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Abstract

In this thesis we are interested in designing a robust supply chain by dealing with uncertainty in
the demand rate. We model a supply chain as a queueing system, to cover the stochastics. In
this queueing system, orders arrive as a Poisson processes and the service time are independent
exponential distributed random variables. Goal is to optimize the service rate such that all orders
can be served in reasonable time, without purchasing too much capacity.

We investigate several models. The �rst one is a model with one queue and one server. In the
second model, another queue is added with its own demand and service rate. The server serves
both queues according to a First Come, First Served policy without switchover times. The last
model is a k-limited polling model in which switchover times are added to create a more realistic
model.
In all models, two time periods are considered. The demand rate for the �rst time period is assumed
to be known, while for the second time period only a discrete distribution is given. This second
period represents the long-term, for which there is in general less certainty about the demand. The
service rate must be chosen large enough to serve all customers in �nite time. Costs are counted
for the amount of capacity (service rate), the expected waiting or sojourn time and for eventually
changing the capacity just before period 2 starts. The optimization in the models is done partially
algebraic and partially in a numerical way, by using Mathematica.

For the �rst two models, the optimal solution for small instances can be found within a few seconds.
For the k-limited polling model, at least a few minutes are needed. To create insight in how to make
a supply chain robust, we analyze what happens with the optimal service rate and corresponding
cost when some parameters are changed. Also, we show that our method outperforms another
method, where �rst the demand rate is estimated and subsequently the optimal server capacity is
determined.
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1 Introduction

Supply chains come in all shapes en sizes and often form the basis of a company. Whether a
company is large or small, everything is arranged around parts of supply chains (what products,
product parts or services are delivered and in what way is this achieved). In [11], Van den Broek
and Van Doremalen give some properties of supply chains: supply chains are in most cases very
complex with many factories, warehouses and shops all over the world. When designing a supply
chain, many choices have to be made and many alternatives need to be considered to optimize the
process. Even for a small supply chain, many facets can be considered [2, p. 5]. Choices are the
number, locations and capacity of factories and warehouses, amongst others. Also, it is important
how the production of products in a factory is organized and managed, to keep lead times small
and costs low.

Besides all the choices, one must also make sure that a supply chain is robust. That is, ‘resis-
tant to big and small shocks and changes’ [11]. Because a supply chain is designed for a longer
period, the decisions for the supply chain design have a strategic-tactical character. This also means
that many events that are di�cult or impossible to predict will occur. For example, a machine can
break down, suppliers stop delivering materials or customers do not want to buy your product any-
more. However, despite of the more or less unpredictable nature of those events, the supply chain
must remain operational by low costs, as best as possible. Therefore, the supply chain must be
‘risk-insensitive, 
exible and adaptive’ [11]. In [10], four steps are distinguished to create a robust
supply chain. In the �rst step, an optimal network under normal circumstances is created. In the
next steps, some extreme and alternative networks are designed, compared and adjusted. Although
it is often di�cult, especially for large networks, it would be useful if special circumstances and
uncertainties could already be taken into account in the �rst step.

People are interested in robust supply chains and its design because it can be of great advan-
tage for the production 
ows and service rates. Our interest for the models in this thesis is also
fueled by an application in the chemical industry. In this application, a company has plants and
customers all over the world. Di�erent types of products are made at the plants and transported to
the customers. However, not all plants can produce all product types and di�erent plants produce
at di�erent speeds. In [4], a method (Kleinrock’s 
ow deviation algorithm) to �nd the optimal
production and transportation scheme is investigated. This is a so-called ‘
ow-assignment problem’
[8].
In the context of the supply chain most often more-or-less complicated optimization problem for-
mulations are used to assess and evaluate the set-up of the supply chain over a longer period. We
are interested in the stochastic component of the equation. That is, can we incorporate the uncer-
tainties in the modeling and analysis of our future supply chains? We investigate this on the basis
of another main problem when designing a supply chain: the capacity assignment problem. In the
capacity assignment problem, the optimal capacity of servers in a system needs to be determined
for given 
ows, such that the total expected cost is minimized. In many papers that treat the ca-
pacity assignment problem, a system with multiple servers is considered and the number of servers
is optimized, while the service rate for each server is known (for example [6], [3]). However, it can
also be interesting to consider a single-server queue and optimize the service rate of the server, for
example if one can install only one server in a plant. In the capacity assignment problems in this
report, the server speed must be high enough to serve all customers and to provide su�cient speed
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in delivery, but not too high because faster servers are more expensive.

In this report, we consider the capacity assignment problem for three di�erent models. To cover
robustness, we include uncertain demand in these models. In each model, there are two time pe-
riods. For the �rst time period (short term), the demand rate is assumed to be given, but for the
second period (long term) only a distribution is known. After period 1, when the demand rate for
the second period is known, it is possible to change the server speed if this is necessary. However,
this gives some extra cost, so in order to keep costs low, the uncertain demand for period 2 must
be taken into account when deciding for the service rate in period 1. If we can optimize such a
system in a fast and intelligent way, we create a more robust system than if we consider a stochastic
parameter as deterministic.
In section 2, we start with a model with one queue and one server. Then, in section 3, we extend
the model with an additional queue. Both queues are served by the same server, but have their
own arrival and service rate. We assume that the customers are served according to a First Come,
First Served policy, where the server can switch queues costless. In section 4, we consider a model
with multiple queues and add switchover times. This gives a polling model, in which one server
visits the multiple queues. Finally, we give our �nal conclusions and recommendations in section 5.
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2 One customer, one server

2.1 Model

Consider a queueing system with independent and identically distributed exponential service times,
where customers are served by a First Come, First Served (FCFS) policy. We consider two time
periods, for which the demand rate is known only for the �rst period. Customers arrive according to
a Poisson process with given parameter �1 in period 1 and unknown parameter �2 in period 2. We
model this unknown parameter as a random variable �2 with discrete distribution F . If we have a
continuous distribution for �2, we can discretize this to get F . Because of the unknown parameter
in period 2, we have a doubly stochastic Poisson process: both the exponential distribution and its
uncertain parameter provide stochasticity.
Note that we have an M=M=1 queue in both periods. Our goal is to choose the service rates in both
periods, so that customers do not have to wait too long until they are being served. In both period
1 and 2, costs are involved for the amount of capacity (service rate) and the number of customers
in the system. The mean number of customers in the system is equal to the expected sojourn time
of a customer by Little’s Law: E(L) = �E(S). Note that the number of customers in the system
can be related to potential stock sizes for that product. Also, costs are made for switching from
speed �1 and �2 after period 1.

2.2 Notation

In this section, we use the following notation:

� �i is the arrival rate of the customers in period i for i = 1; 2.

� �2 is the random variable for the unknown demand rate �2 in the second period.

� �i is the service rate in period i for i = 1; 2.

� The occupation rate of the server is equal to �i = �i

�i
in period i for i = 1; 2.

� c is the cost for sojourn time (per time unit) for each product.

� The capacity cost in period i is equal to k�i for i = 1; 2.

� hu and hd are the costs for increasing and decreasing the service rate by one unit between
period 1 and 2.

� Li is the mean number of customers in the system in period i for i = 1; 2.

� Si is the expected sojourn time for a customer in period i for i = 1; 2.

The parameters k and c could be di�erent in both periods, but to simplify notation, we choose them
to have the same value for both periods in our model. Further, note that in a queueing system, we
can see the arrivals as customers demanding for a product or service, but we can also see them as
one customer with multiple orders. When no confusion arises, we use both options interchangeably.
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2.3 Cost function

We have the following function for the expected cost:

T (�1; �2; �2) = k�1 + cE(L1) + k�2 + cE(L2) + hu(�2 � �1)+ + hd(�1 � �2)+ (1)

= k�1 + c�1E(S1) + k�2 + c�2E(S2) + hu(�2 � �1)+ + hd(�1 � �2)+ (2)

= k�1 + c
�1

1� �1
+ k�2 + c

�2

1� �2
+ hu(�2 � �1)+ + hd(�1 � �2)+; (3)

where x+ = maxf0; xg.

2.4 Common approaches

An approach that is commonly used when multiple scenarios can occur, is to assume that the worst
case will happen and respond to that scenario [9]. However, this is not a good method in general
because in most cases a very bad scenario will happen only with a small probability. Being prepared
for this scenario involves many costs and is often not pro�table.
Another approach is to respond to the weighted average of the di�erent scenarios. In some cases
this works well, in other cases is does not. This depends (among other factors) on the symmetry of
the parameters. We discuss this in more detail in section 2.8.

2.5 Optimizing capacity in period 2

To optimize the capacity for the �rst period in our model, we �rst compute the optimal capacity
in the second period with given demand rate and capacity in the �rst period. After that, we use
this optimization to optimize the capacity in period 1 (see section 2.6).
Intuitively, the server capacity must be increased after period 1 if the savings on sojourn cost are
greater than the additional capacity cost and changing cost. On the other hand, the server capacity
must be decreased after period 1 if the savings on capacity cost are greater than the additional
sojourn cost and changing cost.
The situation is clari�ed in �gure 1. In this �gure, ‘OPT’ would be the optimal value if the solution
does not depend on �1 (so if no costs for changing capacity were charged). However, because one
has to pay for changing the capacity after period 1, it is not always optimal to set the amount of
capacity equal to OPT. Close to OPT, the cost for changing capacity is more than the savings on
sojourn or capacity cost. In �gure 1, the area ‘close to OPT’ is between OPTlow and OPThigh.
Therefore, if �1 � OPTlow, it is optimal to set �2 equal to OPTlow. If �1 � OPThigh, it is optimal
to set �2 equal to OPThigh and if OPTlow�1 � OPThigh, it is optimal to set �2 equal to �1. How
to determine the values of OPTlow and OPThigh is described later in this section.

7



Increase capacity to
OPTlow to save on
sojourn cost

Close to optimum:
changing capacity is
not pro�table

Decrease capacity to
OPThigh to save on
capacity cost

OPTOPTlow OPThigh

Amount of capacity

Figure 1: Optimizing capacity in period 2

Formally, if the capacity for the �rst period is known, we need to consider the capacity cost for
the second period, the sojourn cost for the second period and the cost for increasing/decreasing
capacity between period 1 and 2. When increasing the capacity after period 1, the capacity cost for
period 2 and cost for changing capacity increase, while the sojourn cost (for period 2) decreases.
Because the capacity cost and increasing cost increase proportionally to the amount of capacity,
while the sojourn cost decreases in a convex way, it is optimal to increase the capacity until the
capacity cost and increasing cost increase faster than the sojourn cost decreases. In other words,
until the derivative of k�2 + c �2

�2��2
+ hu(�2 � �1) with respect to �2 is equal to zero. This gives

0 = k + hu �
c�2

(�2 � �2)2
; (4)

0 = k + hu �
c�2

�2
2 + �2

2 � 2�2�2
; (5)

0 = (k + hu)�2
2 � (2�2(k + hu))�2 + (k + hu)�2

2 � c�2; (6)

�2 =
2�2(k + hu)�

p
(2�2(k + hu))2 � 4(k + hu)((k + hu)�2

2 � c�2)

2(k + hu)
; (7)

�2
�2>�2

= �2 +

r
c�2

k + hu
: (8)

Hence, if �1 < �2 +
q

c�2

k+hu
, then choose �2 = �2 +

q
c�2

k+hu
.
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Decreasing the capacity is pro�table until the derivative of k�2 + c �2

�2��2
+hd(�1��2) with respect

to �2 is equal to zero. This gives

0 = k � hd �
c�2

(�2 � �2)2
; (9)

0 = k � hd �
c�2

�2
2 + �2

2 � 2�2�2
; (10)

0 = (k � hd)�2
2 � (2�2(k � hd))�2 + (k � hd)�2

2 � c�2; (11)

�2 =
2�2(k � hd)�

p
(2�2(k � hd))2 � 4(k � hd)((k � hd)�2

2 � c�2)

2(k � hd)
; (12)

�2
�2>�2;k>hd

= �2 +

r
c�2

k � hd
: (13)

Hence, if �1 > �2 +
q

c�2

k�hd
, then choose �2 = �2 +

q
c�2

k�hd
. This only holds for hd < k. Note that

it is never optimal to decrease the capacity if hd � k, because then the cost for decreasing capacity
is larger than savings on capacity cost.

If �2 +
q

c�2

k+hu
� �1 � �2 +

q
c�2

k�hd
, then choose �2 equal to �1. In this case, cost for chang-

ing capacity does not compensate for reduced capacity or sojourn cost.

Summarizing, the optimal service rate for the second period, for given demand rate and service
rate for the �rst period, is equal to

��2 :=

8>><>>:
�2 +

q
c�2

k+hu
if �1 < �2 +

q
c�2

k+hu
;

�2 +
q

c�2

k�hd
if �1 > �2 +

q
c�2

k�hd
and hd < c;

�1 else.

(14)

2.6 Optimizing capacity in period 1

In section 2.5, we described an expression for the optimal service rate in period 2. We can use this
expression to create a function for period 1 that need to be optimized only for �1, instead of for
both �1 and �2:

T 0(�1; �2) = k�1 + c
�1

1� �1
+ k��2 + c

�2

1� �2
+ hu(��2 � �1)+ + hd(�1 � ��2)+; (15)

where ��2 depend on �1, and �2 is unknown original problem. Because a probability distribution
for �2 is given, we can calculate the corresponding expected cost for any choice of �1 and for any
possible scenario for �2. A Mathematica script to compute the optimal capacity for a given instance
can be found in appendix A.
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2.7 Analysis

Since we have a script to evaluate instances of our capacity assignment problem, we can now analyze
di�erent instances and compare the results.

2.7.1 Basic example

For the analysis of di�erent instances, we start with a basic example. By changing parameters in
this basic example, we can evaluate the behavior of the optimal solution and corresponding cost.
For our basic example, we choose the following parameters:

� k = 2 (factor for capacity cost)

� c = 10 (factor for sojourn cost)

� �1 = 10

� �2 =

8<: 5 with probability 0:7
10 with probability 0:15
15 with probability 0:15

� hu = 5

� hd = 1

The optimal solution for this instance is �1 = 17:1 with corresponding cost 93.5, but it is more
interesting to see what happens with this solution if we change one or more parameters.

2.7.2 Costs for sojourn time and increasing capacity

In �gure 2, the optimal value for �1 is shown for di�erent values of c (sojourn cost) and hu (cost
for increasing capacity).

c = 0
For c = 0, the optimal value for �1 is equal to 10 for hu � 19 and equal to 15 for hu � 19. This
can be explained by considering the problem as a newsvendor problem. Roughly speaking, there
are two reasonable options for �1: 10 and 15. Because �1 = 10, �1 cannot be smaller than 10
and because no sojourn cost is counted, 10 is a reasonable value for �1. It can also make sense to
choose �1 = 15, because it is possible that �2 = 15 and increasing capacity after the �rst period is
expensive. Before we explain why it is never optimal to choose values between 10 and 15 for �1,
we �rst show how to determine which of the two mentioned solutions (�1 = 10 or �1 = 15) is best.

� If �1 = 10 and �2 = 10, or if �1 = 15 and �2 = 15, it is (afterwards) obvious that the right
choice is made. If �1 = 10 and �2 = 15, or if �1 = 15 and �2 = 10, the choice for �1 appears
not be optimal and compared with the optimal choice for �1, some additional costs need to
be paid.

� If �1 = 10 and �2 = 15, we must increase the capacity by 5 units (to �2 = 15) after period 1.
This gives extra cost because we need to increase the capacity, but we also save little money by
having less capacity in the �rst period. All together, it gives an extra cost of hu� k = hu� 2
per unit, relative to the choice that �1 = 15. This is also called the underage cost.
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Figure 2: Optimal service rate for variable c and hu

� If �1 = 15 and �2 = 10, we can decrease the service rate for period 2 to 10 with extra cost
hd + k = 1 + 2 = 3 per unit (relative to the choice that �2 is equal to 10). We also should
decrease the service rate if �2 = 5, but this is inevitable, and therefore not taken into account
in this analysis, since �1 must be at least 10. The additional costs that need to be paid in
this situation are called the overage cost.

To compute the optimal value of �1, we have to take the above mentioned additional cost for wrong
choices into account, but also the probability that these additional cost must be paid.
If �1 = 10, we need to increase the service rate after period 1 with probability 0.15, with additional
cost 5(hu � 2) = 5hu � 10 (relative to the case where �1 = 15). On the other hand, if �1 = 15, we
should decrease the service rate after period 1 with probability 0.85, with additional cost 5 � 3 = 15
(note that we omit the cost for decreasing the service rate to 5). Hence, for least expected total
costs, it is optimal to choose �1 = 10 if 0:15(5hu � 10) � 0:85 � 15, which gives hu � 19. In the
same way, it is optimal to choose �1 = 15 if hu � 19.

Because all costs are linear when c = 0, it is never optimal to choose other values than 10 and
15 for �1. Per unit increment of �1, the expected additional pro�t or loss is the same. Therefore,
if for example �1 = 12 gives lower expected cost than �1 = 10, then �1 = 15 gives even lower
expected cost.
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Newsvendor problem
In terms of a newsvendor problem, we have underage cost cu = hu � 2 and overage cost co = 3.

For newsvendor problems, it is known that the optimal solution is F�1

�
cu

co + cu

�
, with F�1 the

inverse distribution function of the demand rate. For our example, we have the following distribution
function for the demand rate:

F (x) = P (�2 � x) =

8>><>>:
0 if x < 5;
0:7 if 5 � x < 10;
0:85 if 10 � x < 15;
1 if x � 15:

For hu � 19, cu

co+cu
= hu�2

hu+1 � 0:85, so then the optimal solution is �1 = F�1( cu

co+cu
) = 10 (or even

smaller, but for period 1 we need a service rate of at least 10) and for hu � 19, cu

co+cu
= hu�2

hu+1 � 0:85,

so then the optimal solution is �1 = F�1( cu

co+cu
) = 15. Note that for hu = 19, both solutions �1 = 10

and �1 = 15 are optimal.

c > 0
For larger values of c, sojourn cost in
uences the optimal service rate with the result that there
is a more gradual transition when hu increases. For hu = 0 and a small value for c, the optimal
service rate is a little greater than 10 because with a demand rate of 10, some extra capacity is
needed to keep the sojourn cost within bounds. For larger values of c, even more excessive capacity
is pro�table because of more sojourn cost. The optimal service rate is increasing in hu, because it
becomes more expensive to increase the service rate after period 1. In contrast to the case where
c is equal to zero, we now also save sojourn cost by increasing �1. This is the reason of the more
gradual transition in contrast to the jump at hu = 19 for c = 0.

Horizontal part of the graph
In all cases, the optimal value does not increase anymore after hu exceeds a certain value (which
value depends on the �xed parameters). If increasing the service rate after period 1 is too expensive,
it is set to a high value in advance such that this increase is not necessary, even if the demand rate
in period 2 reaches the highest possible value. The point from where the graph is horizontal, is
more to the left for larger values of c. This is because hu has relative less in
uence on the total
cost for larger c.

Shape of the graphs
Before the graph runs horizontally, the optimal value for �1 increases faster and faster when hu
increases. Indeed, if hu increases, the expected cost for increasing the service rate after period 1
increases. By increasing �1, not only this expected cost for increasing capacity, but also the sojourn
cost, decreases. When �1 increases further, the sojourn cost decreases slower, with the result that
it is not e�cient to increase �1 too much immediately (because there is also cost charged for that).
Because all (expected) costs are linear, except for the sojourn cost, it is optimal to increase �1 until
the e�ect of decreasing sojourn cost, combined with the e�ect of expected increasing cost, does not
outweigh the increasing capacity cost anymore.
When �1 increases, the sojourn cost decreases, but this will happen slower if �1 increases further.
Because the e�ect of �1 on the sojourn cost increases less for high values of �1, we can increase �1

faster because it takes longer until the e�ect is too small to be pro�table, and therefore the optimal
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value for �1 increases faster when hu increases further.

In general, for greater values of c, sojourn cost plays a more important role and more capacity is
needed to minimize total cost. Therefore, for any value of hu, the optimal value for �1 is increasing
in c.

Kinks in the graphs
At the left side, there is a small kink in the graphs if c > 0 (more clearly to see for larger values
of c). On the left side of this point in our example, �1 needs to be increased when �2 turns out
to be equal to 10 after period 1, whereas at the right side it does not (because it is too expensive
compared to the savings on the sojourn cost). For both scenarios, total cost and optimal �1 increase
with a di�erent speed in �1. If more scenarios are possible for the second period, there would be
more kinks in the graphs, as can be seen in �gure 3.

Figure 3: Instance with 10 scenarios for the second period

When we take a look at the total cost corresponding to the optimal choices for �1 and �2 in the
example with two scenarios (�gure 4), we see that total cost is increasing in hu (as expected). Of
course, if hu is large enough and the optimal �1 does not increase anymore, the expected cost also
does not increase anymore. Also, there is a more gradual increase for larger values of c.
For variable hd, the same analysis holds, but now �1 is decreasing in hd.

2.7.3 Capacity cost

As can be seen in �gure 5, the optimal value for �1 is decreasing in k (capacity cost). Indeed, more
cost for capacity leads to savings on the capacity. Because the service rate has to be greater than
the demand rate, �1 approaches �1 asymptotically for k ! 1. For k = 0, it is optimal to set the
service rate at in�nity, because capacity is free and sojourn cost is saved in this way.
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Figure 4: Total expected cost for optimal capacity choices

Figure 5: Optimal service rate for variable k

2.7.4 Sojourn cost

The optimal value for �1 is increasing in c (sojourn cost). Moreover, �1 !1 for c!1, because
more and more capacity is needed for increasing sojourn cost. For c = 0, the optimal service rate
is equal to 10, as in the basic example. This is visualized in �gure 6.
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Figure 6: Optimal service rate for variable c

2.8 Average scenario

Instead of comparing all possible scenarios for the second period, as we did in the previous subsec-
tions, it is also possible to consider only one ‘average scenario’ without uncertainty. This average
scenario is a weighted average of all possible scenarios. In particular, when many scenarios are
possible for period 2, it can be time-saving to combine all these scenarios in one single scenario. In
this subsection we investigate how well the method of only considering a weighted average scenario
works.

When comparing the di�erent methods, we use the methods only for determining the solution.
To compute the corresponding costs, we always take into account all possible scenarios and their
probabilities.

2.8.1 Some examples

First, we take a look at two examples to show that considering an average scenario works well in
some cases, but does not in other cases.

Example 1
The �rst example has quite realistic and more or less symmetric parameters:

� k = 5

� c = 1

� �1 = 10

� �2 =

�
8 with probability p
12 with probability 1� p

� hu = 8
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� hd = 4

When we compare the optimal �1 and cost (�gures 7, 8, 9 and 10), we see that there is not much
di�erence in the results between the two approaches. For multiple scenarios, some more safety
capacity is optimal because increasing the service rate after period 1 is relatively expensive. When
considering the average scenario, the demand rate for the second period decreases gradually and
without uncertainty, so also the optimal value for �1 decreases gradually for increasing p. The
graph for multiple scenarios does not decrease gradually, because both scenarios need to be taken
into account for all 0 < p < 1. The kink in the graph shows the point from where the service rate
needs to be increased after period 1 when �2 appears to be equal to 12.
For all p, the di�erence in optimal �1 is smaller than 10% and for optimal cost even smaller than
1:2%. Hence, the method of considering only the average scenario works well for this example.
Note that for p = 0 and p = 1, there is no di�erence at all because there is no uncertainty for the
second period in both cases.

Figure 7: Optimal �1 for both approaches (example 1)
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Figure 8: Optimal cost for both approaches (example 1)

Figure 9: % �1 di�erence for both approaches (example 1)

Example 2
Let us now consider an example with more asymmetric and less realistic parameters:

� k = 5

� c = 1

� �1 = 10

� �2 =

�
8 with probability p
58 with probability 1� p

� hu = 8

� hd = 4
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Figure 10: % cost di�erence for both approaches (example 1)

For this example, there is more di�erence in the solutions of both approaches (see �gures 11, 12,
13 and 14).
First, we see that the optimal value for �1 is 60 for p < 0:26 and 11 for p > 0:4, approximately
(see section 2.7.2 for an explanation). The optimal �1 when considering only one scenario decreases
gradually for increasing p, so this approximation is too low for small p and too high for large p.
For the expected cost of both approaches, the di�erence goes up to 20%. For �1, the di�erence is
even more than 200%. We can conclude that the method which considers an average scenario does
not make sense in this example.

Figure 11: Optimal �1 for both approaches (example 2)

One of the reasons that the method does not work well for this example, is the fact that it does not
take the asymmetry of the costs into account. It only straightens the asymmetry of the possible
demand rates, but for example, if increasing capacity after period 1 is expensive, then higher
demand rates should get more weight in the average. Also, we have seen in section 2.7.2, that a
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Figure 12: Optimal cost for both approaches (example 2)

Figure 13: % �1 di�erence for both approaches (example 2)

gradual change for gradually changing parameters is not optimal in many cases, which seems also
the case in the second example. However, the approximation always gives such a gradual change
(because parameters change gradually and there is no uncertainty in the demand rate) such that
results become worse.
We conjecture that the approximation works better if the parameters are more symmetric. This
will be investigated in the next part of this section.
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Figure 14: % cost di�erence for both approaches (example 2)

2.8.2 Increasing variability

We consider an instance of our problem with the following parameters (0 < a � 1):

� k = 5

� c = 1

� �1 = 10

� �2 =

�
a�1 with probability 1

a+1
1
a�1 with probability a

a+1

� hu = 8

� hd = 4

In this example, the (weighted) average demand rate is equal to 10 for any a > 0, but for a closer
to zero there is more variability between the di�erent scenarios. The results are shown in �gures
15 and 16.
Because the weighted average demand rate for the second period is equal to 10 for any positive a,
this approach always gives the same solution (independent of a). In �gure 15, this is represented by
the yellow horizontal line. When all scenarios are considered, the optimal value of �1 depends on a.
For a close to 0, a small �1 is optimal because �2 is small with high probability. For 0:5 < a < 1,
a larger �1 is optimal because the demand rate increases after period 1 with higher probability.
Because increasing the service rate after period 1 is relative expensive, it is better to choose a larger
�1 for those a.
For a closer to one, the optimal �1 is decreasing because also for the optimistic scenario (more de-
mand in period 2), the demand in period 2 is not very high. The left kink in the graph is the point
from where the service rate does not need to be reduced if the demand rate decreases after period 1.
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Figure 15: Optimal �1 for decreasing variability

Figure 16: Optimal cost for decreasing variability

In �gure 16, we see that there is more cost for smaller values of a. For smaller a it is likely
that there is much demand in period 2, which gives more cost. However, for very small values of
a (a < 0:005), despite of the fact that there can be much demand, the probability of increasing
demand becomes so small, that there is less cost for decreasing a.

The di�erences between the two approaches are very small, as well for the optimal �1 as for the
cost. Hence, the di�erence between the two approaches is not only the result of asymmetry in the
distribution for �2. Because the great demand in example 2 had a great probability, there was also
much di�erence in costs.
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2.9 Conclusions

We have investigated a queueing system with one queue and one server. In our model, we have two
time periods: for the �rst time period the demand rate was assumed to be known, while we only
had a distribution for the demand rate in the second period. We have optimized the service rates
for both periods, such that we do not have too much expensive capacity, but enough capacity to
serve all customers in a reasonable time.
For the second period, the optimal service rate can be given explicitly as a function of �1 and �2.
Using this, the optimal service rate for period 1 can be calculated numerically. We used Mathe-
matica to do this.

We saw that for small systems, the optimal solution can be found within a few seconds. We
analyzed the behavior of the optimal service rate and corresponding cost as function of di�erent
parameters and made a relation with Newsvendor problems. Also, we compared the optimal solu-
tion with a method where the capacity was optimized by using a weighted average parameter for
the demand rate. In some cases the solutions were almost the same, but there are also examples for
which using the average parameter for the demand rate only gives 20% more cost than our method.
Therefore, at least for systems that are not too large, our method works very well.
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3 Two customers, one server - First Come, First Served

In section 2, we investigated the optimal service rate for a queueing system with only one type of
arrivals. Now, we extend this model to a system with two di�erent customer types. How do the
di�erent customer types in
uence each other and what is the e�ect on the optimal service rates?

3.1 Model

Consider a queueing system in which two di�erent types of customers arrive (or customers who
ask for two di�erent types of products). The customers are served by one server according to a
First Come, First Served (FCFS) policy. The arrivals are according to a Poisson process for both
customer types, but with di�erent parameters. Again, we consider two time periods, for which the
demand rates are known for the �rst period, but not for the second period. For period 2, only a
(discrete) distribution for the demand rates is available. The goal is to minimize the total expected
cost, by choosing optimal service rates for both periods. Here, the ratio of the service rates for the
two customer types is �xed, (so for example, it is given that customers of type 1 are served twice as
fast as type 2 customers, on average. This is clari�ed in section 3.2). In both period 1 and 2, costs
are involved for the amount of capacity (service rate) and the number of customers in the queue.
Also, costs are made for changing the service rates after period 1. The exact cost function is given
in section 3.3.

3.2 Notation

In this section, we use the following notation:

� �(j)
i is the arrival rate of type j customers in period i for i = 1; 2 and j = 1; 2. The total

arrival rate in period i is equal to �i = �
(1)
i + �

(2)
i .

� �
(j)
2 is the random variable for the unknown demand rate �

(j)
2 in the second period for type

j customers.

� The service rate for type 1 customers is �1�i and the service rate for type 2 customers is �2�i
in period i (i = 1; 2). Here, �1 and �2 are �xed and �1 and �2 need to be optimized. Note
that the sum of �1 and �2 is not necessarily equal to 1.

� The occupation rate of the server is equal to �i = �i

�1
in period i for i = 1; 2.

� ci is the cost for waiting time (per time unit) for each product in period i for i = 1; 2.

� The capacity cost in period i is equal to k�i for i = 1; 2.

� hu and hd are the costs for increasing and decreasing the service rate by one unit between
period 1 and 2.

� Lqi is the mean number of customers in the queue in period i for i = 1; 2.

� Wi is the expected waiting time for a customer in period i for i = 1; 2.

The parameters k and c could be di�erent in both periods, but to simplify notation, we choose
them to have the same value for both periods in our model.
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3.3 Cost function

Customers arrive according to Poisson processes and are served by a FCFS policy. Therefore, the
service times have a hyperexponential distribution. Indeed, when considering the system at an

arbitrary moment in period i, with probability
�

(1)
i

�
(1)
i +�

(2)
i

the next arrival is a type 1 customer with

service rate �1�i and with probability
�

(2)
i

�
(1)
i +�

(2)
i

it is a type 2 customer with service rate �2�i.

Since we can consider the queue as an M=H=1 queue, we can compute the waiting time in the same
manner as in [4]. To keep this work self-contained, we also give the derivation here.

The waiting time for a general M=G=1 queue [1] is equal to

E(W ) =
�E(R)

1� �
; (16)

where E(R), the mean residual service time, is equal to

E(R) =
E(B2)

2E(B)
: (17)

For a hyperexponential distribution of the service time B, this gives

E(R) =

nX
i=1

pi= e�i2
nX
i=1

pi= e�i ; (18)

where pi is the probability that B is exponential distributed with parameter e�i.
For our model, in period i(i = 1; 2) we have pj =

�
(j)
i

�
(1)
i +�

(2)
i

and f�j = �j�i. This leads to

E(Wi) =
�iE(R)

1� �i
(19)

=
�i

1� �i

p1

f�1
2 + p2

f�2
2

p1

f�1
+ p2

f�2

(20)

=

�
(1)
i

�1�i
+

�
(2)
i

�2�i

1� �
(1)
i

�1�i
� �

(2)
i

�2�i

�
(1)
i

�2
1�

2
i (�

(1)
i +�

(2)
i )

+
�

(2)
i

�2
2�

2
i (�

(1)
i +�

(2)
i )

�
(1)
i

�1�i(�
(1)
i +�

(2)
i )

+
�

(2)
i

�2�i(�
(1)
i +�

(2)
i )

(21)

=

�
(1)
i

�2
1�

2
i

+
�

(2)
i

�2
2�

2
i

1� �
(1)
i

�1�i
� �

(2)
i

�2�i

: (22)

We can now de�ne the expected cost T per time unit with the following function:
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T (�1; �2; �2) = k�1 + cE(Lq1) + k�2 + cE(Lq2) + hu(�2 � �1)+ + hd(�1 � �2)+ (23)

= k�1 + c(�
(1)
1 + �

(2)
1 )E(W1) + k�2 + c(�

(1)
2 + �

(2)
2 )E(W2) (24)

+hu(�2 � �1)+ + hd(�1 � �2)+ (25)

= k�1 + c(�
(1)
1 + �

(2)
1 )

�
(1)
1

�2
1�

2
1

+
�

(2)
1

�2
2�

2
1

1� �
(1)
1

�1�1
� �

(2)
1

�2�1

(26)

+k�2 + c(�
(1)
2 + �

(2)
2 )

�
(1)
2

�2
1�

2
2

+
�

(2)
2

�2
2�

2
2

1� �
(1)
2

�1�2
� �

(2)
2

�2�2

(27)

+hu(�2 � �1)+ + hd(�1 � �2)+: (28)

3.4 Optimizing capacity in period 2

Our objective is to minimize the expected total cost as de�ned in section 3.3, by optimizing the
service rates in both periods (�1 and �2).
Let us �rst consider the service rate in the second period. In our previous model, we formulated
an explicit expression for �2 with the assumption that �2 is known because �2 is determined at
the beginning of period 2. In this model, expression for the waiting time is more di�cult because
of the hyperexponential distribution instead of the exponential distribution. Therefore, an exact
expression is di�cult to give and we solve the equation numerically.

Again, if the capacity for the �rst period is known, we need to consider the capacity cost for
the second period, the waiting time for the second period and the cost for increasing/decreasing
capacity between period 1 and 2. When increasing the capacity after period 1, the capacity cost
for period 2 and cost for changing capacity increase, while the sojourn cost for period 2 decreases.
Because the capacity cost and increasing cost increase proportionally to the amount of capacity,
and because we have good beliefs that the waiting cost decreases in a convex way, it is optimal to
increase the capacity until the capacity cost and increasing cost increase faster than the waiting cost

decreases. In other words, until the derivative of k�2 + c(�
(1)
2 +�

(2)
2 )

�
(1)
2

�2
1�

2
2

+
�

(2)
2

�2
2�

2
2

1� �
(1)
2

�1�2
� �

(2)
2

�2�2

+hu(�2��1)

with respect to �2 is equal to zero. This gives

k + hu � c
�
�

(1)
2 + �

(2)
2

� 1�
1� �

(1)
2

�1�2
� �

(2)
2

�2�2

�2 � (29)

  
1� �

(1)
2

�1�2
� �

(2)
2

�2�2

! 
�2�2

1�
2
2�2(�2

2�
(1)
2 + �2

1�
(2)
2 )

�4
1�

4
2�

4
2

!
+ (30) 

�
(1)
2

�2
1�

2
2

+
�

(2)
2

�2
2�

2
2

! 
(�2�

(1)
2 + �1�

(2)
2 )�1�2

�2
1�

2
2�

2
2

!!
= 0: (31)
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Because this equation is di�cult to solve for �2, we let Mathematica do it numerically. In this
way, we �nd a certain value. Now, just as in section 2.6, if �1 is smaller than this value, then set
�2 equal to this value. By increasing the service rate from �1 to this optimal �2, increasing costs
(for capacity and increasing service rate) are less the savings for decreasing waiting times. It is
not pro�table to increase the service rate further because this will give not enough savings for the
increased extra costs. If �1 is already greater than the solution of the equation, it is not pro�table
to increase the service rate at all.

Remark: to �nd the appropriate solution of (30) in Mathematica, we add the constraint that �
must be smaller than one.
For the consideration of decreasing the service rate after period 1, we have a similar equation. It
is pro�table to decrease the service rate as long as cost for capacity decreases faster as cost for
waiting time and cost for decreasing the service rate increase. In other words, decrease the service

rate until the derivative of k�2 + c(�
(1)
2 + �

(2)
2 )

�
(1)
2

�2
1�

2
2

+
�

(2)
2

�2
2�

2
2

1� �
(1)
2

�1�2
� �

(2)
2

�2�2

+ hd(�1 � �2) with respect to �2 is

equal to zero. This gives

k � hd � c
�
�

(1)
2 + �

(2)
2

� 1�
1� �

(1)
2

�1�2
� �

(2)
2

�2�2

�2 � (32)
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2
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2
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! 
(�2�

(1)
2 + �1�

(2)
2 )�1�2

�2
1�

2
2�

2
2

!!
= 0; (34)

provided that hd < k. If hd > k, it is never pro�table to decrease the service rate because the
savings on capacity cost are less than the cost for decreasing the service rate, and the increasing
cost for waiting time gives even more total cost.
After solving this equation by using Mathematica, we have the value to which it is pro�table to
decrease the service rate after period 1. If �1 is already smaller than this value, it is not pro�table
to decrease the service rate at the beginning of the second period.

If �1 is greater than the solution of (30), but smaller than the solution of (33), it is optimal to
set �2 equal to �1. The service rate is already close enough to the optimum value to keep it the
same.

3.5 Optimizing capacity in period 1

Since we do not have an explicit expression for the optimal service rate in period 2, we need to
include the method for �nding the optimal �2 in our program. We get the following function that
needs to be optimized for �1:
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T (�1; �
(1)
2 ; �

(2)
2 ) = k�1 + c(�

(1)
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(36)

+hu(��2 � �1)+ + hd(�1 � ��2)+; (37)

with ��2 the optimal capacity as a function of �1, �
(1)
2 and �

(2)
2 as described in section 3.4.

It appears that despite of this method for ��2 instead of an explicit expression, at least small
problems (two scenarios for each demand rate in period 2) can be solved within a few seconds by
Mathematica. This gives hope that also larger instances can be solved within reasonable time.
The program can calculate the expected total cost for each possible scenario. Combined with the
probability of each scenario, the general expected total cost can be computed and minimized for
�1. The program is given in appendix B.

3.6 Analysis

Since we have a script to evaluate instances of our capacity assignment problem with two customer
types, we can now analyze di�erent instances and compare the results.

3.6.1 Basic example

For the analysis of di�erent instances, we start with a basic example. By changing parameters in
this basic example, we can evaluate the behavior of the optimal solution and corresponding cost.
For our basic example, we choose the following parameters:

� k = 2

� c = 1

� �(1)
1 = 100

� �(2)
1 = 200

� �(1)
2 =

�
90 with probability 0:6
110 with probability 0:4

� �(2)
2 =

�
220 with probability 0:8
180 with probability 0:2

� �1 = 2=3

� �2 = 1=3

� hu = 5
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� hd = 1

The optimal solution for this instance is �1 = 811:3 with corresponding expected cost 3364, but it
is more interesting to see what happens with this solution if we change one or more parameters.

3.6.2 Di�erent ratios for the service rates

The ratio of the service rates for the two customer types is �xed, and given by �1 and �2. We
investigate what happens if we change this ratio. To do so, we let �1 run from 0 to 1 and set �2

equal to 1� �1 (in the original problem, the sum of �1 and �2 is not necessarily equal to 1).

Figures 17 and 18 show the optimal service rates and corresponding costs for the di�erent ratios.

Figure 17: Optimal �1 for di�erent service ratios
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Figure 18: Optimal cost for di�erent service ratios

The capacity of the server needs to be divided over the two customer types. If �1 is small (close
to 0), the optimal �1 tends to in�nity because only a small part of the capacity is used for type 1
customers. The same holds for �1 close to 1. Then, �2 is close to zero and many capacity is needed
to serve all the type two customers.
For �1 not close to 0 or 1, the optimal capacity is much lower. Least capacity is needed for an �1

value smaller than 0.5 (�1 equal to 0.4), because the demand rate for type 2 customers is greater
than the demand rate for type 1 customers. Therefore, less capacity is needed as a greater part can
be used for type 2 customers.

In the graph for the corresponding (optimal) total cost, we see the same shape: if the capacity
is divided well over the customer types, then the expected total cost is lower.
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3.6.3 Demand rate for queue 1 in period 1

In our model, the ratio of the service rates for the two queues is assumed to be �xed. To reduce
costs, this ratio should match the demand rates of the queues. For example, if there are much more
type 1 customers than type 2 customers, it would be convenient if the server is faster in serving

customer 1 types. In �gure 19, we see what the optimal service rate is for increasing �
(1)
1 .

Figure 19: Optimal �1 for di�erent demand rates

For �
(1)
1 smaller than 110, the optimal value for �1 is 810. This is the capacity needed to serve the

type 2 customers fast enough. When the value of �
(1)
1 exceeds 110, the optimal �1 is increasing in

�
(1)
1 , because more capacity is needed to serve all customers of type 1 fast enough.
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3.6.4 Cost for increasing capacity

When we increase hu in the model with two queues and one server, the optimal server capacityis
increasing as shown in �gure 20. This is the same behavior as in the model with only one queue,
so for an analysis we refer to section 2.7.2.

Figure 20: Optimal �1 for di�erent hu

3.7 Conclusions

We extended the model by adding a queue, where orders arrive with their own demand and service
rate. There is still one server, which orders the both queues according to a First Come, First Served
policy.
For the model with two queues, expressions and functions become much more di�cult. Therefore,
in contrast to the model in the previous section, �2 can not explicitly be expressed as a function
of �1 and the demand rates for the second period anymore. However, also when calculating both
�1 and �2 numerically, Mathematica can �nd the optimal solution within a few seconds for small
systems. This makes our models also appropriate for systems with di�erent product types.
We also analyzed the behavior of the optimal service rate and corresponding cost, and saw for
example that the ratio of the service rates for both queues (which we assumed to be �xed) can have
a major impact on the optimal solution.
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4 Multiple customers, one server - polling model

Until now, we made the assumption that the customers are served according to a FCFS policy.
Here, the server could change customer type without having any switchover time or switchover
cost. However, in practice it usual takes some time and/or cost to adjust the server for serving
other customer/product types. Therefore, it is better not to work according to a FCFS policy,
but to model the system as a polling model. In a polling model, there is one server which serves
multiple queues with each its own distributions for arrivals and services.

In a polling model, the server can visit the queues according to di�erent policy. One policy is
the exhaustive policy, at which the server serves customers in one queue until this queue is empty.
After that, the server will start serving the next queue. Another policy is the gated policy. In this
policy the server serves all customers which are in the queue at the moment the server arrives.
In our model, we use the k-limited policy: the server serves ki customers when visiting queue i or
serves until the queue becomes empty, whichever occurs �rst. Here, ki is called the service limit.
Advantages of this policy is that cycle times are limited, such that it never takes too long before
certain customer types are served again, and that priorities can be assigned to certain queues by
choosing appropriate service limits. A disadvantage is that relatively not many explicit expressions
are known for this polling model, so we must use some approximations.

Remark: strictly speaking, the model in the previous section is actually also a polling model.
However, in mathematics, the exhaustive, gated and k-limited policy are more associated with
polling models.

4.1 Model

Consider a polling model with N queues. We assume that the server visit the queues in cyclic order
1; 2; :::; N . In each queue, customers are served in exponential distributed and independent service
times. As we have a k-limited polling model, the server leaves queue i after ki customers are served
or when the queue becomes empty, whichever occurs �rst.

Because a k-limited polling model is a relative di�cult model, we start with considering only
one time period (instead of the two time periods in the previous models) with given demand rates.
After the model with one time period, we investigate a model with two time periods and unknown
demand rates.
As in the previous model, in which customers were served FCFS, the ratio of the service time is
�xed.
Our goal is again to minimize total expected cost by optimizing the speed of the server. As in the
previous model, in which customers were served FCFS, the ratio of the service times are �xed.
The total cost in this model consists of capacity cost and cost for waiting time of the customers.
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4.2 Notation

In this section, we use the following notation:

� �i is the arrival rate of the customers in queue i (type i customers) for i = 1; 2; :::; N .

� �i� is the service rate for queue i for i = 1; 2; :::; N (not that

NX
i=1

�i is not necessarily equal

to 1).

� �i = �i

�i�
is the fraction of the time at which the server is serving type i customers for

i = 1; 2; :::; N .

� The occupation rate of the server is equal to � =

NX
i=1

�i.

� c is the cost for waiting time (per time unit) for each product.

� The capacity cost is equal to k�.

� The service limit of queue i is equal to ki for i = 1; 2; :::; N . This is the maximum number of
customers that is served at one visit of the server. The server leaves queue i if ki customers
are served or if the queue becomes empty, whichever occurs �rst.

� The switchover durations are independent random variables with mean si. This is the time
between ending service at queue i and starting service at queue (i mod N) + 1. For the
computations in this sections, the distribution of the switchover durations do not matter.

� The total switchover time during one cycle of the server has mean s =

NX
i=1

si.

4.3 Cost function

The expected total cost consists of cost for the amount of capacity and cost for the expected waiting
time:

T (�) = k�+

NX
i=1

ci�iE(Wi): (38)

For the k-limited polling model, no exact expression for the expected waiting time is known. There-
fore, we use an approximation for the waiting times in our model. This approximation is given in
section 4.3.1.

4.3.1 Expected waiting time

In [5], the problem of �nding the optimal service limits in a cyclic polling system with the k-limited
service discipline is studied. Here, it is found that the Fuhrmann and Wang approximation [7]
is ‘very e�ective in �nding the optimal service limits’ and does not need too much computation
time. In numerical experiments, Borst et al. ‘have observed that the waiting cost according to the
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Fuhrmann and Wang approximation sometimes di�ers dramatically from the \true" waiting cost
obtained by the psa (power series algorithm), but that still the optimal service limits according
to the Fuhrmann and Wang approximation agree with the \true" optimal service limits obtained
from the psa’. The word ‘true’ is in quotation marks because the power series algorithm is also an
approximation. The psa is a very time-consuming, but also a very accurate algorithm and therefore
appropriate for judging other approximations.

Unless the approximation sometimes di�ers from the true waiting time, Fuhrmann and Wang state
in [7] that their approximations are ‘largely heuristic but show very good accuracy in cases where
the system parameters are not extremely asymmetric and the switchover times not largely relative
to the service times’. Also, because the approximation is very appropriate for optimizing the service
limits, it is a good approximation in some way. Together with the fact that the Fuhrmann and
Wang approximation is easy to use, this makes it convenient to use in our model.

The Fuhrmann and Wang approximation for the waiting time in the k-limited polling model is
given by

E(Wi) �
(1� �i)(1� �) + �i

ki
(2� �)

1� �� �is
ki

�

D + s
1��

NX
j=1

�2
j

kj

NX
j=1

"
�j(1� �j) +

�2
j

kj

2� �
1� �

# ; (39)

with

D = �

NX
i=1

�i�
(2)
i

2(1� �)
+ �

s(2)

2s
+

s

2(1� �)

"
�2 �

NX
i=1

�2
i

#
: (40)

In (40), �
(2)
i is the second moment of the service rate of queue i, which is in our case equal to

2=(�i�)2. Approximation (39) also holds for queues where the service rates do not have exponential
distributions.
In [5], also another approximation is given. This approximation yields an explicit expression for
the optimal service limits. However, this approximation is a result for constrained waiting cost
optimization, while (39) is for unconstrained waiting cost optimization. For constrained waiting
cost optimization, there is the constraint that the weighted sum of the service limits may not exceed
a certain value:

NX
i=1


iki � K; (41)

where ki are the service limits and 
i are arbitrary parameters. However, in our model there is no
constraint on the service limits, which make this approximation less appropriate. The approxima-
tion only gives good results for a small K, because the available capacity for the ki is distributed
over the queues. When K is increasing, the values for ki are kept in approximately the same ratios.
Subsequently, for large K, all ki tend to in�nity. This gives an exhaustive polling system in which
the advantages of a k-limited system are lost.
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Also, it is shown in [5] that the approximation (39) of E(Wi) is decreasing in ki and increas-
ing in kj ; j 6= i. This ‘supports the use of the approximation in trying to obtain the optimal service
limit values’. After some tests, it seems that there is only a global minimum and no other local
minima, which makes it easier to �nd the optimal service rates (at least we will not get stuck in a
local minimum).

All together, the unconstrained approximation (39) seems the most useful approximation for the
waiting time in our model.

4.4 Optimizing capacity

Because a polling model is more di�cult than the models in sections 2 and 3, we start with
optimizing the capacity in a polling model in which the demand rates are given. The Mathematica
program is given in appendix C.
First, let us consider two examples.

4.4.1 Two examples

For the �rst example, we have the following parameters:

� N = 2

� k = 1

� c = 1

� �1 = 0:75

� �2 = 0:75

� �1 = 0:6

� �2 = 0:4

� s1 = 10

� s2 = 20

After running the program, we �nd that the optimal service limits are k1 = k2 = 1 and that
the optimal capacity is � = 9:28. The corresponding expected total cost is 60.35. Note that both
service limits are 1, so we have an exhaustive polling model in the optimal case.

For the second example, we have the following parameters:

� N = 2

� k = 1

� c = 1

� �1 = 0:75
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� �2 = 0:75

� �1 = 1:11

� �2 = 10

� s1 = 0:1

� s2 = 0:1

In this example, the optimal service limits are k1 = 2 and k2 =1. The optimal capacity is � = 1:71
and the corresponding expected total cost is 2.69.
The main reason that not both service limits are equal to 1, is the di�erence in service speed
of the two queues. The server can serve customers of type 2 much faster than type 1 customers.
Therefore, the server should serve at queue 2 for a longer time (if customers are present) and not
stay too long at queue 1. Switchover times are disadvantageous, but if customers can be served fast
after a switchover, it may be worth it.
In [5], it is shown that in a k-limited polling model, always at least one of the service limits is equal
to 1.

4.4.2 Switchover times

Because the main di�erence between the polling model and the FCFS-model are the switchover
times, we are interested in their in
uence on the optimal capacity and corresponding cost. In the
approximation for the expected waiting times, the values of si are not taken into account separately,
so we only need to vary the total switchover time per cycle s.

Figure 21: Optimal � for di�erent switchover times
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Figure 22: Optimal cost for di�erent switchover times

In �gure 21, the optimal � is given as a function of s. Other parameters are the same as in example
1. When s increases, it takes more time for the server to move to another queue. This increases the
waiting times for the customers, which can be caught by increasing the service rate. For smaller s,
� is increasing faster, because then the in
uence of increasing s is relatively bigger.
In �gure 22, we see that the optimal cost is increasing in s in a linear way.

4.4.3 Service time ratios

We assumed that the ratio of the service rates for the two queues are �xed. In this subsection, we
investigate the in
uence of this ratio. Therefore, we again take the parameters of example 1, but
now we vary the service rates of the two queues. We let �2 = 1��1, so the service rate for queue 1
is equal to �1 = �1�, and the service rate for queue 2 is equal to �2 = �2� = (1� �1)�. In �gures
23 and 24, we let �1 run between 0 and 1 and show the corresponding optimal � and total cost.
Note that �1 may not be equal to 0 or 1, because then there would be one queue that cannot be
served, which makes the system instable.
The graphs are symmetric and the minimum is reached for �1 = 0:5. For small �1, the service
rate for queue 1 is low so a high � is needed for that queue, while for large �1, the service rate for
queue 2 is low so a high � is needed for that queue. For �1 = 0:5, the service rate is the same for
both queues and a smaller � is su�cient and optimal. Note that this is due to the symmetry of the
instance: the demand rates are the same for both queues and the approximation for the waiting
times only takes the total switchover time per cycle into account (not dependant on the speci�c
queue). If the demand rates are not the same for both queues, the optimal �1 is in general not
exactly equal to 0.5 (the queue with more demand will be assigned a higher service rate). However,
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Figure 23: Optimal � for di�erent service time ratios

Figure 24: Optimal cost for di�erent service time ratios

also in that case the capacity will tend to in�nity for �1 close to 0 or 1.
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4.5 Uncertain demand

For the polling model, it is also possible to include uncertain demand in the system. By considering
all possible scenarios with corresponding probabilities, the expected total cost can be minimized in
the server capacity en service limits for both periods. The Mathematica program to compute the
optimal service speed and service limits for the �rst time period can be found in appendix C. When
computing this optimum, the costs for the second time period are also taken into account.

Because the functions and expressions for the polling system are more complex than in the previous
models, it takes a few minutes (instead of a few seconds for the previous models) to compute the
optimal solution for a model with N = 2 and two scenarios for the demand rate for each queue.
For more extensive models, it must be considered if the large computation time is worth the better
solution. If the optimal solution must be implemented fast, it may be better to use a simpler
approximation for the waiting times in a polling model (despite the slightly worse solution).

4.5.1 Impact of the uncertainty

To study the impact of uncertainty on the decisions for the k-limited polling model, we considering
an example with the following parameters:

� N = 2

� k = 1

� c = 2

� Period 1: �1 = �2 = 0:75

� Period 2: �1 =

�
0:75 + a with probability 0:5
0:75� a with probability 0:5

and �2 =

�
1 with probability 0:4
0:9 with probability 0:6

� �1 = 0:6

� �2 = 0:4

� s1 = 20

� s2 = 10

� hu = 5

� hd = 1

In this example, a can take any value smaller than 0.75. When a increases, more uncertainty is
incorporated in the model. Figures 25 and 26 show the optimal value of �1 for di�erent values of
a. For larger a, there is more uncertainty in the model, which leads to more capacity to cover a
possible higher demand.
Note that only the uncertainty of queue 1 is increasing in a, for queue 2 the distribution is �xed.
For small values of a, the uncertainty of queue 2 is dominant, such that the impact of the value of
a is limited. For larger a, the demand rate of queue 1 can increase more in period 2, such that the
optimal value of �1 is increasing faster in a.
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Figure 25: Optimal �1 for di�erent demand distributions

Figure 26: Optimal cost for di�erent demand distributions
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4.6 Conclusions

In this section, we changed our model into a more realistic model by adding switchover times. If
one server has to serve multiple customer types, it needs in general a certain time period (and
possibly also some cost) to prepare the server for serving another customer type. This leads to a
polling model with switchover times. For our polling model, we have chosen for a k-limited policy,
because this suits best with the application in the chemical industry where our problem is based on.
Advantages of the k-limited policy are the opportunity to assign priorities to queues and to limit the
total cycle time. On the other hand, relative few expressions and functions are known explicitly for
the k-limited polling model. Therefore, we have to use an approximation for the expected waiting
times.
The approximation given by Fuhrmann and Wang seems to �t best in our model. However, because
the expression of this approximation is quite large and complex, it takes some time for Mathematica
to compute the optimum. Next to the di�cult expressions, Mathematica must not only optimize
the server capacity, but also the service limits for the queues. Because the larger computation times
for this model, one should decide whether a faster or a better solution is more important.
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5 General conclusions and recommendations

In this thesis, we have created and investigated a number of queueing models to gain insight in the
robustness of supply chains.
A supply chain can be made robust at multiple components and in many di�erent ways. In par-
ticular, we investigated the robustness for uncertain demand in the long term and have looked at
the impact of design choices on cost, and throughout time. We started with a simple model with
one queue and one server. In the next sections, we extended the model with multiple customer
types and later also with switchover times for the server. For all models, we assumed two time
periods: the demand rates in period 1 were assumed to be known, but for period 2 only (discrete)
distributions were given.

For the model in section 2, with one queue and one server, the optimal service rate for time
period 2 is given explicitly as function of �1 and �2. Using this function, the optimal service rate
for the �rst period is optimized numerically by using Mathematica. In section 2.8, the value of our
model became visible. When comparing our method to the optimal solution where only the average
demand rate was taken into account, the cost di�erence was up to more than 20%. This shows that
it can be very pro�table to make supply chains robust in the right way.
We extended the model by adding a queue in section 3. Because expressions for the waiting time
became more complex, both �1 and �2 were calculated numerically in this section. When examining
some examples, we found that for both models in sections 2 and 3, the optimal solution can be
calculated fast. This o�ers opportunities to use those models in practice.

In section 4, we introduced the k-limited polling model with switchover times. The main advantage
of this model is that it is more realistic than the other ones, because in general, it takes some
time for production systems to switch to another product. Disadvantages are the more di�cult
expressions and approximations for the waiting times. Because of the di�cult expressions, more
computation time is needed. When less time is available, one can consider using a polling model
with another policy. For example, an exhaustive polling model is in many production applications
also much more realistic than a model without switchover times, and more and simpler expressions
have been developed for this model.
For now, we can conclude that for using the k-limited polling model, one should decide if the larger
computation time outweighs the better solution.

The main purpose of our models was to gain insight in the design of robust supply chains. The
models in this thesis are not for direct use in practical problems, because they are oversimplifying
the operations of real production systems. However, when designing a supply chain, parts of the
models can certainly be used to create the insight where potential issues and their solutions may
be found, in order to create more robustness in the supply chain. When designing a supply chain,
one has to investigate for the speci�c situation which parts of the models can be used to make the
supply chain more robust.
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The models in this thesis were a �rst step to create insight in robust supply chains. For more
understanding and to be applicable in more situations, they may be extended in several ways. In
our models, we assumed exponential arrival and service rate. It would be interesting to see what
happens if other distributions are used. Also, switchover costs could be added to the polling model,
other service policies could be used or systems with multiple servers could be examined. This
would open the possibility to study larger networks with more customers, products and production
facilities.
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Clear["Global`*"]

(*Optimal value for ��2 as a function of ��1 and ��2:*)

M[��1_, ��2_] := If����1 < ��2 +
c * ��2

k + hu
,

��2 +
c * ��2

k + hu
, If��hd < k && ��1 > ��2 +

c * ��2

k - hd
, ��2 +

c * ��2

k - hd
, ��1����;

(*Input*)
k = 2; (*capacity cost*)
c = 10; (*sojourn cost*)
hu = 5; (*cost for increasing capacity*)
hd = 1; (*cost for decreasing capacity*)
��1 = 10; (*demand rate for period 1*)
��2 = {5, 10, 15}; (*possible demand rates for period 2*)
p = {0.7, 0.15, 0.15};
(*probabilities corresponding to demand rates for period 2*)

(*Compute optimal server capacity:*)Minimize��

��k * m1 + c *
��1

m1 - ��1
+ p[[1]] * k * M[m1, ��2[[1]]] + c *

��2[[1]]

M[m1, ��2[[1]]] - ��2[[1]]
+

hd * Max[0, m1 - M[m1, ��2[[1]]]] + hu * Max[0, M[m1, ��2[[1]]] - m1] +

p[[2]] * k * M[m1, ��2[[2]]] + c *
��2[[2]]

M[m1, ��2[[2]]] - ��2[[2]]
+

hd * Max[0, m1 - M[m1, ��2[[2]]]] + hu * Max[0, M[m1, ��2[[2]]] - m1] +

p[[3]] * k * M[m1, ��2[[3]]] + c *
��2[[3]]

M[m1, ��2[[3]]] - ��2[[3]]
+ hd * Max[0,

m1 - M[m1, ��2[[3]]]] + hu * Max[0, M[m1, ��2[[3]]] - m1] , m1 > ��1��, {m1}��

{93.542, {m1 �� 17.1492}}

Printed by Wolfram Mathematica Student Edition

A Mathematica program - one customer, one server
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Clear["Global`*"]
k = 2; (*capacity cost*)
hu = 5; (*cost for increasing capacity*)
hd = 1; (*cost for decreasing capacity*)
c = 1; (*waiting cost*)
l11 = 100; (*demand rate customer 1, period 1*)
l21 = 200; (*demand rate customer 2, period 1*)
a11 = 2 / 3; (*factor capacity product 1*)
a21 = 1 / 3; (*factor capacity product 2*)
l11 = 100; (*demand rate customer 1, period 1*)
l21 = 200; (*demand rate customer 2, period 1*)
l121 = 90; (*demand rate customer 1, period 2, scenario 1*)
p121 = 0.6; (*corresponding probability for ll121*)
l122 = 110;
p122 = 0.4;
l221 = 220;
p221 = 0.8;
l222 = 180;
p222 = 0.2;

(*Optimal capacity for period 2 as a function of
the capacity in period 1 and demand rates for period 2*)

M[m1_, l1_, l2_] := If��m1 < NSolve��0 < l1 / (a11 * m2) + l2 / (a21 * m2) < 1 &&

k + hu �� c * (l1 + l2) *
1

��1 - l1
a11*m2

- l2
a21*m2

��
2

*

1 -
l1

a11 * m2
-

l2

a21 * m2
*

- ��l1 * a21 2 + l2 * a11 2�� * 2 * a11 2 * a21 2 * m2

a11 4 * a21 4 * m24
+

l1

a11 2 * m22
+

l2

a21 2 * m22
*

(l1 * a21 + l2 * a11) * a11 * a21

a11 2 * a21 2 * m22
, m2��[[1]][[

1]][[2]], NSolve��0 < l1 / (a11 * m2) + l2 / (a21 * m2) < 1 &&

k + hu �� c * (l1 + l2) *
1

��1 - l1
a11*m2

- l2
a21*m2

��
2

*

1 -
l1

a11 * m2
-

l2

a21 * m2
*

- ��l1 * a21 2 + l2 * a11 2�� * 2 * a11 2 * a21 2 * m2

a11 4 * a21 4 * m24
+

l1

a11 2 * m22
+

l2

a21 2 * m22
*

(l1 * a21 + l2 * a11) * a11 * a21

a11 2 * a21 2 * m22
, m2��[[1]][[

1]][[2]], If��hd < c && m1 > NSolve��0 < l1 / (a11 * m2) + l2 / (a21 * m2) < 1 &&

k - hd �� c * (l1 + l2) *
1

��1 - l1
a11*m2

- l2
a21*m2

��
2

* 1 -
l1

a11 * m2
-

l2

a21 * m2
*

- ��l1 * a21 2 + l2 * a11 2�� * 2 * a11 2 * a21 2 * m2

a11 4 * a21 4 * m24
+

l1

a11 2 * m22
+

l2

a21 2 * m22
*

(l1 * a21 + l2 * a11) * a11 * a21

a11 2 * a21 2 * m22
, m2��[[

Printed by Wolfram Mathematica Student Edition

B Mathematica program - two customers, one server - First
Come, First Served
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1]][[1]][[2]], NSolve��0 < l1 / (a11 * m2) + l2 / (a21 * m2) < 1 &&

k - hd �� c * (l1 + l2) *
1

��1 - l1
a11*m2

- l2
a21*m2

��
2

*

1 -
l1

a11 * m2
-

l2

a21 * m2
*

- ��l1 * a21 2 + l2 * a11 2�� * 2 * a11 2 * a21 2 * m2

a11 4 * a21 4 * m24
+

l1

a11 2 * m22
+

l2

a21 2 * m22
*

(l1 * a21 + l2 * a11) * a11 * a21

a11 2 * a21 2 * m22
,

m2��[[1]][[1]][[2]], m1����; (*functie voor ��_2*)

(*Compute optimal server capacity for period 1:*)

FindMinimum����If��0 <
l11

a11 * m1
+

l21

a21 * m1
< 1,

k * m1 + c *
(l11 + l21) * �� l11

a11 2*m12 + l21

a21 2*m12 ��

1 - l11
a11*m1

- l21
a21*m1

+ p121 * p221 * k * M[m1, l121, l221] +

c *
(l121 + l221) * �� l121

a11 2*M[m1,l121,l221] 2
+ l221

a21 2*M[m1,l121,l221] 2
�	

1 - l121
a11*M[m1,l121,l221]

- l221
a21*M[m1,l121,l221]

+

hd * Max[0, m1 - M[m1, l121, l221]] + hu * Max[0, M[m1, l121, l221] - m1] +

p121 * p222 * k * M[m1, l121, l222] +

c *
(l121 + l222) * �� l121

a11 2*M[m1,l121,l222] 2
+ l222

a21 2*M[m1,l121,l222] 2
�	

1 - l121
a11*M[m1,l121,l222]

- l222
a21*M[m1,l121,l222]

+

hd * Max[0, m1 - M[m1, l121, l222]] + hu * Max[0, M[m1, l121, l222] - m1] +

p122 * p221 * k * M[m1, l122, l221] +

c *
(l122 + l221) * �� l122

a11 2*M[m1,l122,l221] 2
+ l221

a21 2*M[m1,l122,l221] 2
�	

1 - l122
a11*M[m1,l122,l221]

- l221
a21*M[m1,l122,l221]

+

hd * Max[0, m1 - M[m1, l122, l221]] + hu * Max[0, M[m1, l122, l221] - m1] +

p122 * p222 * k * M[m1, l122, l222] +
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c *
(l122 + l222) * �� l122

a11 2*M[m1,l122,l222] 2
+ l222

a21 2*M[m1,l122,l222] 2
�	

1 - l122
a11*M[m1,l122,l222]

- l222
a21*M[m1,l122,l222]

+

hd * Max[0, m1 - M[m1, l122, l222]] + hu * Max[0, M[m1, l122, l222] - m1] ,

$MaxMachineNumber���
, {m1, 20 000}, Method �� "PrincipalAxis"��

{3363.92, {m1 �� 811.306}}
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Clear["Global`*"]
k = 2; (*capacity cost*)
l11 = 0.75; (*demand rate for period 1, queue 1*)
l12 = 0.75; (*demand rate for period 1, queue 2*)
l211 = 0.9;(*demand rate for period 2, queue 1, scenario 1*)
p211 = 0.3;(*corresponding probability to l211*)
l212 = 0.6;
p212 = 0.7;
l221 = 1.0;
p221 = 0.4;
l222 = 0.9;
p222 = 0.6;
a1 = 0.6; (*capacity factor queue 1*)
a2 = 0.4; (*capacity factor queue 2*)
m11 = a1 * m; (*service rate period 1, queue 1*)
m12 = a2 * m; (*service rate period 1, queue 2*)
r1 = l11 / m1; (*occupation rate queue 1*)
r2 = l12 / m2; (*occupation rate queue 2*)
r = r1 + r2; (*occupation rate*)
s1 = 10; (*mean switchover time queue 1*)
s2 = 20; (*mean switchover time queue 2*)
s = s1 + s2; (*mean switchover time per cycle*)
hu = 5; (*cost for increasing capacity*)
hd = 1; (*cost for decreasing capacity*)
Clear[r, r1, r2];
(*D0 is needed to compute the expected waiting times for both queues*)
D0[r_, r1_, r2_, l1_, l2_, m1_, m2_] :=

r *
l1 * 2 �� m1 2 + l2 * 2 �� m2 2

2 * (1 - r)
+ r *

2 * s 2

2 * s
+

s

2 * (1 - r)
* ��r 2 - r1 2 - r2 2��;

(*Expected waiting times for both queues:*)

W1[r_, r1_, r2_, l1_, l2_, m1_, m2_, k1_, k2_] :=
(1 - r1) * (1 - r) + r1

k1
* (2 - r)

1 - r - l1 * s / k1
*

D0[r, r1, r2, l1, l2, m1, m2] + s
1-r

* ��r1 2 �� k1 + r2 2 �� k2��

��r1 * (1 - r1) + r1 2

k1
* 2-r

1-r
�� + ��r2 * (1 - r2) + r2 2

k2
* 2-r

1-r
��

;

W2[r_, r1_, r2_, l1_, l2_, m1_, m2_, k1_, k2_] :=
(1 - r2) * (1 - r) + r2

k2
* (2 - r)

1 - r - l2 * s / k2
*

D0[r, r1, r2, l1, l2, m1, m2] + s
1-r

* ��r1 2 �� k1 + r2 2 �� k2��

��r1 * (1 - r1) + r1 2

k1
* 2-r

1-r
�� + ��r2 * (1 - r2) + r2 2

k2
* 2-r

1-r
��

;

(*Expected total cost for period 2,
for given service rate for period 1 and demand rates for period 2,
and for optimal service rate choice in period 2:*)
M2[m1_, l1_, l2_] :=

NMinimize[If[l1 / (a1 * m2) + l2 / (a2 * m2) + Max[l1 * s / k1, l2 * s / k2] �� 1 ||
k1 �� 0 || k2 �� 0 || m2 �� 0, $MaxMachineNumber,

k * m2 + l1 * W1[l1 / (a1 * m2) + l2 / (a2 * m2), l1 / (a1 * m2), l2 / (a2 * m2), l1, l2,
a1 * m2, a2 * m2, k1, k2] + l2 * W2[l1 / (a1 * m2) + l2 / (a2 * m2), l1 / (a1 * m2),
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l2 / (a2 * m2), l1, l2, a1 * m2, a2 * m2, k1, k2] + hd * Max[0, m1 - m2] +
hu * Max[0, m2 - m1]], {m2, k1, k2}, MaxIterations �� 1000][[1]];

Clear[k1, k2, m1];
NMinimize[

If[l11 / (a1 * m1) + l12 / (a2 * m1) + Max[l11 * s / k1, l12 * s / k2] �� 1 || k1 �� 0 || k2 �� 0 ||
m1 �� 0, $MaxMachineNumber, k * m1 + l11 * W1[l11 / (a1 * m1) + l12 / (a2 * m1),

l11 / (a1 * m1), l12 / (a2 * m1), l11, l12, a1 * m1, a2 * m1, k1, k2] +
l12 * W2[l11 / (a1 * m1) + l12 / (a2 * m1), l11 / (a1 * m1), l12 / (a2 * m1),

l11, l12, a1 * m1, a2 * m1, k1, k2] + p211 * p221 * M2[m1, l211, l221] +
p211 * p222 * M2[m1, l211, l222] + p212 * p221 * M2[m1, l212, l221] +
p212 * p222 * M2[m1, l212, l222]], {m1, k1, k2}, MaxIterations �� 100]

{227.6, {m1 �� 28.0685, k1 �� 95.2151, k2 �� 187.833}}
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