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A. Abstract

During the design of a software system specific architectural patterns are planned to be applied in the
software to be built. During the actual development of the software however, deviations from the initial
envisioned architecture can occur, which are not desirable. At a certain stage during the development, it is
desirable to identify the mentioned deviations in a software system’s implementation and choose how these
deviations must be handled during the rest of the development phase. Legacy software system also often lack
documentation on applied architectural patterns in the software (some even have no documentation at all).

For these problems, the technique of architecture reconstruction can serve as an aid. Architecture
Reconstruction (abbreviated as AR) is defined as the process of obtaining the “as-built” architecture of an
implemented system from an existing (legacy) system. The case study performed describes an architecture
reconstruction process performed on two subsystems of an available software system, one having up-to-date
“as-designed” and “as-built” documentation whilst the other subsystem’s documentation was incomplete.
The architecture reconstruction process was performed using the proposed phasing by the Software
Engineering Institute of Carnegie Mellon University. The goal of the reconstruction process was to visualize
architectural patterns used in both subsystems based only on the analysis of facts from the source code of the
subsystems (no runtime traces included).

In the process an architecture reconstruction pipeline was defined, using external tooling for fact extracting
and basic visualization. Also Prolog heuristics (modeled as constraint satisfaction problems) to detect
patterns and TCL scripts for an optimization of the visualization were created. The heuristics detect the
Observer, Interceptor, Pipe-and-Filter and Blackboard pattern and some basic variations which occur in
implementations. The heuristics are tested on code which is known to contain the patterns and eventually on
the two subsystems.

The case study proves that basic detection of patterns is possible using only the static model of a system and
delivers a usable visualization of used patterns. The framework for pattern detection is now easily extendible
for new patterns or other queries required on a software system. Performance-wise the automated recovery of
patterns is still slow but usable for the explored subsystems. But it also proves that not including facts on the
dynamic behavior of an application seriously limits the detection capabilities, since certain facts cannot be
detected by source-code analysis only (lack of completeness). Due to this the amount of detected false-
positives is still high, since the detection heuristics have to be weakened to cope with the missing facts.

With this case study the stage is set and the framework and/or its concepts can be extended. As future work
the following areas are of interest:

- focus on detecting anti-patterns instead of patterns

- incorporate run-time information (dynamic model)

- provide a more detailed pattern ranking strategy

- improved filtering on false-positives

- start analyzing from UML diagrams instead of code

- create a UMLZ2Prolog translation



B. Preface

In the end of 2003, | carried out some initial discussions on a possible graduation assignment within Océ.
Typically all discussed assignments were in the field of improving some subsystem of a larger software
system (‘refactoring’). Often these subsystems were supported by documentation, which did not reflect the
current implementation anymore.

To create a more generic assignment, we choose to focus on re-creating the documentation/architectural
views of software-systems with a specific focus on architectural patterns (architecture reconstruction).
During software projects in an industrial setting, elements of software systems can be scarcely documented
or not documented at all. This lack of documentation is usually caused by time-pressure or a low focus on
maintainability in general in a project. The typical analogy in Computer Science with the building of a house
rises: a plumber delivers some documentation on the location of pipes in the house when the house is built.
However when maintenance is performed after some years, the pipes are not found at the documented
location or some undocumented pipes are found. In this case, documentation proves important: one does not
want to hit a water pipe, when putting up a new picture on the wall. For software systems this holds as well.
Therefore architecture reconstruction of software is comparable with walking around a house with a very
fancy ‘pipe-detector’ and automatically obtaining a new up-to-date drawing of the plumbing scheme.

I would like to express my gratitude to my advisor Eric Dortmans and supervisor Lou Somers for their
constructive comments during the assignment. Also | would like to thank Michel Chaudron and Jack van
Wijk for taking place in my examination committee, and Andreas Wierda for his critical comments on the
initial version of this report. For the technical assistance at Océ, | would like to thank Teun Willems who
helped me with some XSLT specifics and Nico Linssen who helped to set up a build-environment for the
Océ controller to be analyzed.

Rob Kersemakers

Venlo, November 2004



C. List of abbreviations

ADL
AR
CPPML
FAMIX
FAMOOS
FTP
GXL
HTTP
KLOC
MOOSE
PCL
SART
SEI
SMB
RSF
TCL
TCP/IP
UML
XMI
XML
XSLT

Architecture Description Language

Architecture Reconstruction

C++ Mark-up Language

FAMoos Information eXchange Model
Framework-based Approach for Mastering Object-Oriented Software evolution
File Transfer Protocol

Graph eXchange Language

HyperText Transfer Protocol

Kilo-Lines Of Code

Method for Object-Oriented Software Engineering
Pattern Comment Language

Software Architecture Recovery Tool

Software Engineering Institute

Server Message Block

Rigi Standard Format

Tool Command Language

Transmission Control Protocol/Internet Protocol
Unified Modeling Language

XML Metadata Interchange

eXtensible Mark-up Language

eXtensible Stylesheet Language Transformations
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1 Introduction

1.1 Problem context

Océ hardware products like printers, scanners and multi-functionals are typically controlled by a general
purpose PC, with on top of it Océ specific controller software. During the design of the controller software
specific architectural patterns (for example BlackBoard, Pipe-and-Filter) are envisioned to be applied in the
software to be built. During the actual design and implementation of the software, deviations from the initial
envisioned architecture can occur, which are not desirable. Also for legacy software often no clear
architecture description is available in relation to architectural patterns which are now common practice. At a
certain stage in development, it is desirable to re-factor the mentioned deviations out of a product’s
implementation and lead the implementation back on track with the original pattern ideas (or even to identify
new applicable patterns).

1.2 Research domain

The following are typical questions in the research domain of this graduation assignment:

- How can architectural patterns be recognized by analyzing the source code of a product, with or
without a-priori knowledge on the chosen architectural patterns?

- What observable properties of implemented or envisioned architectural patterns become apparent
from source code analysis?

- How can knowledge gained by software architecture analysis influence the recognition of applied
patterns?

- Can a re-factoring roadmap striving towards the implementation of the desired architectural
pattern(s) be derived from the analysis for applicable architectural patterns?

- How does the outcome of architecture reconstruction address crosscutting concerns in a software
system? (for example: does the outcome still maintain non-functional demands to the architecture)

These questions are used as the starting point for literature research, which is performed to derive the actual
scope of this graduation assignment.

1.3 Report structure

Chapter 2 describes the definition of Architecture Reconstruction and the current level of practice which can
be derived from literature and defines the actual scope of the graduation assignment.

Chapter 3 gives an overview of the Architecture Reconstruction workflow used for the practical case of
analyzing the Océ controller software. Since the tools have to be adapted for extracting architectural patterns,
these adaptations are also described.



In Chapter 4, four architectural patterns observer, pipe-and-filter, interceptor and blackboard are discussed
with respect to the properties they expose, when implemented in a system. These exposed properties can be
used to detect the presence of one or more architectural pattern(s) in a system on which Architecture
Reconstruction is applied.

The testing of the heuristics on source code, which is known to contain one or more patterns is described in
Chapter 5. It also discusses the found anomalies in the heuristics or the fact extraction phase.

The actual application of the heuristics on two subsystems of the Oceé controller is described in Chapter 6.

Chapter 7 presents a brief evaluation of the application of Architecture Reconstruction in a real-life case,
discussing its strength and weaknesses.

The final conclusions are presented in Chapter 8 after which Chapter 9 discusses possible future directions in
the domain of Architecture Reconstruction, which were identified during this case study.



2 What is Architecture Reconstruction?

This chapter sets the scope for the graduation assignment. Section 2.1 gives definitions on architecture
reconstruction gathered from literature and reflects on the current state-of-technology regarding architecture
reconstruction. Architectural/design pattern recognition is an important element in this assignment, so it is
discussed separately in section 2.2. In Section 2.3, the scope of the assignment is refined based on the
knowledge gathered on “architecture reconstruction’.

2.1 Definition of architecture reconstruction

Before discussing the definition of architecture reconstruction, we will first define ‘software architecture’
itself since this captures what is to be retrieved by performing architecture reconstruction on a software
system. The number of definitions one can find on ‘software architecture’ is almost unlimited (for examples,
see [Archdefs, 2003]), therefore only one definition is presented here, which is sufficient for further
explanation.

Definition 2.1: Software Architecture ([Bass et al, 2003]).

The Software Architecture of a program or computing system is the structure or structures of the system,
which comprise software components, the externally visible properties of those components, and the
relationships among them.

A software architecture of a system can be available in two forms, namely in the documentation of the
system (‘as-designed architecture’) or in the implementation of the system (‘as-built architecture’). It
depends on the development process used for the specific system which forms (‘as-designed’ and/or ‘as-
built’) are available. For example, in a prototyping setting one may only have the ‘as-built’ architecture,
whilst in large projects both forms usually are available. During a development process the need can rise to
check the ‘as-built’ with the ‘as-designed’ situation, or even to create the full documentation from the
implementation (in case of a legacy system). It can even be the case, that both forms are available, but that
new views need to be created which are not yet contained in the documentation.

In such situations, architecture reconstruction is a candidate process to obtain new/additional documentation
from an implementation of a system. Some people might be mislead by thinking architecture reconstruction
is a synonym to refactoring or reverse engineering. However one should be very careful since these terms
only present small parts on the whole architecture reconstruction process.

Definition 2.2: Architecture Reconstruction ([Kazman et al, 2002])

Architecture Reconstruction (abbreviated as AR) is the process of obtaining the “as-built” architecture of an
implemented system from an existing legacy system.

The term ‘legacy system’ in the latter definition should not be regarded as synonym to ‘old and discarded
system’, but as a system of which an implementation is already available. Since the definition by itself is
meager information, we will to elaborate the definition using the following questions as a guideline:

- Why is an AR process performed?
- How is an AR process performed?
- What is input to/output of an AR process?



2.1.1 Whyisan AR process performed?

Before starting an actual AR process, it is important to realize the goal to be achieved by the process. A
choice on the targeted outcome of the reconstruction process and the planned usage of the outcome in other
processes has to be made (where will the information obtained during AR be used for?). In [O’Brien et al,
2002], an overview is presented of typical scenarios encountered in practice which discuss the reasons why
one would start an AR process. The scenarios are:

- View-set: covers the identification of architectural views that sufficiently describe a software system

- Enforced-Architecture: covers the problem of consistency between the as-built and as-designed
architecture

- Quality-Attribute-Changes: covers the question of how architecture patterns are used to satisfy
quality requirements and to what extent changes to quality attributes impact a system

- Common and Variable Artifacts: provides models and techniques for analyzing the products in a
domain with respect to their common and variable parts (target: identify re-usable assets)

- Binary Components: covers architecture reconstruction using binary component descriptions, e.g. by
using an interface description a closed software-component exposes to the outside world to allow
other parties to use it.

- Mixed-Language: addresses the need for and techniques that can be used to analyze products in a
variety of languages and language types

Several tools which exist to support these scenarios to a certain extent are also available. These tools can be
divided into the following categories:

- Manual reconstruction: implies using utilities like Grep, Emacs, Awk, etc. (no high-level tools) for
extracting facts and using pen and paper for the actual generation of views.

- Manual reconstruction with tool support: Portable Bookshelf, Rigi, SHriMP, KLOCwork inSight
Tool

- Query languages for reconstruction: Mitre, Dali, Architecture Reconstruction Method (ARM), Riva

- Other techniques: Data Mining, Software Architecture Reconstruction (SAR) Method, X-RAY,
architectural description languages

For more details on some of the mentioned tools in [O’Brien et al, 2002] see Appendix A.

In the graduation assignment, a view-set practice scenario can be applied, which all tools mentioned in
[O’Brien et al, 2002] support when modified in some fashion. This scenario would deliver valuable views on
the current state of the systems, which can be used for re-factoring actions. Regarding how the outcome of
architecture reconstruction addresses crosscutting concerns in a software system the Quality-Attribute-
Changes scenario should also be explored. Roughly one can say most tools support the view-set scenario and
the mixed-language scenario; however adaptations of the tools are required to obtain the actual support. So
the choice for the scenario to be used can have severe implications for the amount of labor required to
perform that scenario.

For this practical application of reverse architecting it is important to realize, that apart from the goal of the
process, no real statements are made on the abstraction level to be obtained for the specific scenarios. So the
abstraction level to be achieved in the assignment must be specified in more detail (see section 2.1.2).



2.1.2 How is an AR process performed?

AR is a process with specific phases. It is described in [Kazman et al, 2002] as an iterative and interactive
process, comprising of the following four phases:

I View Extraction From implementation artifacts (including source code and dynamic
information such as event traces), a set of extracted views that
represent the system's fundamental structural and behavioral
elements is extracted. This is the phase where a database of facts is
created of the system to be analyzed. Facts consist for example of
the classes/functions/calls present in the system.

. View Fusion The extracted views are fused to create views that augment or
improve the extracted views. For example, a static call view might
be combined/fused with a dynamic call view. The static view alone
might not provide all of the architecturally relevant information. In
the case of late binding in the system, some function calls might not
be identifiable until runtime, so a dynamic call view needs to be
generated. These two views need to be fused to produce the
complete call graph for the system.

1. Architecture Reconstruction  During this third phase, the analyst iteratively and interactively
develops and applies patterns to the fused views to reconstruct
architecture-level derived views. For example user can visualize,
explore, and manipulate views (e.g. a graph representation of a
system). Manipulation can consist of combining nodes in the graph
to one node to represent a pattern or a subsystem. Also scripting can
be used during this phase, to clean-up created views by for example
combining classes to modules, an thereby reaching more high-level
view on a system.

(\VA Architecture Analysis Finally, the derived views may be explored for the purposes of
evaluating architectural conformance, identifying targets for
reengineering or reuse and analyzing the architecture's qualities.
This phase is performed according to the ATAM: Method for
Architecture Evaluation (see [Kazman et al, 2000]), which is not
discussed in detail in this report.

The output of these phases is documentation describing the “as-built” architecture.



2.1.3 What is input to/output of an AR process?

AR relies on available artifacts to obtain the “as-built” architecture of a software system. These artifacts are
regarded as input knowledge to the process. The following are a few examples of types of artifacts (this list
is by no means exhaustive):

Knowledge type ‘ Examples

“as-documented” architecture - free-format textual description of architecture

- free-format graphical description of architecture

- architecture description in standard notation (e.g. UML)

- graphical description of architecture using standard architectural description
language for example Darwin, UniCon

organizational breakdown - development of modules related to software development spread over
geographically distributed company sites and groups
source code - specific module layout of a software system
- relations between interface definitions and their implementations
profiles - plain traces of a running system

- message sequence charts generated from a running system

Table 1: Examples of system artifacts

As we will mainly discuss manual reconstruction with tool support, the reconstruction process requires
human assistance. The human assistance can be provided by architects and developers of the system to be
analyzed. For example, knowledge on a system coming from a former architect/developer of the system
could be very valuable information in the reconstruction process. In his current role, the former architect may
no longer be an actual stakeholder of the reconstruction, but can provide insight on the architectural patterns
applied in the system. How to weave the information of architects/developers into the automated
reconstruction process (e.g. by a natural language question list to an architect in a reconstruction workbench)
is not extensively explored. The output of AR is documentation describing the *“as-built” architecture. The
documentation can be available in multiple formats (on paper, hypertext, graph visualization, etc.).

2.2 Architectural pattern detection

Patterns are a recent software engineering problem-solving discipline that emerged from the object-oriented
community. The goal of the pattern community is to build a body of literature to support design and
development in general. There is less focus on technology than on a culture to document and support sound
design. Software patterns first became popular with the object-oriented Design Patterns book (see [Gamma
et al, 1995]). But patterns have been used for domains as diverse as development organization and process,
exposition and teaching, and software architecture.

As stated in subsection 2.1.1, the abstraction level to be reached is not yet described in current practice
scenarios or definition of phases of AR. [Buschmann et al, 1996] discusses guidelines to discriminate
between various abstractions level available in software architecture. These are the following, in ascending
order of abstraction:

- Ildioms: programming language specific solutions to common problems (represents the lowest level
of abstraction);




- Design (Anti)patterns: specific problem approaches which have been generalized as programming
language independent (anti)patterns” (like publish-subscribe):;

- Architectural patterns: from the previous abstraction levels the usage of specific architectural
patterns (like blackboard, pipe-and-filter) could be detected by analyzing relationships.

Our goal is to reach the abstraction level of architectural patterns in Phase 111 of the AR process whenever
possible. Specifically the automatic detection of patterns is an important part the AR process. In [Viljamaa,
2002], the state of pattern recognition in 2002 is summarized. It states that the feasibility of detecting a
pattern largely depends on the use of the pattern in the correct context and in its originating structure.
However, most abstract patterns are not formalized enough to allow direct detection by a tool. Instead, the
pattern’s implementation (e.g. class structure) might be detectable and lead to the identification of the actual
pattern. In general, “a pattern is detectable if its template solution is both distinctive and unambiguous*
[Brown, 1996].

Some first experiments [Prechelt et al, 2001], already show the usefulness of the explicit knowledge that a
pattern is used in a system. When developers know a pattern is used, from clear comments in the code,
maintenance tasks on the system are shortened.

The following subsections give a summary of pattern detection methods described in [Viljamaa, 2002],
complemented by information from additional literature.

2.2.1 Manual discovery

[Shull et al, 1996] describe a method for manually detecting design patterns in software created according to
the OO-paradigm. Manual in this case means: a group of students who browsed through the source code on
paper and identified used patterns. The method is called BACKDOOR (Backwards Architecting Concerned
with Knowledge Discovery of OO Relationships). After the an first iteration of the investigation on a
software system (pattern discovery), the pattern library in BACKDOOR is filled with the results obtained in
this iteration (packaging). The packaged patterns in the library are used and refined in following iterations,
with the ultimate goal of obtaining an exact match between the template design pattern and instances of the
pattern.

The most interesting part of BACKDOOR is that it introduces a ranking for detected pattern instances, with
the following ranks:

1. Not relevant;

2. Only part of the pattern is found, but that portion has a sophisticated implementation;

3. A pattern is found that tries to achieve the same purpose, but its implementation is primitive in
comparison;

4. Near-perfect match.

These ranks could be something to strive for in the creation of new tooling or usage of existing tools.

2.2.2 Pattern Detection with a template library

This is the most common form of pattern detection. A template of a pattern contains the information required
to detect an instance of the pattern in source-code facts. Such a pattern template is stored in a template
library, next to other templates. The stored templates are then used in the detection environment to detect the

“ Note: anti-patterns are the counterpart of regular (design) patterns. They target common mistakes, errors, and people
issues that can cause a software project to fail. See [Brown et al, 1998].



actual patterns. In [Paakki et al, 2000], pattern detection is described by considering the “detection-task” as a
constraint satisfaction problem (CSP). CSPs originate from the domain of artificial intelligence, where
problem are formulated as a set of conditions to be satisfied on a set of facts (for example consider Prolog
programs).

A CSP is defined by a set of variables V, {X;, X,,...,X,}, and a set of constraints C, {C,,C,,...,C,}. Each
variable X; has a non-empty domain D; of possible values. Each constraint C; involves some subset of the

variables and specifies the allowable combinations of values for that subset. A state S of the problem is
defined by an assignment of values to some or all of the variables, {X; v;,X; v;,...}

Consider the UML example of an AbstractFactory pattern shown in Figure 1.

AbstractFactory Client
CrealeProactdf)
ey
ik
-{ PreductA2 | |Pmdum.M |-—-.
] ]
ConcreteFactoryl - ConcreteFactony2 -_________E H
CraeteProductA() CreateProductAl] i
CreateFroductB() CraateProduciBi)

Figure 1: AbstractFactory pattern

Consider that this pattern is applied in a system to be analyzed. For analysis, facts like classes/methods and
their relations are then to be extracted from this system and translated to a graph representation. In Figure 2,
the sub-graph representing the applied pattern in a hypothetical system is shown. In this figure, vertices
represent classes/methods and edges represent their relations.

class isAbstract class isAbstract class isAbstract
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ProductA

implements implements yAbstrai
Factory.
Create
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Factory.

Create
ProductA

returns
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C t myConcrete Factory2
myProductA1 myProductA2 mFy:a;r;?;:e Factory2 Create - myProductB2
ProductB / creates
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Figure 2: Subset of the AbstractFactory pattern in a graph representation

yConcreta,
Factory2.
Create

implements

This graph is used to answer the constraint satisfaction problem posed by a user. We typically pose a CSP in
a format alike the format shown in Figure 3. This figure is composed from the original pattern description
shown in Figure 1. Compare the sub-graph represented by the constraints with Figure 1 and see their
resemblance.



class isAbstract class isAbstract

class( X;)  abstract( X;)
class( X,)  abstract( X,)
class( X3 )  class( Xy)
inherits( X5, X;) inherits( X4, X,)

implements( X5)  abstract( Xg, X ) ‘ olass
returns( Xg, X;)  creates( X5, X,)
returns( X5, X,).

implements

returns

inherits inherits

returns

implements

Figure 3: CSP example for finding the AbstractFactory pattern

In Figure 3, we can discriminate the following sets in the CSP:
- V= {X{ X, X3 X, X5 Xe}with D; being restricted and defined by the analyzed facts
C = {class( X,), abstract( X; ),class( X, ),abstract( X,),class( X3 ), class( X ) inherits( X5, X ) inherits( X5, X,),
implements( X ),abstract( Xg, X, ).returns( Xg, X;), creates( X5, X, ) returns( X5, X5 )}

The CSP is solved by an algorithm, which tries to satisfies the constraints posed using the graph
representation of the system to be analyzed'. Figure 4 shows two solutions found to the CSP example.
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Figure 4: Solutions found to the CSP example

In the AR case, the constraints should capture the rules for detecting a pattern, whilst the set of facts consists
of the facts gathered on the source code of the system. This approach is a serious candidate for refinement to
obtain the architectural abstraction level. CSPs are currently supported in the Maisa toolkit. The CSP
approach is also used in the SOUL toolkit from the University of Brussels, which currently only supports
pattern extraction from Java implementations.

As an alternative to CSPs which often use Prolog facts as a starting point, some approaches use an
underlying fact-database in a relational or object-oriented database. The search for design pattern instances is
then performed by using the respective query language on the database, to express constraints. However the
Prolog strength in inference is then lost. This approach is described in [Schauer et al, 1998] and [Kazman et
al, 1997].

" Note: the class Client of the original pattern is not mentioned, since this basically represent the software system in
which the pattern is used.



2.2.3 Concept Analysis

When using a pre-filled template library in an AR process it is important, that the template library is fit for
analyzing the chosen system. If this is not the case, a new library needs to be created for the specific system.
Often patterns are also applied unconsciously by developers. This implies that if detection with a template
library is done on only specific patterns which an analyst thinks are used in the system, the analysis will miss
the unconsciously applied patterns. In [Tonella et al, 1999], the method of concept analysis is used to tackle
this problem.

Concept analysis permits grouping objects that have common attributes. In the present application of
concept analysis, objects are groups of classes and attributes are relations between classes. The starting point
for concept analysis is a context, i.e., a set of objects, a set of attributes and a binary relation between objects
and attributes, stating which attributes are possessed by each object. The binary relation states which class
pairs are connected by each relation. A concept is a maximal collection of objects that possess common
attributes, i.e., it is a grouping of all the objects that share a set of attributes.

There are several algorithms to compute the concepts for a given context. When applying concept analysis
for pattern inference, consider C to be set of classes in the system to be analyzed and R being relations
between classes which can be expressed in UML, like association of extension (for example class Y extends
class X). In Figure 5 an example of concept analysis from [Tonella et al, 1999] is presented. In this figure the
rows in the table represent positional permutations of a subset C. The columns denote relations between
classes at position i and j for the permutation shown in the row. For example, the first row
(B, A,C) position-wise is represented by (1,2,3). The column (1,2), expresses that there is a extends

relation between A and B and the column (1, 3), represents an association between class B and C. Figure 5
now shows that for example (B, A,C) and (Y, X,Z) have (1,2), and (1,3), as common attributes. This

observation of common attributes is a recurring concept in the analyzed system: in both sequences the first
class extends the second one, and the first class is associated to the third one. For more details on concept
analysis, which are not discussed here due to their required detail level, see [Tonella et al, 1999].

(12)e | 12), | 33)s | 3 | (23)y | BDe | (32,

BAC) | Vv Vv

Q‘
Q‘

(B,C,A)

Y x2z2)| v J J

(X,Z,Y)

(Y, Z,X)

(H,K,J)

el
4

(J,K,H)

Figure 5: Example of concept analysis
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2.2.4 Using metrics and structural properties

In [Antionol et al., 1998] a method for recognizing patterns using metrics and structural properties is
described. The usage of structural properties is also seen in the other mentioned methods; however the use of
metrics on the analyzed software is not. The metrics are used to reduce the combinatory complexity
explosion prone to appear in design pattern recovery processes. To reduce the complexity, the metrics are
used in a process called multi-stage filtering, which embeds metrics-, structural- and delegation- constraint
evaluation. The latter two evaluations are also parts of other methods in pattern detection using a template
library. Metrics constraint evaluation is done by checking for example the number of relations a class X in a
design has with other classes. A template of a design pattern already poses some constraint on the minimum
number of relations class X should be involved in. If class X has a number of relations lower than the
defined minimum number it can be left out of the search-space. Also constraints regarding reachability of
other classes in a design from class X, within a path of a maximum length are incorporated.

2.3 Scope of the assignment

Taking the results of the literature study into account, the refined scope of the assignment is described below:

- perform semi-automatic fact extraction from existing source code artifacts on two controller
modules, delivering a fact database and an initial visualization of the architecture;

- define properties of architectural patterns and heuristics for detecting these in the fact database,
refining the constraint satisfaction problem for architectural pattern extraction. The heuristics must
be able to incorporate a-priori knowledge from an architect of the system to be analyzed. The main
emphasis will be on the analysis of static information extracted from the source code;

- apply the heuristics on the fact database and visualize the subcomponents that reflect the pattern (for
example: show where the pipe-and-filter pattern is applied). The visualization will be done by using
a standard tool;

- create a workbench which can easily be extended with new heuristics and allows quick application
of the heuristics on a collection of facts. The workbench offers questions to developers by which
they can refine variable parts in the heuristics with their knowledge;

- evaluate the usability and the added value of architecture reconstruction;

In this assignment, clearly a view-set practice scenario is applicable, which all tools mentioned in [O’Brien et
al, 2002] support when modified in some fashion. This should be kept in mind when applying the actual
architecture reconstruction method on the existing software.
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3 Real-life Architecture Reconstruction

In this chapter the subject for reconstruction and the “pipeline” of tools used to perform architecture
reconstruction on the subject is described, as well as the process followed during reconstruction.

3.1 The subject for reconstruction

The subjects for reconstruction are two subsystems of an Océ controller. A controller consists of hardware
(usually a general purpose computer) and software of third-parties and Océ. Its main task is to connect
various Océ devices (printer, scanner) to a customer network and to control their functions.

An example function of a controller is to convert a postscript file sent by an end-user to a printable bitmap
image, taking all settings of the user into account (like double-side printing, stapling the final print). It also
provides the connectivity to a customer network for these devices. For this task, the controller supports
various protocols like TCP/IP, SMB, FTP, and HTTP to enable access to functionality. As operating system
on the controller a Microsoft Windows flavor is used, which already provides some of the mentioned

functions.
B Workstation

i Customer network

Printer

Océ controller
Scanner —

Océ functionality

Figure 6: Océ controller and its context

For the specific controller used in this assignment an “as-documented” architecture is available, but only
little “as-built” information is available. Goal is to create more “as-built” documentation to the abstraction
level of patterns. Looking in more detail at the source-code of Océ on the controller, the following
characteristics become apparent:

Language 1 C++

Classes ;2500

Files 700
Functions 38000
Lines 2016 KLOC
Lines Blank 294 KLOC
Lines Code 864 KLOC
Lines Comment : 702 KLOC
Lines Inactive 145 KLOC

Figure 7: Metrics on the full software of the Océ controller
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From the “as-documented” architecture, prominent used patterns seem to be the Observer and Blackboard
pattern. So these are to be expected during detection. According to [Buschmann et al, 1996] the Blackboard
pattern in practice often evolves towards a pipe-and-filter pattern when during the course of time inter-
component communication becomes clearer to developers/architects.

In the next sections a more detailed overview is presented on the pipeline and process used to analyze the
source code of the Océ controller.

3.2 The reconstruction pipeline

For the practical application of architecture reconstruction, a pipeline to extract and refine views from
source-code has to be defined. In Figure 8, a setup of the pipeline used in this case is shown. Note that the
choice for this pipeline is the result of an investigation of many tools used for architecture reconstruction
(see appendix A). During the investigation the tools were tested on the actual Océ software to be analyzed.

Iterate through visualizations
Phase ", "I to improve views from SART Phase IV
RSF
(for initial graph
visualization)

Phase |

C++ source code

Columbus/CAN 3.5

> RIGI

|
RSF | .
(visualizing 1 Documentation
patterns/styles) Improved
Moy, RIG! views
al/o”/n* |
M) 5 GXL2Prolog SART |
Prolog

facts :
|
|

Knowledge on
the system
(e.g. applied patterns)

>

Legend

Information flow

C) Existing tool

::Developer/Architect
Tool created during the assignment P

Figure 8: Architecture Reconstruction pipeline

Columbus/CAN is chosen to perform the view extraction, since it can export the facts extracted from the
source code in numerous formats (XMI, GXL, CPPML, RSF, and FAMIX) and leaves some room if the
pipeline needs to be extended. On one end, Columbus/CAN delivers output in Rigi Standard Format (RSF).
RSF is a plain-text format (this enables weak coupling between applications generating the model for Rigi
and Rigi itself). Each line in the text-file describes a relation between two entities. Some example entries are:

type id186 Function

name id186 " _isctype"
Declaration  id186 "int _isctype (int, int)
type id187 MethodCall

from id187 id185

to id187 id186

In this example entry the first column is the active relation, the second the identification number of the
component engaged in the relation and the third column the value. RSF is consumed by Rigi for an initial
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visualization of the system. For a first exploration of the analyzed system, new projections on the extracted
facts can be made, by using the Rigi Command Language (RCL). RCL has functions for selection, grouping
nodes/edges in the graph although many of these functions are undocumented.

On the other end, Columbus/CAN delivers output in the Graph eXchange Language (GXL). Two files are
delivered, one captures the information with regard to the static model of the code and one describes the call-
graph of the code. The latter is extracted by analyzing the static code and not by examining execution traces
of the system and is therefore incomplete. Both GXL descriptions are transformed to Prolog facts and
combined in one file. The meta-model used by Columbus/CAN during the export is shown in Appendix F.
The facts are fed to the Software Architecture Recovery Tool (SART), which is the actual application
created during the assignment to aid in the architecture reconstruction process. The output of SART is done
in RSF, which allows visualization of detected patterns in Rigi.

3.2.1 Why Prolog facts?

A database of facts on the analyzed software has to be created to enable specialization of views by means of
guerying. In the previous section the choice for Prolog is mentioned, but not elaborated. In literature, two
approaches towards fact-databases are very prominent, namely using a relational database or using a Prolog
facts file. For architecture reconstruction, a decision must be made which form to use as a starting point. To
make this choice, some pros and cons of each form are listed below.

Prolog fact-file \ Relational database \
+ Prolog is optimized for CSPs (detect by inference) + More accessible for other developers (SQL is a
+ Mapping extracted facts to Prolog is a simple common language among most software developers)

projection + Larger connectivity to other environments (through
+  Queries have a low amount of syntactic sugar middleware like JDBC/ODBC)
- Less “open” for normal software developers (hard to | + Publications like [Kazman et al, 1997] already state

make extensions without detailed knowledge on best practices for the fact database

Prolog) - Detection queries will be hard to
- Learning curve for Prolog formulate/understand/prove due to the amount of

syntactic sugar required in SQL
- SQL not optimized for CSPs (no inference)

Table 2: Prolog versus SQL database for architecture reconstruction

Although the above may suggest that the choice for one of the two rules out the other, this is not the case. A
Prolog fact file can be easily projected on a fact-database in a relational database, as long as the fact and
database schemas are in sync. For the form of the fact-database and detection, Prolog is chosen for this
assignment. This enlarges the solution space for the assignment, by using the Prolog inference capabilities.

3.2.2 Never trust a used tool?

The pipeline described uses external tools as the starting point for extracting facts from a system. If this tool
somehow delivers incomplete output, the next stages of the reconstruction process could fail completely.
Therefore a testing method has to be defined. Manual testing seems the only way to go to test the
completeness in the output, however performing this with the whole system to be analyzed is an impossible
task. Therefore we perform the test with a smaller part of the system, in which we found some common
programming constructs used in the larger system to see how this code is analyzed. This is comparable with
the approach as described in section 5.1.1. The problem is that the completeness is never proven; it is only
verified for some common cases.
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3.3 The actual reconstruction process

In this section a brief overview is presented on the usage of the pipeline in this assignment. The overview
will be given per phase.

Phase | — View Extraction

The source-code of two subsystems of the Océ controller is used as input to Columbus/CAN. In
Columbus/CAN, the code is pre-processed by a pre-processor of choice. Since the source-code has been
written in Microsoft Visual Studio 6 (containing many Microsoft specifics), the compiler of Visual C++ is
used to perform all pre-processing. The included CANPP pre-processor does not deliver complete results
when used on the source code. When the processing stage of Columbus/CAN is complete, the scope for the
facts to be exported and the format in which they will be exported has to be chosen. At this stage we choose
to leave in all Microsoft specifics like ATL classes in the export and to export all elements in scope in the
GXL format.

Phase Il — View Fusion
Facts from GXL to Prolog

Columbus/CAN delivers two sets of information on the system in GXL format namely, a static structural
analysis of the program (schema graph) and possible run-time methods calls (call graph) which can be
detected by static analysis. The latter must be used with care, since not all actual calls made at run-time can
be detected by static analysis (dynamic model based on extraction, not actual runtime system traces).
Therefore the call graph represented in this GXL export must always be regarded as incomplete.

For further analysis of the system GXL (which is in XML layout) is unsuited. Therefore, both GXL files are
transformed to Prolog facts using eXtensible Stylesheet Language Transformations (XSLT) and combined to
one Prolog fact-file. Combining is possible since Columbus/CAN maintains the same unique identifier for
facts in both original files. The exact schema of nodes and edges which are present in the GXL output is
available in the Columbus/CAN documentation. This is used as input for creating the XSLTs, but not
elaborated further here. Note that the GXL files are validated using the GXLValidator from the University of
Koblenz before starting the combining process.

For the extraction of patterns, which will be detailed in the next chapter, the available Prolog facts will be the
starting point. The facts will be used for resolving a Prolog goal (example goal: find instances of the
Observer pattern in the facts). For convenience already some clauses have been agglomerated to more high-
level clauses. As an example, the extends-relation in the UML is visible from the Prolog facts when multiple
goals can be resolved. By agglomerating these goals a simpler goal resolving for example an inheritance
relation is achieved (see Figure 9). It also delivers an interface to the more low level representation of
clauses in Prolog. If this representation changes, only the sub goals have to be revised, whilst the high-level
constructs used in the heuristics remain the same.

%% agglomerated clauses

extends(Super, Sub):- extends_byid(Super, Sub).
extends_byid(X, Y):- r_hasBaseSpecifier(X,Z),r_derivesFrom(Z, Y).

Figure 9: Example of an agglomerated clause
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More of the created agglomerated clauses and the mapping from the UML to Prolog are described in
Appendix B. Also a further explanation on the clauses and their functioning is provided when discussing the
test code used for testing the heuristics.

Visualization in Rigi

Columbus/CAN also exports two files in RSF, again containing the schema and call graph. To give an idea
on how much information is represented in the schema file, the view on full Océ controller software system
is shown in Figure 10 (not just the two subsystems), by loading an unpolished RSF file. Rigi allows
performing an initial selection and filtering on the edges and nodes of the graph, which delivers some better
output.

Rigi also allows some automatic layout to be performed (align to grid, forward/reverse tree) and of course
manual layout of the graph. Performed/created layouts can be stored as view for later retrieval in Rigi. The
Rigi environment can also be extended using Tcl scripts, which can perform own-developed filtering or
visualization techniques.

TN _

Figure 10: Initial overview (as noise) of the full Océ controller software

As another example, Figure 11 shows a visualization of the Observer pattern test code which will be
discussed later (using manual layout and filtering on classes and their relations). Unfiltered this pattern also
delivers the same “noise” as before.
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Figure 11: Visualization of the Observer test code

Phase 111 — Architecture Reconstruction

In this phase, more high-level information is extracted from the facts by using Prolog on the established
facts. The working method in this phase is as follows:

1. Offer a tool in which a developer or architect is guided through a number of questions stating his
information on the system;

2. Inject this information to already created Prolog goals, in the form of parameters;

3. Execute the query and return initial results (for example a combination of classes, which have the
exact class-relations as described in literature for a pattern);

4. The developer filters the initial results, thereby specializing the query;

5. After repeating step 3 and 4, the tool delivers the end-result in the form of a visualization in Rigi and
a textual description.

Such a tool itself is mainly a wrapper around Prolog goals and a Prolog interpreter. The main knowledge of
the system is however captured in the created Prolog queries. The construction of these is presented per
pattern in more detail in the next chapter.

The visualization in Rigi should highlight the specific elements of a pattern in the same style as shown in
Figure 11.

Phase 1V — Architecture Analysis

The information created in the previous phases can be used for various purposes in this phase. One can use it
to identify targets for re-engineering or performing simple quality checks on implementations. This however
all heavily depends on the context of the project. In our specific situation, the information will mainly be
used to give a structured overview of an existing system and to allow a developer to find elements for
redesign.
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4 Detecting and visualizing architectural patterns

In this chapter, the observable properties of some architectural/design patterns in code artifacts are described.
The choice on which patterns to discuss is influenced by the used patterns in the Océ controller software. Per
pattern, the heuristic is determined by which the pattern is detected in extracted views and facts.

4.1 Preliminaries

In this section, notation and concepts used to describe the pattern detection heuristics is defined.

4.1.1 Nomenclature for describing patterns

In the section 4.2 the individual patterns to be extracted from existing software are discussed. These are the
observer ([Gamma et al, 1995]), pipe-and-filter ([Buschmann et al, 1996]), blackboard ([Buschmann et al,
1996]) and interceptor ([Schmidt et al, 2000]) architectural patterns. These patterns are chosen as a starting
point, since they are the most prominent patterns used in the system to be analyzed (assumption based on
initial design document of the software system). Per pattern, only a short description will be given on its
usage, since more exhaustive descriptions are easily available from literature (see [Garlan et al, 1994]). The
variations of patterns encountered in implementations are discussed more elaborate, since these will have
some influence on heuristics for their detection. The actual constraints used in the detection heuristics are
also described. The actual composition of the heuristics is discussed at a later stage.

Each heuristic is described using the nomenclature defined in Table 3. The nomenclature is based on a subset
of relations which can be expressed in the UML and can be discovered by analyzing the source code. It is
targeted for heuristics only and therefore not all UML elements are covered.

Symbol Description
{X}a Entity X is an abstract class
{X}e Entity X is a concrete class
{X} Entity X is an interface
{X,Y}, Entity X has an association relation with entity Y
{X,Z}, Entity X has an extends relation with entity Z
{X}m(A) Entity X contains a method A

(must also cover inherited methods)
{X}n(m}oe) | Method A of entity X has a parameter B

{X}nm}rv) | Method A of entity X returns a value of type Y
X Entity X contains an attribute C
{ }at(C) - . .
(must also cover inherited attributes)
X Entity Y may call method A of entity X
{Y’ }mc(A) . :
(must also cover inherited methods)

{X l{Y}i}imm Class X implements interface Y

Table 3: Nomenclature for description of heuristics

An example class diagram incorporating the nomenclature is shown in Figure 12. Note that in all
discussions, the ability to call a method ({Y, X}mC(A) ) must explicitly be interpreted as “may call”, since the

information is derived from code analysis and not by examining run-time traces of the analyzed system. In
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the future our proprietary nomenclature could be replaced by PreciseUML (see [pUML, 1997]), if this
initiative gains more momentum. The main goal of using the current proprietary homenclature is to provide
compact but complete descriptions of used constructions in software and to provide a powerful mapping
towards Prolog which will be used for later fact-finding. Note that the notation of this mapping is based on
UML, not on a specific implementation language. This is done since certain constructions do not exist in
certain languages. For example: Java has a clear distinction between interfaces and classes, whilst C++ does
not (dynamic interfaces through abstract classes or static interfaces).

Y

XY},

X z
Xue S X2}y
(XY sy [ATOE) {X,Z},

{{X}m(A)}p(B)

Figure 12: Example diagram of nomenclature use

When defining a heuristic for the detection of a pattern, the ranks for the detection process mentioned in
section 2.2.1 should be recalled. If the detection heuristic is too strict, meaning it is only looking for near
perfect matches, the heuristic is prone to detect nothing since most patterns will be adapted in some way in
an implementation. Therefore we introduce a heuristic consisting of the following detection elements:

1. Class relations: first the general pattern of class relations is detected based on the system facts. The
combinations which comply with the general pattern will be called candidate patterns from now.
During this phase we must be aware that certain class relations may be disturbed in the actual
system. In the heuristics we will denote this detection element as condition F, .

2. Class method count: on the set of candidate patterns the knowledge on which methods are needed in
the implementation of a pattern is applied. These details can encompass method naming, which may
deviate in the actual implementation from the original text-book description of the pattern. In our
heuristics we will limit ourselves to method count of classes. In the heuristics we will denote this
detection element as condition P, .

3. Pattern Reach behaviour: a pattern has specific dynamic behaviour, which could already be derived
from the method-calls detected during the source code analysis. By also looking for this specific
dynamic behaviour, the heuristics can be made more strict. In the heuristics we will denote this
detection element as condition P, . The concept of Reach is described in detail in subsection 4.1.2.

In the rest of the report, heuristics will always be described according to the template used in this section. A
complete heuristics is composed of the conditions for class-relations (P,) combined with the conditions for

method counts (P,) and for Reach (P;) for a chosen pattern variant. We denote a complete heuristic as
I:)1 P2 P3'

To be able to refine the heuristics for P,, one counting operation is defined:

functionm : Class
Using a class as input, function m returns the number of methods defined in a class;
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4.1.2 The Reach concept

From the static analysis of source code, specific method calls which will be made at run-time may already
come apparent. Each pattern has a specific sequence of method calls between classes, which could be
detected from extracted method-calls and their interrelations. To discuss the interrelations between method
calls more clearly, a new concept call Reach, is introduced. We define Reach as follows: consider a class C
in a synchronous system, having a method m. The Reach of method m is defined as: all methods directly
callable from the scope of the method m. The calls from m can be either inter- or intra-object. To make
Reach more tangible, the concept can be illustrated by the message sequence diagram shown in Figure 13.
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Figure 13: Example of the Reach-concept
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In Figure 13 the following Reach characteristics can be identified if mO is taken as the starting point:

1. inter-object call froma X to Y, for m1, so ml is in Reach of m0 (hote: m2 is not in Reach of m0) ;

2. internal call in X from m0 to m3, so m3 is in Reach of mO;

3. internal call in X from m3 to m4, so m4 is in Reach of m3 (but not: m4 is in Reach of m0, since m4
may not be directly called from m0);

To capture Reach in our nomenclature, we extend the latter with the following symbols:

Symbol Description
From the scope of method X, method Y is called. X and Y are methods of the
{C, X, Y},
same class C

From the scope of method X, method Y is called. X and Y are not members of
{C, X,Y, D}, | the same class C. However C is the class from where X originates and D is the
class in which Y resides*

Table 4: Extension of nomenclature with symbols for Reach

In the actual descriptions of the patterns, Reach will only be elaborated for the Observer pattern and for the
remaining patterns it will be described only briefly.

* It would be tempting to say {X, m0, m1, x},,, ={x, m0, m1},, ,

towards Prolog clauses, which handle both situations differently.

but this is not allowed due to the later mapping
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4.2  Architectural patterns
4.2.1 Observer pattern

The Observer pattern (see [Gamma et al, 1995]) is an often used design pattern to implement publish-
subscribe interaction in systems. The UML class diagram of the Observer pattern is shown in Figure 14.

Subject
Observer
+Attach(in Observer : Observer)
+Detach(in Observer : Observer) +Update()
+Notify()

ConcreteSubject ConcreteObserver|
subjectState -observerState
+GetState() : <unspecified>
+SetState() +Update()

Figure 14: UML diagram of the Observer pattern

From the normal UML diagram, a diagram for the detection of class relations is distilled (see Figure 15). The
diagram present the skeleton for a perfect match, however in the actual implementation some parts of the
design pattern may be left out. For example the abstract classes X and Y do not have to be present at all, or
could be replaced with defined interfaces or non-abstract classes. These relaxations must be easily applicable
in the heuristic without having to adapt all parts of the reconstruction pipeline.

{x}ab {Y}ab
X {x.¥3, i

X" X% {r.vl
X V' X} Y

{X}CD {Y}CO

Figure 15: Detection of class relations for Observer pattern
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{X}ab

% {Y}ab
{X.Y}, Y
+Attach?(in Observer? : Y)
+Detach?(in Observer? : Y) +Update?()
+Notify?()
{X" X} {¥.Y}k
| X' {Y I' X |}a Y'
rsubjectState? -observerState?
+GetState?() : <unspecified> >
+SetState?() +Update?(
{Y}CO
{X}e

Figure 16: Class methods/attributes detection for Observer pattern

The skeleton rules needed for the next two phases, class method/attribute detection, are shown in Figure 16.
Variability in method/variable naming (represented by “question marks” in the figure) is an aspect that
which should be refined by using input from developers. They are not meant to be patterns which should be
exactly matched in the code for example by string matching.

Possible relaxations to the heuristic for detecting non-“near perfect” implementations are:

1. X’ and Y’ are concrete classes, comprising the full functionality of X and Y. X, Y and their relations

with other classes are absent in this case;
2. The methods of X and Y can be defined as interfaces, which are implemented by X’ and Y’

respectively;
3. GetState and SetState do not need to be explicitly defined;
4. The definitions can be spread over multiple files or in one file;

These relaxations are represented in Figure 17 and Figure 18 (please note all phases for detection are
represented in one figure):

X'
-subjectState? {Y' X .} Y
+GetState?() : <unspecified> ! a >
+SetState?() -observerState?
+Attach?(in Observer : Y) +Update?()
+Detach?(in Observer : Y)
+Notify?( {}e
{X}e

Figure 17: Observer pattern with only concrete classes
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{X}
«interface»

X

+Attach?(in Observer : Y')
+Detach?(in Observer : Y')
+Notify?()

{X I ) X}impl

X
-subjectState?
+GetState?() : <unspecified>

{Y" x'}a

'k

«interface»
Y

+Update?()

{Y"Y}impl

Iz

+SetState?()

+Attach?(in Observer : Y)
+Detach?(in Observer : Y)
+Notify?()

{X }CO

-observerState?

+Update?()

{Y}CO

Figure 18: Observer pattern using interface definitions

Interesting to see is that Figure 16 and Figure 18 seem to contain enough discriminative items for detection,
however the variant in Figure 17 however does not. When just looking at class relations in the first stage,
numerous instances of this pattern are prone to be found since this construct contains little discriminating

aspects.

Mirror-symmetry is also a problem in detecting patterns: during the stage of class relation detection or even
during class method detection;” the pairs Observer-ConcreteObserver and Subject-ConcreteSubject can be
mirrored on the axis between these pairs. This is possible since associations are detected as being undirected
for weaker variants of the pattern. Also the count for the number of methods a class contains, which
normally poses a restriction to the result-set, is blurred by additional non-pattern related methods in a class.
Figure 19 shows a abstract view on the mirror-symmetry which can occur during the detection of the

Observer pattern.

{X}ab C {Y}ab
X {x,Y}, !

X", X}, {r'.Y}
X V', X'} Y

{X}CO {Y}CO

Figure 19: Example of mirror-symmetry in the Observer pattern
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So far we have only looked at the static model of the class and not discussed the direction of calls between
the classes in the pattern. In Figure 20, a snapshot of the dynamic behavior of the Observer pattern is shown.
The Attach and Detach calls are straightforward, but the interaction for setting the state information of a
Subject and updating corresponding Observers can deliver rules to discover an Observer pattern in facts
describing a system.

Observer Subject ConcreteSubject ConcreteObserver

i | Attach() |
3 Attach() J ]
u |
|
|
|
|
|
|
]

|
|
SetState() !
‘ }D
Update() {T |
‘ Update() 1
} GetState()
| < :
|
K- mmmmmmmemnee Ao H i
‘ D
|
|
|
| |
| |
1 |
|
|
|

Legend
. Method-call start/endpoint

Detach()
P Detach() ﬁ
|

i) |

Figure 20: Snapshot of the dynamic behavior of the Observer pattern

Reach of a method

As shown in Figure 20, the Reach of methods will be regarded as a criterion distinguishing pattern instances
from non-patterns. When looking closer to the interaction between the classes, it can be decomposed in the
following way to determine the Reach required for specific methods:

4. one inter-object call from a ConcreteObserver to a ConcreteSubject, for SetState
no Reach known;
5. one inter-object call from the ConcreteSubject to the Subject to start the Notify procedure
Notify is in Reach of SetState;
6. one inter-object call from the Subject to the Observer, for Update
Update is in Reach of Notify;
7. one inter-object call from each registered ConcreteObserver to the ConcreteSubject, for GetState
GetState is in Reach of Update;

The actual Reach-characteristics of the Observer pattern can now be captured as:
{Y ', SetState ?, Notify ?, X }..  {X ', Notify?,Update?, X},. {X,Update?, GetState?,Y}

ext ext ext

All this results in the heuristics for the Observer pattern.
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Heuristic for Observer pattern

Class relation detection®

perfeCt match H {X}ab {Y}ab {x '}co {Y '}co {X J X I}e {Y '!Y}e {X IY}a {Y '! X I}a
concrete classes R {X}, {Y}, XY}, {Y.X},
interface variant RL {X}| {Y}| {X '}co {Y '}co {X Il X}impl {Y IIY}impI {X I’Y '}a {Y '! X '}a

Class method detection

Based on the method calls between the classes which are detectable the following should hold for the perfect
match:

Let S; be a set of recorded callers in the facts of a method
; {X 1Y}mc(update?) Sl {x 'nOtify 7}
; {Y " X '}mc(GetState?) SZ {Y '..Update 7}

For the heuristics this results in the following constraints the number of method in the participating classes, and
the interaction sequence between these classes:

perfect match Pb mX) 3 m(X) 2 m(Y) 1 m(¥Y) 1
P, {Y' SetState? Notify?, X },, {X' Notify? Update?, X},
{X,Update? GetState?,Y},,,
concrete classes P, m(X) 5 m(Y) 1
P, {Y,SetState?, Notify?, X},,, {X, Notify?,Update?},,
{X,Update?, GetState?,Y}.,
interface variant P mX) 3 mX) 5 m(¥) 1 m(¥) 1
P, {Y' SetState?, Notify?, X },, {X', Notify? Update?},,
{X',Update ?,GetState?,Y '},

S Note: all variables which are inferred must be unique. There rules maintaining the non-equality of variables must be
added to each goal (for example X not equals Y etc.) as conjuncts. These have not been included here to maintain the

readability of the goals.
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4.2.2 Pipe-and-filter

The pipe-and-filter pattern is a well-known architectural pattern, often used in systems performing data
processing. Since the pattern is often used, the descriptions of the pattern in literature have become very
uniform and formal. The main characteristics of the pattern are (see also Figure 21):

- A pipe component has a source and a sink, and the pipe is responsible for relaying the data from
source to sink. The pipe also should expose an interface to allow filters which read/write form/to the

pipe and to close the pipe;
- A filter component has an interface for either reading or writing to a pipe or both, and an interface

for closing pipes it writes data to.

sink source

Filter i ‘ @ >|I Filter i+1
Pipe

Figure 21: Pipe-and-filter example

The pipe-and-filter pattern is characterized by the UML diagram presented in Figure 22 , from which the
detection rules can be derived (see [Garlan et al, 1994]). These figures only comprise the static form of a
pipe-and-filter pattern in source-code, not an actual instantiation of multiple pipes and filter at run-time.

Pipe Filter P {P,F}, F
+read() {P’ X }a1 +read?()
1 1
{P.Y},
1 1 1 1
Data Source Data Sink X Y
+read() +write() +read?() +write?()

Figure 22: UML diagram of the pipe-and-filter pattern

Looking at the functioning of a filter in more detail, we see that the computation function inside the filter is
missed. The earlier description from [Garlan et al, 1994], does not take the internal computation of a filter
into account, but just the read and write methods so an extension is needed to the Filter class. In a pipeline,
when pipes are not explicitly used a predecessor or successor filter of the current, one can serve as
DataSource or DataSink.

proc filter(in: IDataSource; out: IDataSink)
varx,y : T,

x:=read(in);

y:=f(x);

write(out,y);
corp

Figure 23: Pseudo-code of a filter component
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Taking only the static model of the pattern into account poses a serious restriction on detection. There are
some variations of this pattern, which mainly vary on the behavior of filter, the data-type of the streams
between filters (see [Rongviriyapanish et al, 2000]) and the topology of the pipe-and-filter network. The
main variations are described in Table 5.

Name ' Description |
Typed pipes requires data passed between two filters has a well defined type
Blocking filter the filter component cannot receive data while performing the computation
Non-blocking the filter can receive data while performing the computation

(requires internal filter buffering strategy)
Pipelines topology limited to linear sequences of filters

Bounded pipes

pipes can contain only a specific amount of data

Table 5: Variations of the pipe-and-filter pattern

For the assignment the focus is on pipelines with blocking behavior, since non-blocking variants require
more dynamic information on the system to be captured in the facts. Pipelines with blocking behavior are
typically implemented as push- or pull pipelines. In the push-variant a data-source and filters push data to be
modified to the next component which is to do the processing. In the pull-variant, the next component is
pulling data from the previous component in a pipeline. The pulling component remains blocked until data is
available form the previous component. These two scenarios are depicted in Figure 24.

mirror-axis

DataSource (push)

Filter1 (push

Filter2 (push) ‘ DataSink ‘ ‘ DataSource ‘ Eilter1 (pull
T
I

write

read

‘ Filter2 (pull

DataSink (pull)

read()

|
I
i
i
i
I
i
I
i
I
i
i
|
write !
2 i {
|
i
|
i
|
I
|
I
|
I
|

Figure 24: Example of a push and pull pipeline from [Buschmann et al, 1996]

read

,,,,,,,,,,, - 7]
Message1
*********** -

In Figure 24 two mirror axis’s are shown, to indicate the mirror symmetry of the pattern. If for inference, we
replace all class names by variables to be resolved, push and pull pipelines will be detected with the same
heuristic. The only way to discriminate between the two variants would be to take into account the time
when a calculation starts, in case of a push pipeline computation starts earlier then in a pull pipeline.
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L] Legend
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‘ Method-call start/endpoint

Reach of a method

Figure 25: Detecting pipelines

More formal descriptions of pipe-and-filter and event system architectural patterns are presented in [Abowd
et al, 1993].

Heuristic for pipe-and-filter

For the heuristics, the detection of push and pull pipelines implies that we need a detection function for a
pipeline of arbitrary length N from a given start class. The current nomenclature is extended, with a function
named Pipeline to fulfill this task.

proc Pipeline(s, e, N)
if N O (y:y Classes:{s,vy},)
i N:=N-1
;e=e y
; return Pipeline(y, e, N)
I N O (y:y Classes: {s,y},) return
| N 0 e return
| N 0 e return e
fi
corp

Class relation detection

perfect match P {X}k {}o {P}. {F}o {P.X}, {P.Y} {P.Fk

Class-method detection
perfect match P, mX) 1 m¥) 1 mP) 1 m(F) 2
{F.read?,read ?,F, .}, (0 i N for pipelineof length N)
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4.2.3 Interceptor

The Interceptor pattern [Schmidt et al, 2000] is one of the main patterns used in Grizzly, a experimental
subsystem of the Océ controller to be examined. The Interceptor architectural pattern allows services to be
added transparently to a framework and triggered automatically when certain events occur. The pattern has
major similarities with the Observer pattern described earlier. The main pattern used in the Grizzly
subsystem is a slight modification of the original Interceptor pattern (see Figure 26). The only modification
is the absence of the class Concrete Framework, which usually represents a subsystem on which the
Dispatcher is active. In the Grizzly case, Grizzly itself fulfils there role of the Concrete Framework. The
used Interceptor pattern has a large resemblance with the observer pattern; therefore we can expect
duplicates in the detection.

Context Application Context Application
| g 3 0.1
1 Qo 0] .
! g 0.1 a
| 8 3
: < a
! <

Concretelnterceptor
ConcreteFrameworkl Concretelnterceptor

<<creates>>

0.1

™
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

i i <<implements>>
register <<implements>> register
. . .
Dispatcher «interface» Dispatcher I<<i:1terfacte»
Interceptor 0 nterceptor
notify P notify
ORIGINAL PATTERN USED PATTERN

Figure 26: Class diagrams of the original and used Interceptor pattern

Figure 26 is refined in Figure 27, were the relations and methods relevant for each class are made explicit.
For the Interceptor pattern no attributes per class have been explicitly defined. Also no explicit calling
sequences are found in literature for the Interceptor pattern, therefore we choose not to include the dynamics
of this pattern. However since the Interceptor has large resemblances with the Observer pattern, we use its

Reach characteristics as basis for the Interceptor pattern (see Figure 28). The constraints for method counts
per class are also unclear.
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Figure 27: Relations in Interceptor pattern

Application Concretelnterceptor Dispatcher Context
| create() i i }
[ g | |
| attach() | !
LH } event()
i callback()
i _ i Legend
i ; U o Method-call start/endpoint
} } i Reach of a method
Figure 28: Snapshot of the dynamic behavior of the Interceptor pattern
This result in the following heuristics for the Interceptor pattern.
Heuristic for Interceptor pattern
Class relation detection
perfect match R {I}, {C,1}, {b}, {D.Ci}, {D,CF}, {CF,C} A{CI,C},
used pattern R {l}, {C,1}, {b}, {D.Ci}, {D,C}, {CI,C},

Class method detection

perfect match P mC) 2 mA) 1 mD) 1 m(l) 1
P, {C,event? callback? D}, {D,callback? callback? Cl},,

ext

{ClI,callback ?, getValue?,C}

ext
used pattern P mC) 2 mA) 1 miD) 1 m(l) 1
P, {C,event? callback? D},, {D,callback?,callback? Cl}

ext ext

{ClI,callback ?, getValue?,C}

ext
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4.2.4 Blackboard

The blackboard pattern is often used in the context of Artificial Intelligence systems, but not that often in
regular Information Systems. The blackboard is typically used in situations were the calling sequence
between system components is not known beforehand. This probably explains the lack of a formal
description of this architectural pattern in literature. In the implementation of the Océ controller this pattern
iS very prominent.

The blackboard is a typical asynchronous pattern. Known variants are the passive and active blackboard. In
the first variant, components are not informed of changes on the blackboard which are of interest to them. In
the active variant, components are actively notified of changes on the blackboard in a publish-subscribe
fashion.

The typical core of a blackboard system is shown in Figure 29. The Control class can iterate over the
available Knowledge Sources. When Control iterates over the sources, the pre-condition required for each
individual source’s execAction method is checked by calling execCondition. The Control class determines
the behavior for calling the execAction methods. For example it could first check all sources, and then
according to knowledge on priorities of sources execute the action of a specific source or it could call the
first source for which it encounters a satisfied precondition.

Blackboard Knowledge Source
-solutions
-controlData +updateBlackboard()
+inspect() 1 1.*  [+execCondition()
+update() +execAction()
1 1
1
Control
1 +loop()
+nextSource()

Figure 29: UML model of the Blackboard pattern

In Figure 30, the detection rules for the Blackboard pattern derived from the UML model are shown.

X Y
-solutions? {X ’Y}a
-controlData® +updateBlackboard?()
+inspect?() 1 1.* [+execCondition?()
+update?() +execAction?()
1 1.% 7
1 {Y 1 }a
z
+loop?()
{X ) Z}a 1 +nextSource?()

Figure 30: Basic detection rules for Blackboard pattern

In this figure it is interesting to see that the relation between the Control and Blackboard is exactly one-to-
one, which thereby puts a restriction on the search-space. This should be modeled in the heuristics.
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Regarding blackboard variants, passive and active blackboard variants are described in literature. In this
assignment only passive blackboards are discussed.

Figure 31 gives a snapshot of the dynamic behavior of the blackboard pattern. From this, the Reach
characteristics required for the pattern can be described as follows:

Control Blackboar: KnowledgeSource

[
|
|
|
1
inspect() }
|

inspect u }
,,,,,,,,,,,,,,,, i
|

|

|

|

execCon‘dition()

EL true/false D
_________________ e

|
}
|
nextsource() I
|
|
|
|

| execAction() |
i inspect()
I inspect
i -
|
| compute()
|
} update()
1 Legend
i e __uEd_afe__ SN updateBlackboard() . Method-call start/endpoint
|
i L L Reach of a method
| | |
Figure 31: Snapshot of the dynamic behavior of the BlackBoard pattern
Heuristic for blackboard pattern
Class relation detection
perfect match R {X}, {Y}, {Z}., {X.Y}, {v.Z}, {X.,Z},
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Class-method detection stage

Let S, be a set of recorded callers in the facts of a method

M, {al{X}ut M, {a{¥},u}.M, {al{Z}x}

Y X ety S1 {€XecCondition ?, execAction ?, updateBlackboard 7}
Y X ewpiaeny Sz {updateBlackboard ?}

AZY Yocerecaciony S5 {loop 2}

{Z,Y Focereccondgiiony ~ S4 {100p 7}

From the above reasoning, we can see easily that S, S, and S, S,. By using S; S,, we can
identify the methods execAction and execCondition with more certainty. With S, S, a distinction can
be made between inspect and update. Also S, S, {updateBlackboard ?}, so this can give us an
indication on the most likely method(s) to be updateBlackboard.

perfect match P, mX) 2 m(Y) 3 m(Z) 2
P, {Z,execAction?,inspect?,Y},, {Y,execAction? compute?}
{Y,execaction?,updateBlackBoard ?}

{Y ,updateBlackBoard ?,update?, X}

ext

int

int

4.3 General considerations for the heuristics

4.3.1 Implementation styles

In the previous sections, the patterns were discussed as being disjoint, but in real-life implementations one
can imagine heterogeneity can occur. An example of this is the “active blackboard”, which combines the
Observer and Blackboard constructions. The blackboard in this case actively notifies knowledge sources and
control objects of changes on the blackboard. The heuristics in their current form will not deal with this
heterogenity from start, as first their regular pure result is to be measured/validated.

Obscure constructions in code will also be a pitfall for the initial heuristics, if too much detail would be paid
to implementation detail (for example what is the internal structure of a method). Since the heuristics mainly
operate at the high-level of static UML structures, obscure constructions are likely to have light to medium
influence on the detectability of a pattern.

4.3.2 Generic relaxation strategy for the heuristics

In the previous discussion, the focus was on detecting the best match and the known variants of a pattern in
literature. However also non-described variations can occur, due to normal relaxations applied to patterns by
developers. An example of such a relaxation is a developer replacing originally intended abstract classes in a
pattern by concrete classes.

The heuristics always have a set of clauses to detect the best match, however all variants have to be created
manually. This however could be automated, by using an automatic relaxation algorithm on the best-match
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clause. Below a proposal” is done for the steps in such an algorithm. The algorithm could not only be used
in the Prolog environment, but also when transforming visual UML models to Prolog clauses in an
automated way. In the latter case weaker variants of the pattern would be generated automatically.

Starting point: P, clause for class-relation detection
Relaxation algorithm

1. Forall occurrences inthe P, of {X},, |
walkthrough the following paths in sequence (each step is a specific relaxation of P,):
1.1. (concrete classes variant) For all occurrences of {X} .,
-replace {X},, by ({X},, {X})
1.2. (interface variant) For all occurrences of ({X},, {X},) or {X}, and {..., X},,
-extend by {X}, and extend all {..., X}, by {....{X};}

impl
Details of steps ( indicates “replace with™)
Step R1.1 {X}ab ({X}ab {x}co)
Step R1.2 ({x}ab {X}co) ({x}ab {X}co {X}|)

. XY (XY, {Xk) {V.X%) ({XE {AX}ke))

As an example we apply the relaxation on the ‘best-match’-clauses of the Observer pattern heuristics.

Observer pattern relaxation
R
R1.1 R1.2
{x}ab {Y}ab {X ' }co {Y ' }co {X ' vx}e {Y ' vY}e {X’Y}a {YI !X ' }a
{ applyR1.1  widening on constraints {X}, and {Y},}
({X}ab {X}co) ({Y}ab {Y}co) {X ' }co {Y I }co {X ' vx}e {Y I vY}e {X!Y}a {YI !X ' }a

{ applyR1.2 at first constraint widening, but also narrowing by replacing extends by
implements constraint when needed}

Xk X}o {X}) (@}o ko {3 XY {3 ((Xk {X}, {X'Xk)
(XY (X' AXElng)) (Y}l Y3 {V0YR) (Y% (VYRhe)) {X0YE YL X

Since this algorithm is only an example, many things are to be perfected. It clearly needs more detail
regarding large class hierarchies and how to incorporate methods counts and Reach in the algorithm.
Regarding large class hierarchies: if R1.1 would be applied to a large class hierarchy, the weakest variant
would be generated immediately. This process can be made more gradual by looking at the depth of a class
in the class hierarchy.

™ The algorithm is only presented as “food-for-thought™, since it could provide large benefits for future work. It has not
been investigated further during this assignment.
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4.3.3

Mapping of heuristics to Prolog

For mapping the nomenclature of the heuristics to Prolog queries, a mapping is defined in Table 6.

Symbol Description Prolog clause
{X}. Entity X is an abstract class isAbstract(X)
{X}. Entity X is a concrete class isConcrete(X)
{X} Entity X is an interface isInterface(X)
{X,Y}, Entity X has an association relation with entity Y assoc(X,Y)
{X,Z}, Entity X has an extends relation with entity Z extends(X,Z)
ntity X contains a metho contains(X,isMetho
{X} Entity X i hod A ins(X,isMethod(M
A
A (must also cover inherited methods)
{{X}n(a)}o(8)| Method A of entity X has a parameter B contains(X, M,hasParameter(X,B))
{{X}n(ayde(r) | Method A of entity X returns a value of type Y returns(X,A,Y)
ntity X contains an attribute contains(X,isAttribute
{X} Entity X i ibute C ins(X,isAttribute(M
c
e (must also cover inherited attributes)
ntity Y may call method A of entity m_call(X,Y ,isMetho
{YX} Entity Y Il method A of entity X 11(X,Y ,isMethod(M))
, A
me(A) (must also cover inherited methods)
{X Y }idimn | Class X implements interface Y implements(X,Y)
{C X Y}- From the scope of method X, method Y is called. X and Y are methods of r_int(X,Y,C)
nt the same class C
{C, X ,Y ’ D} From the scope of method X, method Y is called. X and Y are not members | r_ext(X,Y,C,D)
1 of the same class C. However C is the class from where X originates and
D is the class in which Y resides

Table 6: Mapping nomenclature to Prolog clauses

As could be deducted from Table 6, the typing is relaxed as much as possible in the agglomerated Prolog
clause. For example the underlying clauses for isAbstract(X) also check that X actually is a class. By not
exposing these checks at top-level of the clauses, errors can be prevented once the clauses at a lower level

are valid.

As an example this mapping will be applied to the class relations shown in Figure 16 for the observer

pattern:

Relations in figure
Prolog expression

XY Yle X} Ve

X5 XE {YWYE XYY VWX
> isAbstract(X), isAbstract(Y), isConcrete(X’), isConcrete(Y’)

extends(X’,X),extends(Y’,Y), assoc(X,Y), assoc(Y’,X’).

Figure 32: Example mapping of nomenclature to Prolog
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4.3.4 Performance optimizations

The mapping of the heuristics towards Prolog looks like a simple one-to-one mapping (the general
description of CSPs in section 2.2.2 also has this deceiving look). However due to the large-state space the
CSP is resolved on, the performance of the detection is a serious problem. To improve performance several
techniques'" can be used, namely:

1. use indexing of functors and their arguments of the used Prolog implementation;

2. optimizing order of goals used in the heuristics based on some assumptions for example #methods
>> #classes. This strategy can very roughly be described as: try spawning the smallest branch
needed to prove a goal, and prevent instantiating the full universe of data to obtain the proof;

3. supportive to technique 2: prune the branches created during search using Prolog’s “cut” or “if then
else” facilities during resolution, when proof will fail for certain based a current partial proof;

4. optimize the fact-database to suit the techniques above (not elaborated further).

Technique 1 is making more explicit use of the indexing mechanism in the SWI-Prolog implementation. By
default the SWI implementation indexes the functor and its first argument (for example of the fact a(b,c,d)
the index contains a(b)). In our case this is not optimal since the first argument of each functor in our case is
a unique id of an entity. If we combine this fact with the fact that many facts are recorded of one entity using
the same functor (for example r_contains(a,b) .... r_contains(a,z)), it renders indexing on the first argument
useless on our fact-database. So indexing on the second element and the functor is more useful. If explicit
indexing commands are not to be used, one can rewrite the facts to take optimal advantage of the default
indexing (r_contains(a,b) .... r_contains(a,z) becomes r_contains(b,a) .... r_contains(z,a) ).

As an illustration of technique 2, consider the following example for a goal to detect extends-relations in the
facts:

1. extends_byid(X,Y):- isClass(X),isClass(Y),r_hasBaseSpecifier(X,Z),r_derivesFrom(Z,Y).
2. extends_byid(X,Y):- r_derivesFrom(Z,Y),r_hasBaseSpecifier(X,Z),isClass(X),isClass(Y).

Although both appear similar when considering just the terms as being pure conjuncts, the branching
behavior during resolution is different. Consider that the following relation holds on our fact database:
#r_derivesFrom << #e_type (X,’Class’) << #r_hasBaseSpecifier. Now take example 2: since the conjuncts
are evaluated lazy, it becomes apparent to place the goal r_derivesFrom as the start goal, since this is likely
to cause the narrowest branch. However placing r_hasBaseSpecifier second does not seem immediately the
smartest choice, since their number exceeds the number of classes. But variable Z is already bound in the
first goal (r_derivesFrom) , so the solution space for r_hasBaseSpecifier is immediately limited to the
instance of Z made in the first goal. From these facts it can easily be deduced that example 1 is much slower
in normal cases.

Technique 3 means using an if .. then .. else construction of Prolog. For example the goal below first
establishes a result of an observer pattern based on the unique identifiers of attributes, and after successful
detection starts resolving the names for the found entities. If no instance is found, it fails.

observer(0O,S,CO,CS):-(extends(XCO,X0),extends(XCS,XS),neq(X0,XS))*->
(c_name(XS,S),c_name(X0O,0),c_name(XCS,CS),c_name(XCO,CO0));fail.

" The performance optimization can be made based on profiling of the Prolog program, which is supported in the used
SWI-Prolog implementation.
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4.3.5 Ranking in pattern detection

Depending on the approach to the heuristics, false-positives or false-negatives may be included in the result-
set. In this solution, the choice is made to emphasize on minimizing the number of false negatives (non-
detected instances of the pattern). This since the heuristics are supposed to aid users in finding the patterns
by using automation. If a pattern goes undetected in this stage, the pattern will not surface in the rest of the
process. This seems in conflict with the more strict heuristics discussed in the previous sections (we would
increase recall, but lose precision). Introducing a mechanism of ranking could solve the clash between the
two. Consider the following approach:

Let X Y Z W beaProlog goal, where each term is a detection of the same pattern under the following
conditions:
1. the first term is the strongest condition to which the pattern instance must conform;
2. all following terms are decreasing in restrictiveness, ultimately leading to the last term which aims at
detecting the weakest match.

Let W introduce a side-effect in the Prolog output like:
{{a, ‘Subject’,25},{b, ‘Observer’, 25} {c, ‘ConcreteSubject’, 25},{d, ‘ConcreteObserver’, 25}}

The meaning of the side-effect is: in term W of the goal, entity a was detected in the role of the Subject in the
Observer pattern. Since this detection took place in the weakest term, the entity-role relation receives a rank
of 25. Under the assumptions that Z is a stronger condition then W, Z can produce a similar side-effect of
which the rank in this stage could be 50. The strongest condition (X in our case) has rank 100. When
omitting P, from a heuristic the rank is deduced by 10, for omitting P, 5 is deduced. When switching to a

new weaker pattern variant 10 is also deduced. Of course if required the ranking can be made more fine-
grained.

False-positives are regarded as less damaging, since these can be filtered out by human aid or by refining the
result-set afterwards by using for example statistics on the ranking or metrics (in general: there are means to
increase the precision within the result-set).

interceptor_best_plp2p3_100(IN,1,CIN,CI,DN,D,CON,CO,CF,CFN):-
interceptor_best(IN,1,CIN,CI,DN,D,CON,CO,CF,CFN), Best {P1,P2,P3}
m(l,1),m(C1,1),m(D,1),m(C0,2),m(CF,1),
r_ext(F1,F2,C0,D),r_ext(F2,F3,D,Cl),r_ext(F3,F4,CI,C0),
R=100.

Weaker {P1,P2,P3}

interceptor_best_p1p2_90(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN):- Best {P1 P2
interceptor_best(IN,1,CIN,CI,DN,D,CON,CO,CF.CFN), est{PL.P2}
m(1,1),m(cl,1),m(D,1).m(CO,2),m(CF,1),

R=90. restrictiveness Best {P1}

- of clauses
interceptor_best_p1_85(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN): -

interceptor_best(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN),
R=85.

interceptor_ooti_plp2p3_75(IN,1,CIN,CI,DN,D,CON,CO,R):-
interceptor_ooti(IN,1,CIN,CI,DN,D,CON,CO),

m(l,1),m(Cl,1),m(D,1),m(CO,2), > stage in detection
r_ext(F1,F2,C0,D),r_ext(F2,F3,D,Cl),r_ext(F3,F4,Cl1,CO),
R=75.

interceptor_ooti_plp2 65(IN,I1,CIN,CI,DN,D,CON,CO,R):-
interceptor_ooti(IN,1,CIN,CI,DN,D,CON,CO),
m(1,1),m(CI,1),m(D,1),m(C0O,2),
R=65.

interceptor_ooti_pl_60(IN,I,CIN,CI,DN,D,CON,CO,R):-
interceptor_ooti(IN,I1,CIN,CI,DN,D,CON,CO),
R=60.

Figure 33: Example of using ranking mechanism in Prolog clauses
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4.4 Basic visualization

This section discusses roughly how detected patterns will be visualized in the Rigi environment and which
pre-processing is required to obtain a good visualization. Although visualization was not a primary concern
in the assignment, some attention has been paid to it since it makes the detected patterns more tangible.

4.4.1 Joining detected instances of patterns

The search in Prolog only delivers separate instances of detected patterns. To create a more understandable
visualization, it is required to correctly combine the found instances in a view. For this visualization it is
important to define a “centre of gravity” in a pattern to be visualized (for example for a pattern of typed
pipes it is logical to take a pipe as the centre, since all filters will use the same type of pipe).

4.4.2 Using Rigi domains

After the joining of the detected patterns, visualization is performed in Rigi. To visualize patterns more
clearly, a separate domain containing the nomenclature of the specific patterns is created in Rigi. A domain
can be regarded as a configuration file which tells Rigi which nodes and arcs can be present in a graph, and
also which attributes and colors should be related to them. Figure 34 shows the domains as they were used
for the pattern visualization. Some of the associations found in specific patterns have been made explicit (for
example “observers” and “notifies” from the Observer pattern). Some general definitions like “class” and
“attribute” are also left in for convenience to visualize non-pattern nodes.

o) x| <:: General - 1 Rook
- " Subject " Filter

- 8 " Datasink

- 8 " Datasource

" Operation " Control " Collapse

o 9

o 9

[ & =10 x|

" any " Observes  Writes

" Association ¢ Notifies  Uses
" Generalization ¢ Controls ¢ composite

" Dependency ¢ Updates & level

" Realize " Reads

Figure 34: Rigi domains for pattern visualization

To provide some more guidance in the graph editor also collections of patterns have to be made, which
contain all the detected instances of a pattern. In this way one can select for example all the children of the
Observers node which delivers all found instances of the Observer pattern.

Since these instances will contain “false-positives”, which currently have to be filtered out manually,
additional markings for instances are required to support human validation. Initially an instance is typed as
‘unchecked’, and by human validation an instance can be ‘rejected’ or ‘accepted’ by changing the type of the
instance. This can be done by changing the properties of a node in the visualized model.
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5 Validating the detection heuristics

The detection heuristics defined in the previous chapter will need to be validated with regard to their
detection capabilities. In this chapter, the tests needed for testing the heuristics are described including their
results. For testing the heuristics two methods will be described, namely the test using ground-truth and a
test using guinea pig software.

5.1 Validation approaches

5.1.1 Using “ground-truth”

In this approach, the steps will be taken to validate the heuristics using the description of the patterns found
in literature. First a pattern to test on is implemented as a standalone pattern in separate source code files
(read: not embedded in a larger system) as described in literature. This is called the ground-truth code. On
this implementation, the detection heuristics are used which must detect the use of the pattern from the facts.
After this stage, the same approach is taken for the described variants of patterns in which case it also must
detect the pattern. For deviations from the original and described pattern variants detection is not guaranteed,
but using ground-truth should give some directions on how to deliver some result for these deviations.

The ground-truth is created as follows:

1. Re-using the C/C++ implementations/designs of patterns from literature (see [Gamma et al, 1995],
[Buschmann et al, 1996]). The static structure as described in literature is implemented, but also a
main program loop implementing the most common dynamic interaction between the components;

2. Implementing the described variants with regard to their static structure, using the previous step as a
starting point;

The source code of the ground-truth of the Observer pattern is included in Appendix C, to illustrate the later
example. The Observer implementation originates from [Gamma et al, 1995], the pipe-and-filter and
Blackboard implementation are based on [Buschmann et al, 1996]).

As an extra, a test introducing possible “false-positives” must also be created. This is for example an
implementation with only the class relations of an Observer pattern, but containing no actual functionality of
the real pattern.

5.1.2 Using “guinea pig” software

In the case of ground truth, the pattern is implemented completely as stand-alone. Therefore this is only an
initial validation of the heuristics, since in regular applications the patterns are usually embedded in a larger
software framework. Detection of the patterns should also function in this case. To test this case apart from
the controller software to be analyzed, so-called “guinea pig” software can be used. For “guinea pigs” there
are several options, namely:

1. A piece of Open Source software, in which patterns are used and which has a reasonable size in
KLOC for manually recovering the used patterns as validation of the heuristic;

2. A system in which the patterns from the ground-truth step are embedded and that these patterns are
known in the system documentation;

The first option is to be favored since it contains the implementation of the patterns by someone else than the
author of the heuristics, so new variations may pop-up.
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5.2 Validation results

For the validation, the ground-truth approach is chosen due to time constraints on the assignment; the
validation was performed according to the detection sequence described in section 4.1, and is also described
according to this structure. The leading example will be the Observer pattern, but the same method is applied
for the other patterns. First observations made during testing with the Observer pattern which are also
applicable to the other patterns are discussed. After this, specific findings per pattern are discussed.

5.2.1 General observations

Class relation detection

For the detection of class relations, we use a Prolog rule. Below is an excerpt which captures the core of the
rule. Note that the variables are abbreviations of the classes in the Observer pattern, for example CO
represents the concrete observer class. The X-prefix to variables is only used for using the id as identifier for
resolving the goal, guaranteeing uniqueness.

setof(O:CO:S:CS,(extends(XCO,X0),extends(XCS,XS),neq(X0,XS),e_name(XS,S),e_name(X0O,0),e_name(XCS,CS),
e_name(XCO,CO), assoc(XCO,XCS)), List).

Figure 35: Prolog excerpt for detecting Observer pattern

Observe the tests regarding inequality of the classes (neg-clause), since these are required to rule out the
following constructions:

1. multiple inheritance (as example imagine a clockTimer class being a subject for some GUI elements
but also being an observer of a time-server);

2. concrete observer and subject which inherit from one base-class, the latter comprising both the
observer and subject functions.

At the start of the validation, some “awkward behavior” was discovered in the given code for the Observer
pattern from [Gamma et al, 1995]. The Subject class in the UML diagram is presented as an abstract class
(see Figure 14). However the Subject class in the given implementation in C++ is abstract, only in perception
but not by the language definition of C++. If the class had contained any pure virtual function it would be
regarded as abstract. However the example from [Gamma et al, 1995] only has a constructor of Subject
declared as protected, which prevents it from being instantiated directly. But this does not make the class
abstract. If the Subject-class has to be made abstract by using the C++ definition of abstract, the advantage
now present for inheriting the Attach, Detach and Notify-methods would be lost. This shows that the
implementation language can have serious side-effects which one might not expect.

The main observation of this test is that detecting associations will become a problem, since it is represented
undirected in the fact-database. In the ground-truth case the classes are detected correctly, when taking into
account that the Subject-class is not abstract (implies leaving isAbstract(X) out of the rule). Regarding the
detection of variants the largest problem lies in detecting the concrete class variant (see Figure 17). Only one
class relation is expressed in this case, which implies no real restrictions on the search space is set (numerous
other constructions will give initial “false-positives” to this detection pattern).

Another complication for detecting associations, is that calls to inherited methods can not be detected in the
used static analysis. For example in the Observer pattern, the methods of the abstract class Subject are called
due to inheritance (e.g. the Notify method is called on the ConcreteSubject, which actually means calling the
Notify method of the Subject). During analysis only the call to the concrete class ConcreteSubject is
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recorded. Using static analysis also seems to have a blind spot regarding implicit typing. The example shown
in Figure 36 is used to illustrate the problem. The example originates from the implementation of the
Blackboard ground-truth.

void Control::loop() { void Control::loop() {
int count = _knowledgesources.size(); int count = _knowledgesources.size();
int i; int i;

KnowledgeSource* ks;

for (i = 0; 1 < count; i++)

{ for (i = 0; 1 < count; i++)
if(_knowledgesourc