
https://research.tue.nl/en/studentTheses/ae2581b4-3faf-4b46-948c-450ab7781b53

Summary

From the fIrst of december until the 14th of july, my work toward graduating at the
Eindhoven University of Technology, was fulfIlled within the company TRT, Paris. TRT
is a business unit of Philips' division Communication Systems.

The purpose of this project was to improve the test environment of TRT, by using formal
methods. To achieve this goal the Formal Description Technique (PDT) LOTOS was used
to specify the behaviour of protocols. These protocols are tested after they have been
implemented. In fact the specifIcation drawn up is a specification of the implementation
which will be tested. This specifIcation will be used for automatic generation of. these
tests. As an example a part of the X25 LAPB protocol is specifIed to derive these tests.

From the specification in LOTOS an Extended Finite State Machine (EFSM) is derived,
by using the calculation facilities that exist in the Language LOTOS. Also a tool called
SMILE is used to generate this EFSM. This EFSM could also be derived from a specifIca­
tion in another language.

On the base of this EFSM a method, which derives one test suite consisting of one test
trace for every input action of the Implementation Under Test (JUT), is found. Such a test
trace is divided in four parts:
- initialization, to arrive in the state before the action can be transmitted.
- evaluation, to send the action tested and to receive the reactions
- verification, to verify if the state reached is correct.
- tennination, to arrive at the initial state, so the test cases can be concatenated to one

test suite.

A derived test case will be written in the language TfCN, which is common used for test
descriptions. This language corresponds to the language used by TRT's testing machine
CHAMELEON 32, but can also be used for other machines.

The verifIcation is based on finding a unique path for the state verified, so it can be
shown that the IUT has arrived in the correct state. This method is semi-fonnal, because
you can't prove the existence of this unique path.

Finally the algorithm explained is implemented in a tool called the 'Test Suite Generator'.
This tool can generate a test suite containing all the test cases with the name and states of
the transaction which is tested. The tool shows that it is possible to implement the
derivation method, but it has to be improved to be used in practice.

3 Specification language LOTOS .

3.1 Introduction .

Contents

Summary .

Contents .. 11

List of Figures and Tables v

1 Introduction 1

2 TRT and the project specification .. 3

2.1 An introduction to TRT 3

2.1.1 TRT Software Engineering Department 3

2.2 My task within TRT .. 4

2.3 Development procedure used within TRT. .. 4

2.4 The main problem. .. 5

2.5 The build up of my graduation project 5

9

9

3.2 CCS '" .. 9

3.3 Basic LOTOS 12

3.4 Value Passing 13

3.5 LOTOS Specification Styles 14

3.6 LOTOS tools , 16

3.7 Testing 16

3.8 Conclusions. .. 16

4 Protocol specification examples 19

4.1 Introduction. .. 19

4.2 Protocol 4 ., .. 19

4.2.1 Specification of the DCE 20

4.2.2 The specification of the Channel ., .. 23

4.2.3 The specification of the DTE 23

11

Contents 111

4.2.4 Calculation of the parallel behaviour. .. 23

4.3 Translation into LOTOS 28
4.4 The LOTOS specification of the LAPB protocol 30

4.4.1 LAPB Commands 31
4.4.2 Infonnation transfer phase 32

4.4.3 Type and Variable definition part 34

4.4.4 The LAPB infonnation transfer behaviour part. 35
4.5 Specification of Connection Disconnection Processes 36

5 Test suite derivation 41

5.1 Introduction . " 41

5.2 The Testing Block 41

5.3 The method used 43

5.3.1 Translation into an EFSM. 44

5.3.2 Derivation of the test suite 46

5.4 The pros and cons of this method. .. 51

6 Tools used and developed 53

6.1 Introduction .. 53
6.2 SMILE transfonnation 53

6.3 Test suite generator 54

6.4 Used type definitions 55
6.5 Module: Read EFSM 59

6.6 Module: Generate test suite .. 60

6.7 Module: Output 62

6.8 Results 63

7 Conclusions .. 65

Reference List .. 67

Acknowledgement

My intention to go abroad for a period of time became true in december 1991. To get

some working experience in a foreign country was important to me. Especially because the

graduation subject which is described in this report interested me extraordinarily. Also,

some side aspects like learning French, meeting some foreigners and living in the city of

Paris was very enjoyable. Without the help of prof. C.l. Koomen this had never been

possible. I want to thank him for creating this opportunity.

Furthennore my daily supervisor Philippe Guillet helped me to find my way in the

company. Unfortunately he was not there, when I finished my work within TRT. His

deputy Benoit Pinta supported me during my final presentations. With their help I could
create some enthusiasm in the company, so resulting in the fact that they will try to bring

my work in operation.

During my work in France, Ron Koymans who is working for the Philips Research

Laboratories Eindhoven followed my project. In this period we met each other a few times

to have some useful discussions and to correct my report. I Would like to thank him for

this. Finally I want to thank the other trainees at TRT for their help, especially the

translation of some transparencies into French and the preparation of this presentation.

IV

List of Figures and Tables

Figures:

Figure 1. The software design life cycle within TRT. 7
Figure 2. The handshake system , 11

Figure 3. Specification of a transparent communication channel 20

Figure 4. Decomposition of the transparent channel 21

Figure 5. Scheme of the protocol 4 processes 22

Figure 6. The structure of the lAPB protocol " 31
Figure 7. The construction of the DTE of the lAPB protocol 33
Figure 8. The structure of the Information Transfer Phase processes. . 34

Figure 9. The state machine of the Connection Disconnection lAPB protocol 39

Figure 10. A Model of the tester used within TR.T , 42

Figure 11. Life Cycle for testing purpose. 43

Figure 12. C Pointer Structure used to contain an EFSM 56

Tables:

Table 1. lAPB commands and responses 32

v

1 Introduction

The telecommunication industry has been going through a huge development in the last

few decennia. Communication by computer, fax, phone, radio and television has been

improved enormously. Especially when the new ISDN systems are integrated within the

present networks. The future for these complex systems looks very promising.

These systems that communice using very complex protocols call for better methods to

specify the recommendations. For this matter some formal description techniques (FDTs)

like LOTOS and Estelle have been developed. These new languages provide an

unambiguous specification method of the protocol requirements.

Using the created calculation aspects of these languages, it is possible to derive test

scenarios directly from the formal specification. These scenarios can be used to verify an

implementation of a protocol. Unfortunately these methods are too modem to purchase

tools that are able to derive such tests. The specification languages LOTOS and Estelle

were developed one decennium ago and are ISO standards since 1989.

The purpose of this project was to propose a method for the derivation of these test

scenarios. This work was done at TRT in Paris with the ambition to graduate from the

Eindhoven University of Technology within the faculty Electrical Engineering and the

department of digital systems.

This report is divided in two parts. This part contains the actual report and the other part

consists of the appendices with the specifications written and derived, the tool

1

2 TRT and the project specification

2.1 An introduction to TRT

TRT is a subsidiary of Philips' Product Division Communication Systems. This division

has a sales volume of 10.2 billion francs and it employs about 15.000 people.

TRT combines a wide range of technologies, systems and services to meet the com­
munication requirements of the public and private sector. The Product division Com­

munication systems is composed of six "Business Units" (BU) which is fully assumed by

the following main subsidiaries:

- TRT - Telecommunications Radioelectriques et Telephoniques in France

- Philips Radio Communication Systems Ltd (PRCS) in Great-Britain

- Philips Kommunikations Industrie AG (PKI) in Germany

- Philips Telecommunicatie en Data Systemen Nederland BV (PTDSN) in the Nether-

lands

Each "Business Unit" has a worldwide responsibility, within its allocated activity scope,
for : strategy, marketing, development, manufacturing, sales, maintenance and training.

One BU can be subdivided into a number of International Product Centres (lPe).

TRT sells its own items of equipment in France as well as the products from other

companies of the division. On an international level, TRT sells its products either directly

or through the Philips National Sales Organisations (NSO) (about forty worldwide).

2.1.1 TRT Software Engineering Department
As of 1980, TRT started a software engineering group, with the purpose to improve

software design methods. To support software development they used some tools like

GEODE (a development tool based on the specification language SOL). Other tools, like

Platine 2, were developed for this goal. Platine 2 provides a structured software develop­

ment method, which follows a predefmed life cycle.

Nowadays, the software engineering department exists of about fifteen engineers and

3

4 Using PDT WTOS to derive tests

trainees. The main project of this group is to develop a new tool platine 3, which defines

an environment for software development. Platine 3 will help the developer to follow a

structured path of developing given by platine's design life cycle. Platine 3 makes it

possible to integrate in principle every tool in this platform. It is based on EAST

framework which use the PCTE (portable Common Tool Environment) standard.

For keeping an advantage in software engineering, Some preliminary studies are done in

the CASE (Computer Aided Software Engineering) environment.

My Graduation Project took place in the Software Engineering department of TRT,

situated in Le Plessis Robinson, a suburb of Paris. I carried out my project from december

1991 until July 1992.

2.2 My task within TRT

In brief the description of my graduation project is : "How to apply techniques as

described in "The design of communicating systems" + related techniques (e.g. LOTOS) in

supporting or improving the test environment for DAC at TRT aimed at X25 or ATM

protocols?". To answer this question, the development procedure which is used by DAC is

explained. Further on, the main testing problem which has to be improved within DAC

will be pointed out. This will finally lead to the time schedule of my graduation project.

2.3 Development procedure used within TRT.

To explain the development procedure [GUI], the description of the stages used are shown

in figure 1 on page 7. 'Requirements' is a description of the product, which the client

wants to purchase. 'System Specification' is the description of the product that is agreed

upon to produce. These stages together are called Pre-design. The next stage is the

'Software Specification'. In this stage the specifications of the software (DOC190) and the

way of how this system can be verified (DOC170) will be written. This is a specification

of the software of the product which will be developed. Normally this is written in french

or english.

After this phase, the specification made in document 190 will be implemented. First of all

a 'Preliminary design' will be made to define the architecture of a system. This architec­

ture is usually written in SDL and\or in an executable real time system. In block 'Detailed

TRT and the project specification 5

Design' the structure made will be refined and the algorithms used will be selected. In the

block 'Coding' the program in for example C or Pascal will be written. The software is

ready for testing and integration in the blocks 'Unit Testing' and 'Integration'. In the

stages 'Preliminary Design' through to 'Integration', it is possible to use development

programs like GEODE, which can produce documents 161 and 160 automatically, so the

software can be tested by TESTEUR, LOGISCOPE etc.. GEODE is based on the language

SOL.

The verification of the whole system will be done in the block 'Verification'. The alpha

tests, which are written in document 170 will be executed to test the system. For this

purpose,within TRT, they use a machine called 'CHAMELEON'. Afterwards there will

follow a 'Validation' block, wherein the system will be launched on the market as a beta­

test version to let the client test the system.

2.4 The main problem.

Because the specifications in DOC 170 and DOC 190 are not written in a formal lan­

guage, it is difficult to test the software without being incomplete and insufficient. There

is a testing machine 'CHAMELEON' which can test the software protocols. This testing

system uses its own programming language. Normally it takes a long time to let a

product pass this phase (approximately 6 month), because writing the input file for the

Chameleon machine involves a lot of work. An option to reduce this time is writing DOC

190 in a fonnal language and after this fonnalization, to create a method to automatically

derive DOC 170. This document has to be written in a language which is familiar with the

chameleon language, so it can be used as input file for the Chameleon tester. In this

manner the passage time will be significantly reduced. The testing language which is used

has to be independent of the Chameleon language, because there are other testing systems

used within the PHILIPS company.

2.5 The build up of my graduation project

To reach the goal of improving the test quality or reducing testing time, my industrial

training time is divided in 3 parts:

a) As an example, a part of the protocol named X25 LAPB, will be specified in a

formal language. In principle this can be any formal language like SOL, Estelle or

6

LOTOS.

Using FDT WTOS to derive tests

b) After the description of the protocol, a method has to be found to automatically

derive the test traces from the specification. Tools which could be helpful in this

stage have to be found.

c) Finally out of the formalization which is made for a part of the X25, LAPB

protocol, the test traces will be derived. This becomes an example of the procedure

which can be followed to specify the software and how to derive tests from this

specification, with the main goal: to reduce the testing time, and thus to reduce the

development life cycle time.

Two months were planned for each stage. Afterwards one and a half month were left for

finishing up the work and writing a report. In this report no distinction is made between

this three parts, but respectively an introduction to LOTOS, some LOTOS examples, a

derivation method and a tool developed is described. The report is terminated with

conclusions and recommendations.

3 Specification language LOTOS

3.1 Introduction

LOTOS (Language of Temporal Ordering Specification) [IS03, BOL, CLA, DIA, DRA] is

one of the two Fonnal Description Techniques (PDT) developed within ISO (International

Organization for Standardization) for the fonnal specification of open distributed systems,

and in particular for those related to the Open System Interconnection (OSI) computer

network architecture. The language was developed in the 1980s and became an ISO

standard in 1989. The basic idea behind LOTOS is that systems can be specified by

defining the temporal relation among the interactions that constitute the externally

obselVable behaviour of a system. In LOTOS a system is seen as a set of processes which

interact and exchange data with each other and with their environment. The language is

split in two parts:

1. A part for the description of data structures and value expressions. This part is based on

the fonnal theory of abstract data types. It is inspired by the abstract data type fonnalism

"ACT ONE".

2. A part for the description of process algebra which is based on CCS (Calculus of

Communicating Systems) and CSP (Language of Communicating Sequential Processes).

This chapter contains the following sections. Section 2 introduces the basic elements of

the underlying language CCS. In section 3 an introduction to basic LOTOS is made. This

is the subset of LOTOS where processes interact with each other by pure synchronization,

without exchanging values. In section 4 value passing and conditions are added. Section 5

gives a summation of specification styles. Section 6 gives some information about tool

support. The chapter will be ended with an introduction to testing in section 7 and after­

wards the conclusions will be drawn in section 8.

3.2 CCS

9

Introduction to WTOS

t: i',

13

In LOTOS we don't use relabelling, but we give the port names in the process calls. For

example we can specify the handshake system in LOTOS in the following way:

process C[a_inl, b_outl]: noexit:=
hide alpha, beta in
A[a_inl, alpha, beta] I I B[alpha, b_outl, beta]

with
process A[a_inl, a_out, a_in2]: noexit:=

a_inl; a_out; a_in2; A[a_inl, a_out, a_in2]
endproc
process B[b_in, b_outl, b_out2]: noexit=

b_in; b_out1; b_out2; B[b_in, b_outl, b_out2]
endproc

endproc

Or shorter with extensive use of relabelling:

process C[a_inl, b_outl]: noexit:=
hide alpha, beta in
A[a_inl, alpha, beta] I I A[b_outl, beta, alpha]

with
process A[a, b, c): noexit:=

a; A[b, C, a]
endproc

endproc

Furthennore there are some extra operators, for example the III pure interleaving operator,

which means the processes with corresponding ports will not communicate with each other

but only with the environment.

3.4 Value Passing

In full LOTOS we can define types which we can use in our behaviour part. The

definition part is not handled here, it is written in [BOO, DRA]. Here we will only discuss

some principles of value passing in LOTOS' behaviour part.

In LOTOS, you can't speak of input and output, but only of synchronization. To pass a

value to an other process, an exclamation mark is added and the value to the port name. If

you want to receive a value from a port a question mark is added and the variable and its

type. For example:

14

Pass a variable x via port a:
Pass a constant 3 via port a:
Reception of a variable of type int
via port a:

a!x;
a!3;

a?y:int;

Using FDT WTOS to derive tests

The actions will synchronize and effectuate the value pass if the output variable is of the

type int. In LOTOS it is also possible to synchronize the two fIrst actions if x = 3. It is

also possible to synchronize between two question marks, whereafter their values will be

equalized.

If variables are defined, they can be used as parameters for a process and as predicate for

an action. The following example shows these possibilities:

process timer[start,stp,ring,error] (tries:nat):noexit:=
[tries ne N2] -> start;

(stp; timer[start, stp, ring, error](O)
[]

i;ring; timer[start, stp, ring, error](tries +1)

[]

timer[start, stop, ring, error](tries»
[]

[tries eq N2] -> error!timeout; stop)
endproc timer

This process will give an error message and stop if N2 times a time out is arrived. The

condition [tries eq N2] will take care of this.

3.5 LOTOS Specification Styles

In LOTOS 4 specifIcation styles are defIned: constraint oriented, resource oriented,

monolithic oriented and state oriented [Ell]. We will see that the style of specifying is

dependent on where you are in the design cycle. We will fIrst introduce them with an

example and afterwards we will show the differences.

Constraint oriented
In a constraint oriented specification, every design constraint is expressed as a separate

process. So if you have to execute different functions in your protocol, for every function

we use an other process and we chain them in parallel. In this sort of specification we

make extensive use of parallelism and we don't use hiding. An example of this

specification style is the following:

Introduction to WTOS

process QA_service[Q,A]: noexit=
(QA_local[Q] I I I QA_local[A] I I QA_remote[QA])

where
process QA_local[X]: noexit:=

X?x:question; X?y:answer; stop
endproc
process QAJemote[X,Y]: noexit:=

X?x:question; Y!x; stop I I I Y?y:answer; X!y; stop
endproc

endproc

In this system the local constraints are clearly separated from the remote constraints.

15

Resource oriented.
Resources are parts from which a system is constructed. A resource oriented description
therefore shows internal structure. The resources can for example correspond to protocol

entities or parts thereof. In this style we describe a system as a composition of some

resources with their communication hidden from external observation. In the example we

see 4 processes receive_data, send_buffer, send_data and timer as resources and their

internal communication over 8 channels. This process is a part of a X25 LAPB specificat­

ion. Every resource itself can be described in any specification style (Not displayed here).

process information_transfer[prt_in, prt_out, info_in, info_out,errorl:noexit:=
hide poll,reject,confirm,resend,ack,start,stop,ring in

receive_data[prUn, info_out,poll,reject,confirm,resend,ack]
I [poll,reject,confirm,resend,ack] I

«send_buffer[info_in,ack,resend,frame,start,stop,error]
I [frame] I

send_data[prt_out, frame,poll,reject,confirm,ring,start,error])
I [start,stop,ring] I

timer[start,stop,ring,error](0»
etc.

The ports mentioned in the square brackets are the ports on which the processes synchron­

Ize.

Monolithic and state oriented.
These specification styles do not show a structuring based on parallelism, but it is

respectively based on event and state sequencing. Specifications in these styles are close to

the structure of protocol entity implementations and also protocol standards. No paral­
lelism and thus no hiding is used.

16 Using PDT WTOS to derive tests

LOTOS Design Process

The following thesis will point out how LOTOS can be used within the design process:

"An idealised design process consists of transfonning a constraint oriented service

specification into a resource oriented protocol specification, of which the appropriate parts

are transformed into a monolithic or state oriented implementation (specification)."

Because LOTOS gives the possibility to prove observation equivalence between the

different specification stages, you will make less errors and in case of a mistake it is

easier found.

3.6 LOTOS tools

At this moment several toolsets are developed [WIN, LOG]. One of them is LITE [BOO],

which is developed in the ESPRIT project LOTOSPHERE. At this moment it contains a

syntax checker CRIE and a simulator SMILE. These tools are evaluated within the Philips

Research Laboratory Eindhoven. Results of this evaluation are to be found in [LAO].

SMILE and CRIE still contain several bugs, but the main results are satisfying. The tools

can handle full LOTOS with some small restrictions or sometimes with addition of some

extra information, for defining variables or operators. In the future the toolset LITE [BOO]

will be expanded with a graphical editor, a test generator [ALD, PAV] a compiler and an

equivalence verifier.

3.7 Testing

The main purpose for my work was using formal methods for testing. For this purpose the

language LOTOS is used. In brief, the method used translates a LOTOS specification in

an extended finite state machine (EFSM) and from this EFSM the test suite will be

derived [GUE]. The explanation and results are published in the next chapters. There are

also other possibilities to derive test suites as you can read in [NAI, BRI]. They will

probably be supported by tools.

3.8 Conclusions

LOTOS can be helpful to specify a system and to check every design step which is made

in the life cycle. Because of the calculation aspect of LOTOS it will also be possible to

Introduction to WTOS 17

derive test traces automatically. At this moment the tool support is not fully developed,

but in the near future there will be useful tools on the market. With this support the life

cycle time can be significantly reduced.

4 Protocol specification examples

4.1 Introduction

In order to become familiar with formal specifications, we are going to look at another

more complicated example to specify. The chosen example is described in [TAN] protocol

4 on page 269. It is the starting point, on which the LAPB protocol is based. It is a

protocol which provides a full duplex communication between two points. The system

contains a one place buffer, which has to be acknowledged, before a new frame can be

sent. Protocol 4 ensures one of a reliable communication over an unreliable channel

without losing or doubling frames. This protocol has the disadvantage of low efficiency,

especially in case of long transmission times. This disadvantage is solved in the more

complicated LAPB protocol, which will be explained later on in this chapter. We will first

specify protocol 4 in CCS and later on translate it into LOTOS.

4.2 Protocol 4

A communication protocol provides a transparent channel. The data that is transported has

to be equal to the data that is received on the other side of the channel, as shown in figure

3. The specification in CCS would be:

RO OCE_info_in?data : R1 + DTE_info_in?data : R2
R1 = DTE_info_out!data : RO + DTE_info_in?data : R3
R2 = DCE_info_in?data : R3 + DCE_info_out!data : RO
R3 = DTE_info_out!data : R2 + OCE_info_out!data : R1

which is the parallel composition (S I T) of the two independent processes S and T

so = DCE_info_in?data : S1
S1 = DTE_info_out!data : SO

and

TO = DTE_info_in?data : T1
T1 = DCE_info_out!data : TO

19

20 Using FDT WTOS to derive tests

LAYER 2

Info_out ,---------..-----------.,-------,

Figure 3. Specification of a transparent communication channel

To specify protocol 4, we have to refine and decompose this specification. The first step

made was dividing the system into three parts, as shown in figure 4. In principle some

knowledge is added to the system, which is:

"The system is built upon a bidirectional channel and two sender/receivers called a DCE

and a DTE"

It is possible to write the specification at this level, with this amount of processes, but

because later on we want to specify a much more difficult protocol, we are making an

extra decomposition step, as shown in figure 5. The added knowledge is:

"The DTE is divided in a sending and reception part and the DCE also contains a timer,

besides these two parts"

As explained in [TAN], only the DCE has a timer, because otherwise double sent frames

can appear.

4.2.1 Specification of the DeE
The processes of the DCE can be specified as follows:

receive data DCE:
RO(exp)

Rl (exp,data,nr,piggyback)
R2(exp=nr,data)
R2(exp<>nr,data)

= DCE_prtjn?data?nr?piggyback
: RHexp,data,nr,piggyback)

= DCE_send!piggyback: R2(exp,data,nr)
DCE_info_out!data: R3(succ(exp»
R3(exp)

Protocol specification examples 23

4.2.2 The specification of the Channel
The channel is specified as two independent parallel processes with two states each,
receiving a frame and sending it to the other side or losing it by a transmission error. The
validation check, transferring into frames and appending flags, will be done in the channel.

We assume that the channel will only transmit valid frames and reject every invalid frame.

Channell:
Cll = DCE_prt_out?data?send?ack: Cl2
Cl2 = DTE_prUn!data!send!ack: CII

Channel 2:
C21 = DTE_prt_out?data?send?ack : C22
C22 = DCE_prUn!data!send!ack: C21

+ tau: 01

+ tau: C21

4.2.3 The specification of the DTE
The specification of the DTE is the same as the DCE, only it uses no timer. The CCS
specification will be:

receive data DTE:
RO(exp)
R1{exp,nr,ack)
R2(exp=nr)
R2(exp<>nr)
R3(exp)

send data DTE:
SO{send,data,ack)
51 (send=nr,data,ack)
51{send<>nr,data,ack)
52(send,data,ack)
53(send,data,ack)

= DTE_prUn?data?nr?ack: R1{exp,nr,ack)
DTE_send!ack: R2(exp,nr)

= DTE_info_out!data: R3(succ(exp»
R3(exp)

= DTE_ack!nr: RO(exp)

= DTE_send?nr: 51(send,data,ack,nr)
= DTE_info_in?data : 52(succ(send),data,ack)
= 52(send,data,ack)
= DTE_ack?ack: 53(send,data,ack)
= DTE_prt_out!data!send!ack : SO(send,data,ack)

4.2.4 Calculation of the parallel behaviour.
For this purpose a program called "CCS-tool" is used. This is a tool developed on the
Eindhoven University of Technology which can calculate the parallel behaviour of CCS
agents. This program can't treat variables. Thus, the specification is changed in the
following one:

receive data DCE:
RCO = DCE_prUn: RCI
RCl = OCE_send: RQ
RC2 = tau: RC3
RC3 = DCE_info_out: RC4

+ tau: RC4 CO frame is valid or not ..)

24

RC4 = OCE_ack: RCO

send data DCE:
SCO OCE_send: SCI
SCI = tau: SC2
SC2 = OCE_info_in: 50
SC3 = OCE_ack: SC4
SC4 = OCE_prt_out: SC5
SC5 = start SCO

timer DCE:
Tl start: 1'2
T2 = start: 1'2
T3 = start : 1'2

+ timeout SC4
+ tau: SC3

+ tau: T3
+ timeout : Tl

Using FDT WTOS to derive tests

(II- frame resend or not 11-)

Channel 1:
Cll = OCE_prt_out: Cl2
02 = OCE_prUn: CII + tau: CII

Channel 2:
C21 = DTE_prt_out: cn
C22 OCE_prUn: C21 + tau: C21

receive data DTE:
RTO = DTE_prUn: RTl
RTl = DTE_send: R1'2
RT2 = tau: RT3 + tau: RT4
RT3 = DTE_info_out: RT4
RT4 = DTE_ack: RTO

send data DTE:

STO = DTE_send: ST1

ST1 = tau: ST2 + tau: ST3

ST2 = DTE_info_in: ST3

ST3 = DTE_ack: ST4

ST4 = DTE_prt_out : STO

In this specification every condition is replaced by an internal action. This means that the

specification is less specific, but it is now possible to calculate the parallel behaviour. If
some stronger tools to calculate with specifications are developed in the future, it has to

be possible to prove that the system is reducible to the first specification we made.

To show the method how to reduce the specification we give a reduction of several

Protocol specification examples 25

parallel processes. As mentioned in [KOO] page 39, it is better to start with expanding

that part of the system which communicates intensively. That explains why we will start

with calculating the parallel behaviour of process timer and the process DCE_SEND.

send data DCE:
SCO = DCE_send: SCI + timeout SC4
SCI = tau: SC2 + tau: SC3 (... frame resend or not ...)
SC2 = DCE_info_in: SC3
SC3 = DCE_ack: SC4
SC4 = DCE_prt_out: SC5
SC5 = start: SCO

timer DCE:
T1 = start: 1'2
T2 = start: 1'2 + tau: T3
T3 = start: 1'2 + timeout: T1

S = (SClT)\ {start,timeout}

SCOTI = DCE_send: SCIT1
SCIT1 = tau: SC2T1 + tau:SC3T1
SC2T1 = DCE_info_in: SC3T1
SC3T1 DCE_ack:SC4T1
SC4T1 = DCE_prt_out: SC5T1
SC5T1 = tau: SCOT2
SCOT2 = DCE_send: SCl1'2 + tau:SCOT3
SClT2 = tau: SC2T2 + tau:SC3T2 + tau:SClT3
SC2T2 DCE_info_in: SC3T2 + tau:SC2T3
SC3T2 = DCE3ck:SC4T2 + tau:SC3T3
SC4T2 = DCE_prt_out: SC5T2 + tau:SC4T3
SC5T2 tau: SCOT2
SCOT3 = DCE_send: SCIT3 + tau:SC4T1
SClT3 = tau: SC2T3 + tau:SC3T3
SC2T3 = DCE_info_in: SC3T3
SC3T3 = DCE_ack:SC4T3
SC4T3 = DCE_prt_out: SC5f3
SC5T3 = tau: SC0T2

(1)

(2)
(3)
(4)
(5)

(6)
(7)
(8)
(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

The next rewrite rules can be used:
18 -> 17 (tau reduction)
17 -> 16 (SC4T3 =SC4T1)
16 -> 15 (SC3T3 = SC3T1)
15 -> 14 (SC2T3 =SC2T1)
14 -> 13 (SCIT3 = SClTt)
12 -> 11 (tau reduction)

SC4T3 = DCE_prt_out:SCOT2
SC3T3 = DCE_ack:SC4T1
SC2T3 = DCE_info_in:SC3T1
SCIT3 = tau: SC2T1 + tau: SC3T1
SCOT3 = DCE_send: SCIT1 + tau: SC4T1
SC4T2 = DCE_prt_out: SCOT2 + tau: SC4T1

26

6 -> 5 (tau reduction)

This specification is now reduced to:

Using FDT WTOS to derive tests

SC4T1 = DCE_prCout:SCOT2

scan = DCE_send: SC1Tl
SC1Tl = tau: SC2T1
SC2T1 = DCE_info_in: SC3T1
SC3T1 = DCE_ack:SC4T1
SC4T1 = DCE_prCout: SCaT2
SCaT2 = DCE_send: SCIT2
SC1T2 = tau: SC2T2
SC2T2 = DCE_info_in: SC3T2
SC3T2 DCE_ack:SC4T2
SC4T2 = DCE_prt_out: SCaT2
SCar3 = DCE_send: SC1Tl

+ tau:SC3T1

+ tau: SCar3
+ tau: SC3T2 + tau: SCIT1
+ tau: DCE_info_in: SC3T1
+ tau: DCE_ack: SC4T1
+ tau: DCE_prt_out: SCOT2
+ tau: DCE_prt_out: SCOT2

(l)

(2)

(3)
(4)
(5)

(7)

(8)
(9)

(10)

(11)

(13)

and using the tau rules it can be reduced to:
11 -> tau-2 SC4T2 = tau:DCE_prt_out: SCOT2
11 -> 10 SC3T2 = DCE_ack: tau: SC4T1 + tau:DCE_ack: SC4T1
10 -> tau-I, tau-2 SC3T2 = tau: SC3T1
etc.

This will lead to the following specification:

scar1 = DCE_send: SC1Tl
SCIT1 = tau: SC2T1
SC2T1 = DCE_info_in: SC3T1
SC3T1 = DCE_ack:SC4T1
SC4T1 = DCE_prcout: SCar2
SCar2 DCE_send: SCIT1

+ tau:SC3T1

+ tau: SC4T1

Because one process has to start with sending a frame we suggest that this process will
start in state SC2Tl, which means that the DCE will send the first frame. The result of

this is that state SCOTl is never reached, so we can eliminate this state.

The Calculation of the parallel process between the timer/sender process and the channel

will lead to:

(SIC1) \ {DCE_prcout}

Channell:
CO = DCE_prt_out: Cl
Cl = DTE_prUn: CO + tau: CO

Protocol specification examples

send data DCE: (after relabelling)
SO = OCE_info_in: Sl
Sl = OCE_ack: S2
S2 = OCE_prt_out : S3
S3 = OCE_send: 54 + tau: S2
54 = tau: SO + tau: Sl

(SIC1)\{DCE_prcout}
SOCD = OCE_info_in: SlCD
SlCD = OCE3Ck: S2CD
S2CD = tau: S3Cl
S3Cl = DTE_prUn: S3CD + tau: S3CD + DCE_send: 54Cl + tau: S2Cl
S4C1 = DTE_prUn: S4CD + tau: 54CD + tau: SOCI + tau: SlCl
SOCI = DTE_prUn: SOCD + tau: SOCD + DCE_info_in: SlC1
SlC1 = DTE_prUn: SlCD + tau: SlCD + DCE_ack: S2C1
S2C1 DTE_prUn: S2CD + tau: S2CD
S3CD = OCE_send: S4CD + tau: S2CD
S4CD = tau: SOCD + tau: SlCD

27

We know that the infonnation sent ftrst has to be received at the other side, before a new
frame with an acknowledgement is sent back. So we can define the causal relation ([KOO]

page 81):

This means that first the previous frame has to be received before the next frame is sent.

After this infonnation the specification is changed in:
SOCD = OCE_info_in: SlCD
SlCD = OCE_ack: S2CD
S2CD = tau: S3Cl
S3Cl = DTE_prUn: S3CDI + tau: S3CD2 + tau: S2Cl
S2Cl = DTE_prUn: S2CD + tau: S2CD
S3CDI = OCE_send: S4CD + tau: S2CD
S3CD2 tau: S2CD
S4CD = tau: SOCD + tau: SlCD

after reduction:
SOCD =
SlCD =
S3Cl =
S3CDI =
S4CD =

OCE_info_in: SlCD
OCE_ack: S3C1
DTE_prUn: S3CDI + tau: S3C1 + tau: (DTE_prUn:S3Cl + tau: S3Cl)
OCE_send: S4CD + tau: S3Cl
tau: SOCD + tau: SlCD

The agent S3Cl is generating one or more DTE_prcin actions. With using fairness [KOO

28

, chapter 4], we can reduce an agent like:

A = B + tau: A

to

A=B

Using FDT WTOS to derive tests

After some tau moves, which means loss of the frame in the channel, a frame will be sent

over in order to get the behaviour of B. If this would not be true, the channel would be

useless, which we don't suppose. We can see the same effect in agent S3Cl in this

specification, only in this case the action DTE_prcin can be sent one or more times. We

can simplify this specification to:

so OCE_info_in: 51
51 = OCE3Ck: 52
52 = DTE_prUn: 53 + tau: (DTE_prUn: 52 + tau: 52)
53 OCE_send: 54 + tau: 52
54 = tau: SO + tau: 51

For the rest of the expansion the tool was used. After the expansion of (CiCSICfIT) \

{DTE_prcout, DTE_prcin, DCE_prt_out, DCE_prt_in} we get a machine with 96 States,

but without deadlocks. The tool used is not powerful enough to reduce this scheme. It has

to be possible to reduce the scheme and prove that it is (after tau reduction) equal to our

starting point:

SO OCE_info_in: 51 + DTE_info_in: 52
51 = DTE_info_out: SO + DTE_info_in: 53
52 = OCE_info_in: 53 + OCEJnfo_out: SO
53 = DTE_info_out: 52 + OCE_info_out: 51

If it is possible to prove this, we know that if you implement your processes as defined

above, it is a correct working communication protocol, without losing or doubling frames.

4.3 Translation into LOTOS

To show the relation between CCS and LOTOS, a translation of this protocol into LOTOS

is made. In LOTOS it is necessary to specify the types used apart from the behaviour part.

This specification starts with the declaration of data, a queue of octets. Afterwards the

type frame number, which is 1 or 0 is defined. Hereafter the DCE behaviour part is

Protocol specification examples

declared, consisting of 3 processes: send, receive and timer as displayed in figure 5.

specification protocoI3[info_in,info_out,prUn,prt_out]:nocxit

library octet endlib

29

data is octet
data

type
sorts
opns

eqns

create:
add:
first:
error:
forall
ofsort

-> data
octet, data -> data
data -> octet
-> octet
d,e: octet, z:buffer
octet
first(create) ::= error;
first(add(d,z» ::= d;

type
sorts
opns

endtype

framenumber
mum
0,1: -> fnum
succ: mum -> mum

eqns ofsort mum
succ(O) ::= 1
succ(l) = 0

endtype

process DCE_protocoHinfo_in,info_out,prUn,prt_out]:noexit:=
hide send, ack, start, timeout in

send [info_in, prt_out, send, ack, timeout, start](O,create,O)
I I

receive[info_out, prUn, send, ack](O)
II

timer[timeout, start]
where

process send[infojn, prt_out, send, ack, timeout, start]
(send:fnum, data:data, ack:mum):noexit:=

(send?nr:fnum; ack?ack:fnum;
[send eq nr] -> (info_in?data; prt_out!data!send!ack;
sendlinfo_in,prt_out,send,ack,timeout,start] (sucdsend),data,ack)

[]
[send ne nr] -> prt_out!data!send!ack;
sendlinfo_in,prt_out,send,ack,timeout,start] (send,data,ack»
[]
timeout; prt_out!data!send!ack;
send[info_in,prt_out,send,ack,timeout,start] (send,data,ack)

endproc

30 Using FDT WTOS to derive tests

process receive[info_out, prtjn, send, ack] (exp:fnum):noexit.=
prUn?data:data?nr:fnum?piggyback:fnum;
send!piggyback;
([exp eq nr] -> info_out!data;ack!succ(cxp);
receive[info_out, prUn, send, ack] (exp)

[]
[exp ne nr] -> ack!exp;
receive[info_out, prUn, send, ack](exp»

endproc
process timer[start, timeout]:noexit:=

start;
(timer[start,timeout]
[]
i; timeout; timer[start,timeout))

endproc
endproc

The specification in LOTOS is more complete and precise than the specification in CCS.

The variables used are defined, while in CCS there is no possibility to specify variables.

Furthermore, apart from defining the CCS like state machines it is possible to express the

structure of the resources which are used.

4.4 The LOTOS specification of the LAPB protocol

In the previous paragraph a translation of a basic protocol into CCS and LOTOS is shown.

In this chapter we will express a protocol named LAPB into the language LOTOS. The

definition of the LAPB protocol is given in the X25 protocol CCnT recommendations
[X25].

Protocol 4 is also a layer 2 protocol, but less intelligent than the LAPB protocol. In figure

6 a diagram is shown, which point out the different resources of the LAPB protocol. The
host named DTE (Data Terminal Equipment) and the telephone company equipment

named DCE (Data Circuit-tenninating Equipment) are communicating with each other

through an unreliable channel. The error corrections and recovery methods of the LAPB

protocol will provide an error free communication between the two terminals.

The LAPB protocol is based on protocol 4, but it has some advanced methods to increase

the efficiency of an unreliable layer 1 channel. For example it is possible to have more

outstanding non-acknowledged frames (7 or 127 depending on the mode). Commands

dealing with connecting and disconnecting are also present in this protocol.

32

Table 1. LAPB commands and responses

Using FDT WTOS to derive tests

I Format I Command I Response I Encoding I
Information transfer I (information) N(S),Poll,N(R)

Supervisory RR (receive ready) Poll/Final,N(R)

RNR (receive not ready)

REI (reject>

Unnumbered SABM (set asyn- Poll
chronous balanced
mode)

DISC (disconnect)

DM (disconnect Final
mode)

VA (unnumbered
acknowledge)

FRMR (frame reject>

systems operate (disconnected or connected). The process Receive bits provides the same

thing but visa versa. The process connection is responsible for the data link set-up, so this

process will disable the process disconnected phase and will initiate the data transfer

phase. After a connection made, process disconnect will be started. The process

disconnection will take care of the disconnection during the data transfer phase. It will,

when a disconnection demand has arrived, disable the data transfer phase and enable the

disconnected phase.

In figure 7 the ports busy and error are also specified. Busy is used for indication of a full

channel buffer, which is receiving the bits from the DeE. If this buffer is full, the DTE
will send a RNR message. The port error is used for indication of an unrecoverable error

in case of an idle channel state, N2 times a timeout or an impossible frame number.

4.4.2 Information transfer phase

To still keep the specification comprehensive we will start with only specifying the

process data transfer phase. This process has been chosen, because it is the most

complicated one, so the other processes will not supply many difficulties to specify. Figure

8 displays how the process data transfer phase is built up.

The information transfer phase is split into four parts. The process receive data is defmed

Protocol specificationexamples 35

Buffer is the most important type. It is usedto buffer the data in the processsendbuffer,
until an acknowledgementis received.This buffer is a FIFO (First in first out) buffer. We
use the same elementsas used in the type data and some extra functions as remove,
gecel, cut, length. Remove is used to remove the first element When an acknow­
ledgementarrives zero, one or more elementswill be removed.For this casethe function
cut is defined. With the function gecei you can take an element out of the buffer to
resendit. The function length will give the amountof elementsthat are in the buffer. This
function is neededto indicatea full buffer.

The type definitions mode and frame_typesare used to define someconstants,which are
usedin the LAPB recommendations.

4.4.4 The LAPB informationtransferbehaviourpart.
Processinformation transfer is the LOTOS version of figure 8. All the four processesare
concatenatedparallel, with their communicationpons as synchronization.All the internal
communicationis hidden from the environment.

Process timer, which provides time-outs, has some special functions. If the timer is
running and an other start requestarrives, this action is excepted,but the timer doesn't
changeanything, so also not its remaining time. The timer can be startedover, by first
stoppingit and then restartingit. If the timer runs out N2 times therewill be sentan error
messageand the data transfer phasewill be disabled, by the disconnectionblock (not
definedhere).

The processsend_bufferwill take care of the buffer as defined in the type buffer. It
provides four functions: Sending a buffer element to the send frame block, Buffering
incoming data, handling an incoming acknowledgeand handling an incoming resend
request.The sendbuffer containsthree variables:buf the buffer, Vs the framenumberof
the last sendelement,el the buffer location of the last element

For example every outstandingframe is acknowledgedand the last sent frame has a
numberVs = 3. The buffer will be empty and el will be O. Someinformation is coming
in, say 5 elements.As displayedin line two of this processspecificationeach of these
elementswill be addedto the buffer. Afterwards send_framewants to sendthree frames,
which will be frame 3, 4 and 5 . Variable el and Vs are increased3 times, so they will
respectivelybe 6 and 3. Now a resendof frame 4 is coming in. The timer will be stopped,
one buffer elementwill be cut of by the function cut, framenumberVs will be 4 and el
will be 0, what indicatesthat the buffer will be resend.Afterwards frame numbers4,5,6,7
and 0 can be sent. If an acknowledgementof element7 arrives, the timer will be stopped

	Voorblad

	Summary

	Contents

	Acknowledgement

