
 Eindhoven University of Technology

MASTER

Declarative vs procedural languages for data-aware compliance checking

a case study in finance

Schouten, M.H.M.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8f852935-d3e5-4f71-b385-42f8f6754507

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Eindhoven University of Technology

D E C L A R AT I V E V S P R O C E D U R A L L A N G U A G E S F O R
D ATA - AWA R E C O M P L I A N C E C H E C K I N G :

A C A S E S T U D Y I N F I N A N C E

by
m .h .m . schouten , bsc

Assessment Committee Members

dr. M. de Leoni (TUne)
ir. M. Dees (UWV)

dr. ir. H. Eshuis (TUne)
dr. N. Zannone (TUne)

Eindhoven, October 2015

A B S T R A C T

Process mining is the research discipline that provides techniques
that can be used to discover, conformance check and enhance busi-
ness process models using event logs. This thesis presents a case
study done in collaboration with UWV, an autonomous administra-
tive authority that implements employee insurances and provides
labour market and data services in the Netherlands. The case study
answers multiple business questions regarding the WIA application
process, both using procedural and declarative process mining tech-
niques. The WIA is an employment insurance in the Netherlands for
clients that are still (partially) unfit for work after two years of illness.
This thesis provides a comparative analysis of employing procedural
and declarative languages that are used to perform an analysis of
WIA application proces. In the WIA application process multiple de-
cision points are present that are governed by conditions. Data-aware
compliance checking techniques are required to correctly handle the
decision points that are governed by conditions in the case study.
Data-aware compliance checking techniques are currently non exis-
tent for declarative process models. This thesis presents a new data-
aware compliance checking technique for declarative process models.
The presented technique provides analysts with the possibility to de-
termine how compliant a declarative process model is with a given
event log by presenting the fulfillment ratio (i.e. the ratio of traces not
violating the constraint) of every constraint. The thesis validates the
technique by using synthetic created event logs. Assessing the tech-
nique using the real-life event log extracted for the UWV case study
shows that the technique has a practical feasibility and relevance and
that it is able to produce similar results to existing procedural tech-
niques.

iii

A C K N O W L E D G M E N T S

First of all, I would like to thank my supervisior Massimiliano de
Leoni for the feedback, advice and guidance during my master the-
sis. Your help has been valuable and led to the work I present in this
thesis. Additionally I would like to thank Nicola Zannone and Rik
Eshuis for joining the assessment committee.

I would like to thank everyone at UWV for the nice working atmo-
sphere during the project. Especially I would like to thank Henk de
Ruiter and Marcus Dees for giving me the possibility of doing a case
study at UWV. The possibility of working on a project in a workplace
with real-life data, plus presenting results to the board of directors
has been a valuable experience I would not have liked to have missed.
Additionally I would like to thank Marcus for his extensive help dur-
ing the case study, your SQL and process mining knowledge have
been a great help in working on a real-life case study. I would also
like to thank Loes Bilderbeek and Marije Dijkstra for the numerous
interviews, the feedback and the provision of information regarding
the WIA process.

I thank all of my friends, roommates and colleagues for the great
time in Eindhoven. I would like to thank my parents and sister Jamie
for their support throughout the years. Last but not least, I would like
to thank my girlfriend Anne for her support the last years.

v

C O N T E N T S

1 introduction 1

1.1 Scope 3

1.2 Outline 5

2 state of the art 7

2.1 Petri nets 7

2.1.1 Data Petri nets 8

2.2 Conformance Checking for Procedural Models 10

2.2.1 Data-aware Conformance Checking for Proce-
dural Models 12

2.2.2 Performance Analysis for Procedural Models 14

2.3 Correlating Business Process Characteristics 16

2.4 Declare 20

3 uwv case study 23

4 minerful declare miner 25

4.1 Overview MINERful Declare Miner 25

4.2 The MINERful Algorithm Parameters 28

4.3 Usage of the Tool on a Use Case 29

4.4 Conclusion 30

5 data-aware compliance checking of declare mod-
els 33

5.1 Data-Aware Compliance Checking Algorithm 33

5.2 Tool Support 38

5.2.1 Create/Edit DeclareMap With Data 39

5.2.2 Declare Data-Aware Compliance Checker 40

5.2.3 Perform Predictions of Business Process Features 42

5.3 Validation of the Implementation 43

5.4 Conclusion 46

6 data-aware compliance checking evaluation us-
ing the case study 51

7 conclusion 53

7.1 Advice for UWV 55

7.2 Future Work 55

7.2.1 Plug-in improvements 55

7.2.2 Data-Aware Conformance Checking of Declare
Models 56

a conformance checking results 59

b bottleneck analysis results 61

c constraint automatons 63

d compliance checking results 67

bibliography 69

vii

L I S T O F F I G U R E S

Figure 1 Pictorial representation of a Petri net with Data
that models the process to request loans. Places,
transitions and variables are represented as cir-
cles, rectangles and rounded rectangles, respec-
tively. The dotted arcs going from a transition
to a variable denote the writing operations; the
reverse arcs denote the read operations, i.e. the
transition requires accessing the current vari-
ables’ value [20]. 10

Figure 2 Alignment
1 is an alignment of �L = acdeh
and �P = acdeh. Alignment
2 is an alignment
of �L = abdeg and �P = acdeh. Moves are rep-
resented vertically, e.g., the first move of
1 is
(a,a) indicating that both the log and the model
make an a move. 12

Figure 3 Examples of alignments of �example and the
DPN-net in Figure 1 13

Figure 4 The general framework proposed in this paper:
based on an analysis use case the event log is
preprocessed and used as input for classifica-
tion. Based on the analysis result, the use case
can be adapted to gather additional insights
[21]. 17

Figure 5 Fragment of a hospital’s event log with four
traces [21]. 18

Figure 6 The results after applying the case-level ma-
nipulation to the event log shown in Figure 5

[21]. 18

Figure 7 A screenshot of the framework in Figure 4 im-
plementation in ProM that shows the decision
tree used to answer question Q1 [21]. 19

Figure 8 A close up of the root of the decision tree in
Figure 7. 19

viii

LIST OF FIGURES ix

Figure 9 Graphical representation of every Declare con-
straint: Top row (from left to right): response,
alternate response, chain response, not co-existence,
responded existence, exclusive choice, at least
1, absence, exactly 1. Middle row (from left to
right): precedence, alternate precedence, chain
precedence, not succession, co-existence, initial
task, at least 2, at most 1, exactly 2. Bottom row
(from left to right): succession, alternate suc-
cession, chain succession, not chain succesion,
choice, last task, at least 3, at most 2, exactly
3. 21

Figure 10 The resulting output screen from MINERful’s
where the model has been discovered by set-
ting support to 0.5 and setting confidence and
interest factor to 0. 29

Figure 11 The resulting output screen from MINERful’s
example with stricter parameters (i.e., closer to
1). 30

Figure 12 Constraint automaton for Response(A,B,Cond)
- if A occurs and Cond holds, B must occur
afterwards 37

Figure 13 Constraint automaton for Not Precedence(A,B,Cond)
- if B occurs and Cond holds, A cannot have
occurred before 38

Figure 14 Example Declare model containing multiple ac-
tivities and constraints 38

Figure 15 The first dialog screen in the Create/Edit De-
clareMap With Data plug-in 39

Figure 16 The second dialog screen in the Create/Edit
DeclareMap With Data plug-in 40

Figure 17 The output screen of the Create/Edit DeclareMap
With Data plug-in 41

Figure 18 The initial output screen of the Declare Data-
Aware Compliance Checker plug-in, where the
name and the possible guard is displayed for
every constraint 42

Figure 19 An alternative output screen of the Declare Data-
Aware Compliance Checker plug-in, where the
fulfillment ratio is displayed for every constraint 42

Figure 20 The menu appearing after right clicking a con-
straint in the Declare Data-Aware Compliance
Checker plug-in 43

Figure 21 The extended Attributes panel in the "Perform
Predictions of Business Process Features" plug-
in, which now contains constraint violation in-
formation from the "Declare Data-Aware Com-
pliance Checker" plug-in 44

Figure 22 An example decision tree generated using con-
straint violation information from the "Declare
Data-Aware Compliance Checker" plug-in 44

Figure 23 Example Declare model to illustrate a control-
flow alignment versus an alignment taking data
into account 57

Figure 24 Alignments found for the Declare model in Fig-
ure 23 and example event log � 57

Figure 25 Responded Existence(A,B,Cond) - if A occurs
and Cond holds, B must occur before or after
A 63

Figure 26 Response(A,B,Cond) - if A occurs and Cond
holds, B must occur afterwards 63

Figure 27 Alternate Response(A,B,Cond) - if A occurs and
Cond holds, B must occur afterwards, without
further As in between 64

Figure 28 Chain Response(A,B,Cond) - if A occurs and
Cond holds, B must occur next 64

Figure 29 Precedence(A,B,Cond) - if B occurs and Cond
holds, A must have occurred before 64

Figure 30 Alternate Precedence(A,B,Cond) - if B occurs
and Cond holds, A must have occurred before,
without other Bs in between 64

Figure 31 Chain Precedence(A,B,Cond) - if B occurs and
Cond holds, A must have occurred immedi-
ately before 65

Figure 32 Not Responded Existence(A,B,Cond) - if A oc-
curs and Cond holds, B can never occur 65

Figure 33 Not Response(A,B,Cond) - if A occurs and Cond
holds, B cannot occur afterwards 65

Figure 34 Not Chain Response(A,B,Cond) - if A occurs
and Cond holds, B cannot be executed next 65

Figure 35 Not Precedence(A,B,Cond) - if B occurs and
Cond holds, A cannot have occurred before 66

x

Figure 36 Not Chain Precedence(A,B,Cond) - if B occurs
and Cond holds, A cannot have occurred im-
mediately before 66

L I S T O F TA B L E S

Table 1 Table listing the guards of the transitions in
Figure 1 11

Table 2 Table listing the constraints mentioned in the
thesis. 27

Table 3 Table listing the constraints of the Declare model
in 14 with their corresponding activations, vi-
olations and their fulfillment ratio. 41

Table 4 Validation results of constraint Group 1 45

Table 5 Validation results of constraint Group 2 46

Table 6 Validation results of constraint Group 3 47

Table 7 Validation results of constraint Group 4 48

A C R O N Y M S

UWV Employee Insurance Agency

SZW Ministry of Social Affairs and Employment

WW Unemployment Insurance Act

WIA Work and Income according to Labour Capacity Act

LTL Linear Temporal Logic

xi

1
I N T R O D U C T I O N

Over the years companies have been using information systems more
and more to support and control business processes. Information sys-
tems allow for recording and storing data related to business pro-
cesses in the form of event logs. The goal of process mining is to extract
value from these event logs by obtaining process related information
[30].

An event log is a collection of sequentially recorded events such
that each event refers to an activity (i.e., a well defined step in the
process) and is related to a particular case (i.e., a process instance). A
sequence of events belonging to a single case is called a trace. Most
event logs store additional information about events, such as the re-
source (i.e., person or device) executing the activity, the timestamp , or
data attributes recorded with the event (e.g. the office in which the task
is executed) [30].

Process mining can usually be distinguished in three different types:
process discovery, conformance checking and enhancement. A process dis-
covery technique takes an event log and produces a model explain-
ing behavior recorded in the log. When using conformance checking an
existing process model is compared with an event log of the same
process. Conformance checking can be used to check if reality, as
recorded in the log, conforms to the model and vice versa. The idea
of enhancement is to extend or improve an existing process model us-
ing information about the actual process as recorded in the log [30].

One of the open challenges in process mining is to find a suitable
representational bias (language) to visualize the resulting models [24].
The suitability of a language largely depends on the level of standard-
ization and the environment of the process. Standardized processes
in stable environments (e.g., a process for handling insurance claims)
are characterized by low complexity of collaboration, coordination
and decision making. In addition, they are highly predictable, mean-
ing that it is feasible to determine the path that the process will fol-
low. On the other hand, processes in dynamic environments are more
complex and less predictable. They comprise a very large number of
possible paths as process participants have considerable freedom in
determining the next steps in the process (e.g., a doctor in a health-
care process)[30].

1

2 introduction

As discussed in [32], [25], procedural languages, such as BPMN,
EPCs and Petri nets, are suitable for describing standardized pro-
cesses in stable environments. In contrast, the use of procedural lan-
guages for describing processes in dynamic environments leads to
complex and incomprehensible models. In this context, declarative
process modeling languages are more appropriate [32]. Over the last
years, the declarative process modeling approach has flanked the clas-
sical procedural one [32], [25]. Declarative approaches only depict the
behavioural constraints under which a process instance can unfold in
its execution: as long as the constraints are not violated, the process
instance is considered as valid. The declarative approach is a com-
plementary strategy to the procedural models, which specify what
are the next allowed activities at each stage of the process execution.
Declarative process models are effective in a context of high flexibility
for business processes [27]. The reason intuitively lies in the fact that
fewer constraints allow for more possible executions. On the contrary,
more flexibility implies a higher number of alternative paths to depict
in the procedural models.

Declare [22] is a declarative process modeling language. Declare is
a declarative language that combines a formal semantics grounded
in Linear Temporal Logic (LTL) on finite traces, with a graphical rep-
resentation. In essence, a Declare model is a collection of LTL rules,
each capturing a control-flow dependency between two activities [11].

In this thesis all distinguished three types of process mining will be
touched, but particularly process discovery and conformance check-
ing is addressed. More specifically, this thesis provides a comparative
analysis of employing procedural and declarative languages that are
used to perform an analysis of some business processes enacted at
Employee Insurance Agency (UWV).

UWV is an autonomous administrative authority and is commis-
sioned by the Ministry of Social Affairs and Employment (SZW) to
implement employee insurances and provide labour market and data
services in the Netherlands. More specifically, UWV has core tasks in
the following four areas:

• Employment - helping the client remain employed or find em-
ployment, in close cooperation with the municipalities;

• Social medical affairs - evaluating illness and labour incapacity
according to clear criteria;

• Benefits - ensuring that benefits are provided quickly and cor-
rectly if work is not possible, or not immediately possible;

• Data management - ensuring that the client needs to provide the
government with data on employment and benefits only once.

1.1 scope 3

The vision of UWV is that people are at their best when they can
participate in society by working. Society functions best when as
many people as possible participate in it by working. It is the mis-
sion of UWV to make a difference for people by promoting work and
in case work is impossible, UWV ensures that income is available
quickly.
The Dutch employee insurances are provided for via laws such as
the Unemployment Insurance Act (WW) and the Work and Income
according to Labour Capacity Act (WIA). The case study of this thesis
will focus on the WIA Claim process in particular.

The WIA is an employment insurance in the Netherlands for clients
that are still (partially) unfit for work after two years of illness. Dur-
ing the first two years of illness the employer of the client is obliged
to pay the wages of the client. After these two years of illness a client
can apply for benefits, after which UWV will assess the application
to determine whether it will be accepted. This assessment process is
called the WIA Claim process. The term client is adapted from UWV
as this is the common term used in the company.

An extracted event log at UWV is used to answer business ques-
tions for UWV and is used to evaluate the developed techniques in
this thesis.

1.1 scope

Recently UWV has started adapting to process mining as a method
of analysing the business processes. For this reason it was chosen to
use process mining techniques to answer several business questions
regarding the WIA Claim process. To answer some of the business
questions conformance checking is used. In the WIA Claim process
multiple decision points are present that are governed by conditions.
For this reason multiple data attributes are taken into account when
answering business questions using conformance checking.

For this case study first and foremost a procedural process model
of the WIA Claim process is drawn, which is used to answer the
business questions. To answer the business questions using a pro-
cedural model, multiple process mining techniques are available to
add guards to procedural models and to do conformance checking
while taking guards into account [9] [20] [16]. Guards are conditions
that state under what conditions a task should or should not be exe-
cuted. Beside the procedural approach, UWV is interested in whether
a declarative approach is better suited to model their business pro-
cesses. For this reason a declarative process model of the WIA Claim

4 introduction

process is created. For declarative models a conformance checking ap-
proach is available that focuses solely on the control-flow [19]. How-
ever, focussing solely on the control-flow results in the technique be-
ing unable to determine whether deviations are present concerning
data attributes.

Since for some business processes a declarative approach might
be more appropriate [32], a technique that is able to diagnose devia-
tions concerning data attributes is desired for declarative approaches.
Solely using control-flow conformance checking without considering
data attributes results in unjust violations. This issue leads to the fol-
lowing problem statement that is addressed in this thesis:

problem statement Data-aware compliance checking is essential
in analyzing business processes which contain decision points
that are governed by conditions. Declarative process models are
effective in a context of high flexibility for business processes,
but data-aware compliance checking techniques are currently
non existent for declarative process models. Data-aware compli-
ance checking of declarative process models is desired since not
considering data attributes for processes that contain decision
points that are governed by conditions results in unjust viola-
tions.

This thesis will present a technique which is able to address the
problem statement for declarative process models in the Declare lan-
guage. This technique is motivated by the following research goal:

research goal Develop a technique that allows for data-aware
compliance checking of Declare models with guards, such that
data-aware analysis can be done for declarative approaches sim-
ilar to procedural approaches.

The research goal is achieved by delivering a technique that al-
lows for data-aware compliance checking for Declare models given
an event log and a Declare model enriched with guards. The thesis
limits to a compliance checking technique that determines for each
constraint in the Declare model the set of traces that violate the con-
straint, i.e. the technique does not determine optimal alignments for
each trace like a conformance checking technique does. In the case
study of this thesis only the detection of violations is required, i.e.
no optimal alignments are required. With this technique, similar to
a data-aware procedural approach, data-aware compliance checking
can be done for a declarative approach. Hence, allowing a declarative
approach which is more suitable to flexible business processes to di-
agnose deviations concerning data attributes.

1.2 outline 5

To assess the practical feasibility and relevance, the technique has
been implemented in ProM. ProM is an extensible framework that
provides support to develop and exploit a wide variety of process
mining techniques in a standardised environment [12]. The imple-
mentation of the technique has been validated and evaluated using
synthetic event logs and the real life event log extracted at UWV. The
output presented by this technique has been integrated in the correla-
tion framework presented in [21]. Through this integration, it is now
possible to correlate the violations of Declare constraints with other
process characteristics, such as the occurrence of undesired events,
the execution time or, even, the violations of other business rules.

Relevant to the case study, an existing implementation of a Declare
miner named MINERful [7] has been implemented in ProM. The moti-
vation for this implementation is that existing Declare miners in ProM
could not scale with the size of the event logs extracted at UWV. This
implementation also led to a publication accepted for the Demo Track
of the BPM 2015 conference [5].

Thanks to the new contributions of this thesis some of the business
questions can now be answered more accurately using a declarative
approach. Experimental results show that the newly presented tech-
nique is able to produce results that are similar to the results pro-
duced by procedural techniques for the case study.

1.2 outline

Before the case study and data-aware compliance checking contribu-
tions are discussed, Chapter 2 addresses preliminary work and con-
cepts that are relevant to the topics addressed in this thesis.

Chapter 3 addresses the case study done for UWV. The WIA Claim
process is explained, as well as the design decisions that are made in
extracting the event log used in the case study. In multiple interviews
with WIA Claim domain experts, four business questions that need to
be answered are defined. In this chapter the four business questions
are answered using a procedural approach.

Chapter 4 presents the implementation of a Declare miner utilizing
the MINERful algorithm in ProM. The chapter gives a short overview
of the MINERful algorithm and its advantages over other declarative
process discovery techniques. Usage of the tool is demonstrated using
a real-life event log.

Chapter 5 presents the new contributions that allow for data-aware
compliance checking of Declare models. The chapter presents an al-
gorithm that is used to determine whether a specific trace violates a
Declare constraint. The usage of the two new contributions is show

6 introduction

cased on an example model with an example log. Finally the chapter
validates the contributions using multiple test event logs.

Chapter 6 addresses the declarative part of the case study done
for UWV. The declarative part of the case study at the same time
serves as an evaluation of the new contributions, by assessing the
practical feasibility and relevance using a real-life event log. In this
chapter three of the four business questions are answered using the
new declarative techniques.

Finally the thesis is concluded in Chapter 7. Chapter 7 addresses
the conclusions, presents an advice for UWV based on the case study
and addresses possible future work.

2
S TAT E O F T H E A RT

In process mining, models are used for explaining behavior recorded
in an event log or are used to specify behavior that is allowed in a
system or process. Over the years multiple modelling languages have
been created, all of which have their own strengths and weaknesses.
Models can be useful to understand, define, visualize or simulate
processes. As models might contain oversimplifications or illogical
assumptions, models cannot be used as an exact copy of reality. Nev-
ertheless models are suited to be used as a reflection, as opposed to
a copy, of reality. In this thesis three modelling languages are used,
namely Declare, final-state automata and Petri nets. In this section
state of the art knowledge of the mentioned modelling languages De-
clare and Petri nets as well as multiple process mining techniques are
explained. The contents of this section are a preliminary introduction
as the content is used and/or extended in the remainder of this thesis.

2.1 petri nets

A Petri net is a mathematical modelling language that can be used
to describe distributed systems. Petri nets have a strong mathemati-
cal basis, which allows for a precise analysis of a modeled system or
process. Additionally Petri nets are represented graphically, making
them accessible for analysts who are no modeling experts [29].

definition 1 (petri net) A Petri net is a triplet (P, T , F) with:
P = a finite set of places, T = a finite set of transitions where (P \ T = ;)
and, F = the flow relation where F � (P� T)[(T � P)

A place p is an input place of a transition t iff (p, t) 2 F and a place
p is an output place of t iff (t,p) 2 F. A marking M of a Petri net is a
multiset of tokens, i.e., a mapping M : P !N. A marking M assigns
a number of tokens to each place.

Firing a transition t in a marking M consumes one token from each
of its input places and produces one token in each of its output places.
A transition t is allowed to fire, i.e. is enabled, in M if there is at least
one token in all of its input places to consume, i.e. for each input
place S of t holds M(S) > 1 [13].

To correspond transitions to an activity in a process, each of these
transitions are associated with a label that indicates the activity it rep-

7

8 state of the art

resents. Transitions with no label are known as �-transitions, which
are invisible transitions. �-transitions are introduced for routing pur-
poses and do not represent an actual activity of the process. As such,
�-transition executions are not recorded in the event logs [20].

definition 2 (labeled petri net) A labeled Petri net PN =
(P, T , F, l) is a Petri net (P, T , F) with labeling function l 2 T 9 UA where
UA is some universe of activity labels

definition 3 (system net) A system net SN = (PN,Minit,Mfinal)
is a triplet where PN = (P, T , F, l) is a labeled Petri net, Minit 2 P ! N
is the initial marking, and Mfinal 2 P ! N is the final marking. USN is
the universe of system nets [20].

2.1.1 Data Petri nets

A Petri net with data (DPN-net) is a Petri net in which transitions
can read and/or write variables [15]. A transition performs write op-
erations on a given set of variables and may have a data-dependent
guard. A transition t can fire only if its guard is satisfied and all in-
put places are marked, i.e. there is at least one token in all of its input
places to consume. A guard can be any formula over the process vari-
ables using relational operators (<,>, =) as well as logical operators
such as conjunction (^), disjunction (_), and negation (:) [9].

definition 4 (variables and values) UVN is the universe of
variable names. UVV is the universe of values. UVM = UVN 9 UVV is the
universe of variable mappings.

A DPN-net is formally defined as follows:

definition 5 (dpn-net) A Petri net with data
DPN = (SN,V , val, init, read,write,guard) consists of:

• a system net SN = (PN,Minit,Mfinal) with PN = (P, T , F, l),

• a set V � UVN of data variables,

• a function val 2 V ! P(UVV) that defines the values admissible for
each variable v 2 V , i.e. val(v) is the set of values that variable v can
have,

• a function init 2 V ! UVV that defines the initial value for each
variable v such that init(v) 2 val(v) (initial values are admissible),

• a read function read 2 T ! P(V) that labels each transition with the
set of variables that it reads,

2.1 petri nets 9

• a write function write 2 T ! P(V) that labels each transition with
the set of variables that it writes,

• a guard function guard 2 T ! Formulas(VW [VR) that associates
a guard with each transition such that, for any t 2 T and for any
v 2 V , if v appears in guard(t) then v 2 read(t) and if v 0 appears
in guard(t) then v 2 write(t).

UDPN is the universe of Petri nets with data [20].

When a variable v 2 V appears in a guard guard(t) , it refers to
the value just before the occurrence of t. If v 2 write(t) , it can also
appear as v 0 (i.e., with the prime symbol). In this case, it refers to the
value after the occurrence of t [9].
A binding is a triplet (t, r,w) which describes the execution of transi-
tion t while reading values r and writing values w. A binding is valid
if:

1. r 2 read(t)! UVV and w 2 write(t)! UVV ,

2. for any v 2 read(t) : r(v) 2 val(v), i.e. all values read should be
admissible,

3. for any v 2 write(t) : w(v) 2 val(v), i.e. all values written
should be admissible,

4. Guard guard(t) evaluate true [20].

To illustrate, consider the following (simplified) process to request
loans which is taken from [9]; The process starts with a credit re-
quest where the requester provides some documents to demonstrate
the capability of paying the loan back. These documents are verified
and the interest amount is also computed. If the verification step is
negative, a negative decision is made, the requester is informed and,
finally, the negative outcome of the request is stored in the system.
If verification is positive, an assessment is made to take a final de-
cision. Independently of the assessment’s decision, the requester is
informed. Moreover, even if the verification is negative, the requester
can renegotiate the loan (e.g. to have lower interests) by providing
further documents or by asking for a smaller amount. In this case,
the verification-assessment part is repeated. If both the decision and
verification are positive and the requester is not willing to renegotiate,
the credit is opened.

Figure 1, which is also taken from [9], shows the DPN-net that mod-
els the loan request process. Table 1 lists the conditions of the guards
of the transitions. The labeling function l is such that the domain of
l is the set of transitions of the DPN-net. For each transition t of the

10 state of the art

Figure 1: Pictorial representation of a Petri net with Data that models the
process to request loans. Places, transitions and variables are rep-
resented as circles, rectangles and rounded rectangles, respectively.
The dotted arcs going from a transition to a variable denote the
writing operations; the reverse arcs denote the read operations, i.e.
the transition requires accessing the current variables’ value [20].

DPN-net, l(t) = t stating that the set of activity labels coincides with
the set of transitions.

2.2 conformance checking for procedural models

Often process models, such as Petri nets, are not enforced and devi-
ated from in practice. Comparing an existing process model with an
event log of the same process is conformance checking. Conformance
checking can be used to check if reality, as recorded in the log, con-
forms to the model and vice versa [30].

Over the years multiple conformance checking techniques have
been proposed [30] [2] [1]. These conformance checking techniques
focus on the control-flow, i.e. the order in which activities occur. Ad-
ditionally these conformance checking techniques focus on fitness. A
model with good fitness allows for the behavior seen in the event log.
A model has a perfect fitness if all events of all traces in the log can be
replayed. Fitness can be defined in multiple ways, e.g. on case level
(fraction of traces in the log that can be fully replayed) or event level
(the fraction of events in the log that are possible according to the
model) [30].

Given a process model P and an event log L, deviations in the
fitness are either skipped activities or inserted activities. Skipped ac-
tivities refer to activities that should be performed according to the
model, but do not occur in the log. Inserted activities refer to activities
that occur in the log, but do not occur in the model [1]. An alignment
shows how the event log can be replayed on the process model.

2.2 conformance checking for procedural models 11

transition guard

Advanced

Assessment Verification = true ^ Amount > 5000 ^ 0.1 < Interest’ /
Amount < 0.15

Inv1 Verification = false

Inv2 Decision = true

Inv3 Decision = false

Open Credit Loan Verification = true ^ Decision = true

Inform Customer

M-Z Requester > "M"

Inform Customer

A-L Requester 6 "L"

Renegotiate Amount’ 6 Amount

Simple Assessment Verification = true ^ Amount 6 5000 ^ 0.15 < Interest’ /
Amount < 0.2

Table 1: Table listing the guards of the transitions in Figure 1

Let SN be the set of (valid and invalid) firing of transitions of a
labeled Petri net N with SN. It is required to relate "moves" in the
log to "moves" in the model in order to establish an alignment be-
tween a process model and an event log. However, it may be the case
that some of the moves in the log cannot be mimicked by the model
and vice versa. "No move" is denoted by �. For convenience, the set
S?N = SN [f�g is introduced [9].

One move in an alignment is represented by a pair (s 0, s 00) 2 (S?N�
S?N) n f(�,�)g such that:

• (s 0, s 00) is a move in log if s 0 2 SN and s 00 =�

• (s 0, s 00) is a move in model if s 0 =� and s 00 2 SN

• (s 0, s 00) is a move in both if s 0 2 SN and s 00 2 SN

Let �L be a trace in event log L and let �P be a full execution se-
quence of model P. An alignment of �L and �P is a sequence
 such
that the projection on the first element (ignoring�) yields �L and the
projection on the second element (again ignoring �) yields �P. Two
examples of alignments can be seen in Figure 2.

In practice, the severity of skipping or inserting activities may de-
pend on the activity. To introduce this notion in alignment, a cost

12 state of the art

Figure 2: Alignment
1 is an alignment of �L = acdeh and �P = acdeh. Align-
ment
2 is an alignment of �L = abdeg and �P = acdeh. Moves are
represented vertically, e.g., the first move of
1 is (a,a) indicating
that both the log and the model make an a move.

function is introduced. The cost function can be generalized to align-
ments as the sum of the cost of each individual move. The goal of
conformance checking is to find the alignment of log trace � 2 L

and P that minimizes the cost. Such an alignment is called an optimal
alignment. Creating an optimal alignment with respect to a custom
cost function can be done using the A� algorithm, as illustrated in [9].

2.2.1 Data-aware Conformance Checking for Procedural Models

Conformance checking techniques that only consider the control-flow
perspective cannot find any conformance violations for data-dependent
guards in DPN-nets. In recent years some data-aware conformance
checking techniques have been proposed [16] [9].

When data-aware conformance checking, it can occur that alterna-
tive explanations exist for a deviating trace. For the identified devia-
tion of some activity the explanation may be (1) that all data values
were written correctly but, the activity did not need to be performed,
or (2) the activity was performed properly but the data variables were
not set correctly.

The approach in [16] seeks for explanations that put the control-
flow first. This approach would prefer explanation (2) even when the
other perspectives strongly suggest an alternative explanation with
more control-flow deviations. Such explanations can be constructed
quickly, at the potential expense of the inability to guarantee the opti-
mality of the solution. Indeed, explanation (2) requires one to accept
that observed data values are incorrect, which in some particular case
may actually be less likely than only one activity being executed incor-
rectly. Hence, explanation (1) may be more likely in certain settings.
This shows that there are tradeoffs between the different perspectives.
The approach in [9] allows for balancing the control-flow, data, re-
sources, and time perspectives in identifying explanations for devia-
tions. For this reason the approach in [9] is used in this thesis.

For data-aware conformance checking, the notion of alignments is
extended to take data values into account. Alignments have been de-
fined in [9] as follows:

2.2 conformance checking for procedural models 13

definition 6 (alignments) LetDPN = (SN,V , val, init, read,write,guard)
be a DPN-net. A legal move in an alignment is represented by a pair (s 0, s 00) 2
(S?N � S

?
N) n f(�,�)g such that:

• (s 0, s 00) is a move in log if s 0 2 SN and s 00 =�

• (s 0, s 00) is a move in model if s 0 =� and s 00 2 SN

• (s 0, s 00) is a move in both with correct write operations if s 0 2 SN,
s 00 2 SN and #act(s 0) = #act(s 00) and 8v 2 V #vars(s 0, v) =
#vars(s 00, v)

• (s 0, s 00) is a move in both with incorrect write operations if s 0 2 SN,
s 00 2 SN and #act(s 0) = #act(s 00) and 9v 2 V #vars(s 0, v) 6=
#vars(s 00, v)

To explain the different perspectives relevant for conformance, con-
sider the following example trace given in [9]: �example =
h(a, {A = 3000, R = Michael, Ea = Pete, Ta = 3Jan}), (b, {V = false,
Eb = Sue, Tb = 4 Jan}), (c, {I = 530, D = true, Ec = Sue, Tc = 5
Jan}), (f, {Ef = Pete, Tf = 17 Jan})i. Trace �example consists of 4

events. Lower-case bold letters refer to activities using the mapping
in Figure 1, e.g., a = Credit Request. Upper-case bold letters refer
to data objects. A = 3000 describes that the amount is 3000 (A is a
shorthand for Amount) and R = Michael describes that credit request
is initiated by Michael (R is a shorthand for Requester). Ex and Tx
respectively denote the last executor of x and the timestamp when
x was executed last. Two example alignments for this example log
�example and the DPN-net in Figure 1 can be seen in Figure 3.

Figure 3: Examples of alignments of �example and the DPN-net in Figure 1

The cost function assigns a non-negative cost to each legal move
specified in Definition 6. The cost function can be used to favor one
type of explanation for deviations over the other. Beside finding an
optimal alignment, an alignment that minimizes the cost, the fitness
level of traces and logs is quantified. The fitness function is defined
as follows:

14 state of the art

definition 7 (fitness level) Let � be a log trace and N be a
DPN-net with cost function K. Let
O be an optimal alignment of � and N
and let
E be an optimal alignment of the empty trace and N. Let
R be the
reference alignment given by
R =
E � h(s1,�), ..., (sn,�)i with si � �.
The fitness level of � and N is defined as follows:
F(�,N) = 1- K(
O)

K(
R)

Creating an optimal multi-perspective alignment with respect to a
custom cost function that is balanced is illustrated in [9]. The tech-
nique is implemented as a plug-in in ProM named "Conformance
Checking of DPN (Balanced)" and is used in the case study of this
thesis.

2.2.2 Performance Analysis for Procedural Models

After aligning event log and model, all kinds of analysis techniques
based on "replay" are possible. These replay techniques may use addi-
tional attributes and are not restricted to activity names. For the case
study in this thesis time related performance analysis is required. For
this reason the performance analysis technique presented in [31] is
used. As mentioned in [31], timestamps of events can be used to
compute flow times, waiting times, service times, synchronization
times, etc. For example, let e1 and e2 be two subsequent events with
act(e1) = a, act(e2) = b, time(e1) = 23-11-2011:15.56, and time(e2) = 23-
11-2011:16.20. If b is causally dependent on a, a time of 24 minutes is
recorded in between a and b. By repeatedly measuring such time dif-
ferences during replay, the average time that elapses in-between a and
b is computed. Such detailed analysis is only possible after success-
fully aligning model and log. A process model annotated with time
information can be used to diagnose performance problems [31]. The
time related performance analysis has been implemented as a plug-in
in ProM named "Replay a Log on Petri Net for Performance/Confor-
mance analysis (bottlenecks places or tasks)" and is used in the case
study of this thesis. The plug-in is able to distinguish between four
groups of performance information, namely: Process metrics, Place
metrics, Two-transition metrics, and Activity metrics [26].

Process metrics

The following process-related metrics are derived by this plug-in:

• Total number selected: the total number of process instances.

2.2 conformance checking for procedural models 15

• Number fitting: the number of process instances that complete
properly and successfully, i.e. the number of instances that can
be replayed in the Petri net without any problems.

• Arrival rate: the number of arrivals of process instances per time
unit.

• Throughput time: the throughput time of the process instances.

Place metrics

The place-related metrics that are derived consist of:

• Frequency: the number of visits of tokens to the place during
replay of the process instances in the Petri net.

• Arrival rate: the rate at which tokens arrive to the place per time
unit.

• Waiting time: the time that passes from the (full) enabling of
a transition until its firing, i.e. time that a token spends in the
place waiting for a transition (to which the place is an input
place) to fire and consume the token.

• Synchronization time: the time that passes from the partial en-
abling of a transition (i.e. at least one input place marked) until
full enabling (i.e. all input places are marked). Time that a token
spends in a place, waiting for the transition (to which this place
is an input place) to be fully enabled.

• Sojourn time: the total time a token spends in a place during a
visit (Waiting time + Synchronization time).

• Probabilities at XOR-splits: The probability that a case chooses
a certain branch at a place with multiple outgoing arcs.

Two-transitions metrics

For each two (visible) transitions in the Petri net, the following met-
rics are available:

• Frequency: the number of process instances in which both tran-
sitions fire at least once.

• Time in between: (absolute) time between the first firing of the
one transition during log replay and the first firing of the other
transition.

16 state of the art

Activity metrics

Often transitions are part of an activity, i.e. a task. For instance,
an activity clean can be represented by the transitions clean-schedule,
clean-start and clean-complete. In such case, activity metrics can be
derived. These are:

• Arrival rate: rate at which work-items arrive at the activity.

• Waiting time: the time between the moment at which the ac-
tivity is scheduled and the moment at which execution of the
activity is started. (Time between a schedule and a start event
of the activity).

• Execution time: the time in which an activity is actually exe-
cuted. Which is the time between the moment at which the ac-
tivity is started and the time at which it is completed, without
possible time spend in a state of suspension. (Time between
a start and a complete event of an activity, without the time
spend in between all suspend and resume pairs that occurred
in between).

• Sojourn time: Time between the scheduling of an activity and
the time it finishes execution (Time between a schedule and a
complete event).

2.3 correlating business process characteristics

Process discovery techniques make it possible to automatically de-
rive process models from event data. However, often one is not only
interested in discovering the control-flow but also in answering ques-
tions like "What do the cases that are late have in common?", "What
characterizes the workers that skip this check activity?", and "Do peo-
ple work faster if they have more work?", etc. Such questions can be
answered by combining process mining with classification (e.g., deci-
sion tree analysis) [21].
The framework presented in [21] tries to discover correlations of dif-
ferent process characteristics. These characteristics can be based on
the control-flow (e.g., the next activity going to be performed), the
data-flow (e.g., the amount of money involved), the time perspective
(e.g., the activity duration or the remaining time to the end of the pro-
cess), the organization perspective (e.g., the resource going to perform
a particular activity), or, in case a normative process model exists, the
conformance perspective (e.g., the skipping of a mandatory activity).
The general framework can be seen in Figure 4. The framework aims
to support so-called analysis use cases. The definition of an analysis

2.3 correlating business process characteristics 17

use case is found in Definition 8, where C is the universe of process
characteristics and where E is the universe of activities.

definition 8 (analysis use case) An analysis use case is a
triple(Cd, cr , F) consisting of

• a dependent characteristic cr 2 CnCd,

• a set Cd � C of independent characteristics,

• an event-selection filter F � E, which characterizes the events that are
retained for the analysis.

The ultimate goal of the framework is to mine decision trees that ex-
plain the value of one characteristic, the dependent characteristic, in
terms of the other characteristics, the independent characteristics. The
decision trees are build based on an event log and an analysis use case.
Decision trees classify instances (in this case events) by sorting them
down in a tree from the root to some leaf node. Each non-leaf node
specifies a test of some attribute (in this case, an independent char-
acteristic) and each branch descending from that node corresponds
to a range of possible values for this attribute. Each leaf node is as-
sociated to a value of a class attribute (in this case, the dependent
characteristic). A path from root to a leaf represents a classification
rule.

Figure 4: The general framework proposed in this paper: based on an analy-
sis use case the event log is preprocessed and used as input for clas-
sification. Based on the analysis result, the use case can be adapted
to gather additional insights [21].

The framework presented in [21] has been implemented as a plug-
in in ProM named "Perform Predictions of Business Process Features"

18 state of the art

and is used in the case study of this thesis. The plug-in allows for
the user to configure a number of parameters, such as the level of
decision tree pruning, the minimum number of instances per leaf
or the discretization method. In this way, the user can try several
configurations, thus, e.g., balancing between over- and under-fitting.
Underfitting means that the derived decision tree allows for more be-
havior than actually recorded in the log, but results in the decision
tree being smaller and easier to comprehend. Overfitting means that
the derived decision tree specifies behavior recorded in the log very
accurately, which can lead to large decision trees that are difficult
to read. In the case study of this thesis the option case-level abstrac-
tion is used in the analysis use cases. Case-level abstraction replaces
all the events in the trace with two events, the case-start and case-
complete event. The case-start event is associated with the same val-
ues of the characteristics as the first event of the trace. The case-end
event is associated with the last recorded values for all characteristics.
For both events, the value of the Activity characteristic is overwrit-
ten with value "Case". To illustrate by example, applying case-level
manipulation on the event log in Figure 5 results in the event log in
Figure 6. As a result all characteristics are linked to a specific trace
instead of events, allowing for an analysis looking at case level.

Figure 5: Fragment of a hospital’s event log with four traces [21].

Figure 6: The results after applying the case-level manipulation to the event
log shown in Figure 5 [21].

Usage of the plug-in is explained in [17] and multiple example
analysis use cases are described in [21]. To provide an example, the

2.3 correlating business process characteristics 19

following question Q1 "Are customer characteristics linked to the oc-
currence of reclamations? And if so, which characteristics are most
prominent?" is taken from [21]. To answer this question, analysis use
case U1 (depicted below) is defined and performed.

u1 . are customer characteristics linked to the occur-
rence of reclamations? We aim to correlate the number of execu-
tions of activity Reclamation to the customer characteristics. We are inter-
ested in all decision-tree paths that lead to a number of executions of activity
Reclamation greater than 0.
Dependent Characteristic: Number of Executions of Activity Reclamation.
Independent Characteristics: All characteristics of the events in the origi-
nal log that refer to customers properties.
Event Filter: Every case-complete event is retained.
Trace Manipulation: Number of executions of Activity Reclamation, Case-
Level Abstraction.[21]

Figure 7: A screenshot of the framework in Figure 4 implementation in
ProM that shows the decision tree used to answer question Q1

[21].

Figure 8: A close up of the root of the decision tree in Figure 7.

The results of performing this analysis use case are presented through
the decision tree in Figure 7. In particular, Figure 7 refers to the con-
figuration in which the minimum number of instances per leaf is set
to 100 and the number of executions of Reclamation is set as the de-
pendent characteristic and is discretized as two values: (0.0,0.0) and

20 state of the art

(0.0,5.0). When the number of executions of Reclamation is 0, this is
shown as (0.0,0.0) conversely, any value greater than 0 for the num-
ber of executions is discretized as (0.0,5.0). A close up of the root of
this decision tree can be seen in Figure 8. A possible business rule
that can be derived from Figure 8 is that if the customer is a recur-
rent customer (WW_IND_HERLEVING > 0), a reclamation occurs,
i.e. the leaf is labelled as (0.0,5.0). The label is also annotated with
318.0=126.0, which indicates that a reclamation is not opened for 126

out of the 318 recurrent customers.

2.4 declare

Over the last years, the declarative process modelling approach has
flanked the classical procedural one [32], [25]. Declarative approaches
only depict the behavioural constraints under which a process in-
stance can unfold in its execution: as long as the constraints are not vi-
olated, the process instance is considered as valid. The declarative ap-
proach is a complementary strategy to the procedural models, which
specify what are the next allowed activities at each stage of the pro-
cess execution. Declarative process models are effective in a context of
high flexibility for business processes [27]. The reason intuitively lies
in the fact that fewer constraints allow for more possible executions.
Declare [27] is a declarative process modelling language. It specifies
an extensible set of constraint templates that are parametric with re-
spect to the process activities. Declare is a declarative language that
combines a formal semantics grounded in LTL on finite traces, with a
graphical representation. In essence, a Declare model is a collection
of LTL rules, each capturing a control-flow dependency between two
activities [11].
Examples of Declare constraints are Init(a), and Response(b, c). The
first one states that every trace must start with the execution of ac-
tivity a. The second constraint imposes that if activity b is performed,
then c must be performed eventually in the future. In Declare two
main distinctions can be made between constraints, namely existence
constraints and relation constraints. Existence constraints constrain
one activity, whereas relation constraints constrain interplay of two
activities. Init is an existence constraint as it constrains the execution
of one activity in a process instances. Response is a relation constraint
instead, because it constrains the interplay of two activities. Among
the pair of constrained activities, there always are at least an activation
and a target. The activation is an event whose occurrence constrains
the possibility of other events (targets) to occur before or afterwards.
For example, for the constraint ’every request is eventually acknowl-
edged’, each request is an activation. This activation is eventually as-
sociated with either a fulfillment or a violation, depending on whether
or not the activation is matched with a target event that satisfies the

2.4 declare 21

Figure 9: Graphical representation of every Declare constraint:
Top row (from left to right): response, alternate response, chain
response, not co-existence, responded existence, exclusive choice,
at least 1, absence, exactly 1.
Middle row (from left to right): precedence, alternate precedence,
chain precedence, not succession, co-existence, initial task, at least
2, at most 1, exactly 2.
Bottom row (from left to right): succession, alternate succession,
chain succession, not chain succesion, choice, last task, at least 3,
at most 2, exactly 3.

constraint. Using again the example of requests that need acknowl-
edgements, if the request occurs, this activation is associated with
a fulfillment if the acknowledgement event is later observed; other-
wise, the activation is associated with a violation. For Response(b, c), b
is the activation and c is the target. The full list of Declare constraint
templates can be found in [27]. Figure 9 shows the graphical repre-
sentation of every possible constraint.

3
U W V C A S E S T U D Y

This chapter has been removed due to confidentiality.

23

4
M I N E R F U L D E C L A R E M I N E R

In Chapter 3 a case study regarding the WIA Claim process is done
by using a procedural approach. To determine whether a declarative
analysis for the WIA Claim process yields useful results, a declarative
process model needs to be drawn. This can be done by first mining
an initial Declare model using a solid Declare miner.

This chapter contains the results of the MINERful Declare miner
which is implemented as a ProM plug-in for this thesis. To be able to
mine a Declare model that can be used for the declarative part of the
UWV case study, an existing implementation of the MINERful algo-
rithm is integrated in ProM as a plug-in named "MINERful Declare
Miner". Implementing this existing implementation allows for a user
friendly user interface for setting and tweaking parameters, a visual
representation of the mined Declare model and easy cooperation with
other plug-ins in the repertoire of ProM (i.e. the mined Declare model
can be used for conformance checking, bottleneck analysis, etc.).
Section 4.1 gives an overview of MINERful algorithm and addresses
its advantages over other declarative process discovery algorithms.
Section 4.2 elaborates the user definable parameters of the plug-in
and their effect on the mined models. Section 4.3 demonstrates the
usage of the MINERful plug-in using a real life event log. Finally Sec-
tion 4.4 concludes the chapter and gives a short elaboration on the
maturity of the MINERful plug-in.

4.1 overview minerful declare miner

Artful processes [6] are a class of knowledge-intensive processes where
the decisions taken during the enactment of the process are usually
fast and based on the expertise and intuition of the main actors [3].

An example of an artful process is the management of a research
project: knowledge workers such as project managers, professors, or
technical managers contribute to the final outcome of the project. To
this extent, they bring into play their competence together with the
best practices gathered during their respective careers. Due to their
nature, artful processes are rarely formalized [6]. Even though these
artful processes are frequently repeated, they are not exactly repro-
ducible (even by their originators) and can therefore not be easily
shared either. Furthermore, hardly any process management systems

25

26 minerful declare miner

are currently used during the execution of such workflows [4].

The MINERful algorithm allows for the automated discovery of
declarative control-flows for these artful processes. MINERful is a
two-step algorithm. The algorithm accepts as input a set of traces
T and an alphabet �. It requires that the characters of the traces
(strings) in T belong to the alphabet �. In the first step a knowl-
edge base is build, where statistical information extracted from logs is
represented. This knowledge base is called MINERfulKB (KB). MIN-
ERfulKB is build by using the two functions computeKBOnwards and
computeKBBackwards. Function computeKBBackwards is the analog of
computeKBOnwards. The latter reads the input strings from left to
right, whereas the former parses the strings from right to left. In
the second step, queries are evaluated on that knowledge base, in
order to infer the constraints that constitute the discovered process
using the function discoverConstraints. As such the second step infers
the declarative model through the analysis of MINERfulKB. To influ-
ence the constraints that are discovered, parameters can be specified.
These parameters, that are user definable, as well as their effect on
the constraints are elaborated in Section 4.2. The final output is a set
of constraints B+, verified on the knowledge base. In [4] detailed de-
scriptions are present of the construction of MINERfulKB and how
the analysis on this knowledge base works. An overview of the MIN-
ERful algorithm can be seen in Algorithm 1.

Algorithm 1 The MINERful pseudo-code algorithm, in its simplest
form (bird’s eye view)

1: KB computeKBOnwards(T , �, ;)
2: KB computeKBBackwards(T , �, KB)
3: B+ discoverConstraints(KB, �, jT j)
4: return B+

Declare is the declarative process modeling language used in this
thesis. A list of the constraint templates used in the remainder of this
thesis are listed in Table 2, with a, b, and c as example activities. The
full list of existing Declare constraint templates can be found in [27].

This chapter reports on the implementation of MINERful in ProM,
a technique to mine declare process models from an existing event
log [4]. Since Declare is the used declarative modelling language
in this thesis, Declare is implemented to be the default modelling
language of the mined models. Compared with other existing tech-
niques, MINERful has shown the best scalability with respect to the
input size, in terms of number of traces, length of traces and activities
of the process. Readers are referred to [4] for more details about this
comparison.

4.1 overview minerful declare miner 27

constraints description

Init(a) a should be the first activity in a trace

AtMostOne(a) a should be executed at most once

Participation(a) a should be executed at least once

RespondedExistence(a, b) If activity a is executed, b also has to be executed either before
or after a

CoExistence(a, b) If one of the activities a or b is executed, the other one also has
to be executed

NotCoExistence(a, b) If one of the activities a or b is executed, the other is never exe-
cuted

Response(a, b) When a is executed, b has to be executed after a

AlternateResponse(a, b) When a is executed, b has to be executed after a and no other a

can be executed in between

ChainResponse(a, b) a is immediately followed by b

Precedence(a, b) b has to be preceded by a

AlternatePrecedence(a, b) b has to be preceded by a and another b cannot be executed
between a and b

ChainPrecedence(a, b) b is immediately preceded by a

NotPrecedence(a, b) b cannot be preceded by a

Succession(a, b) Combination of Response(a, b) and Precedence(a, b)

AlternateSuccession(a, b) Combination of AlternateResponse(a, b) and
AlternatePrecedence(a, b)

ChainSuccession(a, b) a is immediately followed by b and b is immediately preceded
by a

NotSuccession(a, b) a is never followed by b and b is never preceded by a

NotChainSuccession(a, b) a is not allowed to be immediately followed by b

Table 2: Table listing the constraints mentioned in the thesis.

As mentioned, the MINERful algorithm discovers declarative control-
flows in the context of artful processes. As is elaborated in Chapter 3,
actors are present in the WIA Claim process which identify the sever-
ity of health issues of the client (that in turn defines the outcome
of the process). For this reason, as well as its great performance for
large event logs, it was chosen to use the MINERful algorithm for the
declarative part of the case study for this thesis.
The existing implementation of MINERful [7] utilized parameters in-
put via command prompt to read event logs and produce models
as xml files from and to folders. This method of mining models is ex-
haustive when searching for the desired parameters. As a result a new
implementation is presented in this thesis which has been realised in
ProM. To use the MINERful Declare Miner with ProM, it is necessary

28 minerful declare miner

to download the ProM Nightly build [23] and, subsequently, install
the DeclareMinerFul package through ProM’s Package Manager.

4.2 the minerful algorithm parameters

The application of MINERful uses an event log as input. Examples
computations will be elaborated using the following example log:
fha, b, a, ci , ha, b, b, a, c, b, ai , ha, c, ci , ha, b, cig. The application of the MIN-
ERful plug-in for the Declare-model discovery can be customised
through four parameters, namely:

support. It is the number of fulfillments divided by either (i) the
number of traces in the log, in the case of existence constraints
like Init(a), or (ii) the number of occurrences of the activations
(in the case of relation constraints like Response(b, c)). In the ex-
ample log, the support of Init(a) is 1.0, because all traces start
with a, whereas the support of Response(b, c) is 0.8, as 4 b’s out
of 5 fulfil the constraint.

confidence . It is the product of the support and the fraction of
traces in the log where either (i) the constrained activity oc-
curs (existence constraints), or (ii) the activation occurs (relation
constraints). The confidence of Init(a) is 1.0 � 1.0 = 1.0 and the
confidence of Response(b, c) is 0.8 � 0.75 = 0.6, since b occurs in 3
traces out of 4.

interest factor . It is the product of confidence and the fraction
of traces in the log where either (i) the constrained activity oc-
curs (existence constraints), or (ii) the target occurs (relation con-
straints). The interest factor of Init(a) is 1.0 � 1.0 � 1.0 = 1.0, and
the interest factor of Response(b, c) is 0.8 � 0.75 � 1.0 = 0.6, since c

occurs in all traces.

skip negative constraints . When the process is characterised
by parts with a rigid structure, the discovered model may blow
up in term of presence of negative constraints. Therefore, ana-
lysts are provided with an option to not considering negative
constraints, thus increasing the readability of the discovered
models.

The first three parameters estimate a level of relevance for a con-
straint, based on the assumption that the more the constrained activi-
ties appear in the log, the more their constraints should be taken into
account. As such, if an activity a appears once in an event log contain-
ing hundreds of thousands of events, it is likely the execution of the
task is wrong.

4.3 usage of the tool on a use case 29

Figure 10: The resulting output screen from MINERful’s where the model
has been discovered by setting support to 0.5 and setting confi-
dence and interest factor to 0.

4.3 usage of the tool on a use case

In this Section the functionalities of MINERful will be demonstrated
using the publicly available real-life event log Road Traffic Fine Man-
agement Process [14]. In Chapter 6 the technique is applied to the
event log extracted for the UWV case study. The Road Traffic Fine
Management Process event log records executions of instances of the
process enacted in an Italian local police office for managing fines for
road traffic violations. It contains 150,370 traces and 561,470 events
for 11 different process activities.

Initially, the MINERful plug-in was executed skipping the negative
constraints and using the following values for the other parameters:
(i) support = 0.50, (ii) confidence = 0.00, (iii) interest factor = 0.00.
The resulting declarative process model can be seen in Figure 10.

The output view consists of two panels. The panel on the left-hand
side contains the mined declarative process model. The user is free to
relocate activities and constraints to manually improve the readability.
The panel on the right-hand side allows the user to adjust the four pa-
rameters mentioned in Section 4.2 (see the area delimited by a black
rectangle in Figure 10) instead of restarting the plugin. After clicking
the Regenerate Model button, the left panel will update the view with
the newly mined declarative process model after some computation
time.

30 minerful declare miner

Figure 11: The resulting output screen from MINERful’s example with
stricter parameters (i.e., closer to 1).

The model in Figure 10 has been obtained by assigning value 0 to
all parameters, except for support. This configuration has produced
a cluttered declarative process model with many constraints, i.e. the
model is probably overfitting the event log. The increase of the value
of any parameter would generate a model with fewer constraints,
thus probably reducing the overfitting problems and, also, improv-
ing the readability of the declarative process model. Of course, an
excessive increase of any parameter may have a detrimental effect on
the precision of the discovered model: the model may underfit the
event log, allowing for too much behaviour. The declarative process
model shown in Figure 11 derives from the application of the follow-
ing parameters: (i) support = 0.70, (ii) confidence = 0.30, (iii) interest
factor = 0.00.

4.4 conclusion

This chapter presented a new ProM plug-in named "MINERful De-
clare Miner" that allows for the automated discovery of declarative
control-flows for artful processes. The new implementation presents
a user friendly user interface for setting and tweaking parameters
and a visual representation of the mined Declare model. As a result
similar declarative case studies, namely case studies regarding pro-
cesses with decision making during the enactment of the process, in
the future can utilize this miner to produce a suitable Declare model.
The process models in this chapter were discovered using a laptop
equipped with a Intel Core i3 with 4GB of RAM. With this modest
hardware, the MINERful plug-in was able to mine the model in less
than 30 seconds using a real-size event log with 561,470 events belong-

4.4 conclusion 31

ing to 150,370 traces. ProM currently contains two declarative process
model discovery plug-ins, the "Declare Maps Miner" presented in [10]
and the "Data-Aware Declare Miner" presented in [11]. The "Declare
Maps Miner" was not able to mine a model for the same event log
after hours of mining. The current implementation of this miner is
unstable and is not able to mine a model when given a large event
log as input. The "Data-Aware Declare Miner" mines empty models,
i.e. a model with 0 tasks and 0 constraints, at the moment of writing
this thesis. This indicates that the MINERful plug-in has reached a
large degree of maturity as it performs extremely well in terms of
scalability. The scalability of the technique and its implementation al-
lows its application for the declarative part of the UWV case study
where the log is very large.
Also, the plug-in is integrated with the entire repertoire of techniques
that are already available in ProM (see, e.g., [10]): the mined Declare
model can be later used for conformance checking, bottleneck analy-
sis, improvement, etc.

In cooperation with Claudio Di Ciccio, Massimiliano de Leoni and
Jan Mendling the contents of this chapter have been accepted as
Demo paper to the BPM 2015 Demo Track [5].

5
D ATA - AWA R E C O M P L I A N C E C H E C K I N G O F
D E C L A R E M O D E L S

Chapter 4 presented a technique that can mine a Declare model that
is suitable to the WIA Claim process. Now such an initial model
can be mined, data-aware compliance checking techniques need to
be available to determine whether a declarative analysis of the WIA
Claim process yields useful results. The compliance checking tech-
nique needs to be data-aware as multiple decision points are present
in the process that are governed by conditions.

This chapter contains the results of a data-aware compliance check-
ing technique that is implemented as a ProM plug-in for this thesis.
At the moment existing conformance checking techniques for Declare
models are limited to only checking the control-flow. This chapter
presents a compliance checking technique that takes data into ac-
count. The thesis limits to a compliance checking technique that de-
termines for each constraint in the Declare model the set of traces that
violate the constraint, i.e. the technique does not determine optimal
alignments for each trace like a conformance checking technique does.
Section 5.1 explains the algorithm that is developed to perform data-
aware compliance checking for a given Declare model and event log.
Section 5.2 addresses the implementation and illustrates the usage of
the constructed plug-ins in ProM. Section 5.3 validates the correctness
of the implementation using synthetic event logs. Finally Section 5.4
addresses the conclusions.

5.1 data-aware compliance checking algorithm

This section presents the algorithm that is used to apply data-aware
compliance checking for Declare models enriched with guards.

Before data-aware compliance checking can be done for Declare
models, first guards need to be specified for Declare models. In exist-
ing data-aware conformance checking techniques for procedural ap-
proaches, guards are placed on the task itself. In [11] a Declare miner
is presented that mines Declare models that possibly have guards.
The guards in this approach are placed on the constraints. In this
thesis a similar approach is chosen, i.e. the guards are placed on the
constraints. Recall that among a pair of constrained activities, there
always are at least an activation and a target. Following what is pro-
posed in [11] the guard is evaluated at the moment the constraint is

33

34 data-aware compliance checking of declare models

activated, i.e. the moment activity activation occurs. In case a guard
is evaluated as true, the target should be fulfilled. In case a guard is
evaluated as false, the constraint is considered non-existent and as a
result should not be fulfilled. The thesis limits to evaluating relation
constraints, i.e. existence constraints are not considered.

To illustrate by example, the following event log is used:
fhA,A,Bi , hA,A, Cig, where for both traces is specified in the event log
that the Age = 40. Let Constraint 1 be Response(A,B,Age > 30) and let
Constraint 2 be Precedence(A,B,Age < 30). Both traces in the example
event log trigger Constraint 1 since the age is larger than 30. Both
traces do not trigger Constraint 2 since the age is not smaller than 30,
as a result the constraint is considered to be non-existent. The first
trace in the example event log fulfills both constraints: Constraint 1

since A is followed by B and Constraint 2 for above mentioned rea-
sons. The second trace in the example event log does not fulfill both
constraints: Constraint 1 is violated since A is not followed by B and
Constraint 2 is fulfilled for above mentioned reasons.

With evaluation of guards specified, the data-aware compliance
checking algorithm can be specified. The algorithm takes as input
a Declare model D = (A,�) and an event log L, where A is the set
of activities and � is the set of constraints defined over activities in
A. For compliance checking, it is unnecessary to distinguish the ac-
tivities in the log that do not appear in A. An activity that does not
appear in A but does appear in the log is referred to as X. The goal
of the algorithm is to determine for each constraint � 2 � the set of
traces L that violate �. In [28] a technique is presented that translates
Declare constraints as final-state automata. Inspired by this technique,
in this thesis it is checked whether a trace � is compliant with a De-
clare constraint � by translating � into a final-state automaton that
accepts all traces that do not violate �. The final-state automatons in
this thesis are made such that guards are taken into account and are
referred to as constraint automatons.

definition 9 (constraint automaton) Let D = (A,�) be
a Declare model, � 2 � and � = A [fXg. The constraint automaton
A� = (�,�,	�, 0� , ��, F�) is the final-state automaton which accepts
precisely those traces � 2 �� satisfying �, where:

• � = A [fXg is the input alphabet;

• � is the universe of linear inequations and boolean operators AND,
OR and NOT

• 	� is a finite, non-empty set of states;

• 0� 2 	� is an initial state;

5.1 data-aware compliance checking algorithm 35

• �� 2 	� � ���! 	� is the state-transition function;

• F� � 	� is the set of final states. [18]

A constraint automaton A� is constructed for every constraint � 2
� and is initially in state 0� . Every trace � 2 L is replayed in A�
to determine whether A� ends in a so called final-state. Replaying
a trace � is done by sequentially processing each activity e in �. If
the activity name of e is accepted by a state-transition function, the
constraint automaton follows the state-transition to a next state. In
case the next activity in � to be processed in automaton A� does not
allow for a valid state-transition, the automaton deadlocks and can
never lead to a final-state. Constraints with no guard specified are
considered as constraints with guards where the condition holds. In
case a constraint automaton stops in a final-state when � is processed
entirely, the constraint is fulfilled. In this thesis, a semantics has been
defined for data-aware constraints in terms of final-state automatons.
The full list of automatons corresponding to the constraints listed in
[27] can be seen in Appendix C. Automatons for Co-Existence and
Succession constraints have not been constructed, since their func-
tionalities can be matched by combining two Responded Existence
automatons and combining a Response- and Precedence automaton
respectively.

Examples 1 and 2 give an example of the constraint automatons
corresponding to the Response(A,B, Cond) and NotPrecedence(A,B, Cond)
constraints respectively.

example 1 (response) The automaton for the Response(A,B, Cond)
constraint can be seen in Figure 12. State 0 is the initial state of the automa-
ton, depicted by the incoming arrow originating from a black dot instead of
a different state. State 0 is also a final-state, depicted by the double outline.
A transition is labeled with the set of the activities triggering it, where �
is the entire input alphabet. At the moment A occurs and Cond holds, B
should occur. This achieved by making a distinction between A where Cond
holds and A where Cond does not hold. The occurrence of any task beside
A where Cond holds results in the automaton staying in the initial state,
i.e. the constraint is not triggered. The occurrence of A where Cond holds
results in the automaton going to a non final-state state 1, where the state is
maintained for all tasks beside target B. At the moment B occurs, the automa-
ton goes back to the initial state (which is a final-state) as the constraint is
fulfilled. The occurrence of another A where Cond holds, restarts the process.

example 2 (not precedence) The automaton for the
NotPrecedence(A,B, Cond) constraint can be seen in Figure 13. State 0 is the
initial state of the automaton and is also a final-state. At the moment acti-
vation B occurs and Cond holds, a task A should not have occurred in the

36 data-aware compliance checking of declare models

past. This is achieved by ’blocking’ the occurrence of B where Cond holds,
at the moment A has occurred. The occurrence of any task beside A results in
the automaton staying in the initial state. The occurrence of target A results
in the automaton going to a final-state state 1. The automaton remains in
the same state for all tasks beside B where Cond holds. Since B where Cond
holds is not specified as a transition from state 1, an occurrence will be con-
sidered as faulty.

Beside checking for each trace � 2 L whether it ends in a final-state
of constraint automaton A�, it is checked whether the activation with
a guard that holds is present in the trace. Traces containing the activa-
tion with a guard that holds are called activated traces. Using this fact,

the fulfillment ratio of A� is calculated as 1-
#failingtraces

#activatedtraces
. It

was chosen to use the number of activated traces over the total num-
ber of traces, since traces where the constraint is never triggered are
not interesting to the statistics.

Algorithm 2 contains the pseudocode giving a step by step illus-
tration of the algorithm. Function returnCorrespondingAutomaton con-
structs a constraint automaton for the given constraint and its possi-
ble guard. � is used to represent the current state of the final-state
automaton. Given an event e, function act(e) returns the task name
a of the event, where a 2 A. Function dataAss(e) returns the data
attribute values for every variable ve 2 V . With this information the
variable assignment can be updated for the current event. The vari-
able assignment is used to evaluate a condition in case it is specified
on the constraint. As can be seen in Algorithm 2, the data attribute
values are read for every event in the trace. As a result it possible
that for a trace where task A is present more than once, the guard can
be evaluated as true and as false (or vice versa) at some point dur-
ing processing the trace if the data value is variable in the log. This
approach was chosen over the writing and reading of data values at
fixed points in the model, as is currently done in procedural data-
aware conformance checking techniques, as it better suits the free na-
ture of the Declare language. Finally, function activatedTraces(L,�)
returns to the total number of activated traces.

As can be seen in Algorithm 2, the input event log is traversed once
for every constraint in the input Declare model. For each additional
constraint added to a Declare model, results in traversing the event
log an additional time. From this follows the running time of the al-
gorithm is linear.

5.1 data-aware compliance checking algorithm 37

Algorithm 2 Data-Aware Compliance Checking Algorithm

1: Input 1: Declare Model D = (A,�)
2: Input 2: Event Log L
3: for Relation Constraint � 2 � do
4: int failingTraces 0
5: Automaton A� = (�,�,	�, 0� , ��, F�)

returnCorrespondingAutomaton(�)
6: for Trace � 2 L do
7: State � 0�
8: boolean Stop false
9: Assignment p ;

10: for Event e 2 � do
11: for Variable v 2 dom(dataAss(e)) do
12: p(v) varAss(v)
13: end for
14: if not exists �’ = ��(�,act(e),Cond) where Cond

evaluates as true with assignment p then
15: Stop true
16: break
17: else
18: � �’
19: end if
20: end for
21: if Stop = true jj � =2 F� then
22: failingTraces++
23: end if
24: end for
25: if activatedTraces(L,�) == 0 then
26: fulfillmentRatio(�) 1.00

27: else

28: fulfillmentRatio(�) 1-
failingTraces

activatedTraces(L,�)
29: end if
30: end for
31: Output: fulfillmentRatio

Figure 12: Constraint automaton for Response(A,B,Cond) - if A occurs and
Cond holds, B must occur afterwards

38 data-aware compliance checking of declare models

Figure 13: Constraint automaton for Not Precedence(A,B,Cond) - if B occurs
and Cond holds, A cannot have occurred before

Figure 14: Example Declare model containing multiple activities and con-
straints

5.2 tool support

The technique presented in Section 5.1 has been implemented as two
separate plug-ins for ProM. The first plug-in is called "Create/Edit
DeclareMap With Data", which allows for enriching or editing im-
ported/mined Declare models with guards. The second plug-in is
called "Declare Data-Aware Compliance Checker" which applies Al-
gorithm 2 on a given Declare model and event log to determine the
fulfillment ratio for each constraint in the Declare model. It is nec-
essary to download the ProM Nightly build [23] and, subsequently,
install the DeclareChecker package through ProM’s Package Manager
to access these plug-ins. Beside the implementation of these two new
techniques, the "Perform Predictions of Business Process Features"
plug-in has been enhanced with the functionality of taking the "De-
clare Data-Aware Compliance Checker" results into account.

To illustrate the usage of the two plug-ins the Declare model in
Figure 14 is used in combination with the following example log:
fhA, C,Bi , hD, C,Bi , hD, C,Bi , hA, C,Dig. In this example log two variables
are present: ’Age’ and ’City’. The values for these variables are ’50’
and ’Eindhoven’, ’20’ and ’Eindhoven’, ’20’ and ’Utrecht’ and ’41’ and
’Eindhoven’ for the four traces respectively.

5.2 tool support 39

Figure 15: The first dialog screen in the Create/Edit DeclareMap With Data
plug-in

5.2.1 Create/Edit DeclareMap With Data

The "Create/Edit DeclareMap With Data" plug-in takes a DeclareMap
or DataDeclareMap file as input. The first filetype is the standardized
Declare model type used by multiple Declare related plug-ins in the
ProM framework, whereas the latter has been constructed for this the-
sis. To illustrate the usage of the plug-in, the DeclareMap in Figure
14 is taken as input. After selecting the plug-in, the user is presented
the dialog screen in Figure 15. The user can use the button ’Add
Variable’ to extend the variable list with an extra field. In this field
the user can fill in a variable desired to be present in one or more
guards. The ’Remove Variable’ removes variables from the specified
list. In this example two variables are specified, namely ’Age’ and
’City’. When creating a new DataDeclareMap, the list of variables is
initially empty. When editing a DataDeclareMap the list of variables
contains the variables that have been specified before. The ’Cancel’
button exits the plugin. The ’Continue’ button moves to the next dia-
log screen.

The second dialog screen can be seen in Figure 16. The second di-
alog screen lists all the relation constraints that are present in the
input Declare model in the ’Relation’ column. The activation and the
target of each constraint have been added to be able to distinguish
between constraints with the same name. Note that the plug-in does
not support enriching existence templates with guards as they do not
show up in the list. When creating a new DataDeclareMap, the col-

40 data-aware compliance checking of declare models

Figure 16: The second dialog screen in the Create/Edit DeclareMap With
Data plug-in

umn ’Guard’ is initially empty. When editing a DataDeclareMap the
column ’Guard’ contains the guards that have been specified before.
The plug-in supports guards consisting of atoms of the form ’vari-
able op constant’ and ’variable op variable’, where ’op’ is a relational
operator (e.g., =, <, or >). The constants can be strings, integers, dou-
bles, dates or booleans. Logical operators can be used to apply mul-
tiple conditions in a guard. In this example two guards are specified,
namely ’Age > 40’ and ’(Age < 30) jj (City == "Eindhoven")’. As can be
seen in Figure 16, the user gets feedback when the guard is correctly
parsed. In case a variable is used which has not been specified in the
previous dialog screen or in case parenthesis are not correctly used,
the user receives a message the guard cannot be correctly parsed. The
’Cancel’ button exits the plugin. The ’Continue’ button moves to the
output screen.

The new Declare model displayed in the output screen can be seen
in Figure 17. The output screen of the plug-in shows the DeclareMap
that has been enriched with the specified guards. Every constraint
enriched with a guard, has a label of the constraint name combined
with the guard. Note that the existence templates are still present in
the output screen.

5.2.2 Declare Data-Aware Compliance Checker

The "Declare Data-Aware Compliance Checker" takes a DeclareMap
or DataDeclareMap file and an event log as input. Logically when tak-

5.2 tool support 41

Figure 17: The output screen of the Create/Edit DeclareMap With Data
plug-in

constraint # activations # violations fulfillment ratio

A response B 2 1 0.5

C chain succession B 4 1 0.75

D alt precedence B 3 1 0.67

Table 3: Table listing the constraints of the Declare model in 14 with their
corresponding activations, violations and their fulfillment ratio.

ing a DeclareMap as input no guards are present, i.e. a DeclareMap
is a DataDeclareMap where all guards are true at all time. To il-
lustrate the usage of the plug-in, the DataDeclareMap in Figure 17

is taken as input in combination with the earlier defined example
log fhA, C,Bi , hD, C,Bi , hD, C,Bi , hA, C,Dig. The plugin does not allow
for manually mapping variables in the event log to variables in the
DataDeclareMap. As a result the user is responsible for specifying
variable names in the "Create/Edit DeclareMap With Data" plug-in
that are identical to the variable names present in the log. After se-
lecting the plug-in, the user is presented no dialog screen and is im-
mediately presented the output screen shown in Figure 18. For each
constraint the name of the constraint, the number of failing traces and
the number of activated traces is printed in the command prompt.
This way this information is easily accessible to the user of the plug-
in.

The number of activations, number of violations and the fulfillment
ratio for every constraint can be seen in Table 3. Figure 18 shows that
the colors of each constraint are different graduations of red. The
plug-in colors the constraints based on their fulfillment ratio. A ful-
fillment ratio of 1.0 results in a black color and a fulfillment ratio of
0.0 results in a white color. A fulfillment ration in between 0.0 and 1.0
results in different graduations of red. On the right hand side of the
output screen a button label "Toggle Label View" can be brought forth.
Clicking this button results in the Declare model in the output screen
to be redrawn to a Declare model with the fulfillment ratio written

42 data-aware compliance checking of declare models

Figure 18: The initial output screen of the Declare Data-Aware Compliance
Checker plug-in, where the name and the possible guard is dis-
played for every constraint

Figure 19: An alternative output screen of the Declare Data-Aware Compli-
ance Checker plug-in, where the fulfillment ratio is displayed for
every constraint

above the constraint. Applying this view on the example results in
the Declare model shown in Figure 19.

As it is useful to know which traces violated of fulfilled a certain
constraint, the user can right click on every constraint. This results
in a menu appearing, illustrated for the example in Figure 20. By
clicking one of the options the user can extract a sub-log with all
traces fulfilling or violating the constraint, based on the option cho-
sen. These event logs can immediately be used in ProM or exported
for later usage. For technical reasons, trace names need to be unique.
Clicking the "Extract violating traces" option in the example results
in an event log containing the first trace of the example log: fhA, C,Big.

5.2.3 Perform Predictions of Business Process Features

In the procedural part of the case study, the data-aware conformance
checking results are taken into account in the "Perform Predictions of
Business Process Features" plug-in. Even though these conformance

5.3 validation of the implementation 43

Figure 20: The menu appearing after right clicking a constraint in the De-
clare Data-Aware Compliance Checker plug-in

checking results were not decisive in the decision making and did not
show up in the derived decision trees presented in Section ??, consid-
ering these violations might yield useful results in other case studies.
For this reason the "Perform Predictions of Business Process Features"
plug-in has been updated to take the data-aware compliance check-
ing results of the "Declare Data-Aware Compliance Checker" plug-in
into account.

For every constraint � in the data-aware compliance checking re-
sults a variable is created named "Constraint ’activation � target’ vio-
lated", where activation and target are the activation and target of the
constraint. These variables are added to every event in the given event
log. The variables are given the string value "Yes" or "No", based on
whether the trace the event belongs to is violated ("Yes") or fulfilled
("No"). Figure 21 shows the "Perform Predictions of Business Process
Features" plug-in where data-aware compliance checking results of
Figure 18 are taken into account. The user can select for each of the
constraints whether he or she wants to consider them in the decision
trees. A possible decision tree generated for the compliance checking
results of constraint "D alternate precedence B" can be seen in Figure
22.

5.3 validation of the implementation

To determine whether the implementation functions correctly, numer-
ous test traces from created synthetic event logs are ran through every
constraint. For each constraint type c present in Figure 9 a Declare
model is constructed. These Declare models contain two tasks A and
B which are constrained with the constraint "A c B".
The constraints are divided in four groups, where each group is tested
using a synthetic event log. The groups are made since a specific syn-
thetic event log can be used to test multiple constraints.

44 data-aware compliance checking of declare models

Figure 21: The extended Attributes panel in the "Perform Predictions of
Business Process Features" plug-in, which now contains con-
straint violation information from the "Declare Data-Aware Com-
pliance Checker" plug-in

Figure 22: An example decision tree generated using constraint violation
information from the "Declare Data-Aware Compliance Checker"
plug-in

Group 1 contains constraints {Response (R), Alternate Response (AR),
Chain Response (CR), Responded Existence(RE)}. The results of testing
these constraints can be seen in Table 4. The first column in this table

5.3 validation of the implementation 45

trace r ar cr re

AAB {A,A = true} X � � X

AAB {A,A = false} NA NA NA NA

AAC {A,A = true} � � � �

AAC {A,A = false} NA NA NA NA

ABAB {A,A = true} X X X X

ACBAB {A,A = true} X X � X

ACBAB {A,A = false} NA NA NA NA

BAA {A,A = true} � � � X

BAA {A,A = false} NA NA NA NA

ACAB {A = false, A = true} X X X X

ACBA {A = true, A = false} X X � X

CA {C,A = true} � � � �

CA {C,A = false} NA NA NA NA

Table 4: Validation results of constraint Group 1

shows the traces that are present in the event log. In this column can
also be seen whether the condition evaluates as true or false. The or-
der in which the condition evaluation is listed corresponds to order
in which the tasks are in the trace. For example, in trace ACAB {A =
false, A = true} the first A in the trace the condition evaluates as false,
whereas for the second A in the trace the condition evaluates as true.
The additional columns correspond to the constraints tested, where
a X means the constraint is fulfilled and a � means the constraints
is violated. NA states the trace was never activated. The test traces
are chosen in such a way that for every constraint multiple traces are
fulfilled, violated and not activated.

Group 2 contains constraints {Precedence (P), Alternate Precedence
(AP), Chain Precedence (CP)}. The results of testing these constraints
can be seen in Table 5.

Group 3 contains constraints {Succession (S), Alternate Succession
(AS), Chain Succession (CS), Not Succession (NS), Not Chain Succession
(NCS)}. The results of testing these constraints can be seen in Table 6.

Group 4 contains constraints {Co-Existence (CE), Not Co-Existence
(NCE)}. The results of testing these constraints can be seen in Table 7.

46 data-aware compliance checking of declare models

trace p ap cp

AAB {B = true} X X X

AAB {B = false} NA NA NA

BAA {B = true} � � �

BAA {B = false} NA NA NA

ABB {B,B = true} X � �

ABAB {B,B = true} X X X

ACBAB {B,B = true} X X �

ACBAB {B,B = false} NA NA NA

CBACB {B = true, B = false} � � �

CABCB {B = false, B = true} X � �

ACBAB {B = false, B = true} X X X

Table 5: Validation results of constraint Group 2

All test results show the correct expected output, validating that
the implementation functions correctly for every automaton. As for
every constraint in an input Declare model a separate automaton is
constructed, it can be concluded this implementation functions cor-
rectly for any Declare model.

5.4 conclusion

This chapter presented an algorithm to allow for data-aware compli-
ance checking of Declare models. The algorithm creates a final-state
automaton for every relation constraint in a given data-aware Declare
model. The algorithm determines for every final-state automaton and
event log whether each log trace leads to a valid final-state. When a
trace leads to a valid final-state, the constraint is fulfilled. When a
trace does not lead to a valid final-state, the constraint is violated. Us-
ing this information the algorithm calculates a fulfillment ratio, the
fraction of traces fulfilling the constraint, for every constraint in a
given Declare model. To be able to assess the practical feasibility and
relevance, the algorithm has been implemented in ProM in the form
of two plug-ins.
The first plug-in, named "Create/Edit DeclareMap With Data", allows
for a user to manually define variables. These variables are used to
place guards on relation constraints on a given Declare model. The
plug-in supports guards consisting of atoms of the form ’variable op
constant’ and ’variable op variable’, where ’op’ is a relational opera-
tor (e.g., =, <, or >). The constants can be strings, integers, doubles,

5.4 conclusion 47

trace s as cs ns ncs

AAB {A,A,B = true} X � � � �

AAB {A,A,B = false} NA NA NA NA NA

BA {B,A = true} � � � X X

BAA {B,A,A = true} � � � X X

BAA {B,A,A = false} NA NA NA NA NA

ACDB {A,B = true} X X � � X

ACDB {A,B = false} NA NA NA NA NA

ACADB {A,A,B = true} X � � � X

ACBDB {A,B,B = true} X � � � X

ABAB {A,B,A,B = true} X X X � �

BABA {B,A,B,A = false} � � � � �

BCDB {B,B = true} � � � X X

ACADB {A = true, A = true,
B = false}

X � � � X

ACADB {A = false, A = false,
B = true}

X X � � X

ACADB {A = true, A = false,
B = true}

X � � � X

ABDB {A= true, B = true, B
= false}

X X X � �

ACBDB {A = false, B = false,
B = true}

X � � � X

ACBDB {A = true, B = false,
B = true}

X � � � X

Table 6: Validation results of constraint Group 3

48 data-aware compliance checking of declare models

trace ce nce

ACC {A,B = true} � X

ACC {A,B = false} NA NA

ACB {A,B = true} X �

ACB {A,B = false} NA NA

BCC {A,B = true} � X

BCC {A,B = false} NA NA

BCA {A,B = true} X �

ACB {A = true, B = false} X �

ACB {A = false, B = true} X �

ACC {A = false, B = true} NA NA

Table 7: Validation results of constraint Group 4

dates or booleans. Logical operators can be used to apply multiple
conditions to a guard.

The second plug-in, "Declare Data-Aware Compliance Checker",
takes a given Declare model and event log and applies the presented
algorithm to determine the fulfillment ratio for every constraint in
the given Declare model. The given Declare model can be enriched
with guards, where the plug-in correctly checks whether the guards
are satisfied or not. Relation constraints with no guards are treated as
relation constraints with a guard that evaluates as true. The plug-in
has been validated using multiple test event logs, showing the imple-
mentation functions as expected. Finally, the "Perform Predictions of
Business Process Features" plug-in has been altered to allow for tak-
ing the "Declare Data-Aware Compliance Checker" results as input.
Through this integration, it is now possible to correlate the violations
of Declare constraints with other process characteristics, such as the
occurrence of undesired events, the execution time or, even, the viola-
tions of other business rules.

The approach presented in [19] can be used to evaluate the confor-
mance of a log with respect to a given Declare model. This approach
determines whether a Declare constraint is violated or fulfilled and
provides the user with an optimal alignment. Similarly to the pre-
sented data-aware compliance checking technique, this approach is
based on the conversion of Declare constraints into automata and use
these automata to identify violations and fulfillments. The approach
focuses only on the control-flow perspective and as such the data per-
spective is not taken into account. The work presented in this thesis is
therefore better suited for processes that contain decision points that

5.4 conclusion 49

are governed by conditions, as it is able to evaluate data attributes.

The data-aware compliance checking technique presented in this
thesis does not detect data violations. The data attribute values are
read and in case the read data assignment evaluates the guard as true,
the constraint is activated. In case a data attribute value is missing or
incorrect, a constraint with a guard requiring this data assignment
is never activated. As a result, it is possible a trace does not activate
multiple constraints governed by guards due to a single incorrect
data attribute value. The data-aware compliance checking technique
presented in this thesis is not able to identify such data perspective
violations.

In comparison, the approach suitable for a procedural approach
presented in [8] separates control-flow, data and resource compliance
checking to the possible extent, and provides integrated diagnostic in-
formation about both control-flow violations, and data and resource
related compliance violations. However, this approach is based on the
data-aware conformance checking technique presented in [16], a tech-
nique currently non-existent for a declarative approach.

6
D ATA - AWA R E C O M P L I A N C E C H E C K I N G
E VA L U AT I O N U S I N G T H E C A S E S T U D Y

This chapter has been removed due to confidentiality.

51

7
C O N C L U S I O N

This thesis provides both a case study done in cooperation with UWV
as well as new contributions to allow for data-aware compliance check-
ing of Declare models. The case study answers questions related to
certain hypotheses and unclarities regarding the WIA Claim process.
The WIA is an employment insurance in the Netherlands for clients
that are still (partially) unfit for work after two years of illness. To
conduct the case study, an event log is extracted containing event
types that were selected based on multiple interviews with WIA do-
main experts at UWV. The event log additionally contains multiple
variables on event level. To find answers to four business questions,
which are formulated based on multiple interviews with WIA do-
main experts at UWV, multiple procedural (data-aware) process min-
ing techniques are utilized in combination with a manually drawn
procedural model of the WIA Claim process. The answers found for
the business questions showed that certain hypothesises are indeed
correct and that multiple unexpected process deviations are present.
The drawn procedural model and extracted event log presented in
this thesis in combination with the conducted procedural case study
can serve as a basis for the WIA domain experts to conduct similar
case studies in the future.

As UWV processes have a high variability both in terms of pro-
cess execution and in terms of clients, a declarative approach might
be more suited for a case study. This thesis presents a declarative
control-flow miner and a data-aware compliance checking technique
that can be used to conduct a similar case study but with a declarative
approach.

This thesis presents the ProM implementation of a Declare miner
based on the MINERful algorithm. This process discovery algorithm
allows for the automated discovery of Declare models and is best
suited for knowledge-intensive processes where the decisions taken
over during the enactment of the process are usually fast and based
on the expertise and intuition of the main actors. One of the biggest
advantages is that this technique performs extremely well in terms
of scalability. This implementation can serve as a way for business
analysts to acquire a Declare model modelling the behavior of the
business processes.

The data-aware compliance checking technique supports guards
consisting of atoms of the form ’variable op constant’ and ’variable
op variable’, where ’op’ is a relational operator (e.g., =, <, or >). The

53

54 conclusion

constants can be strings, integers, doubles, dates or booleans. Logi-
cal operators can be used to apply multiple guards to a constraint.
Given a Declare model, possibly enriched with guards, and an event
log the presented data-aware compliance checking algorithm deter-
mines for every constraint in the Declare model the set of traces ful-
filling and the set of traces violating the constraint. Using these sets
the fulfillment ratio, the fraction of traces fulfilling the constraint, is
calculated for every constraint in a given Declare model. The tech-
nique correctly checks whether the guards that are specified on the
relations are violated or not. Relation constraints with no guards are
treated as relation constraints with a guard that evaluates as true. The
implementation is validated using numerous test traces. The output
presented by the data-aware compliance checking technique has been
integrated in the correlation framework presented in [21]. Through
this integration, it is now possible to correlate the violations of De-
clare constraints with other process characteristics, such as the occur-
rence of undesired events, the execution time or, even, the violations
of other business rules.

The data-aware compliance checking technique is evaluated using
the real-life event log extracted at UWV to assess the practical feasi-
bility and relevance. This evaluation is done by repeating the compli-
ance related part of the UWV case study using a declarative approach.
The results found for the declarative approach are nearly similar to
those found in the procedural approach. A deviation in the resulting
statistics is present since the possible control-flow in the used Declare
model is not entirely identical to the possible control-flow in the pro-
cedural model.

The main advantage found during the enactment of the declarative
part of the case study, of a declarative approach over a procedural
approach, is that the focus of compliance or conformance checking
is on the relation between certain tasks when applying a declarative
approach. In a declarative approach an analyst would not necessarily
have to draw a model of the entire process to test the relation between
two tasks. As a result an analyst could draw simple Declare models to
test a certain relation between two (or more) tasks when an event log
is available. This can be particularly useful when not every analyst
has the same knowledge of the entire process.

The fact that similar results can be found to some of the existing
procedural techniques, as well as the ability to quickly identify the
relation between a subset of the tasks in the process, shows that the
new data-aware compliance checking technique has a practical feasi-
bility and relevance in a real-life case study.

7.1 advice for uwv 55

7.1 advice for uwv

This section has been removed due to confidentiality.

7.2 future work

This thesis has shown the practical feasibility and relevance of data-
aware compliance checking of Declare models. The research in this
thesis results in multiple opportunities for future work and research.

7.2.1 Plug-in improvements

One of the contributions presented in this thesis is the "MINERful
Declare Miner" plug-in. In its current form, the plug-in presents four
parameters that are user definable. The original MINERful implemen-
tation [7] contains additional options, such as excluding specific tasks
from the miner or calculating some statistics. These options were not
included, as they were irrelevant to the case study. These additional
options could be implemented to give the "MINERful Declare Miner"
a broader functionality and making it more suitable for case stud-
ies where these functionalities are desired. Additionally it might be
desired to exclude specific constraint types from the mining process,
this can be solved by giving the user the option to specify which De-
clare constraint types should be considered before the mining takes
place.

The two plug-ins presented in this thesis that allow for data-aware
compliance checking of Declare models are limited to processing re-
lation constraints. It is possible to extend the plug-ins such that De-
clare models can enrich existence constraints with guards, namely by
drawing final-state automatons mimicking the behavior of the con-
straint. The task to which the constraint is added should be consid-
ered as the activation in this case, such that these constraints can be
checked for compliance. This functionality was not implemented in
this thesis by choice. Enriching existence constraints with guards re-
quires some additional research to determine how guards can best
be used for these constraints. This is illustrated by the following ex-
ample. A task can be executed multiple times with a condition that
does not hold before it is executed with a condition that holds. As
a result a specified upperbound in an existence template can easily
be violated before a guard evaluates as true. For example, consider
a task a with an existence template enriched with a guard stating it
should be executed at most once if the blood pressure > 120. In case
the trace of the person is ha[blood pressure = 110], a[blood pressure = 110],
b[blood pressure = 120], a[blood pressure = 130]i the existence constraint would
be violated even though the first two occurrences of a are not disal-
lowed. With additional research, it might be possible to determine

56 conclusion

how guards can best be used for these constraints. The data-aware
compliance checking algorithm presented in Algorithm 2 is compat-
ible with the extension of existence constraints, as the compliance
checking functions similarly.

Recall that the data-aware compliance checking of a constraint is
independent from the other constraints in the given Declare model.
As such it is possible to improve the implementation to analyse the
constraints in parallel, improving the performance

Additionally the two plug-ins that allow for data-aware compliance
checking can be made more user friendly. The current implementa-
tion does not allow for mapping data attributes, i.e. the user has to
specify data attributes in the guard that are identical to the data at-
tribute names in the log. By implementing the possibility to map the
data attributes in the Declare model with data attributes in the event
log, the user does not receive error messages when for example a
minor difference present in terms of lower or uppercase. Addition-
ally the current implementation does not allow for exporting Declare
models enriched with guards for later usage, which is desired when
the model is frequently used.

7.2.2 Data-Aware Conformance Checking of Declare Models

The research presented in this thesis limits to data-aware compliance
checking of Declare models, i.e. for each constraint is determined the
set of traces violating and the set of traces fulfilling the constraint. The
open issue for this approach is that no optimal alignment is presented
and no fitness value is determined. In [16] a data-aware conformance
checking technique is presented for a procedural approach by utiliz-
ing integer linear programming (ILP). This approach first relies on
existing control-flow conformance checking techniques to build an
alignment that only considers the control-flow perspective. Later a
problem of ILP is constructed to obtain an optimal alignment that also
takes the other process perspectives into account. For a procedural ap-
proach this approach works, as guards make the model more strict.
As mentioned in this thesis, Declare works the other way around. Re-
call that placing a guard on a Declare constraint makes the constraint
less strict. As a result first taking a control-flow alignment before con-
structing a problem of ILP does not work for a declarative constraint.
Consider the example Declare model in Figure 23 and example event
log � = AB where at all time Age = 40. An optimal control-flow align-
ment
1 found for the Declare model in Figure 23 and � can be seen
in Figure 24. Since data attributes are not considered, both task C and
D should proceed task B. A conformance checking technique that
would take data into account should find the optimal alignment
2,
which can also be seen in Figure 24. The alignment pair (�,C) in the
control-flow alignment should never be present in the alignment that

7.2 future work 57

Figure 23: Example Declare model to illustrate a control-flow alignment ver-
sus an alignment taking data into account

Figure 24: Alignments found for the Declare model in Figure 23 and exam-
ple event log �

takes data into account. For this reason a control-flow alignment can
never be used as a basis for a declarative approach.

As a result a different approach should be used to perform data-
aware conformance checking. A possible solution for this might be to
utilize the automatons presented in this thesis. For each automaton
that is not in a final-state the cheapest route, in terms of a cost func-
tion, to go to a final-state can result in an optimal alignment. Whether
such an approach is feasible is left as future work.

The data-aware compliance checking technique presented in this
thesis is not able to detect data violations. The data attribute values
are read and in case the read data assignment evaluates the guard
as true, the constraint is activated. In case a data attribute value is
missing or incorrect, a constraint with a guard requiring this data
assignment is never activated. As a result, it is possible a trace does
not activate multiple constraints governed by guards due to a single
incorrect data attribute value. The data-aware compliance checking
technique presented in this thesis is not able to identify such data
perspective violations. With data-aware conformance checking of De-
clare models, additional research can be done to diagnose such data
perspective violations, similar to how the approach presented in [8]
can do for a procedural approach.

A
C O N F O R M A N C E C H E C K I N G R E S U LT S

This appendix has been removed due to confidentiality.

59

B
B O T T L E N E C K A N A LY S I S R E S U LT S

This appendix has been removed due to confidentiality.

61

C
C O N S T R A I N T A U T O M AT O N S

Appendix C contains the final-state automata that are defined for all
relevant Declare relation constraints. Every automata considers a pos-
sible guard that is placed on the constraint.

Figure 25: Responded Existence(A,B,Cond) - if A occurs and Cond holds, B
must occur before or after A

Figure 26: Response(A,B,Cond) - if A occurs and Cond holds, B must occur
afterwards

63

64 constraint automatons

Figure 27: Alternate Response(A,B,Cond) - if A occurs and Cond holds, B
must occur afterwards, without further As in between

Figure 28: Chain Response(A,B,Cond) - if A occurs and Cond holds, B must
occur next

Figure 29: Precedence(A,B,Cond) - if B occurs and Cond holds, A must have
occurred before

Figure 30: Alternate Precedence(A,B,Cond) - if B occurs and Cond holds, A
must have occurred before, without other Bs in between

constraint automatons 65

Figure 31: Chain Precedence(A,B,Cond) - if B occurs and Cond holds, A
must have occurred immediately before

Figure 32: Not Responded Existence(A,B,Cond) - if A occurs and Cond
holds, B can never occur

Figure 33: Not Response(A,B,Cond) - if A occurs and Cond holds, B cannot
occur afterwards

Figure 34: Not Chain Response(A,B,Cond) - if A occurs and Cond holds, B
cannot be executed next

66 constraint automatons

Figure 35: Not Precedence(A,B,Cond) - if B occurs and Cond holds, A can-
not have occurred before

Figure 36: Not Chain Precedence(A,B,Cond) - if B occurs and Cond holds,
A cannot have occurred immediately before

D
C O M P L I A N C E C H E C K I N G R E S U LT S

This appendix has been removed due to confidentiality.

67

B I B L I O G R A P H Y

[1] A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Con-
formance Checking using Cost-Based Fitness Analysis. Proceed-
ings of the 15th IEEE International Enterprise Distributed Object Com-
puting Conference, 2011.

[2] A. Rozinat, and W.M.P. van der Aalst. Conformance Checking
of Processes Based on Monitoring Real Behavior. Information Sys-
tems, 33:64–95, 2008.

[3] C. Di Ciccio, A. Marrella, and A. Russo. Knowledge-intensive
processes: An overview of contemporary approaches. Proceed-
ings of the 1st International Workshop on Knowledgeintensive Busi-
ness Processes, 861:33–47, 2012.

[4] C. di Ciccio, and M. Mecella. On the Discovery of Declarative
Control Flows for Artful Processes. ACM Trans. Manage. Inf. Syst.,
5(4):1–37, January 2015.

[5] C. Di Ciccio, M.H.M. Schouten, M. de Leoni, J. Mendling. Declar-
ative Process Discovery with MINERful in ProM. Proceedings of
the BPM Demo Session 2015, 1418:60–64, 2015.

[6] C. Hill, R. Yates, C. Jones, and S.L. Kogan. Beyond predictable
workflows: Enhancing productivity in artful business processes.
Syst. J., 4(45):663–682, 2006.

[7] C. di Ciccio. MINERful implementation, 2015. URL http://
github.com/cdc08x/MINERful.

[8] E. Ramezani, V. Gromov, D. Fahland, and W.M.P. van der Aalst.
Compliance Checking of Data-Aware and Resource-Aware Com-
pliance Requirements. On the Move to Meaningful Internet Sys-
tems: OTM 2014 Conferences, 2014.

[9] F. Mannhardt, M. de Leoni, H.A. Reijers, and W.M.P. van der
Aalst. Balanced Multi-Perspective Checking of Process Confor-
mance. Computing, 2015.

[10] F.M. Maggi. Declarative Process Mining with the Declare Com-
ponent of ProM. ceur-ws.org, 2013.

[11] F.M. Maggi, M. Dumas, L. Garcia-Banuelos, and M. Montali.
Discovering Data-Aware Declarative Process Models from Event
Logs. Business Process Managament, 2013.

69

http://github.com/cdc08x/MINERful
http://github.com/cdc08x/MINERful

70 bibliography

[12] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P.
van der Aalst. XES, XESame, and ProM6. Proceedings of Informa-
tion Systems Evolutions, 2011. URL http://www.processmining.
org/tools/prom.

[13] J. Desel, and J. Esparza. Free Choice Petri Nets. Cambridge Uni-
versity Press, 1995.

[14] M. de Leoni, and F. Mannhardt. Road Traffic Fine Management
Process, 2015.

[15] M. de Leoni, and W.M.P. van der Aalst. Data-Aware Process
Mining: Discovering Decisions in Processes Using Alignments.
Proc. of the 28th ACM symposium on Applied Computing, 2013.

[16] M. de Leoni, and W.M.P. van der Aalst. Aligning Event Logs
and Process Models for Multi-Perspective Conformance Check-
ing: An Approach Based on Integer Linear Programming. Proc.
of the 10th International Conference on Business Process Management,
2013.

[17] M. de Leoni and W.M.P. van der Aalst. The FeaturePrediction
Package in ProM: Correlating Business Process Characteristics.
CEUR Workshop Proceedings, 1295:26–30, 2014.

[18] M. de Leoni, F.M. Maggi, and W.M.P. van der Aalst. Aligning
Event Logs and Declarative Process Models for Conformance
Checking. Business Process Management, 7481:82–97, 2012.

[19] M. de Leoni, F.M. Maggi, and W.M.P. van der Aalst. An
alignment-based framework to check the conformance of declar-
ative process models and to preprocess event-log data. Informa-
tion Systems, 2014.

[20] M. de Leoni, J. Munoz-Gama, J. Carmona, and W.M.P. van der
Aalst. Decomposing Conformance Checking on Petri net With
Data. Proc. of 22nd International Conference on Cooperative Informa-
tion Systems, 2014.

[21] M. de Leoni, W.M.P. van der Aalst, and M. Dees. A Gen-
eral Framework for Correlating Business Process Characteristics.
Business Process Management, 8659:250–266, 2014.

[22] M. Pesic, and W. M. P. van der Aalst. A Declarative Approach for
Flexible Business Processes Management. BPM Workshops, 2006.

[23] Eindhoven University of Technology. ProM Nightly build, 2015.
URL http://www.promtools.org/prom6/nightly.

[24] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H.
A. Reijers. IEEE Task Force on Process Mining: Process Mining
Manifesto. BPM 2011 Workshops, LNBIP, 99:169–194, 2011.

http://www.processmining.org/tools/prom
http://www.processmining.org/tools/prom
http://www.promtools.org/prom6/nightly

bibliography 71

[25] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. A.
Reijers. Imperative versus Declarative Process Modelling Lan-
guages: An Empirical Investigation. BPM Workshops, LNBIP,
2011.

[26] Process Mining Group, Math&CS department. Performance
Analysis with Petri Net, 2009. URL http://www.processmining.
org/online/performanceanalysiswithpetrinet.

[27] W. M. P. van der Aalst, and M. Pesic. DecSerFlow: Towards a
Truly Declarative Service Flow Language. WS_FM, 2006.

[28] M. Westergaard. Better algorithms for analyzing and enacting
declarative workflow languages using ltl. Proceedings of the 9th
Business Process Management Conference, 6896:83–98, 2011.

[29] W.M.P. van der Aalst. Business Information Systems: A Process-
Oriented Approach. Eindhoven University of Technology, Eind-
hoven, Noord-Brabant, Eindhoven, 2007.

[30] W.M.P. van der Aalst. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, Eindhoven, Noord-
Brabant, Netherlands, 2011.

[31] W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen. Re-
playing History on Process Models for Conformance Checking
and Performance Analysis. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2(2):182–192, 2012.

[32] W.M.P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative
Workflows: Balancing Between Flexibility and Support. Computer
Science - R & D, 2009.

http://www.processmining.org/online/performanceanalysiswithpetrinet
http://www.processmining.org/online/performanceanalysiswithpetrinet

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables

