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A. Abstract 
 
During the design of a software system specific architectural patterns are planned to be applied in the 
software to be built. During the actual development of the software however, deviations from the initial 
envisioned architecture can occur, which are not desirable. At a certain stage during the development, it is 
desirable to identify the mentioned deviations in a software system’s implementation and choose how these 
deviations must be handled during the rest of the development phase. Legacy software system also often lack 
documentation on applied architectural patterns in the software (some even have no documentation at all). 
 
For these problems, the technique of architecture reconstruction can serve as an aid. Architecture 
Reconstruction (abbreviated as AR) is defined as the process of obtaining the “as-built” architecture of an 
implemented system from an existing (legacy) system. The case study performed describes an architecture 
reconstruction process performed on two subsystems of an available software system, one having up-to-date 
“as-designed” and “as-built” documentation whilst the other subsystem’s documentation was incomplete. 
The architecture reconstruction process was performed using the proposed phasing by the Software 
Engineering Institute of Carnegie Mellon University. The goal of the reconstruction process was to visualize 
architectural patterns used in both subsystems based only on the analysis of facts from the source code of the 
subsystems (no runtime traces included).  
 
In the process an architecture reconstruction pipeline was defined, using external tooling for fact extracting 
and basic visualization.  Also Prolog heuristics (modeled as constraint satisfaction problems) to detect 
patterns and TCL scripts for an optimization of the visualization were created. The heuristics detect the 
Observer, Interceptor, Pipe-and-Filter and Blackboard pattern and some basic variations which occur in 
implementations. The heuristics are tested on code which is known to contain the patterns and eventually on 
the two subsystems.    
 
The case study proves that basic detection of patterns is possible using only the static model of a system and 
delivers a usable visualization of used patterns. The framework for pattern detection is now easily extendible 
for new patterns or other queries required on a software system. Performance-wise the automated recovery of 
patterns is still slow but usable for the explored subsystems. But it also proves that not including facts on the 
dynamic behavior of an application seriously limits the detection capabilities, since certain facts cannot be 
detected by source-code analysis only (lack of completeness). Due to this the amount of detected false-
positives is still high, since the detection heuristics have to be weakened to cope with the missing facts. 
 
With this case study the stage is set and the framework and/or its concepts can be extended. As future work 
the following areas are of interest: 

- focus on detecting anti-patterns instead of patterns 
- incorporate run-time information (dynamic model) 
- provide a more detailed pattern ranking strategy 
- improved filtering on false-positives 
- start analyzing from UML diagrams instead of code 
- create a UML2Prolog translation 
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B. Preface 
 
In the end of 2003, I carried out some initial discussions on a possible graduation assignment within Océ. 
Typically all discussed assignments were in the field of improving some subsystem of a larger software 
system (‘refactoring’).  Often these subsystems were supported by documentation, which did not reflect the 
current implementation anymore.  
 
To create a more generic assignment, we choose to focus on re-creating the documentation/architectural 
views of software-systems with a specific focus on architectural patterns (architecture reconstruction). 
During software projects in an industrial setting, elements of software systems can be scarcely documented 
or not documented at all. This lack of documentation is usually caused by time-pressure or a low focus on 
maintainability in general in a project. The typical analogy in Computer Science with the building of a house 
rises: a plumber delivers some documentation on the location of pipes in the house when the house is built. 
However when maintenance is performed after some years, the pipes are not found at the documented 
location or some undocumented pipes are found. In this case, documentation proves important: one does not 
want to hit a water pipe, when putting up a new picture on the wall. For software systems this holds as well. 
Therefore architecture reconstruction of software is comparable with walking around a house with a very 
fancy ‘pipe-detector’ and automatically obtaining a new up-to-date drawing of the plumbing scheme.   
 
I would like to express my gratitude to my advisor Eric Dortmans and supervisor Lou Somers for their 
constructive comments during the assignment. Also I would like to thank Michel Chaudron and Jack van 
Wijk for taking place in my examination committee, and Andreas Wierda for his critical comments on the 
initial version of this report. For the technical assistance at Océ, I would like to thank Teun Willems who 
helped me with some XSLT specifics and Nico Linssen who helped to set up a build-environment for the 
Océ controller to be analyzed. 
 
Rob Kersemakers 
 
Venlo, November 2004 
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C. List of abbreviations 
ADL Architecture Description Language 

AR Architecture Reconstruction 

CPPML C++ Mark-up Language 

FAMIX FAMoos Information eXchange Model 

FAMOOS Framework-based Approach for Mastering Object-Oriented Software evolution 

FTP File Transfer Protocol 

GXL Graph eXchange Language 

HTTP HyperText Transfer Protocol 

KLOC Kilo-Lines Of Code 

MOOSE Method for Object-Oriented Software Engineering 

PCL Pattern Comment Language 

SART Software Architecture Recovery Tool  

SEI Software Engineering Institute 

SMB Server Message Block 

RSF Rigi Standard Format 

TCL Tool Command Language 

TCP/IP Transmission Control Protocol/Internet Protocol 

UML Unified Modeling Language 

XMI XML Metadata Interchange 

XML eXtensible Mark-up Language 

XSLT eXtensible Stylesheet Language Transformations 
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1 Introduction 
 

1.1 Problem context 
 
Océ hardware products like printers, scanners and multi-functionals are typically controlled by a general 
purpose PC, with on top of it Océ specific controller software. During the design of the controller software 
specific architectural patterns (for example BlackBoard, Pipe-and-Filter) are envisioned to be applied in the 
software to be built. During the actual design and implementation of the software, deviations from the initial 
envisioned architecture can occur, which are not desirable. Also for legacy software often no clear 
architecture description is available in relation to architectural patterns which are now common practice. At a 
certain stage in development, it is desirable to re-factor the mentioned deviations out of a product’s 
implementation and lead the implementation back on track with the original pattern ideas (or even to identify 
new applicable patterns). 

1.2 Research domain 
 
The following are typical questions in the research domain of this graduation assignment: 
 

- How can architectural patterns be recognized by analyzing the source code of a product, with or 
without a-priori knowledge on the chosen architectural patterns?  

- What observable properties of implemented or envisioned architectural patterns become apparent 
from source code analysis?  

- How can knowledge gained by software architecture analysis influence the recognition of applied 
patterns? 

- Can a re-factoring roadmap striving towards the implementation of the desired architectural 
pattern(s) be derived from the analysis for applicable architectural patterns?  

- How does the outcome of architecture reconstruction address crosscutting concerns in a software 
system? (for example: does the outcome still maintain non-functional demands to the architecture) 

 
These questions are used as the starting point for literature research, which is performed to derive the actual 
scope of this graduation assignment.  

1.3 Report structure 
 
Chapter 2 describes the definition of Architecture Reconstruction and the current level of practice which can 
be derived from literature and defines the actual scope of the graduation assignment. 
 
Chapter 3 gives an overview of the Architecture Reconstruction workflow used for the practical case of 
analyzing the Océ controller software. Since the tools have to be adapted for extracting architectural patterns, 
these adaptations are also described.  
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In Chapter 4, four architectural patterns observer, pipe-and-filter, interceptor and blackboard are discussed 
with respect to the properties they expose, when implemented in a system. These exposed properties can be 
used to detect the presence of one or more architectural pattern(s) in a system on which Architecture 
Reconstruction is applied. 
 
The testing of the heuristics on source code, which is known to contain one or more patterns is described in 
Chapter 5. It also discusses the found anomalies in the heuristics or the fact extraction phase.  
 
The actual application of the heuristics on two subsystems of the Océ controller is described in Chapter 6.  
 
Chapter 7 presents a brief evaluation of the application of Architecture Reconstruction in a real-life case, 
discussing its strength and weaknesses.  
 
The final conclusions are presented in Chapter 8 after which Chapter 9 discusses possible future directions in 
the domain of Architecture Reconstruction, which were identified during this case study.  
 



 

3 

2  What is Architecture Reconstruction? 
 
This chapter sets the scope for the graduation assignment. Section 2.1 gives definitions on architecture 
reconstruction gathered from literature and reflects on the current state-of-technology regarding architecture 
reconstruction. Architectural/design pattern recognition is an important element in this assignment, so it is 
discussed separately in section 2.2. In Section 2.3, the scope of the assignment is refined based on the 
knowledge gathered on ‘architecture reconstruction’.    

2.1 Definition of architecture reconstruction 
 
Before discussing the definition of architecture reconstruction, we will first define ‘software architecture’ 
itself since this captures what is to be retrieved by performing architecture reconstruction on a software 
system. The number of definitions one can find on ‘software architecture’ is almost unlimited (for examples, 
see [Archdefs, 2003]), therefore only one definition is presented here, which is sufficient for further 
explanation.  

Definition 2.1: Software Architecture ([Bass et al, 2003]). 

The Software Architecture of a program or computing system is the structure or structures of the system, 
which comprise software components, the externally visible properties of those components, and the 
relationships among them. 
 
A software architecture of a system can be available in two forms, namely in the documentation of the 
system (‘as-designed architecture’) or in the implementation of the system (‘as-built architecture’). It 
depends on the development process used for the specific system which forms (‘as-designed’ and/or ‘as-
built’) are available. For example, in a prototyping setting one may only have the ‘as-built’ architecture, 
whilst in large projects both forms usually are available. During a development process the need can rise to 
check the ‘as-built’ with the ‘as-designed’ situation, or even to create the full documentation from the 
implementation (in case of a legacy system). It can even be the case, that both forms are available, but that 
new views need to be created which are not yet contained in the documentation.  
 
In such situations, architecture reconstruction is a candidate process to obtain new/additional documentation 
from an implementation of a system. Some people might be mislead by thinking architecture reconstruction 
is a synonym to refactoring or reverse engineering. However one should be very careful since these terms 
only present small parts on the whole architecture reconstruction process. 

Definition 2.2: Architecture Reconstruction ([Kazman et al, 2002]) 

Architecture Reconstruction (abbreviated as AR) is the process of obtaining the “as-built” architecture of an 
implemented system from an existing legacy system. 
 
The term ‘legacy system’ in the latter definition should not be regarded as synonym to ‘old and discarded 
system’, but as a system of which an implementation is already available. Since the definition by itself is 
meager information, we will to elaborate the definition using the following questions as a guideline: 
 

- Why is an AR process performed? 
- How is an AR process performed? 
- What is input to/output of an AR process? 
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2.1.1 Why is an AR process performed? 
 
Before starting an actual AR process, it is important to realize the goal to be achieved by the process. A 
choice on the targeted outcome of the reconstruction process and the planned usage of the outcome in other 
processes has to be made (where will the information obtained during AR be used for?). In [O’Brien et al, 
2002], an overview is presented of typical scenarios encountered in practice which discuss the reasons why 
one would start an AR process. The scenarios are:  
 

- View-set: covers the identification of architectural views that sufficiently describe a software system 
- Enforced-Architecture: covers the problem of consistency between the as-built and as-designed 

architecture 
- Quality-Attribute-Changes: covers the question of how architecture patterns are used to satisfy 

quality requirements and to what extent changes to quality attributes impact a system 
- Common and Variable Artifacts: provides models and techniques for analyzing the products in a 

domain with respect to their common and variable parts (target: identify re-usable assets) 
- Binary Components: covers architecture reconstruction using binary component descriptions, e.g. by 

using an interface description a closed software-component exposes to the outside world to allow 
other parties to use it.  

- Mixed-Language: addresses the need for and techniques that can be used to analyze products in a 
variety of languages and language types 

 
Several tools which exist to support these scenarios to a certain extent are also available. These tools can be 
divided into the following categories: 
 

- Manual reconstruction: implies using utilities like Grep, Emacs, Awk, etc. (no high-level tools) for 
extracting facts and using pen and paper for the actual generation of views. 

- Manual reconstruction with tool support: Portable Bookshelf, Rigi, SHriMP, KLOCwork inSight 
Tool 

- Query languages for reconstruction: Mitre, Dali, Architecture Reconstruction Method (ARM), Riva 
- Other techniques: Data Mining, Software Architecture Reconstruction (SAR) Method, X-RAY, 

architectural description languages 
 
For more details on some of the mentioned tools in [O’Brien et al, 2002] see Appendix A.  
 
In the graduation assignment, a view-set practice scenario can be applied, which all tools mentioned in 
[O’Brien et al, 2002] support when modified in some fashion. This scenario would deliver valuable views on 
the current state of the systems, which can be used for re-factoring actions. Regarding how the outcome of 
architecture reconstruction addresses crosscutting concerns in a software system the Quality-Attribute-
Changes scenario should also be explored. Roughly one can say most tools support the view-set scenario and 
the mixed-language scenario; however adaptations of the tools are required to obtain the actual support. So 
the choice for the scenario to be used can have severe implications for the amount of labor required to 
perform that scenario. 
 
For this practical application of reverse architecting it is important to realize, that apart from the goal of the 
process, no real statements are made on the abstraction level to be obtained for the specific scenarios. So the 
abstraction level to be achieved in the assignment must be specified in more detail (see section 2.1.2). 
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2.1.2 How is an AR process performed? 
 
AR is a process with specific phases. It is described in [Kazman et al, 2002] as an iterative and interactive 
process, comprising of the following four phases:  
 
I. View Extraction From implementation artifacts (including source code and dynamic 

information such as event traces), a set of extracted views that 
represent the system's fundamental structural and behavioral 
elements is extracted. This is the phase where a database of facts is 
created of the system to be analyzed. Facts consist for example of 
the classes/functions/calls present in the system. 
 

II. View Fusion The extracted views are fused to create views that augment or 
improve the extracted views. For example, a static call view might 
be combined/fused with a dynamic call view. The static view alone 
might not provide all of the architecturally relevant information. In 
the case of late binding in the system, some function calls might not 
be identifiable until runtime, so a dynamic call view needs to be 
generated. These two views need to be fused to produce the 
complete call graph for the system. 
 

III. Architecture Reconstruction During this third phase, the analyst iteratively and interactively 
develops and applies patterns to the fused views to reconstruct 
architecture-level derived views. For example user can visualize, 
explore, and manipulate views (e.g. a graph representation of a 
system). Manipulation can consist of combining nodes in the graph 
to one node to represent a pattern or a subsystem. Also scripting can 
be used during this phase, to clean-up created views by for example 
combining classes to modules, an thereby reaching more high-level 
view on a system. 
 

IV. Architecture Analysis Finally, the derived views may be explored for the purposes of 
evaluating architectural conformance, identifying targets for 
reengineering or reuse and analyzing the architecture's qualities. 
This phase is performed according to the ATAM: Method for 
Architecture Evaluation (see [Kazman et al, 2000]), which is not 
discussed in detail in this report. 

 
The output of these phases is documentation describing the “as-built” architecture.  
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2.1.3 What is input to/output of an AR process? 
 
AR relies on available artifacts to obtain the “as-built” architecture of a software system. These artifacts are 
regarded as input knowledge to the process. The following are a few examples of types of artifacts (this list 
is by no means exhaustive): 
   
Knowledge type Examples 
“as-documented” architecture - free-format textual description of architecture 

- free-format graphical description of architecture 
- architecture description in standard notation (e.g. UML) 
- graphical description of architecture using standard architectural description 

language for example Darwin, UniCon 
organizational breakdown  - development of modules related to software development spread over 

geographically distributed company sites and groups 
source code - specific module layout of a software system 

- relations between interface definitions and their implementations 
profiles - plain traces of a running system 

- message sequence charts generated from a running system  

Table 1: Examples of system artifacts  

 
As we will mainly discuss manual reconstruction with tool support, the reconstruction process requires 
human assistance. The human assistance can be provided by architects and developers of the system to be 
analyzed. For example, knowledge on a system coming from a former architect/developer of the system 
could be very valuable information in the reconstruction process. In his current role, the former architect may 
no longer be an actual stakeholder of the reconstruction, but can provide insight on the architectural patterns 
applied in the system. How to weave the information of architects/developers into the automated 
reconstruction process (e.g. by a natural language question list to an architect in a reconstruction workbench) 
is not extensively explored. The output of AR is documentation describing the “as-built” architecture. The 
documentation can be available in multiple formats (on paper, hypertext, graph visualization, etc.).  
 

2.2 Architectural pattern detection 
 
Patterns are a recent software engineering problem-solving discipline that emerged from the object-oriented 
community. The goal of the pattern community is to build a body of literature to support design and 
development in general. There is less focus on technology than on a culture to document and support sound 
design. Software patterns first became popular with the object-oriented Design Patterns book (see [Gamma 
et al, 1995]). But patterns have been used for domains as diverse as development organization and process, 
exposition and teaching, and software architecture.  
 
As stated in subsection 2.1.1, the abstraction level to be reached is not yet described in current practice 
scenarios or definition of phases of AR. [Buschmann et al, 1996] discusses guidelines to discriminate 
between various abstractions level available in software architecture. These are the following, in ascending 
order of abstraction: 
 

- Idioms: programming language specific solutions to common problems (represents the lowest level 
of abstraction); 
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- Design (Anti)patterns: specific problem approaches which have been generalized as programming 
language independent (anti)patterns* (like publish-subscribe); 

- Architectural patterns: from the previous abstraction levels the usage of specific architectural 
patterns (like blackboard, pipe-and-filter) could be detected by analyzing relationships. 

 
Our goal is to reach the abstraction level of architectural patterns in Phase III of the AR process whenever 
possible. Specifically the automatic detection of patterns is an important part the AR process. In [Viljamaa, 
2002], the state of pattern recognition in 2002 is summarized. It states that the feasibility of detecting a 
pattern largely depends on the use of the pattern in the correct context and in its originating structure. 
However, most abstract patterns are not formalized enough to allow direct detection by a tool. Instead, the 
pattern’s implementation (e.g. class structure) might be detectable and lead to the identification of the actual 
pattern. In general, “a pattern is detectable if its template solution is both distinctive and unambiguous“ 
[Brown, 1996].  
 
Some first experiments [Prechelt et al, 2001], already show the usefulness of the explicit knowledge that a 
pattern is used in a system. When developers know a pattern is used, from clear comments in the code, 
maintenance tasks on the system are shortened.  
 
The following subsections give a summary of pattern detection methods described in [Viljamaa, 2002], 
complemented by information from additional literature. 

2.2.1 Manual discovery 
 
[Shull et al, 1996] describe a method for manually detecting design patterns in software created according to 
the OO-paradigm. Manual in this case means: a group of students who browsed through the source code on 
paper and identified used patterns. The method is called BACKDOOR (Backwards Architecting Concerned 
with Knowledge Discovery of OO Relationships). After the an first iteration of the investigation on a 
software system (pattern discovery), the pattern library in BACKDOOR is filled with the results obtained in 
this iteration (packaging). The packaged patterns in the library are used and refined in following iterations, 
with the ultimate goal of obtaining an exact match between the template design pattern and instances of the 
pattern.  
 
The most interesting part of BACKDOOR is that it introduces a ranking for detected pattern instances, with 
the following ranks: 
 

1. Not relevant; 
2. Only part of the pattern is found, but that portion has a sophisticated implementation; 
3. A pattern is found that tries to achieve the same purpose, but its implementation is primitive in 

comparison; 
4. Near-perfect match. 

 
These ranks could be something to strive for in the creation of new tooling or usage of existing tools.  

2.2.2 Pattern Detection with a template library 
 
This is the most common form of pattern detection. A template of a pattern contains the information required 
to detect an instance of the pattern in source-code facts. Such a pattern template is stored in a template 
library, next to other templates. The stored templates are then used in the detection environment to detect the 
                                                      
* Note: anti-patterns are the counterpart of regular (design) patterns. They target common mistakes, errors, and people 
issues that can cause a software project to fail. See [Brown et al, 1998]. 
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actual patterns. In [Paakki et al, 2000], pattern detection is described by considering the “detection-task” as a 
constraint satisfaction problem (CSP). CSPs originate from the domain of artificial intelligence, where 
problem are formulated as a set of conditions to be satisfied on a set of facts (for example consider Prolog 
programs).  
 
A CSP is defined by a set of variables V, 1 2{ , ,..., }nX X X , and a set of constraints C, 1 2{ , ,..., }mC C C . Each 
variable iX  has a non-empty domain iD  of possible values. Each constraint iC  involves some subset of the 
variables and specifies the allowable combinations of values for that subset. A state S of the problem is 
defined by an assignment of values to some or all of the variables, { , , ....}i i j jX v X v� �  

 
Consider the UML example of an AbstractFactory pattern shown in Figure 1. 
  

 
Figure 1: AbstractFactory pattern 

 
Consider that this pattern is applied in a system to be analyzed. For analysis, facts like classes/methods and 
their relations are then to be extracted from this system and translated to a graph representation. In Figure 2, 
the sub-graph representing the applied pattern in a hypothetical system is shown. In this figure, vertices 
represent classes/methods and edges represent their relations. 
 

 
Figure 2: Subset of the AbstractFactory pattern in a graph representation 

This graph is used to answer the constraint satisfaction problem posed by a user. We typically pose a CSP in 
a format alike the format shown in Figure 3. This figure is composed from the original pattern description 
shown in Figure 1. Compare the sub-graph represented by the constraints with Figure 1 and see their 
resemblance. 
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Figure 3: CSP example for finding the AbstractFactory pattern 

 
In Figure 3, we can discriminate the following sets in the CSP: 
- V =  1, 2, 3, 4, 5, 6{ }X X X X X X with iD  being restricted and defined by the analyzed facts 
- C = {class( 1X ), abstract( 1X ),class( 2X ),abstract( 2X ),class( 3X  ), class( 4X ),inherits( 2X , 1X ),inherits( 4X , 2X ), 

 implements( 5X ),abstract( 6X , 4X ),returns( 6X , 1X ), creates( 5X , 2X ),returns( 5X , 2X )} 
 
The CSP is solved by an algorithm, which tries to satisfies the constraints posed using the graph 
representation of the system to be analyzed†. Figure 4 shows two solutions found to the CSP example.  
 

�  
Figure 4: Solutions found to the CSP example 

 
In the AR case, the constraints should capture the rules for detecting a pattern, whilst the set of facts consists 
of the facts gathered on the source code of the system. This approach is a serious candidate for refinement to 
obtain the architectural abstraction level. CSPs are currently supported in the Maisa toolkit. The CSP 
approach is also used in the SOUL toolkit from the University of Brussels, which currently only supports 
pattern extraction from Java implementations. 
 
As an alternative to CSPs which often use Prolog facts as a starting point, some approaches use an 
underlying fact-database in a relational or object-oriented database. The search for design pattern instances is 
then performed by using the respective query language on the database, to express constraints. However the 
Prolog strength in inference is then lost. This approach is described in [Schauer et al, 1998] and [Kazman et 
al, 1997].  

                                                      
† Note: the class Client of the original pattern is not mentioned, since this basically represent the software system in 
which the pattern is used. 

class( 1X ) �  abstract( 1X ) �  

class( 2X ) �  abstract( 2X ) �  

class( 3X  ) �  class( 4X ) �  

inherits( 2X , 1X ) �  inherits( 4X , 2X ) �  

implements( 5X ) � abstract( 6X , 4X ) �  

returns( 6X , 1X ) �  creates( 5X , 2X ) �  

returns( 5X , 2X ). 
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2.2.3 Concept Analysis 
 
When using a pre-filled template library in an AR process it is important, that the template library is fit for 
analyzing the chosen system. If this is not the case, a new library needs to be created for the specific system. 
Often patterns are also applied unconsciously by developers. This implies that if detection with a template 
library is done on only specific patterns which an analyst thinks are used in the system, the analysis will miss 
the unconsciously applied patterns. In [Tonella et al, 1999], the method of concept analysis is used to tackle 
this problem.  
 
Concept analysis permits grouping objects that have common attributes. In the present application of 
concept analysis, objects are groups of classes and attributes are relations between classes. The starting point 
for concept analysis is a context, i.e., a set of objects, a set of attributes and a binary relation between objects 
and attributes, stating which attributes are possessed by each object. The binary relation states which class 
pairs are connected by each relation. A concept is a maximal collection of objects that possess common 
attributes, i.e., it is a grouping of all the objects that share a set of attributes.  
 
There are several algorithms to compute the concepts for a given context. When applying concept analysis 
for pattern inference, consider C  to be set of classes in the system to be analyzed and R being relations 
between classes which can be expressed in UML, like association of extension (for example class Y extends 
class X). In Figure 5 an example of concept analysis from [Tonella et al, 1999] is presented. In this figure the 
rows in the table represent positional permutations of a subset C. The columns denote relations between 
classes at position i and j for the permutation shown in the row. For example, the first row 
( , , )B A C position-wise is represented by (1, 2,3) . The column (1, 2)e  expresses that there is a extends 

relation between A and B and the column (1,3)a represents an association between class B and C.  Figure 5 

now shows that for example ( , , )B A C  and  ( , , )Y X Z  have (1, 2)e  and (1,3)a  as common attributes. This 
observation of common attributes is a recurring concept in the analyzed system: in both sequences the first 
class extends the second one, and the first class is associated to the third one. For more details on concept 
analysis, which are not discussed here due to their required detail level, see [Tonella et al, 1999].    
 

 
 
 (1,2)e  (1, 2)a  (1,3)a  (1,3)e  (2,3)a  (3,1)e  (3, 2)a  

(B,A,C)        

(B,C,A)        

(Y,X,Z)        

(X,Z,Y)        

(Y,Z,X)        

(H,K,J)        

(J,K,H)        

Figure 5: Example of  concept analysis 
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2.2.4 Using metrics and structural properties 
 
In [Antionol et al., 1998] a method for recognizing patterns using metrics and structural properties is 
described. The usage of structural properties is also seen in the other mentioned methods; however the use of 
metrics on the analyzed software is not. The metrics are used to reduce the combinatory complexity 
explosion prone to appear in design pattern recovery processes. To reduce the complexity, the metrics are 
used in a process called multi-stage filtering, which embeds metrics-, structural- and delegation- constraint 
evaluation. The latter two evaluations are also parts of other methods in pattern detection using a template 
library. Metrics constraint evaluation is done by checking for example the number of relations a class X in a 
design has with other classes. A template of a design pattern already poses some constraint on the minimum 
number of relations class X should be involved in. If class X has a number of relations lower than the 
defined minimum number it can be left out of the search-space. Also constraints regarding reachability of 
other classes in a design from class X, within a path of a maximum length are incorporated.   

2.3 Scope of the assignment 
 
Taking the results of the literature study into account, the refined scope of the assignment is described below: 
 

- perform semi-automatic fact extraction from existing source code artifacts on two controller 
modules, delivering a fact database and an initial visualization of the architecture;  

- define properties of architectural patterns and heuristics for detecting these in the fact database, 
refining the constraint satisfaction problem for architectural pattern extraction. The heuristics must 
be able to incorporate a-priori knowledge from an architect of the system to be analyzed. The main 
emphasis will be on the analysis of static information extracted from the source code; 

- apply the heuristics on the fact database and visualize the subcomponents that reflect the pattern (for 
example: show where the pipe-and-filter pattern is applied). The visualization will be done by using 
a standard tool; 

- create a workbench which can easily be extended with new heuristics and allows quick application 
of the heuristics on a collection of facts. The workbench offers questions to developers by which 
they can refine variable parts in the heuristics with their knowledge; 

- evaluate the usability and the added value of architecture reconstruction; 
 
In this assignment, clearly a view-set practice scenario is applicable, which all tools mentioned in [O’Brien et 
al, 2002] support when modified in some fashion. This should be kept in mind when applying the actual 
architecture reconstruction method on the existing software.  
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Language : C++ 
Classes  : � 2500 
Files  : � 700 
Functions : � 38000 
Lines  : � 2016 KLOC 
Lines Blank : � 294 KLOC 
Lines Code : � 864 KLOC 
Lines Comment : � 702 KLOC  
Lines Inactive : � 145 KLOC 

3 Real-life Architecture Reconstruction 
 
In this chapter the subject for reconstruction and the “pipeline” of tools used to perform architecture 
reconstruction on the subject is described, as well as the process followed during reconstruction. 

3.1 The subject for reconstruction 
 
The subjects for reconstruction are two subsystems of an Océ controller. A controller consists of hardware 
(usually a general purpose computer) and software of third-parties and Océ.  Its main task is to connect 
various Océ devices (printer, scanner) to a customer network and to control their functions.  
 
An example function of a controller is to convert a postscript file sent by an end-user to a printable bitmap 
image, taking all settings of the user into account (like double-side printing, stapling the final print). It also 
provides the connectivity to a customer network for these devices. For this task, the controller supports 
various protocols like TCP/IP, SMB, FTP, and HTTP to enable access to functionality. As operating system 
on the controller a Microsoft Windows flavor is used, which already provides some of the mentioned 
functions. 
 

 
Figure 6: Océ controller and its context 

 
For the specific controller used in this assignment an “as-documented” architecture is available, but only 
little “as-built” information is available. Goal is to create more “as-built” documentation to the abstraction 
level of patterns. Looking in more detail at the source-code of Océ on the controller, the following 
characteristics become apparent: 

 
 

 

 

 

 

Figure 7: Metrics on the full software of the Océ controller 
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From the “as-documented” architecture, prominent used patterns seem to be the Observer and Blackboard 
pattern. So these are to be expected during detection. According to [Buschmann et al, 1996] the Blackboard 
pattern in practice often evolves towards a pipe-and-filter pattern when during the course of time inter-
component communication becomes clearer to developers/architects. 

 
In the next sections a more detailed overview is presented on the pipeline and process used to analyze the 
source code of the Océ controller. 

3.2 The reconstruction pipeline 
 
For the practical application of architecture reconstruction, a pipeline to extract and refine views from 
source-code has to be defined. In Figure 8, a setup of the pipeline used in this case is shown. Note that the 
choice for this pipeline is the result of an investigation of many tools used for architecture reconstruction 
(see appendix A). During the investigation the tools were tested on the actual Océ software to be analyzed.  
 

 

Figure 8: Architecture Reconstruction pipeline 

 
Columbus/CAN is chosen to perform the view extraction, since it can export the facts extracted from the 
source code in numerous formats (XMI, GXL, CPPML, RSF, and FAMIX) and leaves some room if the 
pipeline needs to be extended. On one end, Columbus/CAN delivers output in Rigi Standard Format (RSF). 
RSF is a plain-text format (this enables weak coupling between applications generating the model for Rigi 
and Rigi itself). Each line in the text-file describes a relation between two entities. Some example entries are: 
 

type  id186 Function     
name  id186 "_isctype"    
Declaration id186 "int _isctype (int, int)   
type  id187  MethodCall 
from  id187  id185 
to  id187  id186 

 
In this example entry the first column is the active relation, the second the identification number of the 
component engaged in the relation and the third column the value. RSF is consumed by Rigi for an initial 
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visualization of the system. For a first exploration of the analyzed system, new projections on the extracted 
facts can be made, by using the Rigi Command Language (RCL). RCL has functions for selection, grouping 
nodes/edges in the graph although many of these functions are undocumented.  
 
On the other end, Columbus/CAN delivers output in the Graph eXchange Language (GXL). Two files are 
delivered, one captures the information with regard to the static model of the code and one describes the call-
graph of the code. The latter is extracted by analyzing the static code and not by examining execution traces 
of the system and is therefore incomplete. Both GXL descriptions are transformed to Prolog facts and 
combined in one file. The meta-model used by Columbus/CAN during the export is shown in Appendix F. 
The facts are fed to the Software Architecture Recovery Tool (SART), which is the actual application 
created during the assignment to aid in the architecture reconstruction process. The output of SART is done 
in RSF, which allows visualization of detected patterns in Rigi. 

3.2.1 Why Prolog facts? 
 
A database of facts on the analyzed software has to be created to enable specialization of views by means of 
querying. In the previous section the choice for Prolog is mentioned, but not elaborated. In literature, two 
approaches towards fact-databases are very prominent, namely using a relational database or using a Prolog 
facts file. For architecture reconstruction, a decision must be made which form to use as a starting point. To 
make this choice, some pros and cons of each form are listed below. 
 
Prolog fact-file Relational database 
+ Prolog is optimized for CSPs (detect by inference) 
+ Mapping extracted facts to Prolog is a simple 

projection 
+ Queries have a low amount of syntactic sugar  
- Less “open” for normal software developers (hard to 

make extensions without detailed knowledge on 
Prolog) 

- Learning curve for Prolog 

+ More accessible for other developers (SQL is a 
common language among most software developers) 

+ Larger connectivity to other environments (through 
middleware like JDBC/ODBC) 

+ Publications like [Kazman et al, 1997] already state 
best practices for the fact database  

- Detection queries will be hard to 
formulate/understand/prove due to the amount of 
syntactic sugar required in SQL 

- SQL not optimized for CSPs (no inference) 

Table 2: Prolog versus SQL database for architecture reconstruction 

Although the above may suggest that the choice for one of the two rules out the other, this is not the case. A 
Prolog fact file can be easily projected on a fact-database in a relational database, as long as the fact and 
database schemas are in sync. For the form of the fact-database and detection, Prolog is chosen for this 
assignment. This enlarges the solution space for the assignment, by using the Prolog inference capabilities.   

3.2.2 Never trust a used tool? 
 
The pipeline described uses external tools as the starting point for extracting facts from a system. If this tool 
somehow delivers incomplete output, the next stages of the reconstruction process could fail completely. 
Therefore a testing method has to be defined. Manual testing seems the only way to go to test the 
completeness in the output, however performing this with the whole system to be analyzed is an impossible 
task.  Therefore we perform the test with a smaller part of the system, in which we found some common 
programming constructs used in the larger system to see how this code is analyzed. This is comparable with 
the approach as described in section 5.1.1. The problem is that the completeness is never proven; it is only 
verified for some common cases.  
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3.3 The actual reconstruction process 
 
In this section a brief overview is presented on the usage of the pipeline in this assignment. The overview 
will be given per phase.  
 
Phase I – View Extraction 
 
The source-code of two subsystems of the Océ controller is used as input to Columbus/CAN. In 
Columbus/CAN, the code is pre-processed by a pre-processor of choice. Since the source-code has been 
written in Microsoft Visual Studio 6 (containing many Microsoft specifics), the compiler of Visual C++ is 
used to perform all pre-processing. The included CANPP pre-processor does not deliver complete results 
when used on the source code. When the processing stage of Columbus/CAN is complete, the scope for the 
facts to be exported and the format in which they will be exported has to be chosen. At this stage we choose 
to leave in all Microsoft specifics like ATL classes in the export and to export all elements in scope in the 
GXL format. 
  
Phase II – View Fusion 
 
Facts from GXL to Prolog 
 
Columbus/CAN delivers two sets of information on the system in GXL format namely, a static structural 
analysis of the program (schema graph) and possible run-time methods calls (call graph) which can be 
detected by static analysis. The latter must be used with care, since not all actual calls made at run-time can 
be detected by static analysis (dynamic model based on extraction, not actual runtime system traces). 
Therefore the call graph represented in this GXL export must always be regarded as incomplete.  
 
For further analysis of the system GXL (which is in XML layout) is unsuited. Therefore, both GXL files are 
transformed to Prolog facts using eXtensible Stylesheet Language Transformations (XSLT) and combined to 
one Prolog fact-file. Combining is possible since Columbus/CAN maintains the same unique identifier for 
facts in both original files. The exact schema of nodes and edges which are present in the GXL output is 
available in the Columbus/CAN documentation. This is used as input for creating the XSLTs, but not 
elaborated further here. Note that the GXL files are validated using the GXLValidator from the University of 
Koblenz before starting the combining process.  
 
For the extraction of patterns, which will be detailed in the next chapter, the available Prolog facts will be the 
starting point. The facts will be used for resolving a Prolog goal (example goal: find instances of the 
Observer pattern in the facts). For convenience already some clauses have been agglomerated to more high-
level clauses. As an example, the extends-relation in the UML is visible from the Prolog facts when multiple 
goals can be resolved. By agglomerating these goals a simpler goal resolving for example an inheritance 
relation is achieved (see Figure 9). It also delivers an interface to the more low level representation of 
clauses in Prolog. If this representation changes, only the sub goals have to be revised, whilst the high-level 
constructs used in the heuristics remain the same. 
  

 
 
 
 
 

Figure 9: Example of an agglomerated clause 

%% agglomerated clauses 
 
extends(Super, Sub):- extends_byid(Super, Sub).   
extends_byid(X, Y):- r_hasBaseSpecifier(X,Z),r_derivesFrom(Z, Y). 
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More of the created agglomerated clauses and the mapping from the UML to Prolog are described in 
Appendix B. Also a further explanation on the clauses and their functioning is provided when discussing the 
test code used for testing the heuristics.  
 
Visualization in Rigi 
 
Columbus/CAN also exports two files in RSF, again containing the schema and call graph. To give an idea 
on how much information is represented in the schema file, the view on full Océ controller software system 
is shown in Figure 10 (not just the two subsystems), by loading an unpolished RSF file. Rigi allows 
performing an initial selection and filtering on the edges and nodes of the graph, which delivers some better 
output.   
 
Rigi also allows some automatic layout to be performed (align to grid, forward/reverse tree) and of course 
manual layout of the graph. Performed/created layouts can be stored as view for later retrieval in Rigi.  The 
Rigi environment can also be extended using Tcl scripts, which can perform own-developed filtering or 
visualization techniques. 
 

 
Figure 10: Initial overview (as noise) of the full Océ controller software 

 
As another example, Figure 11 shows a visualization of the Observer pattern test code which will be 
discussed later (using manual layout and filtering on classes and their relations). Unfiltered this pattern also 
delivers the same “noise” as before.  
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Figure 11: Visualization of the Observer test code 

 
Phase III – Architecture Reconstruction 
 
In this phase, more high-level information is extracted from the facts by using Prolog on the established 
facts. The working method in this phase is as follows: 
 

1. Offer a tool in which a developer or architect is guided through a number of questions stating his 
information on the system; 

2. Inject this information to already created Prolog goals, in the form of parameters; 
3. Execute the query and return initial results (for example a combination of classes, which have the 

exact class-relations as described in literature for a pattern); 
4. The developer filters the initial results, thereby specializing the query; 
5. After repeating step 3 and 4, the tool delivers the end-result in the form of a visualization in Rigi and 

a textual description. 
 
Such a tool itself is mainly a wrapper around Prolog goals and a Prolog interpreter. The main knowledge of 
the system is however captured in the created Prolog queries. The construction of these is presented per 
pattern in more detail in the next chapter.  
 
The visualization in Rigi should highlight the specific elements of a pattern in the same style as shown in 
Figure 11. 
 
Phase IV – Architecture Analysis 
 
The information created in the previous phases can be used for various purposes in this phase. One can use it 
to identify targets for re-engineering or performing simple quality checks on implementations. This however 
all heavily depends on the context of the project. In our specific situation, the information will mainly be 
used to give a structured overview of an existing system and to allow a developer to find elements for 
redesign.   
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4 Detecting and visualizing architectural patterns 
 
In this chapter, the observable properties of some architectural/design patterns in code artifacts are described. 
The choice on which patterns to discuss is influenced by the used patterns in the Océ controller software. Per 
pattern, the heuristic is determined by which the pattern is detected in extracted views and facts.  

4.1 Preliminaries 
 
In this section, notation and concepts used to describe the pattern detection heuristics is defined. 

4.1.1 Nomenclature for describing patterns 
 
In the section 4.2 the individual patterns to be extracted from existing software are discussed. These are the 
observer ([Gamma et al, 1995]), pipe-and-filter ([Buschmann et al, 1996]), blackboard ([Buschmann et al, 
1996])  and interceptor ([Schmidt et al, 2000]) architectural patterns. These patterns are chosen as a starting 
point, since they are the most prominent patterns used in the system to be analyzed (assumption based on 
initial design document of the software system). Per pattern, only a short description will be given on its 
usage, since more exhaustive descriptions are easily available from literature (see [Garlan et al, 1994]). The 
variations of patterns encountered in implementations are discussed more elaborate, since these will have 
some influence on heuristics for their detection. The actual constraints used in the detection heuristics are 
also described. The actual composition of the heuristics is discussed at a later stage.  
 
Each heuristic is described using the nomenclature defined in Table 3. The nomenclature is based on a subset 
of relations which can be expressed in the UML and can be discovered by analyzing the source code. It is 
targeted for heuristics only and therefore not all UML elements are covered.  
 
Symbol Description 

abX}{  Entity X is an abstract class 

coX}{  Entity X is a concrete class 

iX}{  Entity X is an interface 

aYX },{  Entity X has an association relation with entity Y 

eZX },{  Entity X has an extends relation with entity Z 

)(}{ AmX  Entity X contains a method A  
(must also cover  inherited methods) 

)()( }}{{ BpAmX  Method A of entity X has a parameter B 

)()( }}{{ YrAmX  Method A of entity X returns a value of type Y 

)(}{ CatX  Entity X contains an attribute C 
(must also cover  inherited attributes) 

)(},{ AmcXY  Entity Y may call method A of entity X 
(must also cover inherited methods) 

impliYX }}{,{  Class X implements interface Y 

Table 3: Nomenclature for description of heuristics 

 
An example class diagram incorporating the nomenclature is shown in Figure 12. Note that in all 
discussions, the ability to call a method ( )(},{ AmcXY ) must explicitly be interpreted as “may call”, since the 

information is derived from code analysis and not by examining run-time traces of the analyzed system. In 
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the future our proprietary nomenclature could be replaced by PreciseUML (see [pUML, 1997]), if this 
initiative gains more momentum. The main goal of using the current proprietary nomenclature is to provide 
compact but complete descriptions of used constructions in software and to provide a powerful mapping 
towards Prolog which will be used for later fact-finding. Note that the notation of this mapping is based on 
UML, not on a specific implementation language. This is done since certain constructions do not exist in 
certain languages. For example: Java has a clear distinction between interfaces and classes, whilst C++ does 
not (dynamic interfaces through abstract classes or static interfaces).  
 

aYX },{

eZX },{
)(}{ AmX

)()( }}{{ BpAmX

)(}{ CatX spZX },{

 
Figure 12: Example diagram of nomenclature use 

 
When defining a heuristic for the detection of a pattern, the ranks for the detection process mentioned in 
section 2.2.1 should be recalled. If the detection heuristic is too strict, meaning it is only looking for near 
perfect matches, the heuristic is prone to detect nothing since most patterns will be adapted in some way in 
an implementation. Therefore we introduce a heuristic consisting of the following detection elements: 
 

1. Class relations: first the general pattern of class relations is detected based on the system facts. The 
combinations which comply with the general pattern will be called candidate patterns from now. 
During this phase we must be aware that certain class relations may be disturbed in the actual 
system. In the heuristics we will denote this detection element as condition 1P . 

2. Class method count: on the set of candidate patterns the knowledge on which methods are needed in 
the implementation of a pattern is applied. These details can encompass method naming, which may 
deviate in the actual implementation from the original text-book description of the pattern. In our 
heuristics we will limit ourselves to method count of classes. In the heuristics we will denote this 
detection element as condition 2P . 

3. Pattern Reach behaviour: a pattern has specific dynamic behaviour, which could already be derived 
from the method-calls detected during the source code analysis. By also looking for this specific 
dynamic behaviour, the heuristics can be made more strict. In the heuristics we will denote this 
detection element as condition 3P . The concept of Reach is described in detail in subsection 4.1.2. 

 
In the rest of the report, heuristics will always be described according to the template used in this section. A 
complete heuristics is composed of the conditions for class-relations ( 1P ) combined with the conditions for 

method counts ( 2P ) and for Reach ( 3P ) for a chosen pattern variant. We denote a complete heuristic as 

1 2 3P P P� � . 
 
To be able to refine the heuristics for 2P , one counting operation is defined: 
 
� function ��Classm :  

Using a class as input, function m returns the number of methods defined in a class; 
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4.1.2 The Reach concept 
 
From the static analysis of source code, specific method calls which will be made at run-time may already 
come apparent. Each pattern has a specific sequence of method calls between classes, which could be 
detected from extracted method-calls and their interrelations. To discuss the interrelations between method 
calls more clearly, a new concept call Reach, is introduced. We define Reach as follows: consider a class C  
in a synchronous system, having a method m. The Reach of method m is defined as: all methods directly 
callable from the scope of the method m. The calls from m can be either inter- or intra-object. To make 
Reach more tangible, the concept can be illustrated by the message sequence diagram shown in Figure 13. 
 

 
Figure 13: Example of the Reach-concept 

 
In Figure 13 the following Reach characteristics can be identified if m0 is taken as the starting point: 
 

1. inter-object call from a X to Y, for m1, so m1 is in Reach of m0 (note: m2 is not in Reach of m0) ; 
2. internal call in X from m0 to m3, so m3 is in Reach of m0; 
3. internal call in X from m3 to m4, so m4 is in Reach of m3 (but not: m4 is in Reach of m0, since m4 

may not be directly called from m0); 
 
To capture Reach in our nomenclature, we extend the latter with the following symbols: 
 
Symbol Description 

int{ , , }C X Y  From the scope of method X, method Y is called. X and Y are methods of the 
same class C 

{ , , , }extC X Y D  
From the scope of method X, method Y is called. X and Y are not members of 
the same class C. However C is the class from where X originates and D is the 
class in which Y resides‡ 

Table 4: Extension of nomenclature with symbols for Reach 

In the actual descriptions of the patterns, Reach will only be elaborated for the Observer pattern and for the 
remaining patterns it will be described only briefly.    

                                                      
‡ It would be tempting to say { , 0, 1, }extx m m x = int{ , 0, 1}x m m  , but this is not allowed due to the later mapping 
towards Prolog clauses, which handle both situations differently.  
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4.2 Architectural patterns 

4.2.1 Observer pattern  
 
The Observer pattern (see [Gamma et al, 1995]) is an often used design pattern to implement publish-
subscribe interaction in systems. The UML class diagram of the Observer pattern is shown in Figure 14. 
 

 
Figure 14: UML diagram of the Observer pattern 

 
From the normal UML diagram, a diagram for the detection of class relations is distilled (see Figure 15). The 
diagram present the skeleton for a perfect match, however in the actual implementation some parts of the 
design pattern may be left out. For example the abstract classes X and Y do not have to be present at all, or 
could be replaced with defined interfaces or non-abstract classes. These relaxations must be easily applicable 
in the heuristic without having to adapt all parts of the reconstruction pipeline.  
 

aYX },{

aXY }','{

eYY },'{eXX },'{

abX}{ abY}{

coX}{ coY}{
 

Figure 15: Detection of class relations for Observer pattern 
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aYX },{

aXY }','{

eYY },'{eXX },'{

abX}{
abY}{

coX}{ coY}{
 

Figure 16: Class methods/attributes detection for Observer pattern  

 
The skeleton rules needed for the next two phases, class method/attribute detection, are shown in Figure 16. 
Variability in method/variable naming (represented by “question marks” in the figure) is an aspect that 
which should be refined by using input from developers. They are not meant to be patterns which should be 
exactly matched in the code for example by string matching.  
 
Possible relaxations to the heuristic for detecting non-“near perfect” implementations are: 
 

1. X’ and Y’ are concrete classes, comprising the full functionality of X and Y. X, Y and their relations 
with other classes are absent in this case; 

2. The methods of X and Y can be defined as interfaces, which are implemented by X’ and Y’ 
respectively;  

3. GetState and SetState do not need to be explicitly defined; 
4. The definitions can be spread over multiple files or in one file;  

 
These relaxations are represented in Figure 17 and Figure 18 (please note all phases for detection are 
represented in one figure): 
 

aXY }','{

coX}{
coY}{

 
Figure 17: Observer pattern with only concrete classes 
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aXY }','{

implYY },'{implXX },'{

iX}{
iY}{

coX}{

coY}{

 
Figure 18: Observer pattern using interface definitions 

 
Interesting to see is that Figure 16 and Figure 18 seem to contain enough discriminative items for detection, 
however the variant in Figure 17 however does not. When just looking at class relations in the first stage, 
numerous instances of this pattern are prone to be found since this construct contains little discriminating 
aspects.  
 
Mirror-symmetry is also a problem in detecting patterns: during the stage of class relation detection or even 
during class method detection;` the pairs Observer-ConcreteObserver and Subject-ConcreteSubject can be 
mirrored on the axis between these pairs. This is possible since associations are detected as being undirected 
for weaker variants of the pattern. Also the count for the number of methods a class contains, which 
normally poses a restriction to the result-set, is blurred by additional non-pattern related methods in a class. 
Figure 19 shows a abstract view on the mirror-symmetry which can occur during the detection of the 
Observer pattern. 
 

aYX },{

aXY }','{

eYY },'{eXX },'{

abX}{ abY}{

coX}{ coY}{

mirrormirror--axisaxis

 
Figure 19: Example of mirror-symmetry in the Observer pattern 
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So far we have only looked at the static model of the class and not discussed the direction of calls between 
the classes in the pattern. In Figure 20, a snapshot of the dynamic behavior of the Observer pattern is shown. 
The Attach and Detach calls are straightforward, but the interaction for setting the state information of a 
Subject and updating corresponding Observers can deliver rules to discover an Observer pattern in facts 
describing  a system. 
 

 
Figure 20: Snapshot of the dynamic behavior of the Observer pattern 

 
As shown in Figure 20, the Reach of methods will be regarded as a criterion distinguishing pattern instances 
from non-patterns. When looking closer to the interaction between the classes, it can be decomposed in the 
following way to determine the Reach required for specific methods: 
 

4. one inter-object call from a ConcreteObserver to a ConcreteSubject, for SetState 
�  no Reach known; 

5. one inter-object call from the ConcreteSubject to the Subject to start the Notify procedure  
�  Notify is in Reach of SetState; 

6. one inter-object call from the Subject to the Observer, for Update 
�  Update is in Reach of Notify; 

7. one inter-object call from each registered ConcreteObserver to the ConcreteSubject, for GetState  
�  GetState is in Reach of Update;  

 
The actual Reach-characteristics of the Observer pattern can now be captured as: 
{ ', ?, ?, '} { ', ?, ?, } { , ?, ?, }ext ext extY SetState Notify X X Notify Update X X Update GetState Y� �  
 
All this results in the heuristics for the Observer pattern. 
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Heuristic for Observer pattern 
 
Class relation detection§ 
 

 
Class method detection 
 

                                                      
§ Note: all variables which are inferred must be unique.  There rules maintaining the non-equality of variables must be 
added to each goal (for example X not equals Y etc.) as conjuncts. These have not been included here to maintain the 
readability of the goals.  

perfect match 1 { } { } { '} { '} { , '} { ', } { , } { ', '}ab ab co co e e a aP X Y X Y X X Y Y X Y Y X� � � � � � � �    

concrete classes 1 { } { } { , } { , }co co a aP X Y X Y Y X� � � �   

interface variant 1 { } { } { '} { '} { ', } { ', } { ', '} { ', '}i i co co impl impl a aP X Y X Y X X Y Y X Y Y X� � � � � � � �   

    

Based on the method calls between the classes which are detectable the following should hold for the perfect 
match: 
 
Let iS  be a set of recorded callers in the facts of a method 

; ?}.{},{ 1?)( notifyXSYX updatemc ��  

; ?}'..{}','{ 2?)( updateYSXY GetStatemc ��  
 
For the heuristics this results in the following constraints the number of method in the participating classes, and 
the interaction sequence between these classes: 
 
perfect match 2 ( ) 3 ( ') 2 ( ) 1 ( ') 1P m X m X m Y m Y� � � � � � � �  

 3 { ', ?, ?, '} { ', ?, ?, }
{ , ?, ?, }

ext ext

ext

P Y SetState Notify X X Notify Update X
X Update GetState Y

� �
�

 

concrete classes 2 ( ) 5 ( ) 1P m X m Y� � � �  

 3 int{ , ?, ?, } { , ?, ?}
{ , ?, ?, }

ext

ext

P Y SetState Notify X X Notify Update
X Update GetState Y

� �
�

 

interface variant 2 ( ) 3 ( ') 5 ( ) 1 ( ') 1P m X m X m Y m Y� � � � � � � �  

 3 int{ ', ?, ?, '} { ', ?, ?}
{ ', ?, ?, '}

ext

ext

P Y SetState Notify X X Notify Update
X Update GetState Y

� �
�
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4.2.2 Pipe-and-filter  
 
The pipe-and-filter pattern is a well-known architectural pattern, often used in systems performing data 
processing. Since the pattern is often used, the descriptions of the pattern in literature have become very 
uniform and formal. The main characteristics of the pattern are (see also Figure 21): 
 

- A pipe component has a source and a sink, and the pipe is responsible for relaying the data from 
source to sink. The pipe also should expose an interface to allow filters which read/write form/to the 
pipe and to close the pipe; 

- A filter component has an interface for either reading or writing to a pipe or both, and an interface 
for closing pipes it writes data to. 

       

 
Figure 21: Pipe-and-filter example 

 
The pipe-and-filter pattern is characterized by the UML diagram presented in Figure 22 , from which the 
detection rules can be derived (see [Garlan et al, 1994]). These figures only comprise the static form of a 
pipe-and-filter pattern in source-code, not an actual instantiation of multiple pipes and filter at run-time.  
 

aXP },{

aYP },{

aFP },{

 
Figure 22: UML diagram of the pipe-and-filter pattern 

 
Looking at the functioning of a filter in more detail, we see that the computation function inside the filter is 
missed. The earlier description from [Garlan et al, 1994], does not take the internal computation of a filter 
into account, but just the read and write methods so an extension is needed to the Filter class. In a pipeline, 
when pipes are not explicitly used a predecessor or successor filter of the current, one can serve as 
DataSource or DataSink.  
 

proc filter(in: IDataSource; out: IDataSink)   
var x,y : T; 

x:=read(in); 
y:= f(x); 
write(out,y); 

corp 

Figure 23: Pseudo-code of a filter component 
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Taking only the static model of the pattern into account poses a serious restriction on detection. There are 
some variations of this pattern, which mainly vary on the behavior of filter, the data-type of the streams 
between filters (see [Rongviriyapanish et al, 2000]) and the topology of the pipe-and-filter network. The 
main variations are described in Table 5.  
 
Name Description 
Typed pipes requires data passed between two filters has a well defined type 
Blocking filter the filter component cannot receive data while performing the computation 
Non-blocking  the filter can receive data while performing the computation 

(requires internal filter buffering strategy) 
Pipelines topology limited to linear sequences of filters 
Bounded pipes pipes can contain only a specific amount of data  

Table 5: Variations of the pipe-and-filter pattern 

For the assignment the focus is on pipelines with blocking behavior, since non-blocking variants require 
more dynamic information on the system to be captured in the facts. Pipelines with blocking behavior are 
typically implemented as push- or pull pipelines. In the push-variant a data-source and filters push data to be 
modified to the next component which is to do the processing. In the pull-variant, the next component is 
pulling data from the previous component in a pipeline. The pulling component remains blocked until data is 
available form the previous component. These two scenarios are depicted in Figure 24. 
 

           
Figure 24: Example of a push and pull pipeline from [Buschmann et al, 1996]   

 
 
In Figure 24 two mirror axis’s are shown, to indicate the mirror symmetry of the pattern. If for inference, we 
replace all class names by variables to be resolved, push and pull pipelines will be detected with the same 
heuristic. The only way to discriminate between the two variants would be to take into account the time 
when a calculation starts, in case of a push pipeline computation starts earlier then in a pull pipeline.  
 

mirrormirror--axisaxis
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Figure 25: Detecting pipelines 

 
More formal descriptions of pipe-and-filter and event system architectural patterns are presented in [Abowd 
et al, 1993].  
 
Heuristic for pipe-and-filter 
 
For the heuristics, the detection of push and pull pipelines implies that we need a detection function for a 
pipeline of arbitrary length N from a given start class. The current nomenclature is extended, with a function 
named Pipeline to fulfill this task.  
 
proc Pipeline(s, e, N)  

if   0 ( : :{ , } )aN y y Classes s y� � � �  �  
                    ; N:=N-1 
             ; e := e � y 
 ; return Pipeline(y, e, N) 
 ||  0 ( : : { , } )aN y y Classes s y� � � � � �  return �  
 || 0N e� � � �   �  return �  
 || 0N e� � �� �   �  return e 
 fi       
corp 
 
Class relation detection 

 
Class-method detection  

 

perfect match  2 ( ) 1 ( ) 1 ( ) 1 ( ) 2P m X m Y m P m F� � � � � � � �  

   1{ , ?, ?, } (0 )i i extF read read F i N for pipeline of length N� � �   

perfect match  1 { } { } { } { } { , } { , } { , }co co co co a a aP X Y P F P X P Y P F� � � � � � �  
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4.2.3 Interceptor 
 
The Interceptor pattern [Schmidt et al, 2000] is one of the main patterns used in Grizzly, a experimental 
subsystem of the Océ controller to be examined. The Interceptor architectural pattern allows services to be 
added transparently to a framework and triggered automatically when certain events occur. The pattern has 
major similarities with the Observer pattern described earlier. The main pattern used in the Grizzly 
subsystem is a slight modification of the original Interceptor pattern (see Figure 26). The only modification 
is the absence of the class Concrete Framework, which usually represents a subsystem on which the 
Dispatcher is active. In the Grizzly case, Grizzly itself fulfils there role of the Concrete Framework. The 
used Interceptor pattern has a large resemblance with the observer pattern; therefore we can expect 
duplicates in the detection.  
 
 

 
Figure 26: Class diagrams of the original and used Interceptor pattern 

 
Figure 26 is refined in Figure 27, were the relations and methods relevant for each class are made explicit. 
For the Interceptor pattern no attributes per class have been explicitly defined.  Also no explicit calling 
sequences are found in literature for the Interceptor pattern, therefore we choose not to include the dynamics 
of this pattern. However since the Interceptor has large resemblances with the Observer pattern, we use its 
Reach characteristics as basis for the Interceptor pattern (see Figure 28). The constraints for method counts 
per class are also unclear.  
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Figure 27: Relations in Interceptor pattern 

 
Figure 28: Snapshot of the dynamic behavior of the Interceptor pattern 

 
This result in the following heuristics for the Interceptor pattern. 
 
Heuristic for Interceptor pattern 
 
Class relation detection 

 
Class method detection 
 

 

perfect match  1 { } { , } { } { , } { , } { , } { , }ab e co a a a aP I CI I D D CI D CF CF C CI C� � � � � � �  

used pattern  1 { } { , } { } { , } { , } { , }ab e co a a aP I CI I D D CI D C CI C� � � � � �  

perfect match  2 ( ) 2 ( ) 1 ( ) 1 ( ) 1P m C m A m D m I� � � � � � � �  

   3 { , ?, ?, } { , ?, ?, }
{ , ?, ?, }

ext ext

ext

P C event callback D D callback callback CI
CI callback getValue C

� � �
 

used pattern  2 ( ) 2 ( ) 1 ( ) 1 ( ) 1P m C m A m D m I� � � � � � � �  

   3 { , ?, ?, } { , ?, ?, }
{ , ?, ?, }

ext ext

ext

P C event callback D D callback callback CI
CI callback getValue C

� � �
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4.2.4 Blackboard  
 
The blackboard pattern is often used in the context of Artificial Intelligence systems, but not that often in 
regular Information Systems. The blackboard is typically used in situations were the calling sequence 
between system components is not known beforehand. This probably explains the lack of a formal 
description of this architectural pattern in literature. In the implementation of the Océ controller this pattern 
is very prominent.  
 
The blackboard is a typical asynchronous pattern. Known variants are the passive and active blackboard. In 
the first variant, components are not informed of changes on the blackboard which are of interest to them. In 
the active variant, components are actively notified of changes on the blackboard in a publish-subscribe 
fashion.  
 
The typical core of a blackboard system is shown in Figure 29. The Control class can iterate over the 
available Knowledge Sources. When Control iterates over the sources, the pre-condition required for each 
individual source’s execAction method is checked by calling execCondition. The Control class determines 
the behavior for calling the execAction methods. For example it could first check all sources, and then 
according to knowledge on priorities of sources execute the action of a specific source or it could call the 
first source for which it encounters a satisfied precondition.     
 

 
Figure 29: UML model of the Blackboard pattern 

 
In Figure 30, the detection rules for the Blackboard pattern derived from the UML model are shown.  
    

aYX },{

aZY },{

aZX },{  
Figure 30: Basic detection rules for Blackboard pattern 

In this figure it is interesting to see that the relation between the Control and Blackboard is exactly one-to-
one, which thereby puts a restriction on the search-space. This should be modeled in the heuristics.  
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Regarding blackboard variants, passive and active blackboard variants are described in literature. In this 
assignment only passive blackboards are discussed. 
 
Figure 31 gives a snapshot of the dynamic behavior of the blackboard pattern. From this, the Reach 
characteristics required for the pattern can be described as follows: 
 

 
Figure 31: Snapshot of the dynamic behavior of the BlackBoard pattern 

 
Heuristic for blackboard pattern 
 
Class relation detection 
 

 

perfect match    1 { } { } { } { , } { , } { , }co co co a a aP X Y Z X Y Y Z X Z� � � � � �  
     



 

33 

Class-method detection stage  
 

 

4.3 General considerations for the heuristics 

4.3.1 Implementation styles 
 
In the previous sections, the patterns were discussed as being disjoint, but in real-life implementations one 
can imagine heterogeneity can occur. An example of this is the “active blackboard”, which combines the 
Observer and Blackboard constructions. The blackboard in this case actively notifies knowledge sources and 
control objects of changes on the blackboard. The heuristics in their current form will not deal with this 
heterogenity from start, as first their regular pure result is to be measured/validated. 
 
Obscure constructions in code will also be a pitfall for the initial heuristics, if too much detail would be paid 
to implementation detail (for example what is the internal structure of a method). Since the heuristics mainly 
operate at the high-level of static UML structures, obscure constructions are likely to have light to medium 
influence on the detectability of a pattern.     

4.3.2 Generic relaxation strategy for the heuristics  
 
In the previous discussion, the focus was on detecting the best match and the known variants of a pattern in 
literature. However also non-described variations can occur, due to normal relaxations applied to patterns by 
developers. An example of such a relaxation is a developer replacing originally intended abstract classes in a 
pattern by concrete classes.  
 
The heuristics always have a set of clauses to detect the best match, however all variants have to be created 
manually. This however could be automated, by using an automatic relaxation algorithm on the best-match 

Let iS  be a set of recorded callers in the facts of a method 

}}{|{ )(amx XaM � , }}{|{ )(amy YaM � , }}{|{ )(amz ZaM �  

; ?}?,?,{},{ 1?)( kboardupdateBlacexecActionionexecConditSXY inspectmc ��  

; ?}{},{ 2?)( kboardupdateBlacSXY updatemc ��   

; ?}{},{ 3?)( loopSYZ execActionmc ��  

; ?}{},{ 4?)( loopSYZ ionexecConditmc ��  

 
From the above reasoning, we can see easily that 12 SS �  and 43 SS � . By using 43 SS � , we can 

identify the methods execAction and execCondition with more certainty. With 12 SS �  a distinction can 
be made between inspect and update. Also ?}{21 kboardupdateBlacSS �� , so this can give us an 
indication on the most likely method(s) to be updateBlackboard. 
 
perfect match  2 ( ) 2 ( ) 3 ( ) 2P m X m Y m Z� � � � � �  

3 int

int

{ , ?, ?, } { , ?, ?}
{ , ?, ?}
{ , ?, ?, }

ext

ext

P Z execAction inspect Y Y execAction compute
Y execaction updateBlackBoard
Y updateBlackBoard update X

� � �
�  
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clause. Below a proposal** is done for the steps in such an algorithm. The algorithm could not only be used 
in the Prolog environment, but also when transforming visual UML models to Prolog clauses in an 
automated way. In the latter case weaker variants of the pattern would be generated automatically.  
 
Starting point: P1 clause  for class-relation detection 
 
Relaxation algorithm 
 

1. For all occurrences in the 1P  of abX}{  ,  

 walkthrough the following paths in sequence (each step is a specific relaxation of 1P ): 

1.1. (concrete classes variant) For all occurrences of abX}{   

- replace { }abX  by ({ } { } )ab coX X�  

1.2. (interface variant) For all occurrences of ({ } { } )ab coX X�  or coX}{  and eX}{..., ,  

- extend by iX}{  and extend all eX}{...,  by impliX }}{{...,   

Details of steps ( �  indicates “replace with”) 
step R1.1   )}{}({}{ coabab XXX ��      

step R1.2   )}{}{}({)}{}({ icoabcoab XXXXX ����   

   { , } ((({ } { } ) { , } ) ({ } { ,{ } } ))e ab co e i i implY X X X Y X X Y X� � � � �  

 
As an example we apply the relaxation on the ‘best-match’-clauses of the Observer pattern heuristics. 
  
Observer pattern relaxation 

1P�  
1.1 1.2R R��  

aaeecocoabab },X{Y{X,Y},Y}{Y,X}{X}{Y} {X{Y}{X} '''''' �������  

�    { �  apply R1.1 �  widening on constraints abX}{  and abY}{ } 

 aaeecococoabcoab },X{Y{X,Y},Y}{Y,X}{X}{Y} {XYYXX '''''')}{}({)}{}({ ���������  
�    { �  apply R1.2 �  at first constraint widening, but also narrowing by replacing extends by 

    implements constraint when needed} 
({ } { } { } ) ({ } { } { } ) { '} { '} ((({ } { } { ', } )
({ } ( ',{ } } )) ((({ } { } { ', } ) ({ } ( ',{ } } )) { , } { ', '}

ab co i ab co i co co ab co e

i i impl ab co e i i impl a a

X X X Y Y Y X Y X X X X
X X X Y Y Y Y Y Y Y X Y Y X

� � � � � � � � � � �
� � � � � � � �

 
�  
 
Since this algorithm is only an example, many things are to be perfected. It clearly needs more detail 
regarding large class hierarchies and how to incorporate methods counts and Reach in the algorithm. 
Regarding large class hierarchies: if  R1.1 would be applied to a large class hierarchy, the weakest variant 
would be generated immediately. This process can be made more gradual by looking at the depth of a class 
in the class hierarchy. 

                                                      
** The algorithm is only presented as “food-for-thought”, since it could provide large benefits for future work. It has not 
been investigated further during this assignment. 
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4.3.3 Mapping of heuristics to Prolog 
 
For mapping the nomenclature of the heuristics to Prolog queries, a mapping is defined in Table 6. 
 
Symbol Description Prolog clause 

abX}{  Entity X is an abstract class isAbstract(X) 

coX}{  Entity X is a concrete class isConcrete(X) 

iX}{  Entity X is an interface isInterface(X) 

aYX },{  Entity X has an association relation with entity Y assoc(X,Y) 

eZX },{  Entity X has an extends relation with entity Z extends(X,Z) 

)(}{ AmX  Entity X contains a method A  
(must also cover  inherited methods) 

contains(X,isMethod(M)) 

)()( }}{{ BpAmX Method A of entity X has a parameter B contains(X, M,hasParameter(X,B)) 

)()( }}{{ YrAmX  Method A of entity X returns a value of type Y returns(X,A,Y) 

)(}{ CatX  Entity X contains an attribute C 
(must also cover  inherited attributes) 

contains(X,isAttribute(M)) 

)(},{ AmcXY  Entity Y may call method A of entity X 
(must also cover inherited methods) 

m_call(X,Y,isMethod(M)) 

impliYX }}{,{  Class X implements interface Y implements(X,Y) 

int{ , , }C X Y  From the scope of method X, method Y is called. X and Y are methods of 
the same class C 

r_int(X,Y,C) 

{ , , , }extC X Y D
 

From the scope of method X, method Y is called. X and Y are not members 
of the same class C. However C is the class from where X originates and 
D is the class in which Y resides 

r_ext(X,Y,C,D) 

Table 6: Mapping nomenclature to Prolog clauses 

 
As could be deducted from Table 6, the typing is relaxed as much as possible in the agglomerated Prolog 
clause. For example the underlying clauses for isAbstract(X) also check that X actually is a class. By not 
exposing these checks at top-level of the clauses, errors can be prevented once the clauses at a lower level 
are valid. 
 
As an example this mapping will be applied to the class relations shown in Figure 16 for the observer 
pattern: 
 

 

Relations in figure  : aaeecocoabab XYYXYYXXYXYX }','{},{},'{},'{}'{}'{}{}{ �������  

Prolog expression : isAbstract(X), isAbstract(Y), isConcrete(X’), isConcrete(Y’) 
     extends(X’,X),extends(Y’,Y), assoc(X,Y), assoc(Y’,X’). 

Figure 32: Example mapping of nomenclature to Prolog 
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4.3.4 Performance optimizations 
 
The mapping of the heuristics towards Prolog looks like a simple one-to-one mapping (the general 
description of CSPs in section 2.2.2 also has this deceiving look). However due to the large-state space the 
CSP is resolved on, the performance of the detection is a serious problem. To improve performance several 
techniques†† can be used, namely: 
 

1. use indexing of functors and their arguments of the used Prolog implementation; 
2. optimizing order of goals used in the heuristics based on some assumptions for example #methods 

>> #classes. This strategy can very roughly be described as: try spawning the smallest branch 
needed to prove a goal, and prevent instantiating the full universe of data to obtain the proof; 

3. supportive to technique 2: prune the branches created during search using Prolog’s “cut” or “if then 
else” facilities during resolution, when proof will fail for certain based a current partial proof; 

4. optimize the fact-database to suit the techniques above (not elaborated further).  
 
Technique 1 is making more explicit use of the indexing mechanism in the SWI-Prolog implementation. By 
default the SWI implementation indexes the functor and its first argument (for example of the fact a(b,c,d) 
the index contains a(b)). In our case this is not optimal since the first argument of each functor in our case is 
a unique id of an entity. If we combine this fact with the fact that many facts are recorded of one entity using 
the same functor (for example r_contains(a,b) …. r_contains(a,z)), it renders indexing on the first argument 
useless on our fact-database. So indexing on the second element and the functor is more useful. If explicit 
indexing commands are not to be used, one can rewrite the facts to take optimal advantage of the default 
indexing (r_contains(a,b) …. r_contains(a,z) becomes r_contains(b,a) …. r_contains(z,a) ).    
 
As an illustration of technique 2, consider the following example for a goal to detect extends-relations in the 
facts: 

 
Although both appear similar when considering just the terms as being pure conjuncts, the branching 
behavior during resolution is different. Consider that the following relation holds on our fact database: 
#r_derivesFrom << #e_type (X,’Class’) << #r_hasBaseSpecifier. Now take example 2: since the conjuncts 
are evaluated lazy, it becomes apparent to place the goal r_derivesFrom as the start goal, since this is likely 
to cause the narrowest branch. However placing r_hasBaseSpecifier second does not seem immediately the 
smartest choice, since their number exceeds the number of classes. But variable Z is already bound in the 
first goal (r_derivesFrom) , so the solution space for r_hasBaseSpecifier is immediately limited to the 
instance of Z made in the first goal.  From these facts it can easily be deduced that example 1 is much slower 
in normal cases. 
 
Technique 3 means using an if .. then .. else construction of Prolog.  For example the goal below first 
establishes a result of an observer pattern based on the unique identifiers of attributes, and after successful 
detection starts resolving the names for the found entities. If no instance is found, it fails. 

                                                      
†† The performance optimization can be made based on profiling of the Prolog program, which is supported in the used 
SWI-Prolog implementation.  

1. extends_byid(X,Y):- isClass(X),isClass(Y),r_hasBaseSpecifier(X,Z),r_derivesFrom(Z,Y). 
2. extends_byid(X,Y):- r_derivesFrom(Z,Y),r_hasBaseSpecifier(X,Z),isClass(X),isClass(Y). 

observer(O,S,CO,CS):-(extends(XCO,XO),extends(XCS,XS),neq(XO,XS))*-> 
(c_name(XS,S),c_name(XO,O),c_name(XCS,CS),c_name(XCO,CO));fail. 
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4.3.5 Ranking in pattern detection 
 
Depending on the approach to the heuristics, false-positives or false-negatives may be included in the result-
set. In this solution, the choice is made to emphasize on minimizing the number of false negatives (non-
detected instances of the pattern). This since the heuristics are supposed to aid users in finding the patterns 
by using automation. If a pattern goes undetected in this stage, the pattern will not surface in the rest of the 
process. This seems in conflict with the more strict heuristics discussed in the previous sections (we would 
increase recall, but lose precision). Introducing a mechanism of ranking could solve the clash between the 
two. Consider the following approach: 
 
Let X Y Z W� � �  be a Prolog goal, where each term is a detection of the same pattern under the following 
conditions: 

1. the first term is the strongest condition to which the pattern instance must conform; 
2. all following terms are decreasing in restrictiveness, ultimately leading to the last term which aims at 

detecting the weakest match. 
 
Let W  introduce a side-effect in the Prolog output like:  
 
{{a, ‘Subject’,25},{b, ‘Observer’, 25},{c, ‘ConcreteSubject’, 25},{d, ‘ConcreteObserver’, 25}} 
 
The meaning of the side-effect is: in term W of the goal, entity a was detected in the role of the Subject in the 
Observer pattern. Since this detection took place in the weakest term, the entity-role relation receives a rank 
of 25. Under the assumptions that Z is a stronger condition then W, Z can produce a similar side-effect of 
which the rank in this stage could be 50. The strongest condition (X  in our case) has rank 100. When 
omitting 3P  from a heuristic the rank is deduced by 10, for omitting 2P  5 is deduced. When switching to a 
new weaker pattern variant 10 is also deduced. Of course if required the ranking can be made more fine-
grained. 
 
False-positives are regarded as less damaging, since these can be filtered out by human aid or by refining the 
result-set afterwards by using for example statistics on the ranking or metrics (in general: there are means to 
increase the precision within the result-set).  

interceptor_best_p1p2p3_100(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN):- 
 interceptor_best(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN), 
 m(I,1),m(CI,1),m(D,1),m(CO,2),m(CF,1), 
 r_ext(F1,F2,CO,D),r_ext(F2,F3,D,CI),r_ext(F3,F4,CI,CO), 
 R=100. 
 
interceptor_best_p1p2_90(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN):- 
     interceptor_best(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN), 
 m(I,1),m(CI,1),m(D,1),m(CO,2),m(CF,1), 
            R=90. 
 
interceptor_best_p1_85(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN):- 
 interceptor_best(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN), 
            R=85. 
 
interceptor_ooti_p1p2p3_75(IN,I,CIN,CI,DN,D,CON,CO,R):- 
 interceptor_ooti(IN,I,CIN,CI,DN,D,CON,CO), 

m(I,1),m(CI,1),m(D,1),m(CO,2),    
r_ext(F1,F2,CO,D),r_ext(F2,F3,D,CI),r_ext(F3,F4,CI,CO), 

 R=75. 
 
interceptor_ooti_p1p2_65(IN,I,CIN,CI,DN,D,CON,CO,R):- 
 interceptor_ooti(IN,I,CIN,CI,DN,D,CON,CO), 
            m(I,1),m(CI,1),m(D,1),m(CO,2), 
 R=65. 
 
interceptor_ooti_p1_60(IN,I,CIN,CI,DN,D,CON,CO,R):- 
 interceptor_ooti(IN,I,CIN,CI,DN,D,CON,CO), 
            R=60. 

Best {P1,P2}

Weaker {P1,P2,P3}

Best {P1,P2,P3}

Best {P1}
restrictiveness
of clauses

stage in detection

Figure 33: Example of using ranking mechanism in Prolog clauses 
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4.4 Basic visualization 
 
This section discusses roughly how detected patterns will be visualized in the Rigi environment and which 
pre-processing is required to obtain a good visualization. Although visualization was not a primary concern 
in the assignment, some attention has been paid to it since it makes the detected patterns more tangible. 

4.4.1 Joining detected instances of patterns 
 
The search in Prolog only delivers separate instances of detected patterns. To create a more understandable 
visualization, it is required to correctly combine the found instances in a view. For this visualization it is 
important to define a “centre of gravity” in a pattern to be visualized (for example for a pattern of typed 
pipes it is logical to take a pipe as the centre, since all filters will use the same type of pipe).  

4.4.2 Using Rigi domains 
 
After the joining of the detected patterns, visualization is performed in Rigi. To visualize patterns more 
clearly, a separate domain containing the nomenclature of the specific patterns is created in Rigi. A domain 
can be regarded as a configuration file which tells Rigi which nodes and arcs can be present in a graph, and 
also which attributes and colors should be related to them. Figure 34 shows the domains as they were used 
for the pattern visualization. Some of the associations found in specific patterns have been made explicit (for 
example “observers” and “notifies” from the Observer pattern). Some general definitions like “class” and 
“attribute” are also left in for convenience to visualize non-pattern nodes. 
 

 
Figure 34: Rigi domains for pattern visualization 

  
To provide some more guidance in the graph editor also collections of patterns have to be made, which 
contain all the detected instances of a pattern. In this way one can select for example all the children of the 
Observers node which delivers all found instances of the Observer pattern.  
 
Since these instances will contain “false-positives”, which currently have to be filtered out manually, 
additional markings for instances are required to support human validation. Initially an instance is typed as 
‘unchecked’, and by human validation an instance can be ‘rejected’ or ‘accepted’ by changing the type of the 
instance. This can be done by changing the properties of a node in the visualized model.  
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5 Validating the detection heuristics 
 
The detection heuristics defined in the previous chapter will need to be validated with regard to their 
detection capabilities. In this chapter, the tests needed for testing the heuristics are described including their 
results. For testing the heuristics two methods will be described, namely the test using ground-truth and a 
test using guinea pig software.  

5.1 Validation approaches 

5.1.1 Using “ground-truth” 
 
In this approach, the steps will be taken to validate the heuristics using the description of the patterns found 
in literature. First a pattern to test on is implemented as a standalone pattern in separate source code files 
(read: not embedded in a larger system) as described in literature. This is called the ground-truth code. On 
this implementation, the detection heuristics are used which must detect the use of the pattern from the facts. 
After this stage, the same approach is taken for the described variants of patterns in which case it also must 
detect the pattern. For deviations from the original and described pattern variants detection is not guaranteed, 
but using ground-truth should give some directions on how to deliver some result for these deviations.  
 
The ground-truth is created as follows: 

1. Re-using the C/C++ implementations/designs of patterns from literature (see [Gamma et al, 1995], 
[Buschmann et al, 1996]). The static structure as described in literature is implemented, but also a 
main program loop implementing the most common dynamic interaction between the components; 

2. Implementing the described variants with regard to their static structure, using the previous step as a 
starting point; 

 
The source code of the ground-truth of the Observer pattern is included in Appendix C, to illustrate the later 
example. The Observer implementation originates from [Gamma et al, 1995], the pipe-and-filter and 
Blackboard implementation are based on [Buschmann et al, 1996]).  
 
As an extra, a test introducing possible “false-positives” must also be created. This is for example an 
implementation with only the class relations of an Observer pattern, but containing no actual functionality of 
the real pattern.  

5.1.2 Using “guinea pig” software 
 
In the case of ground truth, the pattern is implemented completely as stand-alone. Therefore this is only an 
initial validation of the heuristics, since in regular applications the patterns are usually embedded in a larger 
software framework. Detection of the patterns should also function in this case. To test this case apart from 
the controller software to be analyzed, so-called “guinea pig” software can be used. For “guinea pigs” there 
are several options, namely: 
 

1. A piece of Open Source software, in which patterns are used and which has a reasonable size in 
KLOC for manually recovering the used patterns as validation of the heuristic; 

2. A system in which the patterns from the ground-truth step are embedded and that these patterns are 
known in the system documentation; 

 
The first option is to be favored since it contains the implementation of the patterns by someone else than the 
author of the heuristics, so new variations may pop-up. 
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5.2 Validation results 
 
For the validation, the ground-truth approach is chosen due to time constraints on the assignment; the 
validation was performed according to the detection sequence described in section 4.1, and is also described 
according to this structure. The leading example will be the Observer pattern, but the same method is applied 
for the other patterns. First observations made during testing with the Observer pattern which are also 
applicable to the other patterns are discussed. After this, specific findings per pattern are discussed. 

5.2.1 General observations 
 
Class relation detection 
 
For the detection of class relations, we use a Prolog rule. Below is an excerpt which captures the core of the 
rule. Note that the variables are abbreviations of the classes in the Observer pattern, for example CO 
represents the concrete observer class. The X-prefix to variables is only used for using the id as identifier for 
resolving the goal, guaranteeing uniqueness.  
 

Observe the tests regarding inequality of the classes (neq-clause), since these are required to rule out the 
following constructions: 
 

1. multiple inheritance (as example imagine a clockTimer class being a subject for some GUI elements 
but also being an observer of a time-server); 

2. concrete observer and subject which inherit from one base-class, the latter comprising both the 
observer and subject functions.  

 
At the start of the validation, some “awkward behavior” was discovered in the given code for the Observer 
pattern from [Gamma et al, 1995]. The Subject class in the UML diagram is presented as an abstract class 
(see Figure 14). However the Subject class in the given implementation in C++ is abstract, only in perception 
but not by the language definition of C++. If the class had contained any pure virtual function it would be 
regarded as abstract. However the example from [Gamma et al, 1995] only has a constructor of Subject 
declared as protected, which prevents it from being instantiated directly. But this does not make the class 
abstract. If the Subject-class has to be made abstract by using the C++ definition of abstract, the advantage 
now present for inheriting the Attach, Detach and Notify-methods would be lost. This shows that the 
implementation language can have serious side-effects which one might not expect. 
 
The main observation of this test is that detecting associations will become a problem, since it is represented 
undirected in the fact-database. In the ground-truth case the classes are detected correctly, when taking into 
account that the Subject-class is not abstract (implies leaving isAbstract(X) out of the rule). Regarding the 
detection of variants the largest problem lies in detecting the concrete class variant (see Figure 17). Only one 
class relation is expressed in this case, which implies no real restrictions on the search space is set (numerous 
other constructions will give initial “false-positives” to this detection pattern).  
 
Another complication for detecting associations, is that calls to inherited methods can not be detected in the 
used static analysis. For example in the Observer pattern, the methods of the abstract class Subject are called 
due to inheritance (e.g. the Notify method is called on the ConcreteSubject, which actually means calling the 
Notify method of the Subject). During analysis only the call to the concrete class ConcreteSubject is 

setof(O:CO:S:CS,(extends(XCO,XO),extends(XCS,XS),neq(XO,XS),e_name(XS,S),e_name(XO,O),e_name(XCS,CS),
e_name(XCO,CO), assoc(XCO,XCS)), List). 

Figure 35: Prolog excerpt for detecting Observer pattern 
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recorded. Using static analysis also seems to have a blind spot regarding implicit typing. The example shown 
in Figure 36 is used to illustrate the problem. The example originates from the implementation of the 
Blackboard ground-truth.  
 

 
 
 
 

In the left code-snippet, methods on a KnowledgeSource are called by accessing an array-element, 
containing a pointer to a knowledge source. In the right snippet, the KnowledgeSource pointer is first stored 
in a declared variable with the respective type after which the methods are called. The variable 
_knowledgesources is in both cases explicitly defined as vector<KnowledgeSource*> in the class definition 
of Control. The method-calls made to a KnowledgeSource in the left snippet are not discovered‡‡ during 
static analysis, however the calls in right snippet are. Experiments were also done with explicitly 
dereferencing _knowledgesources as this->_knowledgesources, but this also leaves the construction 
undetected. This present a large problem to the trustworthy detection of functional associations in the code.  
  
Class method detection 
 
In class method detection stage, the methods of each found class are gathered and presented to the developer. 
The developer must now make the mapping towards the actual names used in the pattern in literature. On the 
previously found classes, a search is initiated to find its associated methods. 
 
At this stage the Prolog goal becomes less complex then for detecting class relations. The main complexity is 
again in handling methods which are inherited/imposed from superclasses/interfaces. This can be tackled by 
re-using the approach of the previous stage described for detecting associations between classes. Per class a 
query like shown in Figure 37 is used. 

 
The query is just meant for gathering all functions without any pattern matching to match it towards the 
method naming used in the patterns in literature.  

                                                      
‡‡ This is not a problem specific to Columbus/CAN. When using the Microsoft Compiler as a pre-processor the problem 
also occurs. Although the exact problem could not be pinpointed by us, it seems to have a relation with how the abstract 
syntax tree on the source code is built-up or interpreted. 

Figure 37: Query for gathering functions of a class 

void Control::loop() { 

   int count = _knowledgesources.size(); 

    int i;  

    KnowledgeSource* ks; 

 

    for (i = 0; i < count; i++)  

    {  

       ks=_knowledgesources[i]; 

       if(ks->execCondition())  

          ks->execAction(); 

    }  

}

setof(F, (isFunction(F), isClass(C), isContainedIn(C,F)), FunctionList). 

void Control::loop() { 

    int count = _knowledgesources.size();  

    int i;  

 

    for (i = 0; i < count; i++)  

    {  

       if(_knowledgesources[i]->execCondition()) 

          _knowledgesources[i]->execAction(); 

    }  

} 

Figure 36:Implicit versus explicit typing 
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We observed the following in this experiment: 
 

1. Within the regular Blackboard pattern (which only contains concrete classes), the Reach is detected 
normally by using identifier matching in Prolog.  

2. In the case of the Observer pattern, the inter-class call from the Notify-method to the Update-method 
is performed on the abstract classes. To detect this call, name-matching needs to be used instead of 
matching against identifiers. 

 
 

 
Figure 38: Detection of Reach in the Observer pattern 

 

 
Figure 39: Detection of Reach in the Blackboard pattern 

 
Detection of Reach for the pipe-and-filter pull or push variants has proven unusable, since the condition for 
Reach ( 1{ , ?, ?, } (0 )i i extF read read F i N for pipeline of length N� � � ) in essence has become equal to 

the detection of a functional association ( aYX },{ ).  If it was possible to detect attribute associations also 

with aYX },{  , the separate definition of Reach would give some refinement.  
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6 Using the detection heuristics 
 
As the real field test of the heuristics, part of the Océ controller was analyzed. Two subsystems of the 
controller are subject to the actual analysis, one with clearly documented patterns and one with no 
documentation on the usage of patterns. In section 6.1, visualizations on the analyzed subsystems are given. 
Section 6.2 discusses the number of detected pattern using the heuristics.    

6.1 Analyzed controller subsystems 
 
For all discussed subsystems Rigi visualizations of some detected patterns are presented. Symbols in these 
visualizations have the following legend: 
 

Vertex in the graph, 
representing a class

Edge in the graph, 
representing a specific functional association  

Figure 40: Legend of Rigi visualizations 

 
In Rigi, the color of a specific functional association can be changed when desired. For example the Notify-
association in the Observer patterns can be colored green, and the Update-association could be red. Rigi does 
not allow changing the shape which represents a vertex in the graph. This limits the flexibility in creating 
more intuitive visualizations in Rigi. Please note that the picture quality of some visualizations is not optimal 
since from Rigi merely screenshots can be made and the images in Rigi are already anti-aliased so inverting 
colors cannot be used to improve image-quality. Also sometimes some text is missing on the left-side of the 
visualization, due to the scrolling behavior of Rigi, which cannot be altered. 

6.1.1 RipWorker subsystem 
 
In the Océ controller (see section 3.1), the RipWorker subsystem is responsible for converting documents 
described in a page description language (PDL) into a printable bitmap. Several RipWorkers exist, each 
supporting a different PDL like Postscript and Printer Command Language. Each RipWorker observes the 
controller’s information blackboard to see if new data has arrived that requires processing. If data has arrived 
that a RipWorker can handle, it will start converting the data according to a recipe provided with the data. 
The transformation from PDL to printable bitmap is steered by a number of parameters like media type, 
plexity, and number of copies. This subsystem is not accompanied by description of used design patterns. 
Therefore it is approached without any notion on its implementation and used pattern. On the subsystem the 
detection heuristics for Observer, Blackboard, Pipe-and-Filter and Interceptor are applied.  
 
Taking into account some anomalies of false-positives, we are able to obtain the overview shown in Figure 
41 in a semi-automatic way§§. 
 

                                                      
§§ done manually: separating four nodes from the full constellation to make their large fan-out more visible  
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Figure 41: Observer Best-Match visualized with semi-automatic clean-up 

  
The cyclomatic complexity of classes indirectly becomes apparent in the visualization of the patterns. Some 
classes which are identified in the regular metrics output as having a high cyclomatic complexity (> 30) and 
participate in a pattern, can be visually identified by their large fan-in/fan-out. 
 
Figure 42 contains an instance of an Observer pattern from the view of Figure 41. This instance is visualized 
by some manual clean-up of the visualization. 
 

 
Figure 42: Observer pattern after manual cleanup 
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Figure 43:  Larger blackboard constellation after some manual cleanup 

 
In  Figure 43 and Figure 44, the detected blackboard patterns in the RipWorker subsystem are shown. In 
general the detection delivers the following results: 
 

�  the individual attributes of a print-job are classified as individual Blackboard. 
�  the actual product (the print on paper to be delivered) is classified as the Control. 
�  the components responsible for realizing the actual product based on the attributes 

(PJT_T_JobRules, PJT_T_Job Settings) are classified as KnowledgeSource.  
 
Although the setup of these classes is not an explicit applied Blackboard pattern, the classes interact in a 
Blackboard alike pattern.  
 
Regarding pipe-and-filter patterns, the detection only delivers a pipeline of communicating classes. However 
a real implementation/usage of the pattern is not found.   
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Figure 44: Blackboard constellation after manual cleanup 

6.1.2 Grizzly subsystem 
 
The experimental Grizzly subsystem (see [Delnooz et al, 2003a] and [Delnooz et al, 2003b]) is a layer on top 
of the Océ controller, which shields of the internal controller complexity to developers wishing to develop 
certain workflows on the controller. For the creation of these workflows the internal complexity is not 
required. The Grizzly system is documented in such a fashion that the documentation mentions all intended 
instances of the Interceptor pattern in the code.  In our case, compensation for elements which can not be 
detected has already been performed (for example the association between Application and 
ConcreteInterceptor cannot be detected). The cleaned up visualization of the Interceptor pattern instances in 
Rigi is shown in Figure 45. Note that this view only contains the near-perfect matches.  
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Figure 45: All detected Interceptor patterns 

 
In this chapter, Observer patterns are not included since they largely resemble the detected Interceptor 
patterns. The main observation is that the method count constraints limits the number of detected observer 
instances,  whilst for the interceptor pattern omitting the method count constraint has no effect.  
 

 
Figure 46: Best-match Interceptor patterns 

 
 

 
Figure 47: Concrete classes variants of the Interceptor pattern 

 
For pipe-and-filter pattern, the same effect as with the RipWorker subsystem is observed. The numbers of 
pipelines of classes are specified in section 6.2. In the Grizzly subsystem no blackboards are detected, which 
is correct.  
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6.2 Fact & Figures 
 
All pictures presented in the previous sections, represent cleaned-up visualization of detected pattern 
instances. In this chapter, we will discuss on how many actual non-distinct patterns are detected, which 
resembles the situation before clean-up is performed. This implies that the numbers shown here do not 
match. The fact & figures shown in Figure 48 are discussed per subsystem in the remainder of this section.  
 
The names used for the heuristics in this figure, resemble: 

1. the pattern variants the specific heuristic attempt to find 
2. the detection stages (see section 4.1.1) which are active in the specific heuristic. 
3. the rank of a specific heuristic  

 
The heuristic interceptor_ooti resembles the heuristic needed to detect the actually used Interceptor pattern 
in the Grizzly system (see section 4.2.3).  
 
System characterictics Grizzly RipWorker
total #classes 177 93
#abstract classes 7 7
#concrete classes 170 86
#functions 1411 1860
#specializations 120 49
#associations 137 147
#contains relations 42842 47403
average functions/class 7 20  
  
 
 
 
 

Figure 48: Facts & figures characteristics of subsystems/number of detected patterns 

 
General observations 
 
The following observations can be made based on the figures: 
 

- the method-count clause has little to no effect on filtering false-positives from the result-set in some 
cases. The cause of this is the average number of functions per class for Grizzly is 7 and for the 
RipWorker system this is 20, which is significantly higher then the lower bound set in the method-
count clause. 

- Reach detection is time-consuming, but the effect is high with regard to filtering. It is the threshold 
for separating actual best-matches from non-best matches. However from the retrieved numbers, it 
cannot be derived if the Reach clause is too restrictive for the examined systems. It must be 
investigated, whether using Reach more fine-grained*** delivers a better way of filtering. 

- the amount of detected observer instances when the interface heuristic is used and in which 2P  and/or 

3P  are omitted is extraordinary high. The effect for omitting 2P  is higher in Grizzly, since again the 
average number of function is lower for Grizzly then for Océ controllers RipWorker.   

                                                      
*** fine-grained: leave out one conjunct of the reach clause per new detection rank, instead of leaving the full reach 
clause out at once.  

Detection heuristic Grizzly RipWorker
observer_best_p1p2p3_100 0 0
observer_best_p1p2_90 22 104
observer_best_p1_85 28 104
observer_interface_p1p2p3_75 tbd tbd
observer_interface_p1p2_65 7510 1880
observer_interface_p1_60 12970 2018
interceptor_best_p1p2p3_100 0 0
interceptor_best_p1p2_90 1650 20
interceptor_best_p1_85 1670 21
interceptor_ooti_p1p2p3_75 0 0
interceptor_ooti_p1p2_65 40 53
interceptor_ooti_p1_60 40 53
blackboard_best_p1p2p3_100 0 0
black_best_p1p2_90 0 55
black_best_p1_85 0 55



 

50 

- The interceptor_best heuristic proves to be weaker (read: delivers more false positives) then the 
interceptor_ooti heuristic, which should not be the case.  This is strange since the main difference 
between the both heuristics is the addition of a disjoint term to an already existing term in the 
heuristics. This would imply widening from interceptor_best to interceptor_ooti and not the other 
way around. Performing a test with the changed term in isolation delivers a correct result which can 
be verified by counting the number of returned classes. Also no unbound variables were found in the 
Prolog expression. Also whether omitting a transformation from a bag of results to a set was 
checked. The problem to this time remains unsolved.   

 
RipWorker 
 
For the RipWorker subsystem no blackboard best-matches have been found, with the corresponding Reach 
of a blackboard pattern. The blackboard patterns found mainly concern constellations of the individual 
attributes of a print-job, the actual product to be realized in the print-job (the print on paper to be delivered) 
and  the components responsible for realizing the actual product based on the attributes.  
 
Grizzly 
 
From the ground-truth of the Grizzly system (documentation and code), it can be deduced that in the set of 
detected interceptor pattern instances some are missing and some are false-positives. From the Grizzly 
documentation, 24 actual Interceptor pattern constellations were counted.  Of the 40 detected patterns, 22  
instances were false positives, leaving an actual of 18 Interceptor patterns which are detected. This implies 
that 6 patterns instances are missing, even in the weakest heuristic (interceptor_ooti_p1).Since the goal of 
the assignments was to prevent the occurrence of false negatives, this is investigated more in-depth.  
 
The problems are caused by looking at the analyzed system in isolation. As can be seen in the more detailed 
output of Columbus/CAN, the patterns are detected using the unit test-file BitmapDocSynchronizerTest of 
the Grizzly system as an entry point. It is regarded as the main-routine of the system to be analyzed. The 
scope of the detected facts is determined by what facts can be determined from this context. The unit test-file 
indeed does not use the undetected patterns. From the code and facts it can be deduced that constructions like 
mentioned in Subsection 5.2.1, are the cause that some facts are unavailable to deduce more patterns. From 
this observations, the need for an extra source-code parser which fills in the missing facts becomes clear.    
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7 Evaluation 
 
In this chapter a brief evaluation of the detection framework is presented in terms of strengths and 
weaknesses. 

7.1 Strengths 
 
The main strength of the created reconstruction tool lies in the fact that it is easily extendible for new 
patterns or other queries required on a software system. With regard to the latter one can think of queries 
like: “does the software system contain multiple inheritance?” The detection framework is also language 
independent regarding the detection of patterns. It is only dependant on the fact whether facts can be 
extracted from a certain language’s source code and converted to our general form (note that some languages 
are however limited in their “vocabulary”: for example interfaces do not explicitly exist in C++, but in Java 
they do). 
 
Performance-wise the automated recovery of patterns is now usable with some patience for multiple patterns.  
For the reference implementation (“ground-truth”) of the patterns, the detection of Reach already delivers a 
large improvement for filtering out false-positives for patterns compared to heuristics without using Reach. 
After recovery, the initial visualization and cleaning of the result in Rigi provides insight in how patterns are 
used in a system or how modules are related.  

7.2 Weaknesses 
 
The main weakness of the current heuristics is that in a software system, associations based on attributes are 
often used. However at the moment the heuristics are only able to detect function calls but not attribute 
inspections (which both can imply an association between classes), simply because the attribute associations 
are not extracted as facts. The eventual quality depends highly on the quality of the fact-extraction stage. In 
our example CAN/CPP and the Microsoft compiler were used, which showed large differences in the 
number of extracted facts. This puts a severe constraint on how patterns can be detected. Also performance is 
an issue: on large systems all stages in the detection process consume a considerable amount of time. 
Improvements in this area are required.  
 
Regarding patterns described in literature: the Reach of these patterns is often not distinctive or formally 
described. Since Reach is an important means to rule out mirror-symmetry during detection, not having a 
clear definition in literature weakens the current heuristics by using a proprietary interpretation of what the 
typical Reach characteristic could be. Completeness is also a problem: although one can try to capture all 
variants of a pattern implementation in a heuristics, there will always be variants which are not covered but 
are an actual instance of a pattern. 
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8 Conclusion 
 
Reflecting on the initial research questions, the main question on how architectural patterns can be 
recognized by analyzing the source code of a product, with or without a-priori knowledge on the chosen 
architectural pattern can be answered as:  
 
- pattern detection using constraint satisfaction is possible, for recognizing applied design/architectural 

patterns stated in a template library. Other methods have not been tested in the case study; 
- the lack of dynamic information on the system and incompleteness of extracted facts hampers the 

precision of pattern detection. This is mainly caused by the deficiencies in current extraction tools; 
- currently only sparse detection of functional associations is possible and attribute associations are almost 

completely missing. Adding dynamic information will clearly aid in enabling a more sound detection of 
functional associations;  

- detecting pipelines is difficult due to their numerous variations and the lack of detecting attribute 
associations. Due to this lack, any sequential calling sequence of length N between some classes is now 
identified as pipe-line, which is clearly not desired; 

- The use of Prolog has proven a clear strength, because patterns can be inferred and the detection 
framework can be extended fairly easy. This strength would be lost when a mechanism like an SQL fact 
database would be used. Investigating the advantages of such a type of fact database is a topic for further 
research.  

 
The following properties of implemented or envisioned architectural patterns can be visualized: 
 
- classes participating in patterns can be visualized according to their role in the pattern and also according 

to their received rank in the detection stage;  
- implicitly the fan-in/fan-out of classes participating in a pattern is also visualized and available as data. 

This can be used to visually or automatically detect classes of higher complexity or to filter out more 
false-positives in the end result; 

 
Visualization of patterns proved useful, but Rigi proved not to be the most optimal tool for this. It is rich 
regarding graph manipulation, however variations in vertices and edges 
  
When effectively interpreting the visualized patterns some hints for a re-factoring roadmap can be derived 
from the visualization. Classes which are now scattered as separate classes, can be agglomerated to a single 
class/subsystem. For example all Job-attributes in the Océ controller which are initially visualized as 
separate classes, can be merged to one blackboard subsystem containing these job-attribute as the content of 
the Blackboard.  Also classes having a high cyclomatic complexity are visible. 
 
At the moment the visualized patterns do not contain any dynamic information (e.g. the duration of a call to 
a method of a class). This information must be enhanced if the visualizations are also used to anticipate on 
the performance effects of a re-factoring operation.   
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9 Future directions 
 
In this chapter possible future directions for the detection framework are discussed. 

9.1 Pattern inference 
 
For enhancing the pattern inference stage, the following areas are interesting to explore: 
 
- focus on detecting anti-patterns instead of patterns: the former are the most probable elements to cause 

problems in future development. If identified, this allows developers to re-factor the anti-pattern. 
- start analyzing from UML diagrams instead of code: as addition to the future direction to detect anti-

patterns analysis should start at design-time, to prevent common mistakes before implementation. 
- provide a more detailed ranking strategy: to create a clearer distinction between perfect matches and 

their variants, ranking should be added in a “neater form” to the heuristics. 
- create an UML2Prolog translation: at the moment the translation of UML designs of patterns towards 

Prolog clauses has to be done manually. This could be automated by creating a tool for Microsoft Visio 
or Rational Rose, which performs this translation automatically. This would increase the reach of the 
current detection mechanisms to non-formalized patterns a developer knows were used in a system.  This 
system could automatically generate the “weaker variants” of a pattern by automatic relaxation (see 
section 4.3.2). 

9.2 Dynamic information 
 
The current assignment focused on detection using only the source code model. Including the dynamic 
model adds extra facts to use in the heuristics, which can improve the detection of pattern. The following are 
the main areas of interest: 
 
- incorporate run-time information (dynamic model): this gives more information on functional and 

attribute associations between classes in the system and can also bypass the current detection problems 
as mentioned in section 5.2.  

- runtime dynamics: distil the runtime dynamics from a running software system (recreate the calling 
graph), and e.g. create a timed Petri-net representing the dynamic model in a graphical form. This can 
aid in the simulation of future changes in the software, by applying them first to the Petri-net model. 
Similar results could also be achieved by distilling Data Flow Diagrams or State Transition Diagrams. 

9.3 Visualization 
 
Although visualization was not the main topic in this assignment, the following areas are interesting to 
investigate in more detail: 
 
- improved filtering on false-positives: the filtering in Rigi can be improved by extending the current basic 

TCL scripts, to incorporate more knowledge in the visualization (for example fan-in / out characteristics 
of nodes in the graph). 

- create a SQL database with facts and also deliver XMI output: this gives more freedom to represent/use 
the generated information in more applications. This way patterns could be visualized as an UML model 
in for example Visio. 

- add Pattern Comment Language (PCL): after pattern detection and filtering the system can be used to 
inject the knowledge over used pattern into comment in the source code using PCL (see  [Prechelt et al, 
2001]).   
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Appendix A – Architecture Reconstruction Tooling 
 
This appendix provides an overview of available tooling, to aid in the process of architecture reconstruction.  
Per  discussed tool several properties of the tool are described. The tools were evaluated only with respect to 
their fit with architecture reconstruction, not for example on the exhaustiveness of metrics output. 
 
1. Dali 
 
Dali is the architecture reconstruction framework available from the Software Engineering Institute (SEI). 
Since the definition of architecture reconstruction and proposed phasing evolved from the SEI, Dali supports 
most of the steps in reconstruction process. More explicitly, the framework supports the following steps: 
 
- Extraction of views using lexical analysis, parsing and profiling of source code. Dali also has functions 

to combine the output of these extraction techniques. For example parsing gives a view on the static 
aspects of a system, whilst profiling captures the dynamic aspects. Combining the two approaches can 
deliver more information; 

- Visualization of the extracted view. The view is built using a Dali specific query scheme, based on SQL; 
- Manipulation of the view by allowing addition of new queries which enhance/refine the extracted view;  
- Analysis of the view. From the visualization of the extracted view and further refinement documentation 

can be created manually. 
 
Origin Software Engineering Institute 

http://www.sei.cmu.edu/ata/ata_extraction.html 
Supported AR phases All Architecture Reconstruction phases 
Main characteristics - Fact extraction is performed by a combination of various interpreters  

- Creates a fact database, which can be queried through SQL to create new 
views on a system in Rigi format 

- Rigi is used to perform the visualization and analysis steps 
Type of tooling Extraction, manipulation and visualization 
 
2. FAMIX 
 
FAMIX is the acronym for FAMoos Information eXchange Model (FAMOOS is an acronym for 
Framework-based Approach for Mastering Object-Oriented Software Evolution). FAMOOS refers to the 
ESPRIT Project 21975. FAMIX is created to establish tool interoperability, supporting projects where 
multiple programming languages are used and where the development teams are geographically dispersed. 
 

 
Figure 49: FAMIX model 
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Origin Software Composition Group (SCG) within the University of Bern 

http://scgwiki.iam.unibe.ch:8080/SCG 
Supported AR phases Phase I: only view extraction 
Main characteristics Offers a language independent description of source code after fact extraction 

(FAMIX is an XML description, so conversion to other representations is also 
feasible). FAMIX output can be used by many analysis tools, without 
adaptation. Parsing of C++, Java, Smalltalk and Ada is supported. 

Type of tooling Language Neutral Interchange Format 
 
3. Moose 
 
Moose is a tool environment to reverse engineer and reengineer object-oriented systems created in a 
Smalltalk environment. It can be used to query and visualize analyzed code which is stored in the FAMIX 
format. The current support for Moose seems low, judging the scarce documentation available. Beware, 
other tools which are called Moose are also available.  
 
Origin Software Composition Group (SCG) within the University of Bern 

http://scgwiki.iam.unibe.ch:8080/SCG 
Supported AR phases Phase II, (III), IV 
Main characteristics - Visualization tool for extracted view information. Also supports specific 

views for certain software metrics. 
- MooseFinder offers query functionality on stored models  
- Phase III support is less flexible than for example in Rigi  

Type of tooling Visualization and metrics 
 
4. Columbus/CAN 
 
FrontEndART Ltd offers Columbus/CAN for view extraction from C++ source code. The tool works in a 
Visual Studio like way, by allowing a user to pinpoint which implementation and include files to use during 
an analysis phase. It already comes with an embedded C++ processor, but can also use other processors, such 
as the Microsoft compiler. Its power lays in the numerous export formats it supports. This allows using the 
extracted information in a multitude of tools.   
 
Origin FrontEndART Ltd 

http://www.frontendart.com 
Supported AR phases Phase I 
Main characteristics Supports the extraction of metrics and source code properties towards 

standard format like CPPML, GXL, HTML, Rigi (RSF), UML XMI, and 
FAMIX XML. Supports the largest amount of export formats of the evaluated 
tools.  

Type of tooling Fact Extraction 
 
5. Rigi 
 
Rigi is the name of a research group at the University of Victoria, department Computer Science. They have 
created an visualization tool also named Rigi, to support the re-documentation and understanding of software 
systems. The tool uses a graph model (called Rigi Standard Format, RSF) to support the visualization of 
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graphs (in our case a software system with component interrelations). Furthermore a graph editor / command 
language are available to manipulate graphs loaded in Rigi. Dali uses Rigi as the main visualization tool. 
 
Origin University of Victoria, department Computer Science 

http://www.rigi.csc.uvic.ca/index.html 
Supported AR phases Phase II, III 
Main characteristics - Rigi command language allows direct manipulation of graphs 

- New graph schemes can be added (to achieve independence of what is 
visualized) 

- Rigi Standard format is simple and can be created from various sources 
(in our test, the SQL query-results delivered direct RSF output ready for 
visualization)  

- Can handle large graphs � fit to visualize large software systems 
Type of tooling Visualization and manipulation 
 
6. Portable Bookshelf 
 
The Software Bookshelf is a web-based paradigm for the presentation and navigation of information 
representing large software systems. The Portable Bookshelf (PBS) is one implementation of this concept. 
 
Origin University of Waterloo, Software Architecture Group 

http://swag.uwaterloo.ca/pbs 
Supported AR phases Phase I, II, (III) 
Main characteristics - web-based visualization 

- uses cfx: C Fact Extractor. Parses C programs to generate fact tables  
- uses fbgen: Fact Base Generator to create Rigi Standard Format fact 

tables 
- uses the grok fact manipulator (based on Binary Relational Algebra) to 

create additional views on a system 
Type of tooling Extraction, manipulation and visualization 
 
7. MAISA 
 

MAISA (Metrics for Analysis and Improvement of Software Architectures) is a research and development 
project aimed at developing methods for the measurement of software quality at the design level. The 
metrics are computed from the system's architectural description, predicting the quality attributes of the 
system derived from it. Most notably, size and performance metrics are addressed. The performance analysis 
is refined by further analysis at code level.  The work in the MAISA project started on the first of September 
1999 and ended at the end of December 2001.  

  
Origin University of Helsinki 

http://www.cs.helsinki.fi/group/maisa 
Supported AR phases None, purely aimed at quality at design level 
Main characteristics - calculating metrics using an UML design and a pattern library as input 

- some tooling for extracting patterns directly from Java source code 
- current activities: started some student projects on extraction of data from 

XMI, could be valuable for new stages in Architecture Reconstruction 
research 

Type of tooling Extraction, manipulation and visualization of UML models 
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Appendix B – Prolog clauses used in SART 
 
% pattern library of SART, consisting of the patterns as described in the graduation assignment report 
% Author: Rob Kersemakers 
% Date: 06-sept-2004 
 
% disable the style checking, since this only delivers in our case non-relevant warnings 
:-style_check(-discontiguous). 
:-style_check(-singleton). 
 
% define contains relation as dynamic to allow later retraction of non needed contains relations from the fact-
database 
:-dynamic  
     r_contains/2. 
% define two module transparent variables to allow counting in a recursive function 
:-module_transparent  
     compute_complexity/1, 
     counter/0. 
 
 
r_derivesFrom(0,0). 
r_hasBaseSpecifier(-1,-1). 
 
% first a section containing small proofs which were used to validate initial thoughts 
%% proof blackboard reach (no compute method):  
blackboard_callsequence(AN,BN,CN,DN):- r_int(A,B),r_ext(A,C),r_ext(B,D),neq(B,C), 
                                       e_name(A,AN),e_name(B,BN),e_name(C,CN),e_name(D,DN). 
 
%% proof observer reach          
observer_callsequence(AN,BN,CN,DN):- 
r_ext_byname(A,B),r_ext_byname(B,C),r_ext_byname(C,D),neq(A,C),neq(A,D),neq(B,D), 
                                     e_name(A,AN),e_name(B,BN),e_name(C,CN),e_name(D,DN). 
 
%% test whether cyclomatic complexity can be computed based on the facts      
compute_complexity([]):- flag(compute_complexity,N2,N2+1),writeln(N2). 
compute_complexity([ Head | Tail ]):- 
  ignore(setof(Y,(isContainedIn(Head,Y)),L)), 
  ignore(setof(Z,(r_hasBody(Head,Z)),LL)), 
  ignore(setof(V,(r_hasSubstatement(Head,V)),LLL)), 
  (  
           (isIf(Head);isSwitch(Head);isWhile(Head);isFor(Head))  
    ->  
    (flag(compute_complexity,N2,N2+1))  
    ;  
    (flag(compute_complexity,N2,N2)) 
         ), 
  write(Head),write('::'),writeln(N2), 
  merge(L,LL,ML1), 
  merge(ML1,LLL,ML2), 
  merge(ML2,Tail,ML3), 
  compute_complexity(ML3). 
   
compute_cyclomaticcomplexity(X):- 
 setof(Z,(r_hasBody(X,Z)),L), 
 flag(compute_complexity,Old,0), 
 compute_complexity(L). 
 
%% some experiments with retracting in-memory facts for performance optimizations  
cleanupfacts(X,Y):- 
        r_contains(X,Y), 
 not(isClass(X)), 
 not(isFunction(Y)), 
 writeln('removing contains relation'), 
 retract(r_contains(X,Y)). 
         
                                  
% basic comparison, must be performed on entity-ids 
eq(X,Y) :- X==Y. 
neq(X,Y):- X\==Y. 
 
% convenience functions 
isAbstract(X) :- c_type(X,'Class'),c_isAbstract(X,'true'). 
isConcrete(X) :- c_type(X,'Class'),c_isAbstract(X,'false'). 
isClass(X) :- c_type(X,'Class'). 
isFunction(X) :- f_type(X,'Function'). 
isParameter(X) :- e_type(X,'Parameter'). 
isContainedIn(X,Y):- r_contains(X,Y). 
isIf(X):- e_type(X,'If'). 
isElse(X):- e_type(X,'Else'). 
isSwitch(X):- e_type(X,'Switch'). 
isWhile(X):- e_type(X,'While'). 
isFor(X):- e_type(X,'For'). 
 
classes(List):- findall(X, isClass(X), List). 
functions(List):- findall(X, isFunction(X), List). 
abstractClasses_byid(List):- findall(X, isAbstract(X), List). 
concreteClasses_byid(List):- findall(X, isConcrete(X), List). 
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abstractClasses_byname(List):- findall(XN, (isAbstract(X),c_name(X,XN)), List). 
concreteClasses_byname(List):- findall(XN, (isConcrete(X),c_name(X,XN)), List). 
elementsOfClass(X, List):- findall(Y, (isClass(X),isContainedIn(X,Y)), List). 
functionsOfClass(X, List):- findall(Y, (isClass(X),isFunction(Y),isContainedIn(X,Y)), List). 
nrOfFunctionsAtLeast(ClassX,N):- setof(F,(isFunction(F),isContainedIn(ClassX,F)),L),length(L,M),M>=N. 
 
% agglomerated clauses for detecting extends relation 
extends(Sub, Super):- extends_byid_optimized(Sub,Super).   
extends_byid_initial(Sub, Super):- isClass(Sub),isClass(Super),r_hasBaseSpecifier(Sub,Z),r_derivesFrom(Z, Super). 
extends_byid_optimized(Sub, Super):- r_derivesFrom(Z, 
Super),r_hasBaseSpecifier(Sub,Z),isClass(Sub),isClass(Super). 
%% use the following clause with caution, since there is no guarantee on the uniqueness of class-names 
extends_byname_initial(Sub, Super) :- c_name(X,Sub),r_hasBaseSpecifier(X,Z),r_derivesFrom(Z, Y),c_name(Y,Super). 
 
% agglomerated clauses for detecting association 
assoc(Caller,Callee):- assoc_optimized(Caller,Callee). 
assoc_initial(Caller,Callee):- 
isClass(Caller),isClass(Callee),neq(Caller,Callee),isContainedIn(Caller,M),isContainedIn(Callee,N),isFunction(M),i
sFunction(N),m_call(M,N). 
assoc_revision1(Caller,Callee):- 
m_call(M,N),isContainedIn(Caller,M),isContainedIn(Callee,N),isFunction(M),isFunction(N),neq(M,N),isClass(Caller),i
sClass(Callee),neq(Caller,Callee). 
assoc_optimized(Caller,Callee):- 
m_call(M,N),isClass(Caller),isContainedIn(Caller,M),isClass(Callee),neq(Caller,Callee),isContainedIn(Callee,N),neq
(M,N). 
 
% clauses for detecting reach  
r_int(F1,F2,C1):- neq(F1,F2),isFunction(F1),isFunction(F2),m_call(F1,F2),r_contains(C1,F1), r_contains(C1,F2).           
r_ext(F1,F2,C1,C2):- neq(F1,F2),isFunction(F1),isFunction(F2),m_call(F1,F2), 
                                r_contains(C1, F1), r_contains(C2,F2),neq(C1,C2). 
 
r_int_byname(F1,F2,C1):- neq(F1,F2),isFunction(F1), isFunction(F2), 
                                    m_call(F1,F2),r_contains(X, F1), r_contains(Y,F2), 
        e_name(X,XN),e_name(Y,YN),e_name(C1,CN),eq(CN,XN),eq(XN,YN).          
 
r_ext_byname(Function1,Function2,C1,C2):- e_name(C1,C1N),e_name(C2,C2N),neq(C1N,C2N), 
                                          neq(Function1,Function2),f_name(Function1,F1N),  
                                          e_name(F1,F1N),e_name(F1,F1N),isFunction(F1), isFunction(Function2), 
                                          m_call(F1,Function2),e_name(X,C1N),e_name(Y,C2N),r_contains(X,F1), 
r_contains(Y,Function2). 
   
% additional functions 
%% #methods of a class    
m(ClassX,N):- setof(F,(isFunction(F),isContainedIn(ClassX,F)),L),length(L,M),M>=N. 
 
% P1 clauses for detecting pattern class relations 
observer_best(O,XO,S,XS,CO,XCO,CS,XCS):-  
                         (extends(XCO,XO),extends(XCS,XS),neq(XO,XS),assoc(XCO,XCS)) *-> 
                         (c_name(XS,S),c_name(XO,O),c_name(XCS,CS),c_name(XCO,CO));fail. 
                           
observer_concrete(O,XO,S,XS,CO,XCO,CS,XCS):-  
                        
(extends(XCO,XO),(isAbstract(XO);isConcrete(XO)),extends(XCS,XS),(isAbstract(XS);isConcrete(XS)),neq(XS,XO)) *->  
                        (c_name(XS,S),c_name(XO,O),c_name(XCS,CS),c_name(XCO,CO));fail.  
 
blackboard_best(BN,B,CN,C,KN,K):- 
assoc(K,C),assoc(C,K),assoc(C,B),c_name(K,KN),c_name(B,BN),c_name(C,CN),neq(C,B),neq(K,B). 
 
interceptor_best(IN,I,CIN,CI,DN,D,CON,CO):- 
                       
isAbstract(I),extends(CI,I),isConcrete(CI),assoc(CI,CO),isConcrete(CO),assoc(D,CO),isConcrete(D),assoc(D,CI), 
                       c_name(CI,CIN),c_name(D,DN),c_name(CO,CON),c_name(I,IN),neq(CI,D),neq(CI,CO). 
 
interceptor_ooti(IN,I,CIN,CI,DN,D,CON,CO):- 
                       
(isConcrete(I);isAbstract(I)),extends(CI,I),isConcrete(CI),assoc(CI,CO),isConcrete(CO),assoc(D,CO),isConcrete(D),a
ssoc(D,CI), 
                       c_name(CI,CIN),c_name(D,DN),c_name(CO,CON),c_name(I,IN),neq(CI,D),neq(CI,CO). 
 
pf_best(F,FN,P1,P1N,X,XN,Y,YN,N):- 
                       isConcrete(F),isConcrete(P1),assoc(F,P1) *->((c_name(P1,P1N),c_name(P2,P2N),eq(P1N,P2N), 
                       isConcrete(P2),isConcrete(X),assoc(P2,X)) *-> 
((c_name(X,XN),c_name(Y,YN),neq(X,Y),neq(YN,XN),isConcrete(Y),assoc(P2,Y),c_name(F,FN))*->true;fail);fail);fail. 
 
% clauses and list-operations required for pipeline detection for pull/push pipeline of length N 
add_element(Elem,List,[Elem|List]). 
                    
pipeline(X,[ Head | Tail ],0):- writeln([ Head | Tail ]).                         
pipeline(X,[ Head | Tail ],N) :- 
      N > 0, 
      assoc(X,Y), 
      N2 is N - 1, 
      write('traversal: '),write(Y),write(' '),writeln(N), 
      add_element(Y,[ Head | Tail ],LL), 
      pipeline(Y,LL,N2). 
 
%list convenience 
write_pipelist( [ ] ):- writeln(''). 
write_pipelist( [ Head | Tail ] ) :-  
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                  write_pipe_element(Head), 
                  write_pipelist(Tail). 
 
write_pipe_element(L):- 
                 member(x(X),L),member(y(Y),L), 
                 write(X),write_list(Y). 
                     
write_list( [ ] ):- writeln(''). 
write_list( [ Head | Tail ],N ) :-  
                  N > 1, 
    write(Head),write(':'), 
    call(length(Tail,N)), 
                  write_list(Tail). 
write_list( [ Head | Tail ] ) :-  
                  write(Head),write(':'), 
    call(length(Tail,N)), 
                  write_list(Tail,N). 
 
% actual heuristics in their various forms 
observer_best_p1p2p3_100(O,XO,S,XS,CO,XCO,CS,XCS,R):- 
             observer_best(O,XO,S,XS,CO,XCO,CS,XCS), 
      m(XS,3),m(XCS,2),m(XO,1),m(XCO,1), 
      r_ext(F1,F2,XCO,XCS),r_ext(F2,F3,XCS,XS),r_ext_byname(F3,F4,XS,XO), 
      R=100. 
       
observer_best_p1p2_90(O,XO,S,XS,CO,XCO,CS,XCS,R):- 
             observer_best(O,XO,S,XS,CO,XCO,CS,XCS), 
      m(XS,3),m(XCS,2),m(XO,1),m(XCO,1), 
      R=90. 
 
observer_best_p1_85(O,XO,S,XS,CO,XCO,CS,XCS,R):- 
             observer_best(O,XO,S,XS,CO,XCO,CS,XCS), 
      R=85. 
 
observer_interface_p1p2p3_75(O,XO,S,XS,CO,XCO,CS,XCS,R):- 
      observer_interface(O,XO,S,XS,CO,XCO,CS,XCS), 
      m(XS,3),m(XCS,5),m(XO,1),m(XCO,1), 
      r_ext(F1,F2,XCO,XCS),r_int(F2,F3,XCS,XCS),r_ext(F3,F4,XCS,XCO), 
      R=75. 
       
observer_interface_p1p2_65(O,XO,S,XS,CO,XCO,CS,XCS,R):- 
             observer_interface(O,XO,S,XS,CO,XCO,CS,XCS), 
      m(XS,3),m(XCS,5),m(XO,1),m(XCO,1), 
      R=65. 
       
observer_interface_p1_60(O,XO,S,XS,CO,XCO,CS,XCS,R):- 
             observer_interface(O,XO,S,XS,CO,XCO,CS,XCS), 
      R=60. 
 
observer_concrete_p1p2p3_75(O,XO,S,XS,CO,XCO,CS,XCS,R):- 
      O='',XO='',S='',XS='', 
      observer_concrete(CO,XCO,CS,XCS), 
      m(XCS,5),m(XCO,1), 
      r_ext(F1,F2,XCO,XCS),r_int(F2,F3,XCS,XCS),r_ext(F3,F4,XCS,XCO), 
      R=75. 
       
observer_concrete_p1p2_65(O,XO,S,XS,CO,XCO,CS,XCS,R):- 
             O='',XO='',S='',XS='', 
      observer_concrete(CO,XCO,CS,XCS), 
      m(XCS,5),m(XCO,1), 
      R=65. 
       
observer_concrete_p1_60(O,XO,S,XS,CO,XCO,CS,XCS,R):- 
             O='',XO='',S='',XS='', 
      observer_concrete(CO,XCO,CS,XCS), 
      R=60. 
                   
interceptor_best_p1p2p3_100(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN):- 
     interceptor_best(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN), 
     m(I,1),m(CI,1),m(D,1),m(CO,2),m(CF,1), 
     r_ext(F1,F2,CO,D),r_ext(F2,F3,D,CI),r_ext(F3,F4,CI,CO), 
     R=100. 
 
interceptor_best_p1p2_90(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN):- 
     interceptor_best(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN), 
     m(I,1),m(CI,1),m(D,1),m(CO,2),m(CF,1), 
            R=90. 
 
interceptor_best_p1_85(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN):- 
     interceptor_best(IN,I,CIN,CI,DN,D,CON,CO,CF,CFN), 
            R=85. 
 
interceptor_ooti_p1p2p3_75(IN,I,CIN,CI,DN,D,CON,CO,R):- 
     interceptor_ooti(IN,I,CIN,CI,DN,D,CON,CO), 
            m(I,1),m(CI,1),m(D,1),m(CO,2), 
     r_ext(F1,F2,CO,D),r_ext(F2,F3,D,CI),r_ext(F3,F4,CI,CO), 
     R=75. 
 
interceptor_ooti_p1p2_65(IN,I,CIN,CI,DN,D,CON,CO,R):- 
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     interceptor_ooti(IN,I,CIN,CI,DN,D,CON,CO), 
            m(I,1),m(CI,1),m(D,1),m(CO,2), 
     R=65. 
 
interceptor_ooti_p1_60(IN,I,CIN,CI,DN,D,CON,CO,R):- 
     interceptor_ooti(IN,I,CIN,CI,DN,D,CON,CO), 
            R=60. 
 
blackboard_best_p1p2p3_100(BN,BI,CN,CI,KN,KI,R):- 
    blackboard_best(BN,BI,CN,CI,KN,KI), 
    m(BI,1),m(KI,3),m(CI,2), 
    r_ext(F1,F2,CI,KI),r_int(F2,F3,KI),r_int(F3,F4,KI),r_ext(F4,F5,KI,BI), 
    R=100. 
     
blackboard_best_p1p2_90(BN,BI,CN,CI,KN,KI,R):- 
    blackboard_best(BN,BI,CN,CI,KN,KI), 
    m(BI,1),m(KI,3),m(CI,2), 
    R=90. 
     
blackboard_best_p1_85(BN,BI,CN,CI,KN,KI,R):- 
    blackboard_bestmatch(BN,BI,CN,CI,KN,KI), 
    R=85. 
     
pipefilter_best_p1p2_100(). 
 
pipefilter_best_p1_95(). 
 
 
% the actual start of the program 
% using start(+Filename). performs all the detection and writes the result to file with name Filename 
start(F):- 
            call(time(performdetections(F))). 
 
 
 



 

63 

Appendix C – Ground-truth source code for Observer 
 
OBSERVER.H 
 
// Observer.h: interface for the Observer class. 
// 
////////////////////////////////////////////////////////////////////// 
 
#if !defined(AFX_OBSERVER_H__8DDA9179_534F_41C0_9967_9AAC1D737C78__INCLUDED_) 
#define AFX_OBSERVER_H__8DDA9179_534F_41C0_9967_9AAC1D737C78__INCLUDED_ 
 
#if _MSC_VER > 1000 
#pragma once 
#endif // _MSC_VER > 1000 
 
 
#ifndef OBSERVER_H  
#define OBSERVER_H  
 
#include <list>  
#include <iostream>  
#include <vector>  
 
using namespace std ;  
 
class Subject;  
 
class Observer {  
public:  
 Observer() {};  
 ~Observer() {};  
 virtual void Update(Subject* theChangeSubject) = 0;  
};  
 
class Subject {  
public:  
 ~Subject() {};  
 virtual void Attach(Observer*);  
 virtual void Detach(Observer*);  
 virtual void Notify();  
protected: 
  Subject() {}; 
private:  
 vector<Observer*> _observers;  
};  
 
#endif 
 
 
#endif // !defined(AFX_OBSERVER_H__8DDA9179_534F_41C0_9967_9AAC1D737C78__INCLUDED_) 
 
OBSERVER.CPP 
 
// Observer.cpp: implementation of the Observer class. 
// 
////////////////////////////////////////////////////////////////////// 
 
#include "stdafx.h" 
#include "Observer.h" 
 
#include "observer.h"  
 
void Subject::Attach (Observer* o) {  
 _observers.push_back(o);  
}  
 
void Subject::Detach (Observer* o) {  
    int count = _observers.size();  
 int i;  
 
 for (i = 0; i < count; i++)  
 {  
   if(_observers[i] == o)  
   break;  
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 }  
 if(i < count)  
  _observers.erase(_observers.begin() + i);  
 
}  
 
void Subject::Notify () {  
    int count = _observers.size();  
 
 for (int i = 0; i < count; i++)  
   (_observers[i])->Update(this);  
} 
 
 
 
CLOCKTIMER.H 
 
// clockTimer.h: interface for the clockTimer class. 
// 
////////////////////////////////////////////////////////////////////// 
 
#include "observer.h" 
#include <time.h>  
#include <sys/types.h>  
#include <sys/timeb.h>  
#include <string.h>  
 
#if !defined(AFX_CLOCKTIMER_H__A4C4D674_6208_45D0_A923_7A5F6822AAB4__INCLUDED_) 
#define AFX_CLOCKTIMER_H__A4C4D674_6208_45D0_A923_7A5F6822AAB4__INCLUDED_ 
 
#if _MSC_VER > 1000 
#pragma once 
#endif // _MSC_VER > 1000 
 
class ClockTimer : public Subject { 
    public: 
      ClockTimer() { _strtime( tmpbuf ); };  
   
      virtual int GetHour(); 
      virtual int GetMinute(); 
      virtual int GetSecond(); 
     
      void Tick(); 
 private:  
      char tmpbuf[128]; // store system time  
}; 
 
class DigitalClock: public Observer { 
    public: 
        DigitalClock(ClockTimer*); 
        virtual ~DigitalClock(); 
     
        virtual void Update(Subject*); 
            // overrides Observer operation 
     
        virtual void Draw(); 
            // overrides Widget operation; 
            // defines how to draw the digital clock 
    private: 
        ClockTimer* _subject; 
}; 
     
class AnalogClock : public Observer { 
      public: 
        AnalogClock(ClockTimer*); 
  virtual ~AnalogClock(); 
        virtual void Update(Subject*); 
        virtual void Draw(); 
       private: 
         ClockTimer* _subject; 
}; 
     
#endif // !defined(AFX_CLOCKTIMER_H__A4C4D674_6208_45D0_A923_7A5F6822AAB4__INCLUDED_) 
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Appendix D – Performance measurements 
 
As an illustration of the various optimization techniques for Prolog clauses, some measurements are shown 
in this Appendix. The measurements were done in the following environment: 
 
�  Hardware 

-  Dual Pentium Xeon 800 MHz / 512 Mb memory  
�  Software 

- Redhat Linux 
- SWI-Prolog 5.4.2 
- the ground-truth facts with a mixed Pipe&filter and Observer implementation (see Table 7 for the 

metrics of the used facts) 
 
Metrics mixpspf (CL)   

#classes 15 

#functions 79 

#methodcalls 22 

#contains relations 1273 

Table 7: Metrics of the facts used during the performance tests 

 
In the test (see Table 8), the time required on the clauses checking for associations where measured when 
using the heuristic to search for the both patterns. The implementation of assoc1, which is not optimized, is 
taken as a basis to calculate the relative speedup RS. The number of times the association clause was inferred 
is also shown. Between assoc1 and assoc6, there were some other performance experiments. However these 
were not beneficial to the performance. During the tests some background process were running on the 
machine, however they consumed little resources so their influence is negligible. The test have been 
performed multiple times and an average time was calculated. 
 
Mix Pipe/Filter and Observer  T(s) #inferences RS(%) 

assoc1 (not optimized) 10.33 19,297,498 100% 

assoc6 (placement of terms) 4.65 258419 222% 

assoc7 (using only 
c_type)††† 

0.46 1028402 2246% 

assoc7 (with c_type+prune) 0.05 93864 20660% 

assoc7(improved prune) 0.03 47054 34433% 

Table 8: Performance measurements 

 
 

                                                      
††† assoc7 is used multiple times since the placements of terms did not change anymore from assoc6 to assoc7, but only 
the actual implementation of a term.  



 

66 

Appendix E – Architecture Reconstruction workflow 
 
This guideline is meant to give some rough guidance in the installation of the architecture reconstruction 
workflow. It is by no means meant to be exhaustive.  
 
Required software components 
 
- SWI-Prolog 5.3.6 (see http://www.swi-prolog.org/)  
- FrontEndART Columbus/CAN 3.5 (see http://www.frontendart.com/)  
- Saxon 6.5.3 (see http://saxon.sourceforge.net/)  
- Rigi 6.0 (see http://www.rigi.csc.uvic.ca/Pages/download.html)  
- (optional) GXLValidator 1.1 (see http://www.gupro.de/GXL/)  
- (optional) ActiveState Perl 5.8.x (see http://www.activestate.com/)  
- and of course: the SART components and the subsystem to be analysed (see project CD) 
 
The initial installation of the components have no dependencies, so they can be installed in any order. For the 
sake of clarity, it is wise to install all the applications in a subdirectory of a root directory like c:\sart. After 
installation make sure that pl.exe, saxon.exe and gxlvalidator.exe can be found using the operating system 
PATH-settings. This allows you to start these programs from any directory. 
 
Configuration of the software components 
 
- sart.pl: this file is on the project CD and must be available in the directory of a Prolog fact file.  
- Rigi domains: these files are also available on the project CD. From the folder Rigi on the CD, the 

directory Patterns must be copied to the Rigi\domain folder in your Rigi folder on your hard-disk. This 
allows Rigi to use the definitions of class-roles and associations used in patterns in its graph-model.  

 
Walkthrough of a basic project 
 
1. Using FrontEndART Columbus/CAN to extract facts 
 
- add the software system to Columbus: add the physical files or folders to the created project tree in 

Columbus. DO NOT USE SMART PROJECT SETUP: this in larger systems hampers the correct 
extraction, resulting in parsing errors. 

- extract all facts: use menu-item Project -> Extract. After extraction select the scope of the facts to be 
exported.  

- please check that the path for include files which is automatically generated for the pre-processor does 
not exceed 255 characters. Since the pre-processor is spawned as an external program by 
Columbus/CAN, the pre-processor will fail in case the include path is too long. This can be prevented by 
placing all include files in a single directory and manually adapting the generated include path.   

- export schemas and calls: select GXL as export format in the export combox. Then click on Project -> 
Export to start exporting. First export a Columbus schema-graph and name it <xyz >.schema. Then 
export a call graph and name it <xyz>.call. Both files must have the same basic name for later 
processing.  

 
2. Using Saxon and GXL Validator to convert GXL facts to Prolog facts 
 
- merge and process the extracted data to prolog facts: use the command createfacts.bat xyz to start the 

merging of the .schema and .call file to one Prolog file with facts 
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- prefix these prolog facts with our the code of SART: the generated Prolog file from the previous step 
will automatically include sart.pl using an include statement. Please make sure this file is in the same 
directory as the outputted fact file before proceeding to phase 3 

 
3. Using Prolog to extract patterns‡‡‡ 
 
- start SWI-Prolog using the following command: pl –G0 –L0 –O (this starts Prolog with an unlimited 

local and global stack size and also enables optimized compilation).  
- load the software system to be analyzed by the command: [‘xyz.pl’]. 
- to start the detection now type start(‘xyz.rsf’).  This starts the detection of all pattern contained in the 

start clause. The output for later visualization in Rigi is written in the file xyz.rsf 
 
4. Using Rigi to visualize patterns 
 
- start Rigi and switch the graph-domains to “Patterns”. If this selection is not available, please check the 

configuration of the Rigi domains in the Appendix. 
- open the file xyz.rsf in Rigi 
- enter the RCL command source <PATH>/sart.rcl to extend the standard Rigi scripting library with 

some SART specific functions for Rigi. 
- in Rigi navigate to the pattern of interest and then choose the rank of interest. Once you have navigate to 

the rank of interest, please choose “Select all” from the Rigi menu and then choose Navigate -> 
projection. This brings up all the detected instances of the selected rank as one graph.  

- To clean-up this visualization type the RCL command unify which will start a cleanup of the graph. 
- After this clean-up is performed subsequently type the RCL command clean and then columns to 

provide column  layout of the sub graph.  
 

                                                      
‡‡‡ The ‘.’-characters in the Prolog commands are no typos, and should be included to start Prolog to interpret the 
command. 
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