
https://research.tue.nl/en/studentTheses/28ad00bc-2a77-43e7-b738-ef810145e7e1

Eindhoven University of Technology
Departrnent of Electrical Engineering

Design AutOlnation Group

An Improved and Extended Formal
Verification TooI

W.A. den Braven

A thesis submitted in partial fulfillment of
the requirements for the degree of Master of Science
performed from 11 September 1991 to 11 May 1992

by order of prof. dr. ing. J.A.G. Jess
and supervised by ir. G.L.J.M. Janssen

The Eindhoven University is not responsible
for the contents of training and thesis reports.

603 /1

An Improved and Extended
Formal Verification Taal

lV.A. den Braven

Abstract

In recent years, there has been a considerable increase in the complexity of integrated
circuits. In response, several new methods, in order to support computer-aided design. have
been developed and presented. One group of such methods is the FOfIllal Hardware Verifica­
tion. Of this, Jet us consider the fOfUlal verification method based on Propositional Temporal
Logic.

A Propositional Temporal Logic verification checker has been developed at the Department
of Electrical Engineering of the Eindhoven University of Technology. However, this checker
has been found to be slow, especially for large examples. In order to improve the performance,
Binary Decision Diagrams have been invoked.

The data structure of the checker is a hybrid one. The Binary Decision Diagrams data
structure handles the propositional part of the satisfiability check and the remaining part, in­
cluding the eventuality constraint, is handled by the Disjunctive Normal Form data structure
with bitvectors.

The improved checker has an overall better performance compared to the checker without
the hybrid data structure. Although, the performance benefits are not yet satisfiable enough,
which can be noticed when large examples are processed. This consequence is reJated to the
PSPACE-complete character of the problem.

Verification of physicaJ devices, like digitaJ computers, digital control units, or electronic
circuits with synchronized delay eJements are an important issue. These physical devices are
often described by sequential machine modeIs, also called Finite State Machines, and are used
for fOfIllaJ verification. It is apperent that there is a need for a convertel' from a practical
Finite State Machine description to a Propositional Temporal Logic description, in order to
utilize the capabilities of the (improved) Satisfiability Checker.

As input format, the Espresso Finite State Machine format has been chosen because of its
practical importance. Aftel' the Espresso format was slightly extended (Espresso-like), a con­
vertel' was developed. The convertel' translates the Espresso-like format into a corresponding
Propositional Temporal Logic format contailling the state-transition alld output fUllction of
the Finite State Machine.

An additional feature of the convertel' is to complete the state-transition function of the
Finite State Machine. Furthermore, there are special cases which require considerable type
conversion (bit to symbol type and visa versa), resulting into extra processing time.

Finally, we can conclude that the convertel' is a practical tooI with several flexible options
especially when comhined to the Satisfiahility Checker.

Contents

General introduction

I SATISFIABILITY CHECKER

1 Introduction satisfiability checker

2 Binary Decision Diagrams
2.1 Introduction

2.2 BDD representation '"

3 Propositional Temporal Logic
3.1 Introduction .
3.2 PTL syntax and formalization .

4 Satisfiability checker program
4.1 Introduction
4.2 Directed acydie graph (DAG)
4.:3 Hybrid representation: DNF and BDD

4.3.1 Tableau Method
4.3.2 Model graph construction
4.3.3 Build DNF list

4.4 Example............

5 Results Satisfiability Checker

6 Conclusions satisfiability checker

11 C.F.P. CONVERTER

1 Introduction C.F.P.

2 Finite State Machine
2.1 Introduction .
2.2 Definitions .
2.3 Espresso-like description
2.4 PTL description

1

3

5

7
7
k

11

11
11

15
15
15
18
18
19
21
23

27

29

31

33

35
35
35
37
38

3 C.F.P. Program 41
3.1 Introduetion . 41
3.2 Data Structure 41
3.3 Print methods . 42

3.3.1 Print method BB+ . 43
3.3.2 Print method BB . 43
3.3.3 Print method MIB 43
3.3.4 Print method SS 44
3.3 ..5 Print method MIS 44

3.4 Method choice mechanism 44
3.4.1 Input method choice mechanism 45
3.4.2 Output method choice mechanism 46
3.4.3 State method choice mechanism 47

3.5 Complete FSM 4F1
3.6 Example . 49

4 Results C.F.P. 53

5 Conclusions C.F.P. 57

General Conclusions 59

Bibliography 61

A Manual page C.F.P. 67

11

List of Figures

PART 1:

2.1 Diagram for A V Be..
2.2 Some 3-variable diagrams.

3

7
8

4.1 Directed Acyclic Graph. . 16
4.2 Directed Acyclic Graph with(out) BDD leaves. 17
4.3 Model graph of formula O(a 1\ b). 19
4.4 The list of conjunctions. 20
4.5 The structure of a closure in a list of conjunctions with the five AND-ed elements. 22
4.6 Reduced, simplified and BDDs containing DAG of formula DOa 1\ DO-'a. .. 24
4.7 Closures corresponding to subfoflllUlas fsubl (left) and fsub2 (middle and right). 25
4.8 Model graph of formula DOa 1\ DO-'a. .. 25

PART 2: 31

2.1
2.2

;3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Symbolic representation of a Mealy machine. . .
State diagram of FSM with state transition and output function.

The output list of lists.
The output array of lists. . .
The input method choice mechanism.
The output method choice mechanism.
The interpretation of don't cares in the output of a FSM.
The state method choice mechanism..
An incomplete FSM with ST-function.
The dummy state. . .

1ll

36
38

42
43
45
46
47
47
48
48

General introduction
In formal hardware verification, we can globally distinguish two types of approaches, namely
the dual-language approach and the single-language approach. In the dual-language approach,
one language is the implementation language, which is prescriptive and algorithmic in nature.
The second language is the specification language, which is descriptive and expressive enough
to specify the requirements of the system. The specification language is usually based on
mathematical 10gic.

In our case, we use the single-languagc approach. This approach works on the prelllise that
the same language should be used both for the specification and for the implementation of the
hardware. Thus, the language should have a well-identified fragment that can be effectively
anel efficiently executed. The initial specification emphasizes the desired behavior and pays
little attention to implementation details in contrast to the implementation.

A type of language, which enclue!es the above described requirelllents, is called tcmpoml
logic. Temporallogic has its origins in philosopby, where it was useel to analyze the structure
or topology of time. In recent years, it has found applications in computer science, especially
in the areas of software and hardware verification and knowledge based systems.

In physics and mathematics, time has traditionally been represented as just another vari­
able. First order predicate calculus is used in lllanipulating about expressions containing the
time variabIe, and thus there is apparently no need for special temporallogic.

Philosophers found it useful to introduce special temporal operators, such as 0 (hence­
forth) and 0 (eventually), for the analysis of temporal connectives in language. The new
formalism was soon seen as a potentially valuable tooI for analyzing the topology of time.

The temporal operators have been foune! useful for specifying hardware behavior. A
structure of states (e.g. a sequence or tree of states) is the key concept that makes temporal
logic suitable for hardware specification. A formula, containing temporal logic operators,
is interpreted over a structure of states. In hardware description languages, the struetures
represent the behavior of a machine. Such behavior may be used to interpret a temporal
formula. In this way, a language is said to be endowed with a temporal semantics.

Some of the different types of temporal semantics include:

• Interval semantics.
The semantics is based on intervals of time, thougbt of as representing finite chunks of

system behavior.

• Point semantics,
in which temporal formulas are interpreted as requiring some system behavior with

respect to a certain reference point in time.

Point semantics may be further divided into three classes.

1

2 P. T.L. S'atisfiability ClJf'ckf'r

• Linear semantics.
In linear semantics, each moment has only one possible future corresponding to the

history of the development of the system.

• Branching semantics.
In branching semantics, time has a tree-like nature in which, at each instant, time may

split into alternative courses representing different choices made by the system.

• Partial order semantics.
Partial order semantics has been explored only recently.

Propositional Temporal Logic has a linear, point semantics.

A Propositional Temporal Logic verifi cation tooI has been developed and described by
[Vries, 89]. However, this tooI has been found to be slow, especially for large examples. In
order to improve the performance, Binary Decision Diagrams are invoked. These Binary
Decision Diagrams are used to handle the Boolean part of the verification.

Verification of physical devices, like digital computers, digital control units, or electronic
circuits with synchronized delay elements is an important issue. These physical devices are
often described by sequential machines with certain properties. Sequential machines are also
called Finite State Machines [Hartmanis, 66]. The properties of these Finite State Machines
have been abstracted in a definition of a sequential machine model. Starting with a Propo­
sitional Temporal Logic verification tooI, a converter from a practical Finite State Machine
description to Propositional Temporal Logic description is reasonable next step.

In the first part of the report, we discuss the Propositional Temporal Logic verification
tooI, starting with some overall information about Binary Decision Diagrams and Proposi­
tional Temporal Logic to form a basis to discuss the modified verification tooI. In particular,
the modifications themselves are discussed in detail.

The second part of the report discusses the converter. Some basic information about
Finite State Machines is presented first, fo]Jowed by a discussion about the overall structure
of the converter.

Part I
SATISFIABILITY CHECKER

3

Chapter 1
Introduction satisfiability checker
In recent years, there has been a considerable increase in the complexity of integl'ated circuits.
In response, several new methods, in support of computer-aided design, have been developed
and presented. A group of such methods is the formal hardware verification. Fom,al hardware
verification is usually based on mathematical (temporal) logic to formally prove ti,;, t a circuit
correctly implelllents its behavioral specification. In this report we consider a Propositional
Temporal Logic formal verification method.

How do we verify a system?
Given the description V of a system in Propositional Temporal Logic we actually want to
verify whether a certain specification S holds. This can be done by checking the validity of
the formula

D ---+ S. (1.1)

In PTL a formula f is valid if and only if its negation is not satisfiable. Therefore, the
verification problem can blO' reduced to testing unsatisfiability of the formula

(1.2)

Proof is thus obtainpd by trying to find models for some PTL formula. When no models are
found the system realizes the specification and thus it is said to be correct.

A Propositional Temporal Logic verification tooI has been developed and descrihed hy
[Vries, 89]. This method is hased on the Tahleau Method [Wolper, 81]. A Disjunctive Normal
Form data structure is used to manipulate the Propositional Temporal Logic formulas, which
are clerived and stored in a Directed Acyclic Graph hy a parser. Repeatedly applying the
Tableau Method results into a model graph representing the original Propositional Temporal
Logic formula(s). Finally, the model graph is checked for satisfiability.

Since this verification tooI suffers from the fact that it is slow for large examples, modi­
fications to support complexity reduction are required. As a starting point, Binary Decision
Diagrams are invoked to handle the Boolean properties of the Propositional Temporal Logic
formulas.

In this part of the report, we will take a hrief look at Binary Decision Diagrams and
Propositional Temporal Logic to develop a feel for it. This is followed hy an overall presen­
tation of the verification tooI with a detailed look at the modifications. Finally, we present
the conclusions.

5

Chapter 2
Binary Decision Diagrams
2.1 Introduction

Boolean algebra forms a cornerstone of computer science and digital system design. Many
problems in digital logic design and testing, artificial intelligence and combinatorics can be
expressed as a sequence of operations on Boolean functions. Such applications benefit from
efficient algorithms for representing and manipulating Boolean functions symbolically

Reduced, ordered, binary-decision diagram (ROBDD)[Bryant, 86] is a useful representa­
tion for manipulating Boolean functions. This representation allows standard Boolean opera­
tions such as AND (A), OR (V), and NOT (....,) to be perfofllled on the functions. Also testing
for tautology -i.e., to determine whether the function evaluates to 1 for all inputs, is possi­
bIe. The ROBDD is a canonical form, so the tautology test is a constant-time comparison
against the unique representation of the function. To illustrate ROBDDs, an example from
[Akers, 78] is proposed.

Consider the switching function,

f = A V BC

and assume we are interested in defining a procedure for determining the binary value of f
given the binary values of A, Band C. One way to do this would be to begin by looking at
the value of A. If A = 1, then f = 1 and we are finished. If A = 0, we look at B. If B =
1, then f = 0 and again we are finished. Otherwise, we look at C and its value will be the
value of f.

f=A +B'.C

1

Figure 2.1: Diagram for A V BC.

Figure 2.1 shows a simple diagram of this procedure. We enter at the node indicated by
the arrowand then simply proceed downward through the diagram, noting at each node the

7

8 P. T.L. .'iatisfia!JjJjty Checker

r",A.B.C

)'
o

o 1

Figure 2.2: Some 3-variab1e diagrams.

1

r. 8 + D'+E'

o

va1ue of its variab1e and then taking the indicated branch. When a 0 or 1 va1ue is reached,
this gives 1 anel the process enels.

Figure 2.2 shows similar diagrams for some simp1e AND (1\), OR (v), and EXCLUSIVE­
OR (EB) functions. In each case, it shou1dn 't take much effort to confirm that the diagram
eloes ineleeel elescribe a proceelure for fineling the va1ue of the indicated function. We sha11
refer to these diagrams as binary decision diagrarns (EDD).

2.2 BDD representation

In this section we elefine our graphica1 representation of a Boo1ean function anel prove that is
a canonica1 form. This general information is taken from [Bryant, 86].

Definition 2.1 A function graph is a rooteel, directeel graph with vertex set V containing
two types of vertices. A nonterminal vertex v has as attributes an argument inelex index(v)
E {1, ... , n} anel two chi1dren low(v), high(v) E V. A terminal vertex v has as attribute a
value value(v) E {O, 1}.

Furthermore, for any nonterminal vertex v, if low(v) is a1so nonterminal, then we must have
index(v) < index(low(v)). Simi1ar1y, if high(v) is nonterminal, then we must have index(v) <
index(high(v)).

Due to the orelering restriction in our definition, function graphs form a proper subset of
conventiona1 binary elecision diagrams. Note that this restriction a1so implies that a function
graph must be acyclic because the nonterminal vertices a10ng any path must have strict1y
increasing index va1ues.

We define the corresponelence between function graphs anel boo1ean function as follows.

Definition 2.2 A function graph G having TOot vertex v denotes a function Iv elefine recur­
sive1y as

1. lf v is a terminal vertex:

a) lf value(v) = 1, then Iv = 1.

b) if value(v) = 0, then Iv = o.

Binary Decision Diagrams 9

2. If v is a nonterminal vertex with i1ldex(v) == i, then iv is the function (Xl"", Xn) == Xi

'ilow(v)(XI'''''Xn) + Xi ·ihigh(v)(Xl, ... ,Xn),

In other words, we can view a set of argument values Xl,' .. , X n as describing a path in the
graph starting from the root, where if some vertex 11 along the path has i1ldex(v) == i, then
the path continues to the low child if Xi == 0 anel to the high child if Xi == 1. The value of the
function for these arguments equals the value of the terminal vertex at the end of the path.
Note that the path defineel by a set of argument values is unique. Furthennore, every vertex
in the graph is contained in at least one path, i.e., no part of the graph is unreachable.

Two function graphs are considered isolllorphic if they match in both their structure and
their attributes, more precisely:

Definition 2.3 Function graphs G and G' are isomorphic if there exists a one-to-one function
a from the vertices of G onto the vertices of G' such that for any vertex v if a(v) == v',
then either both v anel 1)' are terminal vertices with value(v) == value(v'), or both v and 1)'

are nonterminal vertices with i1ldex(v) == indcx(v'), a(low(v)) == low(v'), and a(high(v)) ==
high(v').

Note that since a function graph contains only 1 root and the children of any nonterminal
vertex are distinguished, the isomorphic mapping a between graphs g and C' is quite con­
strained: the root in C must map to the root in G', the root's low child in G must map to
the root 's low child in C', and so on all the way down to the terminal vertices. Bence, testing
two function graphs for isomorphism is quite simpIe.

Definition 2.4 For any vertex v in a function graph C, the subgmph 1'Ootcd by v is defined
as the graph consisting of v and all of its descenelants.

A function graph can be reduceel in size without changing the elenote function by eliminating
redundant vertices anel eluplicate subgraphs. The resulting graph will be the primary data
structure for representing a Boolean function.

Definition 2.5 A function graph Cis rcduccd ifit contains no vertex v with low(v) == high(v),
nor if it contains elistinct vertices v anel v' such that the subgraph rooted by v and v' are
isomorphic.

A key property of reeluceel function graphs is that they form a canonical representatioll for
Boolean functions, i.e., every function is representeel by a unique reeluced function graph.

Theorem 2.1 For any Boolean function i, there is a unique (up to isomorphism) reeluceel
function graph elenoting i anel any other function graph elenoting i contains more vertices.

Proof 1 See [Bryant, 86].

Chapter 3
Propositional Temporal Logic
3.1 Introduction

The first step in developing hardware synthesis and verification tools, is to establish methods,
which can formally specify hardware. Boolean logic has enough mathematical background to
be used as a specification method. However, Boolean logic has no time concept, or expresses
facts in only one time instant (or state), i.e. onee a variable has a value, it can no longer
change that value. To express relations among states, each variable should be able to change
its value as time advances.

Temporal logie is invoked to specify hardware because its additional temporal operators
are ahle to express logie in time. In this report, we use a brand of temporal logic ealleel
Propo8itional Linear' Time Temporal Logic.

In Propositional linear time Temporal Logie, PTL, for short, time is modeleel by an
infinite chain of discrete points in time, also called time instants. We assume that there is one
elesignateel time instant representing the present. From this present time instant we visualize
time to progress in an infinite future of time instants, each time instant followed by exactly
one next time instant. The points in time can he mappeel onto states. Of course, at different
times the circuit may be in the same state. Each state is characterizeel by a set of atomic
propositions to hold in that state. We will call an infinite sequence of states a moelel.

In this section we briefiy introeluce Propositional Temporal Logic.

3.2 PTL syntax and formalization

In traelitionallogic, two primitive operators exist; -, (not) and V (or). Other operators like
1\ (anel), ---+ (implication) and ---+ (equivalence) can be stateel in tenns of primitive ones.
Propositions anel operators are useel to construct fornlUlas anel to reason static truth. A
propositional variable or proposition is a eleclarative statement that can be assigneel a truth
value (truc or fal8e).

PTL aelels four temporal operators to ordinary propositional logic: 0 next, 0 always (or
henceforth), <> sometime (or eventually) anel U strong until. Intuitively one may say:

Sometime:

Always:
Next:
Until:

<>p means that either p is lr'ue now or it will be in SOIlle future
instant,
Op means that p is truc now and in all future instants (states),
OP means that p is truc in the next instant and
p U q means that q is truc now or q will be truc in some future
instant anel p is truc in all preeecling instants.

11

Chapter 4
Satisfiability checker program
4.1 Introduction

A Propositional Temporal Logic verification tooI has been developed and described by [Vries, 89].
This method is based on [Venkatesh, 87] in which Propositional Temporal Logic (PTL) was
proposed to both describe systems and to make assertions about them (single-language ap­
p7'Oach).

The fOflllal verification of a system description D with a spedfication 8 is based on
checking the validity of a formula:

D---.8

or approaching the problem from the opposite way:

-,(D ---. 8) = D 1\ -,8

(4.1)

(4.2)

this results in a satisfiability check instead of a validity check.
The verificatioll tooI of [Vries, 89] uses the Tableau Method and the Disjunctive Normal

Form data structure to construct a model graph. To encounter a decision about the satisfia­
bility of the model graph, the model graph is exhaustedly tested for satisfiability, in particular
for the eventuality fulfillment. Testing for satisfiability of a PTL formula f is actually ob­
tained by trying to find one or more models for f. On first sight, this seems very simpIe,
but in practice the verification tooI was very slow for large examples. Therefore, some BDD
modifications have been added.

In the following sections an improved method is presented to check satisfiability of a
PTL formula. In general, the method is equivalent to the method presented by [Vries, 89],
except for some modifications in order to obtain a faster satisfiability check. First, the general
overview of the checker is discussed and then the BDD modifications in detail.

4.2 Directed acyclic graph (DAG)

Like Boolean functions, PTL fOf1lmlas are naturally presented in a binary tree. The nodes
of this tree must have three fields for the node type and two pointers to the successol' nodes.
Nodes can be used to store either a variabIe or a PTL operator. When a node holds a variabIe,
it is a leaf of the binary tree and thus it has no successors. When a node holds a PTL operator,
the successol' nodes give the operant for the operator. So, it has either one successol' in case
of an unary operator (-', 0, <>, 0), or two successors in case of a binary operator (1\, V, ---.,
...... , U).

The binary tree is easily constructed if we consider a formula in prefix notation.
For example <>o(a V Oa) gives in prefix notation:

15

16

O(o(V(a,O(a)))).

P. T.L. SatisfiaiJjJjty Checker

The binary tree to hold this formula wil] consist of five nodes, each described by a triple (type,
lejt, right). The figure is presented in figure 4.1.

Node 0: (0, 1,-)

Node 1: ([l, 2,-)

Node 2: (V, 3,4)

Node 3: (X, -, -)

Node 4: (@,3,-)

Figure 4.1: Directed Acyclic Graph.

In the tree, we have only used one node to represellt the variabIe a, although it is used
twice as operand. Therefore, the tree is not a real binary tree, but a Direeted Acyclic Graph
(DAG). The parser, which is responsible for the cOllstruction of the DAG, also performs
several operations on the DAG. These operatiolls are performed in order to get some reduced
form for the formulas. The reduction is an important step in the satisfiability algorithm, since
it serves the decomposition of the fOflllUlas alld thus the graph construction, and it requires
that several operations be performed:

1. The set of operators is reduced through the removal of implications, equivalences and
exclusive or's: f -+ g = -,f V g, f f- g = f V -,g, f ..-. g = U 1\ g) V (-,f 1\ -,g) and
f tB g = U 1\ -,g) V (-,f 1\ g).

2. Excessive operators are removed; especially excessive temporal operators that may cause
much unnessary work for the satisfiability checker: -,-,f = f, DOf = of alld 00 f =
Of·

Furthermore, there are several other operations performed on the DAG, which serve the
expansion process. The expansion process is discussed later.

3. The -, operators are propagated downward to the leaves in the DAG, until their operand
becOlues a variabIe. This reduction serves the expansion process, for it ensures that all
eventualities will become visible, whereas they might otherwise be hidden in fOflllUlas
like -,of = O-,f. As a consequence, it would be rather difficult to deal with the
eventuality constraint.

4. The 0 operators are propagated upward in the DAG using post-order tree walk. This
reduction is dictated purely by the implementation and serves the expansion process.
The theorems used are: Ofalse = false, Otruc = truc, Ovar = Ovar, 00 f =
o 0 f, -, 0 f = O-'f, 0 0 f = 00 f, DOf = 0 0 , Of 1\ Og = OU 1\ g),
Of V Og = OU V g), Of U Og = OU U g) and Of Uw Og = OU UW g).

SatisfiaIJility Checker Program 19

80: O(al\b)

81 : a 1\ b

82: -.a 1\ b 1\ OO(a 1\ b)

83: al\-.bI\OO(al\b)

84: -.al\-.bI\OO(al\b)

Aftel' repeatedly decomposing the future parts of the initial states, a model graph can be
constructed. It is also possible to merge certain states, leading to a modified and more
compact form of the model graph. Now, we separate the present and the future part. The
present part of a state is labeled to the edges and the future part to the vertices. When a
present part is true and there is na future part, then the corresponding edge will point to
an extra state. This extra state is ealled true 8tate and is represented by the PTL formula
truc 1\ ODtrue. The model graph of formula f is presented in figure 4.3.

-a

a 1\ -b

Figure 4.;3: Model graph of formula O(a 1\ b).

4.3.2 Model graph construetion

How do we construct a model graph?
Answer: Decomposition of the PTL formula represented by the DAG. A decomposed fOfllHlla
consists of a c1isjundion of conjundions alld therefore it is referred to as Di8junctive Normal
Form (DNF). Since a DAG is not an efficient way to hold DNF formulas, we use a list of
conjunctions (See figure 4.4).

The conjunctions in the list are all connected with the V operator (c1isjunction), whereas
the elements of a conjunction are connected with the 1\ operator. A conjunction can also
contain subformulas, which themselves ean be represented by a list of conjunctions. To
describe a conjunction for DNF formula, we use a structure callec1 clo8ure. This structure
contains five AND-ed elements:

• The propo8itional part as a Binary Decision Diagram.

• The next subfornlUlas represented as a list.

• The (same) next subformulas represented as a bitvector.

• The next propositional part as a Binary Decision Diagram.

• The marked temporal forulUlas represented as a bitvector .

20

o

v
v
v

k

v
v
v

DNF list

C'onjuncljoD

"
y
y
y

DNFlist

P. T.L. Satisfiability Checker

N
y
y
y

N

etc.

Figure 4.4: The list of conjunctions.

This structure contains the major difference of approach between the method descrihed
III this part of the report and the method of [Vries, 89] namely, the propositional parts of
the (suh)formulas are represented by Binary Decision Diagrams instead of bitvectors. BDDs
[Bryant, 86] are a much more suitable data structure to store and to manipulate Boolean
formulas, than bitvectors, which are used in the method of [Vries, 89]. Furthermore, the
fact that a closure can contain BDDs, results in a closure representing, not just one, but at
least one conjunction. We can thereby obtain a more compact model graph. Therefore, this
hybrid (DNF and BDD) data structure benefits the overall performance (read: speed) of the
satisfiability checker! Naturally, this hybrid data structure has certain specific properties,
which effects other processes of the model graph construction. We will discuss these other
processes later on.

After the discussion about the hybrid data structure, we will take a look at the conversion
of the DAG into a model graph. The conversion is done by a recursive post-order tree (read:
DAG) traversal algorithm (Depth First Search (DFS)). This algorithm starts with the original
formula j, which has been translated to a vertex of the model graph. In order to obtain the
next part of the model graph, the vertex J is expanded by a process called Build DNF:3,
resulting into a DNF list of closures. This list contains the closures corresponding to the
successor vertices of the initial vertex and thus every closure of this list is translated into
a potential new vertex of the model graph. The vertex is defined as potential as not every
closure is translated to a new vertex. It is also possible that a vertex already exists. From
this point on, the algorithm is recursively provoked to every one of the (successor) vertices,
resulting into a model graph of the rTL formula j.

During the conversion, the algorithm has assigned DFS numbers (i.e. preordered num­
bering) to the vertices of the model graph, which are applied to track the Strong Connected
Components (SCC) of the model graph. These SCC's are used to determine the satisfiability
of the grapll, starting with the detennination of the satisfiability of the SCC's. The deter­
mination of the satisfiability of the SCC's also includes the checking of the eventualities (i.e.

3The name Build DNF actually is incomplete, because not only a DNF list, but also BDD structures is
build.

Satisfiability Checker Program 21

o or U). In order to be satisfiable, all the eventualities of the SCC need to be fulfilled, i.e.
when a vertex contains the eventuality Oa, then eventually and certainly a will occur. To
help the algorithm dlecking eventualities, the process Build DNF puts, if necessary, marks in
the closures (read: vertices).

To discuss the satisfiability of SCC's in detail is beyond the scope of this report and henee
the reader is referred to pages 26 to 28 of [Vries, 89] for additional information.

4.3.3 Build DNF list

The Build DNF process is responsihle for the expansion of the initial vertex f of the model
graph, whieh results into a DNF list of the successor closures. Furthermore, the process
places, if needed, marks in these sueeessor closures to help checking fulfillment of possible
eventualities in the SCC's. Let us now take a detailed look at the Build DNF process. The
proeess is based on the Tableau Method and uses the hybrid data structure, which has heen
discussed in the previous subseetions.

A PTL formula can be represented as a list of AND-ed suhformulas, e.g. Dg 1\ (a V b) 1\

Of. To expand the PTL formula, the Build DNF process expands every suhforlllula one
by one starting with the first suhfofllmla of the PTL forlllula. Depending on the type, the
suhfofllmlas are divided into two groups. The first group is called the splitters and consists
of the subfofllmlas with the top layer operator V, e.g. f V 9 (1, gare PTL-fonnulas). The
expansion of the temporal operators 0, U anel Uw also results in splitters, leading us to
distinguish four different types of splitters.

Let us first take a look at the non-splittcrs (second group). Since, the V, 0, U and Uw

operators form the splitters group, the remaining 1\, 0 and 0 operators are the non-splitters
group. In praetice, this leads to the following list of different non-splitters:

1. Subformula fsub is falsc.

2. Subformula fsub is truc.

3. Subforlllula fsub is a.

4. Subforlllula fsub is Oa.

5. Subformula fsub is Og.

6. Subformula fsub is 9 1\ h.

7. Subformula fsub is Oa.

8. Subformula fsub is Dg.

Note that a is a literal and fsub, 9 and hare PTL (sub)formulas.

Let us consider case one, where the subformula is false. Since a fOflnula consisting of AND­

cd subformulas, with a falsc subformula, is false itself, the process will return the so called
NULL LIST. Alternatively, where the subformula is truc, no actions are started because a
truc subformula in an AND-cd formula is redundant.

A subformula can also be a literallike in case three and four. In the first case, the literal
is addeel to the BDD of the closure (see figure 4.5), which represents the propositional part

22

Propositional part as BOD

@(temporal subformula as list)

@(temporal subformulas as bitvector)

@(propositional part as BOD)

Marked temporal subformulas

P. T.L. Satisfiability Checker

Figure 4.5: The structure of a c10sure in a list of conjunctions with the five AND-ed elements.

of the formula. In the second case, the literal is added to the next BDD of the c1osure, which
represents the O(propositional part) of the formula.

The most simpIl" non-split ter is the subformula with the top layer operator 1\. This is due
to the fact that the arguments of this subformula are (AND-ed) subformulas themselves, and
therefore treated that way.

Case seven and eight are subfoTlllUlas starting with the 0 operator. The argument of this
o operator can be a literal or a subformuJa4 . When subformula Dg is expanded, the result is
equal to 9 1\ Og 1\ OOg. The first element gis treated like an ordinary subformula. Elements
with the 0 operator are added to the next subformulas of the c1osure, as weIl as to the next
subfonnula list as to the nex/, subfonnulas bitvectoT (assuming that 9 is a PTL (sub)formula
(case 8)). In the case that 9 is a literal (case 7), 9 is added to the BDD of the c10sure and
Og is added to the next BDD of the c1osure. Naturally, OOg is treated the same way as in
case 8.

Aftel' disrussing the non-splitters, we will continue with the splitters. We can distinguish
four different splitter cases:

1. Subformula fsub is Og.

2. Subformula fsub is 9 U h.

3. Subformula fsub is 9 Uw h.

4. Subformula fsub is 9 V h.

Note that fsub, 9 and hare PTL (sub)formulas.

Case one, two and three at first do not look like splitters. However, after expanding these sub­
formulas, we obtain situations with a top level operator which is equal to V: Og 9 V OOg,
gUh hV(gI\O(gUh)) and 9 Uw h hV(gI\O(g Uw h)). Let us take a look at the first case.
The 0 subformula is a splitter and a splitter can not be represented by one c1osure, because
the DNF list, which is constructed by Build DNF, is a list of conjunctions connected with
the V operator. Therefore, we need an extra c1osure, one for the first part of the disjunction

4This is not cornpletely correct, a PTL subforrnula can also be a literaI. But in this case, we assume that
they are not, to simplify the discussion.

24 P. T.L. Satisfiability Checker

BDD

-A

BDD

A

Figure 4.6: Redueed, simplified and BDDs eontaining DAG of formula OOa 1\ OO-'a.

fS1.1bl +-+ a 1\ O-,a 1\ O(Oa 1\ O-,a 1\ o(Oa 1\ O-,a))

a 1\ (-,a V 00-,a) 1\ O(Oa 1\ O-,a 1\ O(Oa 1\ O-'a)) (4.11)

(a 1\ -,a 1\ O(Oa 1\ O-,a 1\ O(Oa 1\ O-,a))) V (a 1\ O(Oa 1\ O-,a 1\ O(Oa 1\ O-,a)))

falsc V (a 1\ O(Oa 1\ O-,a 1\ O(Oa 1\ O-,a))) (4.12)

a 1\ O(Oa 1\ O-,a 1\ O(Oa 1\ O-,a))

fsub'2 +-+ O-,a 1\ O(Oa 1\ O-,a 1\ O(Oa 1\ O-,a))

(-,a V 00-,a) 1\ O(Oa 1\ O-,a 1\ O(Oa 1\ O-,a)) (4.13)

(-,a 1\ O(Oa 1\ O-,a 1\ O(Oa 1\ O-'a))) V(O(Oa 1\ O-,a 1\ O(Oa 1\ O-,a)))

A 0 operator is expanded (casc anc of the splitters) in the fint subformula, whieh results
into formula 4.11. This expansion also results into a tautalagy a 1\ -,a, henee the fil'st term
is falsc (formula 4.12) and thus redundant. In the seeond subformula we ean see the result
of the expansion of the eventuality O-,a, whieh eorresponds to casc anc of the splittel's.
In figure 4.7, we propose the closures eorresponding to subfofllmlas fsubl(left closure) and
fS1.1b'2(middle and right closures). Sinee the eventuality Oa has been fulfilled for the closure
of subformula fsubl, a mark is set for a. The same story is true for the closure of subformula
fsub'2(middle of figure 4.7) and eventuality O-'a. Here the mark is set for -,a.

We now have thl'ee closures, whieh only have temporal operators enclosed by a next (0)
operator, so no need for expansion. Summarizing: aftel' one expansion step, there are three
closures in the DNF list:

a 1\ O(Oa 1\ O-,a 1\ O(Oa 1\ O-,a))

-,a 1\ O(Oa 1\ O-,a 1\ O(Oa 1\ O-,a))

O(Oa 1\ O-,a 1\ O(Oa 1\ O-,a))

lt is obvious that when we expand the next formula of the closure (Note that the ncxt
formula is tIle same for all closure: Oa 1\ O-,a 1\ O(Oa 1\ O-,a)), we get the same result, the

Chapter 5
Results Satisfiability Cllecker
In this chapter we present the run-times of several test files using the improved PTL Satisfia­
bility Checker. These test files only contain PTL formulas. All tests are run on HP 9000/425S
using Unix time command (user). The run-times of the "old" checker (Oct. 1991) are also
presented, in order to be able to compare the results of both checkers. The columns of table
5.1 with bold heaclers correspond to the improved checker and the other columns, except the
first two column, are related to the "old" checker. Column one and two correspond to both
checkers.

Table 5.1: Results of the "old" checker and the "improved" checker.
Test file NVrl7' Tcpu Tcpu Tot. mem. Tot. mem. Nstrdes Nstates

BoseFisher .ptl 6 1.7 0.7 207 372 111 4;3
MulleLC.ptl 3 0.1 0.1 83 364 52 13
Lars1.ptl 10 3.0 0.3 186 373 12 11
Lars2.ptl 3r: 0.5 0.8 239 378 5 4,)

Lars3.ptl 3r: 0.5 0.8 238 377 5 4,)

Lars4.ptl 37 2.8 1.6 328 448 12 11
Lars7.ptl 17 3.2 1.0 237 404 23 11
Lars8.ptl 44 1.7 3.5 ;3;36 480 23 11
adder.ptl 17 0.1 0.2 126 321 1 0
mul4.ptl 27 158.7 28.2 2869 999 6.'j2 459
number.ptl 33 1.1 1.3 257 425 13 12
dff1.ptl 4 0.0 0.1 55 363 25 9
Josko;3.ptl 8 105.6 7.3 276 419 290 170
Josk04.ptl 4 18.0 5.8 322 418 526 170
mutex1.ptl 8 4.3 3 r: 158 410 139 76.0

mu tex2.ptl 8 19.1 14.6 327 425 648 279

Abbreviations:

NVaT : The number of different variables in the test file,

Tcpu : epu run-time in seconds.

Tot. mem. : The total amount of memory in Kbytes used by the checker.

Nstates : The number of different states in the model graph.

We can distinguish six examples with run-times using the improved checker which ex­
ceed the run-times using the "aId" checker, namely Lar's2.ptl, Lar's3.ptl, Lar'sB.ptl, adder'.ptl,

27

28 Satisfiability checker

numbCT.ptl and dffJ.ptl. Five of these examples have a run-time difference of Iess than 0.;3
seconds which is negIectabIe. The run-time of example LaT88.ptl using the improved checker
has deereased two times, compared to the run-time using the "oId" checker. In general the
improved checker is faster than the "oId" checker with a maxima] factor of about fiveteen
times.

Chapter 6
Conclusions satisfiability checker
A modified Satisfiability Checker has been eleveloped, which can deal with Propositional
Temporal Logk formulas. The data strunure, whkh was originally Disjunctive Normal Form,
has heen extended by the Binary Decision Diagrams, resulting in a hybrid data structure.
The Binary Decision Diagrams data structure has been applied to handle the propositional
part of the satisfiability check. This has led to an efficient representation of this part and to
a compacter moelel graph, which also benefits the satisfiability check.

The Disjunctive Normal Form has remaineel to handle the eventualities constraint. Unlike
the Binary Decision Diagrams data structure, the Disjunctive Normal Form data structure
with bitvectors is much more suitable for eventualities checking.

In general, we can say that the modified Satisfiability Checker is moderately improved over
the satisfiability check. Sinre, the satisfiability prohlem is PSPACE-complete, the exponential
relation with complexity will always remain. Therefore, the (improveel) Satisfiability Checker
will always be slow for large examples.

Finally, we can state that this improved Satisfiability Checker is a step forward to a faster
anel a more practical fOTlnal verification tooI.

29

Part 11
C.F.P. CONVERTER

31

Chapter 1
Introduction C.F.P.
Most physical devices like digital computers, digital control units, or electronic circuits with
synchronized delay elements can be modeled by sequential machines. These devices can be
described as discrete, deterministic computing devices with finite memory. The comman
properties of these device are abstracted in the definition of a sequential machine model. A
classic sequential machine model is the Mealy type sequential machine [Hartmanis, 66].

In order to descrihe a sequentialmachine model, also called finite state machine (FSM),
one can choose out of several different descriptions, like flow tables and state graphs. Another
way is to descrihe a FSM with tempoml logic. Since, there is a wide variety of descriptions,
the problem of converting one FS.M description to another is a practical issue.

Given an Espresso format, which is one of the many table descriptions, and a need for a
Propositional Temporal Logic (PTL) format, has resulted in a software taal called Conve7'fe1'
of F8M to PTL (CFP). An extra feature of the CFP is that FSM can be partly completed
(not in all cases).

In the next sections we will discuss same different facets of the FSM, such as definitions
and descriptions. In addition, the CFP program is presented and generally discussed. Same
simple examples are proposed and at the end of the second part of this report the conclusions
are presenteel.

Finite StateMachine

2.3 Espresso-likedescription

37

TheMea.ly typesequentialmachinemay be describedby eithera statetable or a statediagm.m,
each of which indicates, for every possible combinationof presentstateand input symbol,
what the presentoutput symbol and the next statemust beo

One of the many state table formats is the Espressoformat. To describeOUT FSM, we
use an Espresso-likeformat. Let us now take a closer lookat the Espresso-likeformat. The
difference between the Espressoformat and the Espresso-likeformat lays in the field of the
column types. The Espresso-likeformat encludesan extra type comparedto the Espresso
format. This extra type is called mixedtype and will be discussedin detail later.

Generally, the Espresso-likeformat can be divided in two parts, namely the declaration
part and the transition part. The declarationpart always containsthe dot mv declaration,
but there are more optional declarationspossible. Also dot ilb, dot ob, dot label and dot p
can be utilized. The transition part containsfOUT columns. The far left column is the input
column, the secondone is the old statecolumn, the third one is the new statecolumll and
the last one is the output column.

First, we will discussthe declarationpart. Dot mv is themost importantdeclaration.This
declarationis accompaniedby five parameters.The secondto the fifth parameterprovides
infoI"lllation about the the foUT columnsof the transition part (in the sameorder). It mustbe
pointed out that the size of the parametersare of no importancefor the converterprogram,
but oppositeto this are the signswhich areof major importance.Not that the first parameter
doesn'thavea sign! Thus, the signsof the last fOUT parameterscontainessentialinformation.
We can distinguish three different types of signs namely, "+", "-" and no sign. Sign "+"
standsfor the mixed type, sign "-" standsfor the symbol type and the bit type has no sign.
These types correspondto the columnsof the transition part. In order to declarethe type
of, for example,an output column with only symbols,the fifth parameterhas the sign which
"-". To illustrate, we proposean exampleof the "dot mv" declaration:

Declaration .mv 0 -0 +0 +0 0

Input information The input column type is the symbol type.

Old stateinformation The old statecolumn type is the mixed type.

New stateinformation The new statecolumn type is the mixed type.

Output information The output column type is the bit type.

Dot p is followed by an integerand declaresthenumberof transitions. Since,the converter
programextendsthe inputs and the statesin somecase,the numberof transition can change.
Therefore,this option can be used,but its information is not taken into account.

Dot ilb followed by certain number of names (read: identifiers) declaresthe input bit
names.Thesebit namesareusedto representthe bitstrings,if available,of the input column
in PTL. For example:

Declaration .ilb] NO] NI] N2] N3] N 4

Bitstring 01010

PTL representation,]NO /\] NI /\ ,]N2 /\] N3/\ ,]N 4

	An improved and extended formal verification tool

	Abstract

