to a high voltage piezo 
amplifier that adjusts the laser's feedback mirror. The integration constant is on the order of 
milliseconds because of the limited bandwidth of the PZT. Fluctuations in the frequency faster 
than a few hundred Hertz can consequently not be suppressed in this way. Therefore a second 
feedback loop is formed, based on proportional control. The second split off part of the error 
signal is amplified and then directly added to the laser's fast current input, which can adjust the 
laser frequency with a much higher bandwidth for fast error correction. The described system 
has been constructed and tested. The system is at present operational, hut the performance in 
terms of frequency stability has not yet been evaluated. 
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Chapter 5 

Cavity theory 

As the high finesse cavity constitutes a fundamental part of the QND experiments, we are inter
ested in its optical properties and resonance conditions. To obtain an expression for the intemal, 
reflected and transmitted light and the relative phase of these beams, it suffices to examine a sim
ple purely classica! model. That is, we assume plane waves, a steady state in the cavity and no 
quantization of the light field. 

5.1 Cavity transfer function 

We thus consider a simple cavity consisting of an input mirror Mi and output mirror M1, posi
tioned with an intermediate distance d, as schematically depicted in Figure 5.1. In this model 
the mirrors are assumed infinitely thin, and their optical properties are described with amplitude 
reflection coefficients r1 and r1, and transmission coefficients t1 and t2 respectively. 

Wfl 

ex. 

d 

Figure 5.1: In general a cavity consists of two highly reflective mirrors Ml and M2, posi
tioned at an intermediate distance d that may be filled with an absorbing medium 

The coefficients r and t may be complex numbers to include a n phase shift between the 
transmitted and reflected beam. This phase shift is introduced when going from a low-index to 
a high-index material in a dielectric interface. For lossless and reciprocal two-port networks, as 
are the mirrors in our model, the following conditions apply to t and r: 
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lrl2 + ltl2 = 1 

r t* + t r* = 0, (5.1) 

where the star denotes the complex conjugate of the coe:fficient. If we were to follow most 
textbooks, we could fulfill these conditions and allow for the required phase shift by stating 
that the reflection coe:fficients have opposite signs depending on the direction from which the 
light wave approaches the interface. The coe:fficients r and t can then be conveniently chosen 
purely real. Tuis is, however, only one of the possible ways in which the two conditions of (5.1) 
can be satisfied. As we now wish to assign the reflection coe:fficients r to the (infinitely thin) 
mirror as a whole, symmetrie coe:fficients are preferred. The price for doing so is that, when 
calculating with the transmission coe:fficients, we now have to take into account an additional 
complex factor of i, or a phase shift of JT 12, in the transmission coe:fficient. In the following 
discussion we will always write the additional factor i explicitly so that the coe:fficients r and t 
themselves are again purely real but now also symmetrie for each mirror. 

Since we often consider the effects of losses and phase shifts after one round-trip, we also 
define the so-called perimeter or round-trip path length p which is in our simple model twice 
the cavity length p = 2d. 

In a general approach the cavity may be filled with a material that causes a signal, that 
is going around inside, to be (slightly) attenuated. The reduction of the signal amplitude per 
round-trip is in general given by a factor e-ap with a the absorption coe:fficient of the attenuating 
material. 

Circulating inside a finite size cavity the light signal will also pick up a phase shift. This 
propagation factor equals eikp or ei~ P per round-trip path p, where k = w/ cis the wave vector, 
w the frequency of the signal and c the velocity of light. 

After covering one perimeter, a circulating signal will return to its reference point with a net 
round-trip transmission factor, or net complex round-trip gain, which for a passive lossy cavity 
is given by: 

gRr(w) = r1r2 e-ap-i~p (5.2) 

Ignoring initial transient effects, we will suppose that the cavity is in a steady-state, i.e., 
all considered beams are in equilibrium. The complex amplitudes of the optical signals that 
are incident on and reflected from the first mirror M1, as measured just outside this mirror, 
are designated Ëinc and Erefl respectively. We will use Ëcirc to denote the circulating signal 
amplitude inside the cavity as measured just after mirror M1. 

In our steady state approach the field amplitude inside the cavity consists of two contribu
tions. The first part is formed by the porti on of the incoming beam that is transmitted through the 
input mirror M1 and has a value i t1 Eine· The second part originates from the already existing 
cavity amplitude. The contribution represents the circulating signal that left the same position 
one round-trip time earlier, and which has thus completed one full round-trip path length p. The 
effect of reflection on both mirrors and losses in the cavity are accounted for by the transmission 
factor gRT· The cavity amplitude can now be written as an recursive expression: 

(5.3) 
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Figure 5.2: Elementary model for the incident, reflected, transmitted, and circulating 
waves in a resonant optica! cavity 

Rewriting this equation, we can relate the circulating signal inside the cavity to the incident 
signal outside the cavity: 

Ecire it1 --=----
Eine 1 - gRr(w) 

(5.4) 

From this formula it is clear that cavities with low intemal and refiective losses (i.e., a very 
small and r1,2 close to 1) display a strong resonance behavior each time the round-trip phase 
shift wp / c equals an integer multiple of 2n. In our case the frequency of the laser light is fixed, 
so we should vary the cavity length such that d = p /2 = n x n / k = n x À/2, with n being an 
integer. For these conditions the circulating intensity inside the resonator becomes many times 
larger than the intensity of the beam incident on the cavity. For a symmetrie cavity with small 
intemal losses the peak value of the intemal field on resonance is approximated by: 

Ecire i t ------
it i 

~ -
1 - r 2 t 

(5.5) 

where we have used t1 = t2 = J 1 - r 2. In other words, the ratio of the intensity inside the 
cavity to the incident intensity scales with: 

!cire 1 ~ 1~12 - ~ 
f;ne P=Pres 

(5.6) 

with T = t2 the power transmission of the mirror which, in our cavity, amounts to a mere few 
part per million! 

For the analysis and stabilization of the cavity we however can't use the intemal field. There
fore we need to examine the refiected and transmitted field. Using the same method as before, 
we find that the transmitted signal amplitude leaking out through mirror M1 will be given by: 

Ètrans = i t2 gRT Ëcire· (5.7) 
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from which we simply derive a similar equation for the net transmission through the cavity, 
from input to output: 

t1t2 JgRr(w) ----
Eine ..frïiZ. 1 - gRr(w) 

Etrans 
(5.8) 

The minus sign expresses a phase shift of n that arises from our definition of r and t. As 
a consequence of our definition of the reference planes for the transmitted and incident beam, 
Equation 5.8 results in a phase shift -e-i~d between the two beams even in the absence of 
a cavity (i.e., inserting t1 = t2 = 1, r1 = rz = 0, and a = 0). This phase is clearly the 
propagation factor associated with the distance d between the reference points. 

The calculation of the field amplitude for the refl.ected wave, finally, is also rather straight
forward now when we realize that it again has two contributions: one component is due to the 
refl.ection of the incoming beam on the first mirror surf ace, the other refl.ects the leakage of the 
intemal signal Êcire through this mirror into the same direction. Note however that the latter 
component emerges from the circulating signal that left its starting position one round-trip time 
earlier: in this time it has travelled around but instead of bouncing off mirror M1 it is now 
transmitted through it. The total refl.ected wave thus consists of 

- - . gRr(w) -
Erefl = r1Eine + 1t1 Ecire (5.9) 

r1 

Substituting the earlier expression for Êcire, the total refl.ection coefficient for the input 
mirror 1s: 

Eref/ tl gRr(w) 1 rl - gRr(w) 
ri - - - -

Eine r1 1 - gRr(w) r1 1 - gRr(w) · 
(5.10) 

In the last step we used the expression rl + tl = 1 for a lossless mirror. If we now further
more assume no intemal losses inside the cavity and identical properties for both mirrors, we 
recover the formula that is found following from the standard textbook approach of adding an 
infinite number of partial waves: 

(5.11) 

5.2 Finesse 

Let's look again at the transmitted signal for resonant optical cavities, formula (5.8). For the 
calculations in this section it is more convenient to rewrite the complex round trip gain in the 
form gRr(w) = gRre-i<PRr, where gRr = lgRr(w)I and <PRr = ~p the round trip phase. 

The ratio of the transmitted intensity to the incident intensity for a symmetrie cavity is thus 
given by: 

2 
t4 .jfRi e-i</JRT /2 

2 
!trans Errans -- -
line Eine 

- r2 1 - gRT e-i</JRT 
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1
4 

gRT 

r
2 1 + g~T - 2gRr cos(<PRr) 

(5.12) 

With a little algebra the expression then becomes: 

4 gRT 
!trans _ !_ (1-gRr )2 

line r2 1 + 4gRr sin2 { <!>Rr) 
(1-gRr)Z 2 

(5.13) 

The transmitted signal displays the strong resonance behavior each time the round-trip phase 
shift wp / c equals an integer multiple of 2:rr, similar to the behavior we already saw for the cavity 
field. The amplitude of the transmitted intensity at resonance, or maximum transmission Tmax, 
1s: 

14 gRr 14 e-ap 

Tmax = r2 (1 - gRr)2 = (1 - r2 e-ap)2 (5.14) 

Using the relation of Eq. 5.13 we can determine the full width at half maximum (FWHM) 
linewidth l:lwpwHM of the resonance peaks: 

f::lWFWHM 
4c . _1 ( 1 - gRr \ 

- -sm 
p 2~ 

~ 2:rrc ( 1 - gRr \ 

p Jl'~ 
(5.15) 

where /:lwpsR = 2:rrc/ p is the mode spacing or free spectral range between two resonances. 
The approximation in the second line assumes that the gain amplitude gRr is close to unity. The 
resonance bandwidth is only a fraction of the free spectra! range and becomes narrower as the 
round-trip gain approaches closer to unity. The finesse :F is now defined as the ratio of the free 
spectral range to the FWHM linewidth: 

(5.16) 

Inserting these parameters in Eq. 5 .13, we find the usual Airy function for the power trans
mission through a symmetrie etalon: 

2 
Etrans Tmax 
~-~ =~~~~~~,...--~~~~ 

1 + (2:F /:rr)2 sin2(:rrw/ l:lwpsR) 
(5.17) 

In standard literature, losses in the cavity are generally accounted for by assuming absorp
tion loss A in the mirrors. Instead of the relation R + T = 1, we then assume that T + R + A = 1. 
In this model, the maximum transmission is written as 

T2 ( A \2 
Tmax = (1 _ R)2 = 1 - l _ R (5.18) 

It can easily be shown that this expression is equivalent to Eq. 5.14 fora high-finesse cavity. 
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5.3 Phase response 

The cavity introduces a certain phase shift between the incoming, the circulating, the reflected, 
and the transmitted fields. Using the result of Equation 5.10 we can calculate the phase shift of 
the refiected field, which will be used for the stabilization scheme, with respect to the phase of 
the incoming beam: 

/ r1e-aP(l - rf) sin</>RT \ 
</>refl = arctan 2 2 r1(1 +r2e-2aP)-r2e-aP(l +r1)cos</>RT 

(5.19) 

Fora symmetrie cavity this expression simplifies to: 

( e-ap(l - r 2) sin</>Rr \ 
</>refl = arctan 2 2 2 (1 + r e- ap) - e-ap(l + r ) cos </>RT 

(5.20) 

where </>Rr = ~p is the round-trip phase delay. On resonance the phase shift term for 
the reflected beam is equal to zero. Around resonance the phase diagram shows a dispersive 
character: there is a n phase change right across the cavity resonance. It is exactly this feature 
that is exploited in the Pound-Drever-Hall scheme. 

The incoming light is modulated and the reflected light is detected. The two sidebands expe
rience almost no phase shift. Interf erence with the reflected light at the fundamental frequency 
results in signals at the modulation frequency which are the sum of the two beat signals between 
the sidebands and the central laser frequency. On resonance these two beat signals are out of 
phase and cancel each other. Fora slightly detuned cavity however, the difference in phase 
shifts will prevent this cancelation and a beat signal appears at the modulation frequency. After 
demodulation with the original modulation signal, this beat signal provides a dispersive error 
signal around the cavity resonance, providing the basis for the Pound-Drever-Hall scheme. 
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Figure 5.3: Cavity response. Phase and absolute value of the reflected beam plotted 
versus cavity length detuning. The reflectivity is lri2=0.99, the absorption a=O (solid) and 
a=0.05 (dashed) 
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5.4 Cavity modes and Gaussian beams 

In a previous section we already discussed some features of a cavity, and deduced the transmis
sion and reflection coefficients fora cavity consisting oftwo plane highly reflective mirrors. We 
found that resonances occur when the cavity separation d is equal to an integral multiple n of 
half wavelengths: 

d = n (~ \ 
2 

(5.21) 

At each resonance the amplitude of the electromagnetic wave is enhanced due to the fact 
that under this condition a standing wave establishes such that it constructively interferes with 
itself after each reflection. Each of these resonant waves is referred to as a longitudinal mode 
because they are associated with the longitudinal direction of the cavity. In principle an infinite 
number of resonant frequencies Vn and thus different modes would fit within a cavity: 

c 
Vn = n 

2
d. (5.22) 

However, the strongly wavelength dependent reflectivity of the cavity mirrors limits this 
number. 

The actual cavity is constructed with spherical mirrors. In a stable cavity configuration this 
leads to a transverse mode structure when solving the wave equation for the electric field in the 
cavity. lfwe restrict ourselves to small angles around the beam axis, we can can use the paraxial 
approximation to the wave equation: 

(5.23) 

The simplest free-space solution of Eq. 5.23 is the Gaussian beam, which has a circular 
symmetry around the optical axis and is in general a good representation for a laser beam. 
There are also many other spatial solutions with different intensity profiles. A particular set of 
solutions is formed by the Hermite-Gaussiart beams. The mode function (or wave amplitude) 
U for the transverse electric field then becomes in two dimensions [3]: 

/ ,/ïx \ / ,/ïy \ -(x2+y2)/w(z)2 
Uzm(X, y) =Hz ~ Hm w(z) e (5.24) 

where the waist w(z) = wo/Jl + (z/ L)2, L = rrw6/À and wo equals to the minimum of w(z). 
In this solution Hz and Hm are the Hermite polynomials of order land m, respectively. Every set 
(/, m) represents a specific wave profile at one of the cavity mirrors. In other words, the shape 
of the transverse field profile of the modes is determined by a Gaussian function multiplied with 
the Hermite polynomials. Each of the Hermite-Gaussian solutions Utm leads toa specific stable 
transverse mode of the cavity, each with its own series oflongitudinal modes, spaced by c/2d in 
resonance frequency, with d the on-axis distance between the curved mirrors. The full mode is 
thus specified by the mode numbers (/, m, n). Fora cavity with two identically curved mirrors 
with radius of curvature Re, the resonance frequencies nuzmn of these modes are given by: 
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c 
V/mn = 81 + 8m + n 

2
d, 

with the transverse mode off-sets 81 and 8m can be derived to be given by [ 4]: 

81+8m = (1 + l + m) c/
2

d r arccos(l - ~) 1 
n Re 

(5.25) 

(5.26) 

We designate these transverse mode distributions (Eq. 5.24) as transverse electromagnetic 
or TEM modes. The lowest-order mode is the TEMoo mode which has a Gaussian distribution 
of the form Eoe-Cx

2
+Y

2
)/w

2 
for the electric field with Eo the electric field amplitude at the center 

of the beam. 

5.5 Mode matching 

The cavity has its own geometrical mode that is determined by the curvature of the two mirrors. 
The incoming light wave can only fully interact with the cavity if the spatial properties of this 
incoming wave match with the internal mode. The wave front curvature should therefore exactly 
coincide with the curvature of the mirrors which in turn is the curvature of the internal mode. In 
such case we would have a mode matched system. In practice, the wave front of the laser light 
incident on the cavity will not be identical to that of the internal mode. The cavity does then 
not only have a resonance on one fundamental mode, but also on a whole series of higher order 
spatial modes. These modes will generally not be resonant simultaneously: a small shift in the 
mirror position is required for the resonance condition of higher order modes. 

On resonance the cavity will select the part of the external field which corresponds to the 
resonant internal mode, an eigenmode of the cavity. Only this light will enter the cavity and 
contribute to the resonant power build-up. The remaining non-matching part of the beam will 
be reflected. Thus the equations for the transmitted and reflected power should actually be 
modified by including a factor that accounts for the fraction of the total power that corresponds 
to the overlap with higher order modes. 

The proper alignment of a mode matched cavity is _an extensive job requiring patience and 
good quality components. In genera! there are six degrees of freedom that have to be optimized. 
Two degrees of freedom for the tilt of the input beam in respect to the cavity, two degrees for 
the position of the center line of the beam and two degrees for the wave front curvature. In our 
setup, where the light source and the cavity have more or less fixed positions due to the lack of 
space on the optica! tables, we tackle the alignment problem with an optica! system consisting 
of two lenses and two mirrors. 

5.6 Polarization 

The effect of polarization was not included in the above discussion as for a perfectly isotropic 
cavity the polarization of the light does not matter. However, in practice the cavity mirrors will, 
to some extent, be anisotropic. The anisotropy may, e.g., introduce birefringence. This makes 
life much more complex. 
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In case ofbirefringence the losses and the effective distance between the mirrors can differ 
for different states of polarization. In the description of the cavity response we now have to 
search for the polarization eigenstates of the cavity. Light in these states will return with the 
same polarization after one round-trip in the cavity. It should always be possible to find two 
such orthogonal eigenstates. 

The description of the cavity now requires two sets of equations, one for each polarization 
state. As a result, each polarization eigenstate has its own resonance condition. The resonant 
modes of the cavity are split in two, with different resonance frequencies. If this splitting is 
larger than the width of the resonance, it is not possible any more to produce light with an 
arbitrary polarization in the cavity. As the QND experiment is to be performed with circularly 
polarized light, this constitutes an unwanted effect. Measurements of the polarization properties 
of the cavity are presented in the next chapter. 
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Chapter 6 

Cavity diagnostics 

In the proposed QND experiments the photon statistics of the optica! field in a high-finesse 
cavity is to be studied by measuring the diffraction of a traversing beam of metastable heliwn 
atoms. In the interesting configuration where the cavity field consists of a very low nwnber 
of photons, the diffraction angles will be very small. In order to be able to measure these 
effects a slow and highly collimated atomie beam is a logica! necessity. Just as crucial for the 
QND experiments is the high-finesse cavity. During the time span that it takes an atom to pass 
the cavity the interaction strength needs to be approximately constant. For our cavity this is 
equivalent to saying that the decay time of the cavity at resonance should be longer than 0.4 µs. 
The realization of such a high quality cavity poses a challenging technica! problem. 

6.l Cavity design 

Before we can perform any experiment with our cavity, its precise properties and behavior need 
to be known. Our high-finesse cavity consists of two highly refiective mirrors, supplied by 
Research Electro-Optics, Boulder. The mirror diameter is 7. 7 5 mm, and the radius of curvature 
is 50 mm. The mirrors are glued to cylindrical holders, made from glass. The distance between 
the mirrors was determined by Knops [1] to be 0.93 mm. For diagnostic experiments however 
we wish to be able to scan this distance. The glass holders are therefore clamped into a tubular 
piezo electric transducer (PZT) that allows us to adjust the mirror separation in a controlled 
manner. Later the same PZT will be deployed to stabilize the position of the mirrors such that 
cavity remains resonant with the laser light during the experiment. Holes in the mirror holder 
and the PZT allow the passage of the atom beam and the transverse light field. In Fig. 6.1 a 
cross-section of the cavity construction is shown. 

6.2 Diagnostics 

In 1998 Knops [1] already performed some diagnostic measurements on the cavity. The cavity 
has been kept well-protected from the environment ever since in an airtight container with 
optical access through vacuum windows. However, we cannot exclude deterioration over the 
last three years. 
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Figure 6.1 : Schematic view of the cavity 

New measurements are therefore necessary to verify the cavity's optical quality. Further
more, extra information on the polarization properties and on the mechanical and electrical 
response of the cavity are needed. 

Knops determined the finesse of the cavity by measuring the ring-down times for various 
modes. In his setup two methods were alternatively used to rapidly shut down the laser beam 
feeding the cavity (a fast acousto-optic modulator switching the laser beam, and a fast FET 
switching the laser current respectively). In both methods the cavity was scanned by the PZT 
and the laser beam switched off as soon as a transmission peak was detected. From the decay 
of the transmitted light through the cavity the decay time of the light in the cavity and hence the 
finesse can be determined. This resulted in a finesse of :F = 6.5 x 105. 

This method doesn't provide any information of the polarization properties of the cavity. 
The design of the suspension of the cavity mirrors is such to avoid any stress which could lead 
to stress-induced birefringence in the mirrors. However, as in a high-finesse cavity even the 
smallest mirror birefringence can lead to a polarization-dependent mode splitting, polarization 
effects can be expected anyway. 

Another important criterion for the design of the cavity control circuit is the maximum 
bandwidth available for the active stabilization. The bandwidth is strongly constrained by the 
cavity's electric and mechanica! behavior at different frequencies. In practice this means that 
we have to look for the first resonances - either electronic or mechanica! - that appear in the 
construction. 

6.3 Cavity test facility 

The laser used is a 1083 nm Distributed Bragg Reflection (DBR) diodelaser (type SDL-6702-
Hl ). A small part of the output power is used to stabilize the laser at the right frequency using 
saturated absorption spectroscopy based on the Pound-Drever-Hall scheme, as discussed in a 
previous chapter. The main part of the laser output is coupled into a single mode polarization 
preserving optical fiber. This fiber transports the beam from the optical table, where the laser is 
stabilized, to our test facility. Tuis transportation of the light through an optical fibre has two 
major advantages. First, the stabilization setup for the laser now stands completely separated 
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from the optical table on which the cavity analysis facility is placed. Small movements in the 
latter setup that are inevitable during the build-up or vibrations produced during the experiments 
cannot disturb the alignment of the laser stabilization setup at the other table. Secondly, the op
tical fibre not only preserves the polarization of the laser light, but also functions as an effective 
spatial filter filter, drastically improving the spatial structure of the beam. 

L3 u L1 
Ml Fiber 

PD CCD 

PD 

BS BW BW BS L4 

Figure 6.2: Experimental setup used for mode matching the beam to the cavity and to 
perform polarization experiments. L: lens, M: mirror, BS: beam splitter, BW: Brewster 
window, PD: photodetector, CCD: CCD camera 

Because of the fibre's narrow diameter the light at the output is highly divergent. A 16x 
microscopie objective (Ll) placed a few millimeters behind the fibre's output recollimates the 
beam into a parallel beam. 

In general, as discussed before, an infinite number of electromagnetic modes can exist in a 
cavity. For the experiments with the cavity however, we are primarily interested in the funda
mental Gaussian TEMoo mode. This mode has to be selectively excited by matching the wave 
front of the incident beam to the curvature of the cavity mirrors and to the shape of the desired 
mode. 

This process is referred to as mode-matching of the input beam to the cavity mode. For 
our Gaussian beam this implies that the waist position, the waist size, and the axis of the input 
beam must coincide exactly with those of the fundamental cavity mode. Via an optical system 
containing two extra lenses (L2 and L3) and two gold coated mirrors (Ml and M2) the light 
beam is led to the cavity. The two lenses (focus lengths 76.2 mm) create the required waist size 
of 40 µm at the center of the cavity, while the mirrors provide means of adjusting the angle and 
position of the axis of incidence. The approximate positioning of the lenses was determined 
using the results of a paraxial opties calculation of the transport of the Gaussian beam through 
the system, implemented in Maple. An overview of the setup is shown in Figure 6.2. Depending 
on the measurements carried out and thus the polarization needed, additional optical elements 
as 1../4and1../2 wave plates and polarizing beam splitter cubes (PBSC) can be inserted. 

After proper alignment the cavity will transmit part of the incoming light beam if the laser 
frequency is resonant with a TEM00 mode of the cavity. This output signal is then split in two 
by a 50/50 beam splitter. One beam passes a lens and is projected onto a CCD camera for the 
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direct monitoring of the spatial distribution of the transmitted light. This makes it possible to 
verify that the cavity is resonant with the fundamental mode during the measurements. The 
camera image also provides information on the intensity of the beam, which proves to be an 
indispensable tool in the alignment of the cavity. The other beam, finally, is focussed by a lens 
on a fast GaAs photodetector with integrated amplifier. This signal can be displayed on an 
oscilloscope. 

6.4 Beam alignment 

When the mirror distance is scanned while the laser is not perfectly mode-matched to the fun
damental mode, many higher-order modes will become visible in succession. However, for the 
experiment, we are interested only in the fundamental mode. Thus we have to suppress the 
higher order modes by careful alignment. For this purpose the total power in the higher order 
modes can be used as a (rough) measure for the quality of the alignment: by decreasing the 
overlap of the incident light wave with the higher-order modes, more power is available for the 
TEMoo mode. A perfect alignment is in practice unobtainable, hut also not strictly necessary 
for our diagnostic measurements. Typically we find profiles as depicted in Fig. 6.3 which are 
satisfactory for our purpose. 
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Figure 6.3: When the cavity mirror distance is scanned, many higher order modes are 
found. The two large peaks indicate the fundamental TEM00 mode 

Although the intensity of the transmitted signal itself does not reveal any knowledge about 
the cavity mode, we can verify the mode by looking at the beam profile as registered with the 
CCD camera. 

Let's now have a better look at the TEMoo mode. Unfortunately, we cannot have the cavity 
permanently on resonance as the linewidth is a factor of 100 smaller than the fiuctuations in the 
mode resonance frequency introduced by the voltage fluctuations of our supply. We therefore 
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apply a DC voltage to the piezo transducer such that the cavity is as close to the resonance as 
possible. If we now add a small AC signal, the cavity will periodically sweep through resonance. 
Connecting the photodetector to an oscilloscope that is triggered on the same sweep signal, the 
intensity profile of the cavity sweeping through resonance will be revealed. Figure 6.4 shows 
the TEMoo resonance peak. As the measurement was performed with an unstabilized diode 
laser, the peaks are broadened much wider than the cavity linewidth. 
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Figure 6.4: Sweeping the cavity through resonance, two transmission peaks are visible: 
our cavity is birefringent. 

It is immediately obvious that there is not one transmission peak hut two peaks. Knowing 
the amplitude and frequency of the sweeping signal, the relative frequency separation for both 
resonances is calculated to be about 5 MHz. This separation is significantly smaller than for 
consecutive higher-order modes. Both peaks thus clearly represent the transmission signal of 
the TEMoo cavity mode, as was also easily verified on our CCD camera. This would indicate 
that our cavity is slightly birefringent. 

To investigate the hypothesis of birefringence the transmission intensity is measured for 
different angles of polarization of the incoming light beam. To rotate the angle of polarization 
we used two methods. First we inserted a /.../4 wave plate (QWP) and a polarizer beam splitter 
cube (PBSC) in the setup just before the cavity. Later, these two components were replaced 
with a /.../2 wave plate. 

A QWP is a polarization-selective phase retarder. Such a retarder introduces a phase shift 
fl</J between the two linear polarization components of the incident light oriented along and 
perpendicular to the optical axis of the retarder. If the net phase difference fl</J = 90°, the 
retardation plate is called a quarter wave plate (QWP), ifthe difference is 180° it is called a half 
wave plate (HWP). When linearly polarized light is incident on a QWP at an angle of 45° with 
respect to the plate's optical axis, the light is decomposed into two orthogonal beams of equal 
intensity. On emerging the net phase difference of 90° results in circularly polarized light. 

For linearly polarized light the HWP has the effect of a rotator: it rotates the direction of 
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polarization by some particular angle. This angle is simply twice the angle between the HWP's 
optica! axis and the direction of polarization of the incident light. By rotating the polarization 
axis of the wave plate the polarization angle of the light that passes through is varied. For 
each angle we then measure the intensity of the transmitted signal at both maxima of Fig. 6.4 
separately. The results are shown in Fig. 6.5. 
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Figure 6.5: The amplitude of the transmission as a function of the angle of polarization of 
the incident beam. The two graphs indicate the two transmission peaks of Figure 6.4. 

The apparent difference in maximum intensity for the two transmission peaks is due to the 
fact that the light has to pass two Brewster windows. At each window surface about 15% 
of the horizontally polarized component of the light beam is reflected. After two Brewster 
windows (four surfaces) we thus in total lose 50% of the horizontal polarization whilst the 
vertical component is fully transmitted. Furthermore the amplifier of the photodetector that is 
used to measure the intensity of the transmitted light saturates quickly for higher intensities. 
The detector's output signal is then no longer linear to the incident light intensity. 

Taking these effects into account, we are inclined to conclude from this profile that the two 
peaks in the transmission spectrum indeed correspond to two (approximately orthogonal) linear 
polarized cavity modes. The cavity thus displays birefringence. 

At first sight, the polarization eigenmodes do not seem to be exactly orthogonal. This 
is rather counter-intuitive. However, the apparent non-orthogonality is largely caused by the 
Brewster windows as well. The optica! axis of the Brewster windows (the polarization di
rection which is not attenuated) does not coincide with one of the polarization eigenmodes. 
The attenuation of the polarization component perpendicular to the Brewster windows' opti
ca! axis squeezes the plot shown in Fig. 6.5 in the horizontal direction, causing the apparent 
non-orthogonality of the rotated modes. 

The birefringence of our cavity is inconvenient, since we strongly prefer a circularly po
larized cavity field for the QND experiments. With the lifting of the degeneracy of the two 
linearly polarized modes, it is not possible to resonantly produce circularly polarized light in 
the cavity. The interaction strength for the atom-cavity system depends on the Clebsch-Gordan 
coefficients of the atomie transition. As this coefficient is smaller for linearly polarized light 
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than for circularly polarized light, the interaction strength will be accordingly lower. 
Although it seems that only linearly polarized light can be excited in the cavity resonantly, 

this does not mean that there cannot be any circularly polarized light present inside the cavity. 
For example, by feeding the right elliptically polarized light, it should always be possible to 
excite both linear modes equally strong and with a 90° phase difference. By setting the distance 
of the cavity mirrors such that the cavity finds itself exactly in between the two resonances, 
circularly polarized light can be produced in the cavity, albeit with reduced field strength for a 
fixed input beam intensity. 

However, it is not exactly clear how the off-resonant circularly polarized light in the cavity 
behaves quantum-mechanically, as the usual quantization procedure is based on resonant modes 
only. We are presently looking into the problem. 

If this approach tums out not to be feasible, we will either have to perform the experiment 
with reduced interaction strength or remedy the birefringence of the cavity. The birefringence is 
most likely stress-induced, i.e., strain in the mirror suspension causes an anisotropy in the mirror 
surfaces. By applying extra forces on the mirrors in a controlled way, it should in principle be 
possible to compensate for the original strain in the bolder. One could thus think of a suspension 
design where additional PZT elements, placed around the mirror bolders, serve to minimize 
birefringence. 

6.5 Cavity stabilization 

The laser that will be used for the experiments is frequency modulated at 10 MHz by direct 
current modulation, as was necessary for the stabilization on the helium discharge cell. It is 
thus not surprising that we will also try to exploit the same modulation to stabilize the cavity 
on the right frequency. The setup for locking and stabilizing our high-quality cavity to the laser 
light will thus be based on the Pound-Drever-Hall scheme, analogous to the stabilization of the 
laser to helium transition, as described in Chapter 4. 

As a consequence of the high finesse of our cavity, its bandwidth is proportionally small: 
approximately 250 kHz. Tuis means that when our cavity is on resonance with the modulated 
laser light (or just slightly detuned from resonance ), only the central carrier frequency can pass 
through. The sidebands at 10 MHz are so far from the cavity resonance ( 40 bandwidths) that 
they effectively experience total reflection. Yet these sidebands are essential fora stabilization 
circuit that is based on the Pound-Drever-Hall scheme. We can therefore not use the cavity's 
transmission signa!, but have to look at the light that reflects from it. In the situation that the 
cavity is far off-resonance, reflection of the incoming beam is virtually 100%. The amplitude of 
the reflected signal sharply drops as soon as the cavity approaches resonance, as is clear from 
the cavity theory discussed earlier. Basically, on resonance, the field leaking out of the cavity 
into the direction of the incoming beam is in anti-phase with the directly reflected beam. For 
a lossless cavity the reflected and the leakage field will have the same amplitude, thus exactly 
nullifying each other through destructive interference. For any realistic lossy cavity, the depth of 
this drop is less trivial. Looking at Eq. 5.18 we see that the maximum transmittance is equal to 
the incoming intensity except for a term that is directly related to the absorption in the mirrors. 
As we assume a symmetrie cavity, the same field will leak back through the first mirror. The 
expected minimum of the intensity reflection Rmin is equal to: 
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Figure 6.6: Transmitted and reflected signal at resonance 

6.6 Electrical and mechanical behavior 

(6.1) 

For the stabilization circuit it is also important to knowhow the cavity behaves electronically 
and mechanically. Mechanica! and electrical resonances in the cavity construction may reduce 
the bandwidth available for feedback control. 

To investigate the cavity's electronic behavior, the dynamica! impedance for frequencies 
from 100 Hz to 200 kHz was measured. We applied a sinusoidal signal of about 1 Volt am
plitude, provided by a function generator, over the cavity PZT. A 1 kQ resistance was added 
in series with the cavity over which we measured the voltage in order to determine the current 
through the PZT. Comparing the amplitude and phase of this output signal to the initial drive 
voltage over the cavity, the complex impedance of the cavity can be determined. 

Electronically speaking, the cavity consists of a loaded piezo electromechanical transducer. 
As PZTs are made of non-conducting ceramics, they can in a first approximation be considered 
as pure capacitors. Figure 6.7 shows the results of the measurements. For frequencies up to 10 
kHz the behavior of the electronic circuit is indeed predominantly that of a capacitor. For this 
frequency range the capacitance value is about 7 nF. 

Small perturbations in the complex impedance already appear at frequencies of about 4 kHz 
and more serieus resonances are seen for frequencies of 50 kHz. The small disturbances are 
mainly due to mechanica! resonances in the cavity construction as Jansen [7] also showed in 
ether measurements. Tuis is supported by the fact that, in the measurement as described, the 
electrical perturbations at 4-5 kHz were accompanied by clearly audible resonances. It is un
clear whether these resonances are specific to the current construction and may disappear when 
the cavity is installed in the final interaction chamber of the QND beam machine. Nevertheless, 
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Figure 6.7: Electrical response of the high finesse cavity versus frequency. For frequen
cies lower that 5 kHz the behavior is predominantly that of a capacitor. At higher frequen
cies strong resonances are present. 

we will decide to limit the bandwidth of the feedback control to about 4 kHz. lf absolutely 
necessary, the PI controllers can later always be upgraded to higher bandwidths. 
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Chapter 7 

Cavity stabilization 

In the proposed experiment the diffraction of a beam of atoms interacting with the electromag
netic field in a high-finesse optica! cavity will be investigated. It is therefore necessary to have 
a light source that is resonant with the proper helium transition. In Chapter 4 we extensively 
discussed the stabilization scheme that is used to keep our diode laser at the right frequency. 
We wish to investigate the properties of an electromagnetic field consisting of only one or a 
few photons on average. However, to be able to detect the diffraction effects a strong interac
tion is needed. A high-finesse cavity is then indispensable for the storage and power build-up 
of this field. In the previous chapter we already had a closer look at the design of this cavity 
and performed some diagnostic tests that displayed the main optica! and electronic behavior of 
the cavity. In order to reach maximum interaction strength of a helium atom with the electro
magnetic field inside the cavity, the cavity should also be resonant with the atom's transition. 
Having a locked laser, this is equivalent to saying that the cavity should be resonant with the 
laser light. 

7.1 Stability demands 

As we saw, our high-finesse cavity is only resonant with the transition frequency of helium 
atoms when its mirror separation is an integer multiple of À/2, with À the radiation wavelength, 
which is on the order of half a micron. It is however extremely difficult to build a cavity that 
has its mirror separation to this precision in absolute distance and even more, that holds that 
distance constant for the duration of the measurements. 

We can easily make an estimate of the stability demands. In the previous chapter we found 
that the finesse Y: of a cavity is defined as the ratio of the free spectra! range (FRS) to the 
linewidth of the cavity resonance. As one free spectra! range of our cavity corresponds to a 
shift of )./2, the cavity linewidth clearly corresponds to a motion of À/2Y:. Setting the finesse 
value Y: = 6.5 x 105 as determined in ring-down experiments [1], we find that we have to 
stabilize the mirror spacing to an accuracy on the order of 1 pm. 

Piezo transducers are particularly useful when displacements of these magnitudes are re
quired. Therefore the mirrors of our high finesse cavity are suspended in a tubular piezo-electric 
transducer (PZT): by applying a voltage to the PZT we can accurately adjust the distance be
tween the mirrors and consequently adjust the cavity's resonance frequency. lf we gradually 
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vary the applied voltage over the PZT, it will always possible to find the cavity resonance with 
the atom's transition. The maximum range over which we may have to change the separation 
distance is now conveniently less than /.../2. 

On resonance however, the demand for a 1 pm stable mirror spacing still stands. In order to 
minimize sensitivity to vibrations and thermal fluctuations the design of the cavity is kept com
pact and relatively simple. But even when these precautions are respected, thermal expansion 
of the construction can cause the cavity to drift from resonance. This drift must be compensated 
for, using an additional feedback loop, exploiting once more the suspension design. Once reso
nance is found, it allows us to use the PZT to actively stabilize the cavity, securing its resonance 
at the right frequency during the experiments. 

PD 

PI 1------1... Amplifo r 

Figure 7 .1: Basic control loop for the stabilization of a cavity. PD: Photodetector, PI: 
controller, PZT: Piezo transducer 

7 .2 Sta bie supply 

In the previous paragraph the stability demands for the cavity mirrors were deduced. Since the 
distance between these mirrors should be directly controlled with the PZT, the stability demands 
have also direct implications for the piezo driver. We will now look at the stability requirements 
for the piezo voltage supply. 

Ab initio we don't have any knowledge about the relative positioning of the cavity's mirrors. 
We therefore need to be able to adjust one of the mirrors over at least one free spectral range 
guaranteeing to find a resonance when scanning the cavity. In Figure 6.3 we found that one FSR 
corresponds to approximately 110 Volts. Besides this we have to take into account the drift of 
the cavity which can amount to a few volts per hour. In total this sets the demands for the high 
voltage source to an available output range of minimally 120 volts, a requirement which itself 
is easily fulfilled and leaves open a whole range of possible high voltage drivers. 

However, if we wish to stabilize the cavity to within a fraction of its linewidth, the output 
noise of the voltage source should be extremely low. This means that, if we set the desirable 
stability to one tenth of a the cavity linewidth, the maximum allowed amplitude of the output 
noise should not exceed 0.1 x VpsR I :F = 15 µ.V. Tuis corresponds toa signal-to-noise ratio 
of 107 which is a lot harder to accomplish. The low noise level itself is feasible in precision 
electronics, but the combination with the required output range makes it more di:fficult. We 
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found no commercially attractive solution that met our stability demands. Therefore a home
made design was proposed. This is not an easy task, yet it is technically possible to obtain such 
levels of stability ratios in electronic circuits using a PI controlled feedback system. Luckily 
we now don't have to worry about the generation of an error signal for the stabilization of the 
piezo driver: it is basically the difference between the desired output (setpoint) and the realized 
output signa!, possibly contaminated with noise. 

Setpoint + PI 
controller 

Amplifier i---~-. 

Figure 7 .2: Feedback system for the stabilization and noise suppression of the high volt
age piezo driver 

As a basis we purchased a high voltage source (Thorlabs, MDT694) which is sold as a 
precision, low noise (1.5 mV rms) controller, especially suitable for piezo actuators. lts output 
voltage can be manually controlled with a potentiometer over a range of 150 Volt, in compliance 
with our required range. In the final feedback setup we wish to control the drive voltage of the 
high voltage supply externally which can be done by applying an analog voltage (from 0 to 
lOV) to its front panel BNC input. Tuis external control voltage will be part of our feedback 
loop. The driver's input signal will then be the sum of the setpoint value supplied by a DAC 
output plus the value of the error signals. Tuis total input voltage is then multiplied by a gain of 
15 and summed with a possible manual control voltage. The driver's bandwidth is specified to 
40kHz. 

According to the specifications the noise should be lower than 1.5 m V rms, which is two 
orders of magnitude larger than allowed in our setup. Before the piezo driver can be installed, 
the noise level has to be reduced with a factor of 100 using feedback control. For the design of 
the control system it is essential to know the nature of the noise. Therefore the piezo source's 
actual DC behavior is tested with an oscilloscope as load ( capacitance of several pF) at a voltage 
of75 volts. A typical oscilloscope image is shown in Figure 7.3. 

The indicated rms noise level on the oscilloscope did indeed not exceed 2 m V and appeared 
independent of applied voltage. But it is clear that high amplitude noise is present in the form 
of sharp spikes. The most striking spikes have a frequency of 50 kHz and an amplitude of 10 
to 15 m V due to the switching design of the piezo driver. With an additional low pass filter it 
is possible to suppress these frequencies to within our specifications. A passive second order 
filter with a cut-off frequency of a few hundred Hertz should be sufficient for this purpose. The 
proposed PI controller should take care of the lower frequency noise components, especially 50 
Hz and its higher harmonies. 

In order to examine the driver's gain as a function of frequency we applied a small test 
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Figure 7 .3: Output signal of the high voltage source, containing 50 kHz spikes 

signal to the extemal input. The test signal was generated using a function generator and thus 
consisted of a single frequency sinusoidal signal ofknown amplitude (several mV). Measuring 
the amplitude of the driver's output and phase shift relative to the input test signal, we could 
determine the driver's response, as shown in Figure 7.4. The profile shows the typical behavior 
for a second order system with its resonance frequency around 100 kHz. 

7 .3 Total scheme for cavity stabilization 

As we have seen, we need at least two (nested) feedback systems, one for the cavity stabilization 
loop and one for the piezo driver's noise reduction loop. 

Nesting two feedback systems is in generally a tricky thing to do and can be especially 
disadvantageous when the properties of the controllers diverge widely. For instance, in our case 
the bandwidth of the PZT amplifier loop is cut down to roughly 100 Hz by the additional second 
order filter which is significantly less than the bandwidth of several kHz that is available for the 
cavity stabilization. The piezo driver loop, now being the slowest link in the ring, will determine 
the bandwidth of the whole setup which is clearly not wanted. 

The easiest way out of this problem is to add a third loop that is independent of the existing 
system and that takes over the fast feedback in the cavity stabilization. Combining and re
structuring all three control loops necessary for the cavity stabilization, we obtain the total 
scheme as depicted in Figure 7.5. 

Loop 1 and 2 essentially serve to stabilize the cavity at the resonance frequency. The first 
loop is a slow integrator-controlled loop that sets the piezo driver voltage such that the cavity 
is sufficiently close to resonance that the Pound-Drever-Hall error signal has the right sign. 
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Figure 7.4: Gain (solid line) and phase (dotted line) characteristics of the piezo high 
voltage supply 

Therefore the voltage source needs to be adjustable with a precision of at least half the laser 
modulation which accounts to a 3 mV resolution over a 150 Volt range. Planning to set the 
loop's setpoint digitally with the aid of a low noise Digital-to-Analog Converter (DAC), this 
resolution implies that we need a 16 bit DAC. The DAC actually used is constructed by summing 
two 12 bit DAC's with a weighing factor of 1132, creating an effective 17 bit DAC. 
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Figure 7.5: Cavity stabilization configuration including three feedback control loops. Loop 
1 compensates tor the slow cavity drift, loop 2 takes care of the tast cavity fluctuations, 
loop 3 reduces the noise of the high voltage piezo driver. 

The second control loop takes care of the cavity's rapid fluctuations around resonance. To 
this end the error signal is processed and amplified in a PI controller. As this loop does not need 
to take care of the cavity's drift, its output range can be kept small (-10to+10 V). Via a passive 
resistive adder this output is then added to the voltage of the first (slow) loop. 

The third loop, finally, locks the piezo driver to the setpoint and guarantees the reduction 
of the driver's noise spectrum to the required microvolt levels as explained in the previous 
paragraph. 

7.4 Pound-Drever-Hall with a high finesse cavity 

As for the laser stabilization based on saturated absorption, we have to find an expression for the 
transfer function F(w) for the ca':'ity in order to understand the operation of the Pound-Drever
Hall stabilization scheme. 

When a low-intensity monochromatic laser beam is sent into a (high-finesse) cavity, most of 
the incoming light will be refiected. The properties of the refiected beam can readily be inferred: 
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its frequency Wref is identical to that of the incident beam, and its amplitude Eref is assumed 
proportional to the incidents beam's amplitude Eine· Upon refiection some phase shift may be 
introduced. Thus we can write: Erefl = F(w)Einc where the function F(w) is the refiection 
coefficient which depends on the properties of both the beam and the cavity. This coefficient 
is a complex function, hereby taking into account the phase shift between the two beams. For 
a symmetrie cavity (i.e., the refiection coefficients of the mirrors are equal) and no losses we 
found: 

r(ei<P - 1) 
F(w) = 2 .</J (7.1) 

1 -r e1 

where r is the amplitude refiection coefficient of both mirrors, and <P is the phase the light has 
picked up after one round trip inside the cavity. This phase equals <P = 2wnd / c where d is 
the cavity length, w /2n is the laser frequency and n is the refraction index which for a cavity 
placed in vacuum equals 1. It is convenient to rewrite this phase in terms of the free spectral 
range (F SR) and the wavelength: 

w w 2nd 
<P = -- = - = 2n- (7.2) 

c/2nd FSR À 

Thus, the refiection coe:fficient is clearly periodic in both laser frequency and cavity length 
d. Since we are about to loek the cavity to the laser, we choose the latter view. We see that 
the coefficient F approaches zero when the optical path nd is an integer number of half wave
lengths. 
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Figure 7 .6: Amplitude of the error signa! versus frequency for a symmetrical cavity. 

Fora cavity with negligible losses and identical mirrors, the error signal derived in Equation 
3.25 can now be calculated. The result is shown in Figure 7.6, using realistic values for our 
system. Note that the error signal crosses zero when any of the beams (i.e., the carrier beam or 
either of the sidebands) resonates in the cavity. 

7 .5 PI controllers 

A PI controller nearly always involves operational amplifiers that themselves are involved in a 
feedback loop. The open loop gain of an operational amplifier ( opamp) is in general so high 
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that it can be considered perfect (i.e., infinitely high) for our closed-loop designs. A schematic 
view of the design of a simple opamp based PI controller is depicted in Figure 7. 7. 

C1 

Rz 

Figure 7.7: Basic PI controller design. 

A simple analysis of the design tells us that our PI controller can be considered as an invert
ing amplifier with voltage gain equal to - Z r / Z 2 where Z 2 is the impedance of resistor R1 and 
Z1 the impedance ofresistor R1 and capacitor C1 in series. The impedance of the components 
is frequency dependent. We write the gain of the controller in the frequency domain as the 
transfer function G p 1: 

Z1 R1 +-,-Le 
G JW I 

PI= -- = -
Z2 R1 

(7.3) 

By choosing the resistances R1 and R1 and capacitance C1 we control two important pa
rameters. First, we need to set the proportional amplification coefficient G P that determines 
the high frequency gain. Secondly the integrator's time constant r scales inversely with the 
bandwidth of the controller. The parameters are determined as follows: 

(7.4) 

The criterion for stability against oscillation fora feedback amplifier is that its open-loop 
phase shift should be kept less than 180° at the frequency at which the loop gain is unity (neg
ative feedback becomes positive feedback at that frequency). We thus need to set the high 
frequency gain Gp to unity (or less) by choosing R1 equal to (or smaller than) R1. Secondly, 
the bandwidth ofboth PI controllers is limited by the properties of the high voltage piezo driver 
and the cavity. Resonances in the cavity restrict the bandwidth to maximally 5 kHz. We choose 
values for the circuit components as indicated in following table. 

Component PI controller 1 PI controller 2 
Capacitance C 1 1 nF lOnF 
Resistor Rl lOkQ IOkn 
Resistor R2 9.9kn 9.4kn 

Both PI controllers have been built and were tested in a simple feedback setup, shown in 
Figure 7 .8, involving three components. The output from the PI controller is subtracted from 
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a test signal by a differential amplifier. The result is used as imput signal for the controller. 
The sinusoidal test signal is produced by a function generator and has known frequency and 
amplitude. 

input PI 
controller 

output 

Figure 7.8: Feedback setup used to test the PI controllers. The controller's output is fed 
directly back to its input port. 

The output of the controller should follow the test signal as it attempts to nullify the input 
signal. The closed loop gain for this system now becomes: 

G _ GPI l+jwR1C1 
closed - 1 + GPI - 1 + jwC1(R1 + R1) 

(7.5) 

Measuring the ratio of output and input signal the frequency dependency of the controllers 
gain is determined as shown in Figure 7 .9. 

At low frequencies the closed-loop gain for both PI controllers is expected to be constant at 
a value of 1, which is exactly what we see. For the first PI controller the gain then drops for 
frequencies higher than 3 kHz, indicating a first time constant r1 at this frequency. PI controller 
number 2 clearly has a higher time constant r2 at a frequency of about 400 Hz. 

For higher frequencies then we expect to find a frequency independent gain G = 0.5. While 
the second controller shows this behavior, even though on a limited range, it is hardly noticeable 
for the first controller. Clearly the system has a second time constant, appearing at a frequency 
of 70 kHz, that cuts off the gain. Replacing resistors and capacitors for different values didn't 
influence the frequency at which the second time constant appears. A closer look at the elec
tronic circuit learns that the effect may be due to the presence of a light induced transistor in 
the amplification circuit. This transistor, with an estimated capacitance of C :::::::: lnF, may 
short-circuit the amplification loop for high frequencies, resulting in zero amplification. Time 
constants in the operational amplifier itself might also attribute to the effect. 

These measurements indicate that the built PI controllers display the expected behavior 
although some fine tuning is necessary to optimize the gain and bandwidth. However, the value 
for the open-loop gain cannot be inferred from these results. In order to be able to suppress the 
apparent noise levels at low frequencies in the high voltage piezo driver, this open-loop gain 
should be sufficiently large. 
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Chapter 8 

Conclusions 

The QND experiment concerns the direct demonstration of the existence of the quantization 
of the electromagnetic field. In the experiment the diffraction of a He* beam interacting with 
electromagnetic field in a high-finesse cavity will be studied. Both the machine to produce the 
high-quality atom beam as well as the high-finesse cavity had already been constructed, hut idle 
for a long period of time. 

In this report we discussed the 'resurrection' of the beam and evaluated the problems that 
were encountered during the start. The beam machine appeared still functioning and, using 
Koolen's reference manual, we were able to obtain his target figures at the last diagnostic 
tool before the 2D detector. Lack of reproducibility and di:fficulty of adjustment hindered fur
ther progress. The first problem appeared due to the quality of the suspension for the MOC 
quadrupole magnets. Therefore, a new, stable suspension has been designed. This design has 
already been implemented hut not yet tested. 

To solve the second di:fficulty, it will be necessary to implement extra diagnostics in the 
form of a second position sensitive detector just before the second pinhole. 

As the QND experiment imposes stringent demands on the electromagnetic field, we looked 
at the stabilization of the diode laser and the high-finesse cavity based on the Pound-Drever-Hall 
scheme. 

The laser system is at present operational. Through PI controlled feedback fluctuations in 
the laser are suppressed for frequencies to a least several hundred Hertz. The performance in 
terms of frequency stability has not yet been evaluated. 

In order to be able to properly design a stabilization scheme for the cavity, we built a test 
facility to explore its electrical and mechanica! behavior. Measurements using polarized light 
showed that our cavity is somewhat birefringent, meaning that only linearly polarized light 
can be excited in the cavity resonantly. As the QND experiment actually required circularly 
polarized light, we are currently investigating whether we can still produce circularly polarized 
light with reduced field strength, or that we have to remedy the birefringence. 

Measuring the dynamica! impedance of the of the cavity showed that resonances appear at 
frequencies of about 4 kHz, mainly due to mechanica! resonances in the cavity construction. 

Finally, we designed the stabilization scheme that should stabilize the cavity mirror spacing 
to an accuracy on the order of 1 pm. The scheme consists ofthree separate feedback loops. The 
necessary PI controllers were built and tested, and showed good response. In the total stabi-
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lization setup, however, still too much noise was picked up by the feedback loops themselves 
to reach the required microvolt noise levels. The electronics are therefore currently redesigned 
more rigorously. 
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AppendixA 

Technology Assessment 

Quantum opties is the field of research that studies quantum mechanica! properties of light 
fields. The key ingredient of quantum opties is given by the quantum of electromagnetic field 
energy, also known as the photon. 

Although in modem (quantum) physics the concept of quantization enjoys a unassailable 
status, proving the existence of photons is far from obvious. The QND project now concerns 
the direct demonstration of the existence of the quantization of the electromagnetic field. Our 
approach is completely unique as we will attempt to directly study the momentum transfer from 
the light to the atoms through an atomie diffraction experiment. To observe the effects with 
the required precision, the setup requires state of the art technology from numerous disciplines. 
The project thus appeals to the <leep fundamentals ofboth applied and theoretica! physics. 

The same sophisticated QND setup can and will be used fora variety of other high-precision 
experiments. We plan to make a Very Large Area Atom Interferometer using large-angle Bragg 
beam splitters [2], [7]. With little modification this Large Interferometer will be a practical tool 
for high-precision rotation sensing (Sagnac effect) or ultra-sensitive spectroscopy allowing the 
detection of very small shifts in atomie energy levels. 
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