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Abstract

Due to an increased focus on Just-in-Time principles supply chain disruptions have exhibited
a devastating impact on the profits of global or locally operating companies. On the contrary,
companies try to boost their profit by jointly or sequentially examining pricing and inventory
decisions. In this thesis supply chain disruptions are incorporated in a pricing and inventory
model. By using this model a combined inventory and pricing policy for mitigation of disruption
risk is developed. This policy is characterized as follows: inventory management is done according
to a base-stock policy. If net inventory is below or equal to a pricing reference inventory level the
price is increased with a percentage. The effects of using this policy on a single retailer’s revenue,
costs and profit for different scenarios are examined.
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Management Summary

Recent incidents have exhibited a devastating impact on the profits and supply chains of global or
locally operating companies. These incidents, so called supply chain disruptions, are characterized
as random events that lead to a complete or partial stoppage of supply for a random amount of
time (Snyder et al., 2010). Therefore, supply chain disruptions are described as the most severe
form of supply chain uncertainty and characterized as low-likelihood high impact events (Oke and
Gropalakrisham, 2009). Supply chain disruptions stem from several causes, the main causes are
summarized in the bullets below (Chopra and Sodhi, 2004, p.54).

� Natural disaster

� Labor dispute

� Supplier bankruptcy

� War and terrorism

� Dependency on a single source of supply as well as the capacity responsiveness of the back
up suppliers

In order to mitigate risks stemming from disruptions companies can use a variety of mitigation
strategies. According to their nature these strategies are classified either as proactive or reactive.
The former class deals with the mitigation of disruption risk ex ante, while the latter strategy
deals with mitigation disruption risk ex post. On the contrary, companies try to boost their profits
by using a variety of approaches for deciding on price and/or inventory. These approaches are
generally discussed in the field of revenue management.

Although some attempts have been made in order to combine approaches from revenue management
and knowledge on supply chain disruptions (see e.g. (Li and Zheng, 2006)), no comprehensive
approach exist. Therefore, in this thesis a combined pricing and inventory policy is proposed. This
combined policy is best characterized as a threshold like policy consisting of the following parts:
an (S; k) policy for inventory management while the price is determined according to an (P; �)
policy. Furthermore, pricing is done based on the current net inventory. The general outline of this
combined inventory and pricing policy is that inventory is managed according to the traditional
base-stock policy. Price is determined according to the following rule: when net inventory equals
or is below the pricing reference level (k) the initial offered price (P ) is increased with a percentage
(�). If net inventory is restored to a level above the pricing reference inventory level the price is
restored to its initial value. The decisions of the retailer, based on net inventory, after incorporation
of this policy are depicted in the following figure. In this figure it is assumed that lead time equals
0.
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To measure the effects of disruptions on pricing and inventory decisions of a single retailer a
price dependent demand function is used by incorporating customer reservation prices. Customer
reservation prices are a customer’s individual valuation of a product against which a possible
purchase is judged (Monroe, 1973). In this thesis it is assumed that customer reservation prices
are lognormally distributed with an expected value equal to the initial price offered by the retailer.
The variance of the customer reservation price is determined in such manner that the percentage of
customers willing to buy the product is decreasing in price - i.e. approximate none of the customers
are willing to pay a price 3 times the price initially offered by the retailer. Furthermore, it is
assumed that customers behave non-strategically, which entails that their behavior do not change
when there are changes in the retailer’s decision variables. Disruptions are generally characterized
by a disruption profile (Snyder et al., 2010). For this thesis disruptions are represented with a
two-state continuous time Markov chain, with an “up” state referring to the undisrupted state of
the supplier and a “down” state indicating that the supplier is disrupted. In the “down” state the
supplier is unable of delivering any orders. The disruption rate (�) represents the rate of going from
an “up” to a “down” state and the recovery rate (�) the rate of going in the reverse direction. The
effects of disruptions on a single retailer’s revenue, costs and profit are examined in the following
setting.

The main outline of the combined inventory and pricing policy is that due to an increase in price
the demand rate decreases and as a result a decrease in revenue is observed. Another, and more
important, effect of the decreased demand rate is the decrease in observed back orders, resulting
in a dramatic decrease in costs. Therefore, the retailer’s profit is increased, especially for low
base-stock levels, which stems from the fact that for high base-stock levels the retailer has ample
inventory to sell even during disruptions. The main benefits of using the combined inventory and
pricing policy is that base-stock levels can be decreased while profit is increased for frequent and
infrequent disruptions with a low recovery rate.

The disruption profile consists of the disruption and recovery rate. From an extensive analysis it
is observed that the recovery rate has a major influence on the combined inventory and pricing
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policy and the traditional base-stock policy. Furthermore, it can be observed that for high recovery
rates, using the combined inventory and pricing policy does not result in an increased profit for the
retailer. A reason for this that it can be observed that for relatively short disruptions increasing
the price will result in a decreased number of items sold and resulting in a decrease in revenue for
which cannot be compensated by the abated costs.
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Chapter 1

Introduction

Recent history indicated that supply chain disruptions have a catastrophic effect on the perfor-
mance of global or locally operating firms. Due to an increased use of Just-in-Time principles (JIT )
combined with an increased focus on efficiencies companies are becoming increasingly vulnerable
to supply chain disruptions (Snyder et al., 2010). Due to this increased vulnerability companies
are risking long and short term negative financial operating performance in the form of decreased
operating income, return on sales, and return on assets (Hendricks and Singhal, 2005). There-
fore, current research is primarily focussed on the mitigation of risk stemming from supply chain
disruptions.

On the contrary companies try to boost their profits and manage demand by using revenue man-
agement techniques to determine optimal price and corresponding ordering quantities (Chen and
Simchi-Levi, 2010). Although some attempts have been made to merge supply chain disruption
literature and revenue management (see e.g. Li and Zheng (2006)) no comprehensive approach
exist. This thesis aims at developing and exploring the effects of a new mitigation strategy that in-
corporates supply chain disruptions into a pricing and inventory model. In this strategy inventory
is managed according to an (S; k) policy, in which S represents the traditional base-stock policy
and k the pricing reference inventory level. Pricing is done according to an (P; �) policy, in which P
represents the initial offered price and � represents by which the price can be increased. Pricing is
done according the following rule: if net inventory is equal or below the pricing reference inventory
level (k) the initial offered price (P ) is increased with a percentage (�). When net inventory is
restored to a value above k the price is changed to the initial value. Throughout this thesis to this
combined inventory and pricing policy will be referred to as the proposed policy.

By changing the offered price it can be expected that demand is subjected to change. Therefore,
a price dependent demand function is used by including a customer reservation price.

In Section 1.1 illustrative examples, in order to develop support for combining an inventory and
pricing policy, are provided by indicating that prices are subject to change during disruptions.
Furthermore, an example is provided in order to show the disastrous consequences of supply chain
disruptions.

1.1 Illustrative examples

A lighting strike that caused a fire in a Philips plant in Albuquerque, New Mexico, forced Ericsson
to exit the cell-phone market with an estimated loss in sales of 400 million dollar due to the
unavailability of essential components. While Ericsson was forced to exit the cell-phone market,
Nokia identified the problem quickly and reacted by switching orders to other manufacturing sides
of the supplier. As a result Nokia became the number 1 cell-phone manufacturer in the world
(Norrman and Jansson, 2004).

After the 1999 earthquake in Taiwan, factories of essential personal computer components were
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severely damaged. Due to this damage supplies of motherboards, chip sets and other vital PC parts
were disrupted (Burrows, 1999). Despite this major disruption of vital components Dell remained
competitive, by using various demand management techniques. As a response to the earthquake
Dell immediately deployed a low-cost-upgrade strategy in order to switch demand to computers
with components from other suppliers. This dynamic pricing and promotion strategy enabled Dell
to stay competitive during this disruption (Martha and Subbakrishna, 2002).

While Dell used demand management techniques in order to deal with disruptions some other
examples of an increased price during a disruption can be found. Hurricane Katrina destroyed
several drilling facilities in the Gulf region. In this region 7% of America’s oil consumption and
16% of its natural gas consumption production was forced to shutdown. In addition, after the
hurricane 10% of America’s refining capacity was forced to shutdown. As a result of the expected
shortage of gasoline, lines at gas stations were observed and an overnight increase in price per
gallon of gasoline of over 50 dollar cent was observed (Mouawad and Romero, 2005).

1.2 Report structure

The remainder of this report is structured as follows. In Chapter 2 an overview of the current
practice for mitigation of disruption risk and current models in revenue management are discussed.
Chapter 3 discusses the methodology and provides the problem statement. The scope, conceptual
model and mathematical model are presented in Chapter 4. For this model a base case scenario
will be analyzed in Chapter 5. Based on this base case scenario several sensitivity analyses are
conducted in Chapter 6. Chapter 7 concludes this thesis by stating its main conclusions, managerial
implications, limitations, and directions for further research.
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Chapter 2

Literature review

In this chapter the current practice in the research areas of revenue management and disruption
modeling are discussed, in order to support the development of a new mitigation strategy in
the form of a combined inventory and pricing policy. Although in both fields of research many
modeling approaches exist, this chapter will only highlight some of the general approaches. For a
comprehensive literature review on modeling approaches for mitigation of disruption risks we refer
to Snyder et al. (2010). Modeling approaches that jointly examine pricing and inventory decisions
are reviewed extensively in Chan et al. (2004), Chen and Simchi-Levi (2010), and Yano and Gilbert
(2005).

2.1 Supply chain disruptions

From the examples in Section 1.1 it can be obtained that disruptions are best characterized as
infrequent high impact events that negatively affect a firm’s operating income, return on sales, and
return on assets (Hendricks and Singhal, 2005). In line with this observation Oke and Gropalakr-
isham (2009) define disruptions as low-likelihood high impact events. Furthermore, disruptions
are classified as the most extreme form of supply chain risks (Chopra and Sodhi, 2004). In order
to develop a new policy and evaluate this policy disruptions are defined in a similar fashion as
Snyder et al. (2010). In Snyder et al. (2010) disruptions are defined as random events that lead to
a partial or complete stoppage of supply for a random amount of time. This stoppage of supply
can stem from several causes. The main, and most general, causes are summarized in the bullets
below (Chopra and Sodhi, 2004, p.54).

� Natural disaster

� Labor dispute

� Supplier bankruptcy

� War and terrorism

� Dependency on a single source of supply as well as the capacity responsiveness of the back
up suppliers

Generally the characteristics of disruptions, the frequency of occurrence and duration, are captured
in a disruption profile. This disruption profile states the probabilities for going from a disrupted
to an undisrupted state and the other way around (Snyder et al., 2010).

2.1.1 Mitigation strategies

Disruptions are characterized by their high impact, in terms of financial losses or duration. There-
fore, the majority of literature on disruptions is devoted to strategies for mitigation of disruption
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risk. Mitigation strategies are concerned with minimizing losses when a disruption occurs. In
literature several modeling approaches exist, each of these modeling approaches provide mitigation
directions in a different manner. In order to develop broad understanding of the present mitigation
strategies they are classified into two categories. The first category deals with modeling approaches
that provide mitigation tactics for the disruption ex ante. While the second category deals with
modeling approaches that deal with disruptions ex post. The former stream of literature embodies
proactive strategies while the latter approaches are defined as reactive strategies.

Proactive strategies

Proactive strategies are characterized by their ex ante character, which entails that they provide
mitigation directions before the actual occurrence of a disruption. Remark that a commonly used
approach to deal with uncertainty in all forms - e.g. demand, lead time, etc. - is holding (extra)
inventory. Therefore, a common approach to deal with disruptions is holding extra inventory.
An excellent overview of inventory as mitigation strategy is provided by Atan and Snyder (2012).
Although holding extra inventory is a proper mitigation strategy it is best usable in situations where
disruptions are frequent and have a low impact profile, due to the costs associated with holding extra
inventory for the mitigation of risks stemming from more infrequent severe disruptions. Therefore,
for more severe and infrequent disruptions a sourcing mitigation policy is more preferable.

Sourcing mitigation is another well known proactive strategy that mitigates disruption risk by
selecting different sources of supply. Sourcing mitigation has two different constituents: routine
sourcing and contingent rerouting, which is a more reactive in nature. The former deals with
dampening the effects of a disruption by selecting a mix of reliable and unreliable suppliers (Snyder
et al., 2010). In many models for routine sourcing a newsvendor model, which takes into account
supply uncertainty, is used for supplier selection (see e.g. Dada et al. (2007)). Contingent rerouting
deals with the allocation of order quantities to different suppliers when one of the suppliers is
disrupted. Although this strategy is characterized by dealing with a disruption ex post it is
classified as proactive, because the selection of back-up suppliers happens upfront in the form
business continuity plans (Kleindorfer and Saad, 2005).

A final proactive strategy is using contracts. Contracts can be used in order to create flexibility by
adding incentives to a contract. These incentives are, for example. based on sharing information
on disruptions between a supplier and retailer. The majority of approaches to add incentives to a
contract are summarized in Snyder et al. (2010).

Reactive strategies

Reactive strategies provide mitigation directions after or during the occurrence of a disruption
and are focussed on minimizing losses during or after a disruption. From Section 1.1 it is inferred
that Dell used demand management in order to switch demand to other products by changing
the price and using promotion tactics. While Dell managed demand via price there exist several
other approaches to manage demand. Shao (2012) states three different additional approaches for
demand management.

� Back order demand until supply has recovered

� Pay a penalty to customers of whom demand cannot be fulfilled
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� Offer a menu of choices (leave, substitute, and buy a high or low value product)

By analyzing these strategies Shao (2012) indicates that back ordering demand is the worst strategy
in an assemble-to-order multi-product system and offer a menu of choices outperforms the other
strategies.

2.2 Revenue Management

In section 2.1.1 demand management is described as a reactive mitigation strategy. Although it
can be used as a reactive mitigation strategy, the majority of research on demand management
is conducted within the field of revenue management. In this thesis revenue management will be
defined as the field of research devoted to increase profit by deciding on prices and/or inventory.
More explicitly revenue management is defined as: “the art of maximizing pro�t generated from a
limited capacity of a product (resource) over a �nite horizon by selling each product to the right
customer at the right time for the right price” (Pak and Piersma, 2002, p.1).

Although it seems that pricing and revenue management are similar, there exist a difference between
the two concepts. In literature pricing is concerned with the price conditional on a sale, while
revenue management takes into account that a sale does not always have to occur (Lazear, 1986).
Therefore, in this thesis pricing is used to define the actual determination of the offered price by the
retailer. Furthermore, based on the three types of decisions within revenue management, pricing
can be considered as a part of revenue management. All the decisions within revenue management
are summarized in the following bullets (Talluri and van Ryzin, 2004).

� Structural decisions; strategic decisions on which tactics should be used

� Quantity decisions; acceptance or rejection of an order or allocation of capacity

� Price decisions; deal with decisions how to set price

Within these three fields of decision making there exist a variety of modeling approaches, the focus
of this thesis, however, is to develop a policy that jointly examines inventory and pricing decisions
when supplies are possibly disrupted. Therefore, modeling approaches on pricing and inventory
decisions will be discussed in the subsequent sections.

2.2.1 Demand modeling

In order to understand the differences in results for approaches that jointly examine pricing and
inventory decisions some clarification on demand modeling is requisite. In revenue management
there exist several approaches to model demand as a price dependent function. General approaches
for modeling price dependent demand are either considering deterministic demand or stochastic
demand (Yano and Gilbert, 2005). When stochastic demand is considered there exist multiple
approaches to take demand uncertainty into account. The two commonly used approaches for tak-
ing demand uncertainty into account are to include additive or multiplicative demand uncertainty
(Yano and Gilbert, 2005). For the former case demand is modeled by a sum of a price dependent
deterministic demand function and a price independent random noise term. The latter case con-
sists of the product of a price dependent demand function and a price independent random noise
term.
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Another common approach to model customer demand is by using a reservation price or a so called
reference price. A customer reservation price is best described as a customer individual valuation
against which a purchase is judged (Monroe, 1973). By using a reservation price distribution a
researchers assumes the following simple decision rule for each customer: “...if his reservation price
(or valuation) equals or exceeds the o�ered price the customer purchases the product” (Talluri and
van Ryzin, 2004, p.303).

2.2.2 Pricing and inventory decisions

In line with Elmaghraby and Keskinocak (2003) literature on pricing and inventory decisions is
divided in two classes based on the existence of a replenishment option. In modeling approaches
which do not consider a replenishment option, price is characterized as clearance sale price -
i.e. the price used to obtain an inventory level at the end of planning horizon. When there
exists a replenishment option several approaches are present in literature. Research considering a
replenishment option can be divided into single-period and multi-period models. Both modeling
approaches are concerned with jointly or sequentially examining inventory and pricing decisions.
However, in single and multi-period models differences exist in the conditions under which solutions
are optimal (Chen and Simchi-Levi, 2010). First of all this difference stems from the fact that
demand is modeled either stochastic or deterministic (see Section 2.2.1). Due to this variety in price
dependent demand modeling approaches differences in the variances and coefficients of variation
for the considered demand modeling approach are obtained. As a result of these differences the
conditions for optimality differ (Yano and Gilbert, 2005). Furthermore, modeling approaches differ
in how to incorporate costs especially with regard to fixed and proportional costs. In models in
which a combined fixed (setup) and proportional cost structure is considered, the cost function
tends to be concave due to economies of scale or for example incremental discounts provided by
the supplier. While, solely considering proportional ordering costs, the cost function tends to be
convex - e.g. the marginal cost of purchasing increases when the company orders more (Chen
and Simchi-Levi, 2010). In modeling approaches with convex cost functions research is focused
on finding conditions under which a base-stock list price policy is optimal. The base-stock list
price policy manages inventory via a normal base-stock policy. Pricing is done according to the
following rules: when inventory is above the base-stock level a discount is given, if inventory is
below or equal to the base-stock level the list price is charged (see e.g. Federgruen and Heching
(1999)). When the cost function is concave literature is focused on finding conditions under which
an (s; S; p) policy is optimal in case of additive demand and an (s; S; a; p) policy is optimal for
other forms of stochastic demand. In these policies an (s; S) policy is used in order to manage
inventory. In addition, for non-additive demand cases the set a consists of inventory levels for
which an order may or may not be placed and the offered price is dependent on the current level
of inventory (Chen and Simchi-Levi, 2004).

Besides to the policies mentioned in the previous part there exists a study that examines pricing
decisions by using pricing reference inventory levels. Feng and Chen (2003) examine policies of
the following type (s; S; d;D). In this policy inventory is managed according to an (s; S) policy.
Furthermore, d and D represent pricing reference inventory levels. These levels indicate that the
price is equal to either the price level P1 or P2 when inventory equals, exceeds, or is between these
levels.
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2.2.3 Supply uncertainty and pricing

To our knowledge there exists no research that incorporates supply chain disruptions and pricing
decisions into a single model. However, there are models known that incorporate another exhibition
of supply chain uncertainty by considering yield uncertainty - i.e. the delivered quantity differs
from the ordered quantity. Furthermore, all of these models are responsive of nature which entails
that a pricing decision is made after all forms of uncertainty are observed.

The first model that incorporates yield uncertainty is developed by Li and Zheng (2006). In their
model Li and Zheng (2006) indicate that pricing takes place after all forms of uncertainty are
observed and is therefore characterized as a responsive pricing model. By using this approach Li
and Zheng (2006) indicate that production is triggered by a threshold value, which is independent
of the yield variability. Furthermore, the authors indicate that a system with yield uncertainty
will always charge higher prices compared to a system with certain yield. This model is further
extended by Kazaz (2008) in three directions; (1) by using a two period model in which supply
variability and demand are observed consecutively; (2) the model is extended for the back orders
and lost sales case; (3) a yield dependent price for the back-up supplier is used. By making these
adjustments Kazaz (2008) indicates that just setting the price based on the sum of ordering and
production costs is not sufficient. The last modeling approach is developed by Qi (2010) who
indicates that a threshold value exists; when inventory reaches this threshold value a new order is
placed and the optimal price and order quantity are chosen in order to achieve a constant target
safety stock.

This thesis will contribute to the above mentioned literature in several ways. First of all this thesis
is among the first approaches to incorporate a pricing reference inventory level to manage demand
when a disruption occurs. A second contribution is made by being the first pricing approach,
in contrary to the approaches discusses above, which is proactive in nature - i.e. the pricing
reference inventory level and price increase are determined ex ante. The final contribution to
existing literature of this thesis is that it incorporates customer reservation prices into a traditional
base-stock model for inventory management.

2.3 Summary

From the reviewed literature in this chapter it can be inferred that there exist many approaches
to mitigate disruption risk. Furthermore, there are many approaches known in which companies
try to boost profit by managing demand or by jointly examining pricing and inventory decisions.
However, until now no attempt has been made to incorporate supply chain disruptions into a pricing
and inventory model. The only form of supply uncertainty that has been taken into account is
yield uncertainty.
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Chapter 3

Methodology

By combining the reviewed literature in Chapter 2 with the examples presented in Section 1.1,
this chapter provides the problem definition for this thesis. The structure of this thesis will be
discussed by using the research design of Mitroff et al. (1974) cited by Betrand and Fransoo (2002).
This chapter will be concluded by discussing the main goals and contributions of this thesis and
the research questions derived from them.

3.1 Problem definition

Currently companies are focused on decreasing costs by using JIT principles. Due to this change
in focus companies are becoming increasingly vulnerable to supply chain disruptions in their day
to day operations (Snyder et al., 2010). Hendricks and Singhal (2005) indicate that in addition
to short term losses, disruptions negatively affect a company’s long term operating income, return
on sales and return on assets. Therefore, due to the (financial) damage caused by a disruption
and the increased focus on JIT principles a proper mitigation strategy is becoming a competitive
advantage as indicated in the Ericsson example (Norrman and Jansson, 2004) in Section 1.1.

In order to prevent itself against al sorts of supply chain risks and disruptions in particular, a
retailer may use a variety of disruption mitigation strategies (see Section 2.1.1 for an overview).
Although, these different strategies do decrease risk, there exists no general approach to manage
the risk stemming from disruptions. Furthermore, based on the discussed literature no general
approach exists in order to examine pricing decisions when supplies are uncertain. The current
and most common approach to model supply uncertainty combined with pricing is by incorporating
yield uncertainty. However, all of these approaches use a responsive pricing model in which the
price is determined after all forms of uncertainty are observed (see e.g. Li and Zheng (2006)).

It can be argued that due to a shortage of products, caused by disruptions, the offered price is
subjected to change. The Dell example in Section 1.1 provides support for the argument that
demand management is a useful tool in mitigation of risks when a disruption occurs. Based on
these observations the following problem statement is defined.

Companies face supply chain disruptions in their day to day operations. Several mitigation strate-
gies for minimizing the risk stemming form these disruptions exist. Although several approaches
are known to manage demand via price it is never examined if these approaches are useful for
mitigating disruption risk.

3.2 Research design

For this thesis the research model developed by Mitroff et al. (1974) and cited by Betrand and
Fransoo (2002) is used as backbone. This model is depicted in Figure 3.1.
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Fig. 3.1: Research model by Mitroff et al. (1974) adapted from Betrand and Fransoo (2002)

In the previous section the problem statement is provided. Based on this problem statement a
conceptual and scientific model will be developed throughout Chapter 4. In order to examine the
behavior of this model a base case scenario is developed in Chapter 5 and a sensitivity analysis for
all the relevant parameters is conducted in Chapter 6. In the concluding chapter of this thesis the
implications for managers are stated and the main conclusions are outlined.

This thesis is characterized by its exploratory nature. Within this thesis the influence of several
parameters on a newly developed combined inventory and pricing policy are examined and the
influence of this policy on a single retailer’s revenue, costs, and profit is examined. Therefore, no
optimization is carried out.

3.3 Objective

Based on the problem definition, the aim of this thesis is to develop a new mitigation strategy that
incorporates knowledge from literature on revenue management and on mitigation strategies.

From Section 2.2.3 it can be inferred that the majority of the models which incorporate supply
chain uncertainty use a threshold like policy to set price or to trigger production. Therefore, this
thesis will develop a policy along similar lines as Feng and Chen (2003) in which multiple threshold
values are used in order to select a high or low pricing level. In this thesis, however, only a single
threshold value is used. The general logic behind this new mitigation strategy, in the form of a
combined inventory and pricing policy, is that in order to minimize costs, price is increased to
minimize the number of back orders. Therefore, the following pricing policy is proposed: the price
of the product is increased, with a percentage �, when net inventory is below or equal to the pricing
reference inventory level k. When net inventory is restored to a level above this threshold the price
is restored to the initial value. Based on this outline the proposed policy is characterized as follows:
inventory is managed according to an (S; k) policy and pricing is done according to an (P; �) policy.
In Figure 3.2 an overview of the decisions based on the net inventory (orange line) for a case in
which zero lead time is assumed is depicted.
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Fig. 3.2: Overview of the pricing policy

By means of a numerical analysis the influence of several parameters in the model will be examined
in order to develop some managerial insights for cases in which a retailer’s supplies are uncertain
due to disruptions.

3.4 Contribution and relevance

To our knowledge current research is either focused on revenue management or mitigation of
disruption risks by changing the price or by taking either proactive or reactive measures in order
to minimize the risks stemming from disruptions. However, in line with the literature review from
Chapter 2 it can be inferred that there exists no mitigation strategy that uses a price changing
policy when net inventory is lower than or equal to a threshold value. Therefore, this thesis will
contribute to existing literature by being among the first approaches that uses a pricing reference
inventory level - i.e threshold value - in order to manage demand when a disruption occurs.

Some of the examples in Section 1.1 provide an excellent overview of currently used demand
management techniques by companies. However, all of these strategies are characterized by their
reactive nature - e.g. all decisions are made at the time of disruption and no pre-determined plan
is set up for the case when a disruption occurs. This policy however, determines the price increase
and the threshold value ex ante. Therefore, this policy is more proactive in nature.

Another contribution of this thesis is that it considers a price dependent demand function by incor-
poration of a customer reservation price into a traditional base-stock model. While a traditional
approach to incorporate demand uncertainty in inventory models is to consider a known demand
distribution independent of the offered price.

It must be noted that this project is conducted internally at the Eindhoven University of Technology
and is therefore not tested with real world data and makes reasonable assumptions on customer
behavior, inventory management, lead time, and the supplier disruption profile. However, this
thesis provides usable insights for managers in order to minimize losses caused by supply chain
disruptions by changing the price after net inventory is equal to or below a certain threshold
inventory level.
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3.5 Research questions

The main points of interests for the effects of the proposed policy are presented in 6 research
questions below. These questions are used in order to evaluate the proposed policy and provide
directions for the remaining parts of this thesis.

In the literature there exist many mitigation strategies (see Chapter 2). Furthermore, different
strategies are suitable for different characteristics of the disruptions. First of all, Atan and Snyder
(2012) state that an useful mitigation strategy is depending on the disruption characteristics and as
a result inventory is a good mitigation strategy for frequent low impact disruptions. Furthermore,
responsive pricing is argued to be a valuable tool when supply uncertainty is high (Tang and Yin,
2007). As a final addition, from the hurricane Katrina example in Section 1.1 it can be inferred
that during infrequent high-impact disruptions prices will increase dramatically. Therefore, the
first research question is the following:

1. What is the in
uence of disruptions on pricing decisions of a single retailer?

In this thesis a new mitigation strategy is developed. However, in order to examine the influence of
this new policy the effects of disruptions on the new policy need to be examined. The first element
of the new policy that will be influenced by disruptions is the pricing inventory reference level (k).
It can be argued that when disruptions are infrequent and have a low impact prices do not have
to be changed frequently, which results in a low value for k. However, when disruptions have a
high impact and a similar rate of occurrence it can be argued that k is higher compared to the
low impact case in order to prevent the retailer for excessive back orders and the associated costs.
Therefore the following research questions is denoted.

2. What is the in
uence of disruptions on the pricing reference inventory level?

In extension to research question 2 it can be obtained that k and the base-stock level (S) are also
influenced by each other. When S is low it can be argued that k is low as well, otherwise the
retailer will charge the high price for a large amount of time and will eventually sell less. In order
to examine the behavior of the base-stock level and pricing reference inventory level the following
research question is denoted.

3. How is the pricing reference inventory level a�ected by the base-stock level?

Another extension for research question 2 is to examine the influence of disruptions on the price
increase �. It can be argued that for different disruption and recovery rates, the price increase is
affected.

4. What is the in
uence of disruptions on the price increase?

By using the second research question the effect of the base-stock level on k is examined. However,
it can be argued that due to an increase in price the retailer will sell less items and in return needs
a lower base-stock level in order to prevent stock-outs. In order to examine this reasoning the
following research question is denoted.
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5. What is the e�ect of the pricing reference inventory level and price increase on the base-stock
level?

By using research questions 1 through 5 the behavior of the policy is examined. However, none of
these research questions examine if the obtained values for the policy parameters will be optimal
or near-optimal. Hereof, research question 6 is denoted in order to examine if there exist optimal
or near-optimal values for the policy parameters of the proposed policy.

6. Do there exist any conditions under which the policy parameters are optimal?
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Chapter 4

Model

In this chapter the basic setting for examining the influence of supply chain disruptions on a
single retailer’s pricing and inventory decisions is discussed. In order to limit the model behavior
in Section 4.1 the scope is defined and an elaboration on the basic assumptions is provided. In
Section 4.2 these assumptions are translated to each of the corresponding constituents of the model,
by describing the conceptual model. An overview of all assumptions is provided in Appendix B.

4.1 Scope

In order to examine the behavior of the system and to analyze the effects of implementing the
proposed policy the scope for this thesis is narrowed to a single location - e.g. a retailer - single
supplier, single product setting. The use of a single supplier setting results in a dependent relation-
ship for the retailer and supplier. Due to this dependency an opportunity to examine the influence
of disruptions on a single retailer’s pricing and inventory decisions is provided. However, it is as-
sumed that the retailer does not have any information on the current state of the supplier and can
solely obtain this information by means of the supply process - i.e. when orders are not delivered
on time. Furthermore, it is generally assumed that orders already shipped by the supplier are not
affected by disruptions. Further elaboration on this assumption is provided in Section 4.2.3.

From academic literature on revenue management it can be inferred that the majority of researchers
use a setting in which the retailer under consideration operates in an environment that is charac-
terized by imperfect competition - i.e. the retailer acts as a price setter or, to a further extent, the
retailer is a monopolist (Chan et al., 2004; Chen and Simchi-Levi, 2010). Based on this observation
in revenue management literature the scope of this thesis will be narrowed to a retailer with the
ability to set prices. This setting provides the possibility to examine the influence of disruptions
on actual pricing decision(s), due to the fact that demand is directly influenced by changes in the
offered price, by using a price dependent demand function.

In order to examine the influence of customer behavior - e.g. whether or not the customer buys the
product - a business-to-customer (B2C) setting is selected. By assuming that the retailer acts as
a price setter further entails that customer’s buying decisions are affected by the retailer’s pricing
decisions.

The retailer charges a price based on the current on-hand inventory. By comparing this offered
price to his reservation price each customer decides whether or not to buy the product. Therefore,
the retailer uses a posted price strategy and does not try to discover the customer reservation prices
via, for example, an auction. In several pricing research papers assumptions are made on customer
behavior - e.g. the customer acts as strategic buyer and the arrival rate of the customer. In this
thesis it is assumed that customers will arrive according to a Poisson process, which is discussed
in more detail in Section 4.2.2. In extension to the customer arrival process, each customer will
act as a non-strategic buyer, which entails that each customer will not adapt his behavior - e.g.
arrival rate and reservation price - owing to pricing and inventory decisions made by the retailer.
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Furthermore, similar to the retailer it is assumed that customers do not have any information on
the current state of the supplier. This is in line with the non-strategic behavior assumption and will
help to prevent customer panic buying (Shou et al., 2011) or the Reverse Bullwhip Effect (RWBE)
which states that customer anticipate differently to changes in price than expected (Rong et al.,
2009)

It is possible to roughly divide products into two distinct classes: perishable and durable products.
The main difference between these product classes is the fact that perishable products have a time
dimension. This dimension entails that a product must be sold before a specified time horizon
and is considered as scrap afterwards. By focusing on pricing and inventory decisions, product
perishability is left out of scope. By considering durable goods it is assumed that products can be
held on stock for an infinite duration of time. Furthermore, in order to limit the possible solution
space it is assumed that the product is heterogenous and no substitute for the product exists.

This thesis aim is to increase a single retailer’s profit, when supplies are considered to be uncertain,
by using a combined inventory and pricing policy. A number of possible parameterizations of this
combined policy will be evaluated based on their long run expected profit. The objective function
for this thesis is provided in Section 4.3.

Fig. 4.1: Scope

4.2 Conceptual model

The previous section defined the scope and narrowed it to a single retailer, single supplier single
product setting. In line with this scope this section elaborates on the individual assumptions made
for each part of the system depicted in Figure 4.1. Throughout this section and the remainder of
this thesis the subscript i represents the arrival of the ith customer. The total number of customers
is represented by N .

The remainder of this section starts by discussing the relevant assumptions with regard to the
retailer. In Section 4.2.2 the demand process characteristics will be discussed, followed by a section
on the characteristics of the supplier and a section on the supply process.

4.2.1 Retailer

The retailer faces demand via the demand process - arrow 1 in Figure 4.1 - and orders are received
via the supply process - arrow 2 in Figure 4.1. When demand cannot be fulfilled directly from
stock it will be back ordered. In addition, it is assumed that in case the retailer has stock customer
orders are delivered immediately - i.e. the customer lead time equals 0.

In this section the retailer’s decision variables are discussed. The retailer can influence its profit
by changing the following variables; the base-stock level (S), the pricing reference inventory level
(k), and the price increase (�).
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Base-stock level

For inventory management a continuous-review base-stock policy is selected. A continuous-review
policy is selected for the fact that inventory is reviewed after each customer arrival. Furthermore,
by using a continuous review policy the retailer can obtain information on the state of the supplier
within less amount of time compared to a periodic review policy, especially when no lead time is
assumed.

By using a continuous review inventory model it is implied that every time when inventory hits a
level below the base-stock level S an order is placed to restore inventory back to S. Furthermore,
this entails that the inventory position (IPi) - i.e. the net on-hand inventory (Yi) plus the total
outstanding orders (Oi) minus the total outstanding back orders (Bi) will always be equal to S
after each customer arrival.

IPi = S (4.1)

By incorporating the statements for the inventory position into condition 4.1 this results in.

IPi = Yi +Oi �Bi (4.2)

Pricing reference inventory level

Recall from Section 4.1 that the goal of this thesis is to develop a combined inventory and pricing
policy in order to maximize a single retailer’s profit under uncertain supplies. In this policy k
entails the pricing reference inventory level which is used in order to prevent the retailer for major
stock outs and associated back order costs. When on-hand inventory, at time of a customer arrival,
is below this level the price will be increased with a percentage �. To prevent that the retailer will
solely charge the increased price k is limited to be between 0 and S � 1. Therefore, the following
statement for the pricing reference inventory level is obtained.

k 2 (0; ::; S � 1) (4.3)

Although it is assumed that unmet demand is back ordered the values for k are restricted to solely
positive integers in order to limit the possible solution space.

Price

The offered price by the retailer at the time of a customer arrival is represented by Pi. This value
is either P - i.e. the price initial offered by the retailer - or (1 + �)P - i.e. increased posted price
when net inventory is equal or below k . Based on the previous it holds that P < (1 + �)P . In
order to limit the possible solution space it is assumed that the price can be doubled at maximum
- i.e. the highest value for � equals 100%.

� 2 (10%; :::; 100%) (4.4)

Furthermore, due to the exploratory design of this thesis incremental steps of 10% are used when
exploring the long run expected profit maximizing setting for the proposed policy.
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4.2.2 Demand process

Demand is characterized by the arrival process of customers and their reservation prices. Further-
more, it is assumed that the customer order quantity is unaffected by the retailer’s decision on
price. The buying quantity for each customer is assumed to be equal to 1 unit.

Arrival process

In line with the general assumption in inventory management literature it is assumed that customers
arrive with an exponentially distributed inter arrival time (IAT ). This entails that the customers
arrive according a Poisson process with an average number of customers arriving per day (�c).
Recall from the scope of this thesis that the customer acts as a non-strategic buyer. Therefore,
�c is not subjected to change over time and is unaffected by the retailer’s pricing and inventory
decisions.

Arrivals � Poisson (�c) (4.5)

And subsequently.

IAT � Exponential

�
1

�c

�
(4.6)

Reservation price

In Section 2.2.1 several approaches to model demand are discussed. For this thesis a customer
reservation price approach is selected, because this approach makes it possible to determine indi-
vidual product valuations for each arriving customer. Individual customer reservation prices are
represented by Pr. In order to determine the reservation price of an individual customer there exist
two major approaches. The first approach is a memory based approach and the second approach
uses a cumulative distribution function.

The first approach to model the customer reservation price is a memory based approach. In this
approach a weighted average or exponential smoothing of historical prices is used in order to
determine the current reference price (Greenleaf, 1995). By using these estimation methods an
underlying demand curve is developed. However, the use of this approach can lead to a more
volatile demand curve due to customer anticipation on changes in price (Rong et al., 2009). Recall
from the scope of this thesis that customer behavior is assumed to be non-strategic, therefore,
customers will not adapt their reservation price according to changes in price made by the retailer.
Furthermore, there is no previous pricing data available. Therefore, a cumulative distribution
function is selected in order to generate customer reservation prices. In this thesis it is assumed
that customer reservation prices are lognormally distributed. The lognormal distribution is selected
due to the fact that this distribution has normality in it and does not allow for negative values
- i.e. customer valuations cannot be negative. In order to model the customer reservation prices
by means of a lognormal distribution the mean (�r) and variance (Vr) need to be specified. The
expected reservation price is similar to the initial offered price by the retailer P . It seems reasonable
to assume that on average customers arriving at the retailer have an expected reservation price
equal to the initial offered price. For selecting the variance it must be remarked that when the
variance is increased the percentage of customers willing to pay a higher price is increasing as well.
Therefore, the variance is selected in a manner such that for low prices, approximately all the
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customers are willing to buy the product. Furthermore, the variance is selected in a way that for a
price 3 times P approximate no customers are willing to buy the product. If the mean and variance
are selected the lognormal distribution could be parameterized by using the following statements.

m = log

 
�rp
�2
r + Vr

!

(4.7)

v =

s

log

�
Vr
�2
r

+ 1

�
(4.8)

By using these parameters reservation prices have the following distribution.

Pr � Lognormal (m; v) (4.9)

4.2.3 Supplier

As described in Section 4.1 the research setting is limited to a single retailer, single product, and
a single supplier. In which the supplier faces random distributed disruptions characterized by the
disruption profile. Snyder et al. (2010) indicate that a common approach to model disruptions is
to represent the disruption profile with a two state Markov chain, with an “up” and a “down” state.
In line with this observation a two state continuous time Markov chain (CTMC) is used in order
to represent the supplier’s disruption profile (see Figure 4.2). In the “up” state the supplier is able
of delivering all the orders on time. In addition, to examine the influence of the disruption profile
on inventory and pricing decisions, it is assumed that during an “up” state the supplier has infinite
capacity. This assumption further entails that orders placed before disruptions are unaffected by
the suppliers disruption, due to the immediate shipment of orders. On the contrary in a “down”
state the supplier still has infinity capacity but is unable to deliver any order. For both states it
is assumed that the supplier is for an exponential distributed amount of time. The rate of going
from a “up” state to a “down” state is represented by � - i.e. the disruption rate. The rate for
the reverse direction is given by � - i.e. the recovery rate. In addition, the expected average time
spent in each of the states is given by 1

� for the “up” state and 1
� for the “down” state.

Fig. 4.2: Supplier Markov chain

From a modeling perspective it is assumed that at time 0 the supplier is in an “up” state.

4.2.4 Supply process

The supply process consists of the orders placed by the retailer and the shipped orders.
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Ordering

By assuming a continuous-review base-stock policy the retailer will immediately place an order at
the supplier when demand occurs. If the supplier is in an “up” state orders will be shipped directly
with lead time L. Therefore, a flow of individual orders is created between supplier and retailer.
When the supplier’s state changes from a “down” state to the “up” state it is assumed that all
orders placed during the disruption are combined and shipped with lead time L.

Lead time

For the base case model and the majority of the sensitivity analysis it is assumed that lead time
equals 0. This assumption provides a way to analyze the influence of the disruption profile and
other relevant parameters on the pricing and inventory decisions of the retailer. However, using
zero lead time results in a constant net inventory equal to the base-stock level S whenever the
supplier is undisrupted. Therefore, assuming zero lead time will probably allow the retailer to
maintain a lower base-stock level compared to cases in which lead time is a fixed integer greater
than 0. Furthermore, when orders placed during a disruption are delivered immediately after the
supplier becomes available again the possibility arises that, from a retailer’s perspective, supply
disruptions are favored in order to minimize holding costs. Therefore, in extension to the zero lead
time assumption in the sensitivity analysis the influence of lead time is examined. This lead time
is fixed in order to minimize the number of stochastic variables and for the ease of analysis.

4.3 Objective function

The objective is to evaluate different settings - i.e. different values for S, k, and � - of the proposed
policy based on its corresponding long run expected profit. In order to determine the objective
function the cost parameters and associated costs functions have to be identified and the resulting
profit function needs to be determined.

4.3.1 Costs

By assuming a base-stock policy, it is implicitly assumed that fixed ordering or setup costs are
negligible. Furthermore, due to the use of this policy no proportional ordering costs are considered.
Therefore, solely back ordering (b) and holding (h) costs will be included in the model. Back
ordering costs represent the cost paid for the loss of customer goodwill when the customer has to
wait until the product is delivered by the supplier. Holding costs represent the costs paid by the
retailer for carrying one unit of inventory for a specified unit of time. Furthermore, it is assumed
that back ordering and holding costs are proportional to the number of outstanding back orders
and on-hand inventory respectively. In the scope of this thesis it is stated that the performance
of each of the model parameterizations will be evaluated according to the corresponding long run
expected profit. Therefore, the following expression states the total expected costs resulting from
the selected S; k, and � values.

C (S; k; �) = hE [I (S; k; �)] + bE [B (S; k; �)] (4.10)
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4.3.2 Profit

In order to evaluate the effects of the selected S, k, and � values the long run expected profit of
each combination is used. Therefore, the expected revenue corresponding to the selected values
needs to be determined. In Section 4.2.1 the offered price at the retailer at time of customer
arrival, which is indicated by the subscript i, is represented by Pi. Therefore, total revenue, for
each parametrization of the combined policy, is defined by.

� (S; k; �) =

NX

i=1

PiD (Pi) (4.11)

In equation 4.11 D (Pi) refers to the demand corresponding to the offered price during the time of
a customer arrival. In Section 4.2.2 the buying quantity of an individual customer was assumed to
be equal to 1. Furthermore, recall from Section 4.2.2 that the customer decides to buy the product
based on the price charged at the time of his arrival (Pi) and his own reservation price (Pr). This
results in the following expression for the buying decision for each customer.

D (Pi) =

�
1 if Pr � Pi
0 if Pr < Pi

(4.12)

Equation 4.11 provides the total revenue over the simulation time. In order to determine the
expected revenue, the total revenue for a single simulation run is divided by the total simulation
time elapsed. Therefore, the expected revenue is given by equation 4.13.

E [� (S; k; �)] =
� (S; k; �)

T
(4.13)

In this statement T represents the time of the last customer arrival (N) and is similar to the total
simulation time elapsed. Using this statement the total expected long run profit can be obtained,
by including the cost expression from the previous section.

E [� (S; k; �)] = E [� (S; k; �)]� C (S; k; �) (4.14)

By incorporating the cost statement the following objective function is obtained.

E [� (S; k; �)] = E [� (S; k; �)]� hE [I (S; k; �)]�BE [B (S; k; �)] (4.15)

4.4 Simulation model

From Section 4.2 it can be obtained that there exist a large number of stochastic variables in
the considered problem. Due to these stochastic variables it is hard to obtain analytical results
for the model in Section 4.4.1. Therefore, a simulation model will be used in order to obtain
the answers to the research questions of Section 3.5 and provide a numerically analysis of the
model. For analysis a Visual Basics for applications (V BA) code for Excel is written which repeats
the sequence depicted in Figure C.1 in Appendix C. Furthermore, in order to generate input of
the input models the random generating function of MATLAB for the lognormal and exponential
distribution are used.
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4.4.1 Mathematical relations

Based on the assumptions made in Section 4.1 through Section 4.2 the following mathematical
model is constructed. In Appendix A an overview of all relevant variables is provided in Table A.1
through Table A.5.

Model

Recall from Section 4.1 that the goal of this thesis is to determine the profit maximization param-
eterizations of a combined inventory and pricing policy with decision variables S, k, and �. This
results in the goal function to maximize equation 4.15.

maxE [� (S; k; �)] = E [� (S; k; �)]� hE [I (S; k; �)]�BE [B (S; k; �)]

Subjected to.

� Yi +Oi �Bi = S

� k 2 (0; ::; S � 1)

� � 2 (10%; :::; 100%)

� Pi 2 (P; (1 + �)P )

� Di = D(Pi)

� i 2 (1; :::; N)

� S; h; b � 0

All these conditions are derived from Section 4.2.

4.4.2 Validation

In order to examine if the model holds plausible results a validation step is carried out. There exist
several methods to validate a simulation model (Sargent, 2007). This model is validated by using
an extreme condition test. In an extreme condition test it is checked if the model holds plausible
results for cases of extreme values of certain parameters (Sargent, 2007). This method is used by
having extreme values for; disruption and recovery rate, customer reservation price, price, and for
some cases lead time. For all of these conditions it can be obtained that the model holds plausible
results. For example, when the expected customer reservation price was higher than the offered
price it holds that the retailer had to hold extra stock in order to prevent for back orders and the
associated costs.
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4.5 Evaluation criteria

In order to use the results from the model some evaluation criteria have to be determined. A
traditional approach in inventory management literature is to check for the cost minimizing value
of the base stock level. However, in this thesis price is subjected to change and it is expected
that by charging a higher price the demand rate is changed. Due to this changing price and
demand, policies will be evaluated based on their long run expected profit. In order to compare
some parameter settings and to evaluate if the proposed policy is an improvement compared to a
base-stock policy the expected costs and revenue will be incorporated in the analysis as well. All
the evaluation criteria are summarized in the bullets below.

� Expected revenue

� Expected costs

� Expected long run profit

� Expected inventory

� Expected back orders

� Average price paid

4.6 Heuristic

To determine near-optimal values for S,k, and � a heuristic is developed. The heuristic consists of
two subsequent steps. An initial step to determine the values of S, k, and � in a simulation run
and an iterative step in which it is checked if the selection of some of the variables is affected by
the selection of the other variables. When the decision variables are not changed in the iteration
step the profit maximizing setting is selected.

1. Initial step

(a) Determine the profit maximizing base-stock level, when disruptions are taken into ac-
count by using simulation

(b) Use the obtained base-stock level to determine the initial values for k and �

2. Iterative steps

(a) Determine if the base-stock level changes by the incorporation of k and �

(b) If S changed use this new base-stock level to obtain values for k and �

This two step heuristic is depicted in Figure 4.3.
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Fig. 4.3: Heuristic for determining the profit maximizing values of S, k and �

In Chapter 5 this heuristic will be used in order to determine near-optimal values for the base
case scenario developed throughout that chapter. In the sensitivity analysis of Chapter 6 solely
the initial step of this heuristic is used in order to determine the effects of several parameters on
the combined pricing and inventory policy, in addition it is examined if using the proposed policy
results in different base-stock levels - i.e. the first step within the iteration.
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Chapter 5

Base case scenario

In order to determine if the policy proposed in Chapter 3 can be used as a mitigation strategy, a base
case scenario is developed. This chapter starts with determining the initial values of parameters
discussed in Chapter 4. Afterwards, the base case scenario is analyzed for the traditional base-stock
policy and the proposed policy. In the concluding section the heuristic from Section 4.6 is used in
order to determine near-optimal values of S, k, and � for the developed scenario.

5.1 Parameters

This section presents an overview of the initial values for all relevant parameters for the model in
Chapter 4. An overview of the initial values of the relevant parameters is presented in Table 5.1.

Table 5.1: Base case scenario

Parameter Value

� 0.5
� 0.5
�c 4
P 5
�r 5
Vr 20
h 0.125
b 3
N 5,000
L 0

5.1.1 Disruption and recovery rate

The initial values for the disruption and recovery rate are selected to be 0.5. This stems from the
fact that these rates reflect either no short or long disruptions and have no frequent or infrequent
rate of occurrence. By using an initial simulation run for the setting presented in Table 5.1 it can
be inferred that not all customers are affected by disruptions. Furthermore, comparing the results
of a non-disrupted case with the results obtained in the simulation it is indicated that costs for
the disruption case are higher. Therefore, it can be concluded that the selected disruption and
recovery rate negatively affects the retailer’s costs and consequently its profit.
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5.1.2 Customer arrivals

For the base case scenario an average number of 4 arriving customers per day is selected with a
total number of customers arriving of 5,000. By using these numbers and the previous examined
effects of the disruption and recovery rate on the retailer’s costs and profit it is concluded that by
using these parameter settings a possibility to examine the influence of disruptions on the retailer’s
pricing and inventory decisions is provided.

5.1.3 Reservation price

In the conceptual model it is assumed that the expected value of the customer reservation price
distribution is equal to the price initially offered by the retailer. As a result the expected value of
the customer reservation price distribution equals 5. Furthermore, the conceptual model provided
conditions for the selection of variance of customer reservation price. Recall that the variance will
be selected in such a manner that the total percentage of arriving customers that is willing to buy
the product is decreasing in price, and for low prices it holds that the percentage of customers that
is willing to buy the product is almost equal to 100%. Furthermore, the percentage of customers
that is willing to pay a price 3 times the initial offered price is approximate none. Therefore, based
on Figure 5.1 the variance of the customer reservation price is selected to be equal to 20.

Fig. 5.1: Variance selection

By assuming an expected value of 5 and a variance of 20 for the customer reservation price distri-
bution results in an initial demand rate of: �c Pr (Pr � Pi) = 4 � 0:351 = 1:40 units a day. Recall
that in the proposed policy prices are subjected to change - i.e. increased when net inventory is
below or equal to k. As a result the demand rate decreases because Pr (Pr � Pi) is decreasing in
price (see Figure 5.1).
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5.1.4 Cost parameters

Holding costs are selected to be 2.5% of the initially offered price. This percentage approximates
the long run average interest percentage in the Netherlands until 20121. Although, the selected
holding costs are low compared to the back ordering costs, this setting provided the possibility
to examine the effect of disruptions. It must, however, be noted that using low holding costs will
result in increased base-stock levels.

By assuming that back ordering costs are 60% of the initially offered price, a large proportion of the
costs are related to back orders. Therefore, the majority of the costs consists of back ordering costs
and as a result base-stock levels will be high especially due to the low holding costs. However, these
high back ordering costs do not affect the examination of the influence of disruptions on pricing
and inventory decisions.

5.2 Analysis

In this section the results and analysis of the base case scenario are presented. This section starts
by examining the convexity of the cost function in the base-stock level. By using this convexity
it is examined if using the proposed policy has any effect, positive or negative, on the retailer’s
revenue, cost, and profit compared to the traditional base-stock policy.

As a final analysis the heuristic from Section 4.6 is used in order to determine the near-optimal
base-stock level, pricing reference inventory level and price increase by using the settings from the
base case scenario (see Table 5.1).

5.2.1 Cost function analysis

A cost function analysis is conducted in order to examine if the cost function is convex in the
base-stock level. By assuring the convexity of the cost function in the base-stock level it can be
obtained that a minimum exists. The examination of convexity of the cost function is done by
means of graphical analysis. This is selected because no mathematical expression could be derived
for the cost function due to the number of stochastic variables in the problem. The graphical
analysis is conducted for several holding and back ordering costs.

Holding costs

In order to analyze if the cost function is convex in the base-stock level for several holding costs
these are varied as shown in Table 5.2. Note that in Table 5.2 the holding costs are represented as
a percentage of the price initially offered by the retailer.

Table 5.2: Different holding costs
h

2,5% 5% 10% 20% 40%

1http://www.tradingeconomics.com/netherlands/interest-rate
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Combing the percentages from Table 5.2 and the expected inventory and back orders from Table
D.1 in Appendix D results in the graph of Figure 5.2. In this analysis all other variables are kept
similar to the values in Table 5.1

Fig. 5.2: Holding costs analysis

From Figure 5.2 it can be observed that by increasing the holding costs the optimal base stock level
shifts to 1 for h = 40% from 8 for h = 2:5%. Furthermore, by dramatically increasing the holding
costs - e.g. up to 40% - it is observed that the cost function is almost linear. This behavior stems
from the fact that there exists an interplay between the back ordering and holding costs. When
holding costs are high the retailer wants to reduce the inventory in order to increase profit. On
the contrary the retailer is protected by using high base-stock levels for excessive back orders. As
a result of increased base-stock levels holding costs are increased and back ordering costs become
negligible. Therefore, a linear pattern is emerging in Figure 5.2. Based on this analysis it can be
observed that the cost function is convex in the base-stock level for different holding costs values.

Back ordering costs

In the previous section the convexity of the cost function in the base-stock level for different holding
costs was examined. A similar analysis will be conducted in order to study if the cost function is
also convex in the base-stock level for different back ordering costs. The different back ordering
costs are presented in Table 5.3.

Table 5.3: Variation of back ordering costs
b

20% 40% 60% 80% 100%

By using the cost parameters combined with the data from Table D.1 in Appendix D the following
cost graphs are obtained. In this analysis all other parameters are equal to the values in Table 5.1.
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Fig. 5.3: Back ordering cost analysis

From Figure 5.3 it can be obtained that by increasing the back ordering costs the value for the
base-stock level is increasing as well. This behavior is opposite to the resulting behavior of varying
the holding costs, note that the base-stock level is decreasing in holding costs. By increasing the
base-stock level it can be inferred that the number of back orders is minimized and therefore the
associated back orders costs will be decreased. Furthermore, the “savings” from having less back
orders will outweigh the increased holding costs as a result of holding extra inventory. Similar to
the holding costs analysis it can be obtained from Figure 5.3 that for high base-stock levels costs
are almost linear, due to an increased protection against back orders by holding ample inventory.

From this graphical analysis it can be concluded that the cost function is convex, in the base-stock
level, with regard to the back ordering costs.

Conclusions

Based on the analysis of the holding and the back ordering costs it can be concluded that by means
of a graphical analysis the cost function is convex in the base-stock level. By observing that the
cost function is convex in the base-stock level it can further be assumed that the profit function is
concave and therefore it is possible to select profit maximizing base-stock levels.

5.2.2 Analysis of base case scenario

In the previous section the convexity of the cost function in the base-stock level was observed. In
this section this convexity will be used in order to determine if disruptions have any effect on the
base-stock level and if using the combined inventory and pricing policy withholds any effects on
the retailer’s revenue, costs, and profit compared to the traditional base-stock policy. An initial
analysis is conducted in order to examine if disruptions have any effect on the traditional base-stock
policy. Subsequently, the effects of the proposed policy on revenue, costs, profit, and base-stock
levels of the retailer are examined.

From Figure 5.4 it can be observed that disruptions have an effect on the selection of the base-stock
level. For the base case scenario a base-stock level of 8 is selected in order to maximize profit. This
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in contrast to the situation in which no disruptions are considered for which a base-stock level of
1 is selected in order to maximize profit. Thereof, by considering disruptions the base-stock level
is increased by 7 units. Furthermore, the profit is 18.45% higher for the case when no disruptions
are considered.

Fig. 5.4: Profit and costs for the base case scenario by using a base-stock policy

In subsequent analysis the base-stock level will be fixed to 8 in order to determine the values of k
and �. Recall from Section 4.2.1 that � is selected from the set (10%; :::; 100%) with increments of
10%. Furthermore, the pricing reference inventory level is selected from the set (0; :::; S � 1) this
results in a variation of k between 0 and 7. In Figures 5.5 and 5.6 profit and cost functions for
some combinations of k and � are presented. In these figures a selection of the profit and costs
functions for k and � combinations is presented. The pattern that emerges is, however, similar
among all combinations.

Fig. 5.5: Profit for combinations of k and �
when S = 8

Fig. 5.6: Costs for combinations of k and �
when S = 8

Figure 5.5 provides an overview of the profit function for several k and � combinations when S is
fixed to 8. From this figure it can be observed that the maximal profit is obtained for � = 90%
and k = 0. Another interesting observation is made by comparing the cost functions of Figure 5.6
with the profit functions depicted in Figure 5.5. From this comparison it can be concluded that
the profit maximizing k in Figure 5.5 does not correspond to the cost minimizing k in Figure 5.6
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- i.e. the costs corresponding to � = 90% are minimized for k = 4 while profit is maximized for
k = 0. This observation is caused by the change in demand rate. In the undisrupted situation
the demand rate is 1.40 units a day, however due to disruptions price can be increased by 90%
resulting in a demand rate of 0.44 units a day. As a result of this changing demand rate inventory
is increasing in k and �, simultaneously less back orders are observed (see Figure D.3 in Appendix
D). Furthermore, due to the decreased demand rate, for all combinations of k and � the revenue is
decreasing (see Figure D.1 in Appendix D). Albeit this decrease in revenue, from Figure 5.5 it can
be inferred that profit is increasing, due to the diminution of costs.

From Figure 5.5 it can further be observed that profit decreases dramatically for high levels of
k. Due to the increased pricing reference inventory level price is changed earlier compared to low
pricing reference inventory levels. As a result the time of having a low demand rate is increased.
Therefore, the number of items sold is decreasing and the retailer’s holding costs will increase. In
addition, this behavior can be observed for high values of � which correspond to a more severe
decrease in demand rate. Therefore, the decrease in costs cannot compensate for the decrease in
revenue and subsequently the profit is lower for high k and � values.

If the cost functions in Figure 5.6 are examined more closely it can be observed that the cost
function is relatively insensitive to k. The cost functions of Figure 5.6 are determined by varying k
and � and having a base-stock level constant at 8 units. This base-stock level is obtained by using
the normal demand rate of 1.40 units a day. Due to price increase the demand rate is decreased
and back orders are minimized due to the selected k and � values. However, due to the fact that
for the normal demand rate the back orders are already minimized by using a base-stock level of
8 only a small decrease in back orders is observed and consequently a small increase in inventory
is observed. Therefore, the cost function is almost constant in k for fixed base-stock levels.

From Figure 5.5 the profit maximizing pricing reference inventory level and price increase are
obtained; k = 0 and � = 90%. After selecting a price increase of 90% the demand rate is reduced
with 68% - i.e from 1.40 units a day to 0.44 units a day. By fixing these parameters their influence
on the base-stock level is examined. This results in the revenue, cost and profit functions presented
in Figures 5.7, 5.8, and 5.9. The difference (grey line) between these graphs is given in percentage
of difference between the traditional base-stock policy (orange line)- i.e. only using a base-stock
policy- and the proposed policy (yellow line) - i.e. a pricing reference level k and price increase �
are used.

Fig. 5.7: Revenue for base-stock
policy and proposed policy with
k = 0, � = 90%

Fig. 5.8: Costs for base-stock
policy and proposed policy with
k = 0, � = 90%

Fig. 5.9: Profit for base-stock
policy and proposed policy with
k = 0, � = 90%

From Figure 5.7 it can be observed that revenue for low base-stock levels is lower for the proposed
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policy compared to using the normal base-stock policy. This difference stems from the change
in demand rate resulting from the increased price. However, due to this change in demand rate
the number of back orders is reduced and the associated costs are decreased dramatically (see
Figure 5.8). By this dramatic change in costs, the profit is higher for low base-stock levels for
the proposed policy (see Figure 5.9). However, when base-stock levels are increased the difference
in profit between both policies is reduced to 0%. The main logic behind this observation is that
for high base-stock levels, the retailer has ample inventory to deliver to the customer even during
disruptions. Therefore, prices do not have to be changed frequently which results in a similar
demand rate for both policies. However, when net-inventory is below 0 prices are changed when
using the combined inventory and pricing policy which results in a changed demand rate. Therefore,
revenue and subsequently profit is lower for high base-stock levels when the proposed policy is used.
Furthermore, although back ordering costs are decreased this decrease cannot compensate for the
increased holding costs.

Another important observation from Figure 5.7 through Figure 5.9 is that as an effect of the
changed demand rate the base-stock level could be reduced to 6 when implementing the combined
inventory and pricing policy. Contrary to an expected decrease in profit, profit is increased with
1.79% compared to the profit of solely using a base-stock policy.

5.2.3 Heuristic results

In order to determine near-optimal values for the decisions variables in the proposed policy the
heuristic form Section 4.6 is used. In the previous section the initial step and the first step of the
iteration step indicated that by implementing the proposed policy the base-stock level could be
reduced to 6. In this section the iteration steps are repeated until none of the observed values for
S, k and � change and the profit maximizing setting is selected. In Table 5.4 the results of using
the heuristic are presented.

Table 5.4: Heuristic results for base case scenario
Step Initial Iteration 1 Iteration 2

S 8 8 6 6 7 7
k 0 0 0 1 1 1
� 0% 90% 90% 90% 90% 90%

Costs 1.21 0.95 0.78 0.76 0.77 0.77
Profit 5.92 6.05 6.03 6.10 6.04 6.04

From Table 5.4 it can be concluded that after 2 iteration steps parameters of the values of S, k and
� in the proposed policy do not change anymore. Recall from the heuristic in Figure 4.3 that when
there are no changes observed in S, k and � the profit maximizing setting is selected. Therefore,
for the base case scenario after using the heuristic it is obtained that S = 6, k = 1 and � = 90% in
order to maximize profit.
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5.3 Conclusion: base case scenario

In this chapter a base case scenario is developed and analyzed. By means of a graphical analysis
the convexity of the cost function in the base-stock level was examined. By using the convexity of
the cost function it was concluded that the base case scenario resulted in higher base-stock levels
compared to a situation with no disruptions. Further analysis pointed out that the combined
inventory and pricing policy resulted in a higher profit and lower base-stock levels are obtained.

Using the heuristic to determine the near-optimal values for S, k, and � resulted in the following
values:S = 6, k = 0, and � = 90% with a corresponding profit of 6.03 which is an increase of 2.99%
compared to using the traditional base-stock policy.
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Chapter 6

Sensitivity analysis

In this chapter a sensitivity analysis is conducted with regard to the disruption profile consisting
of the disruption rate (�) and recovery rate (�), lead time, and demand process. Throughout this
chapter a general assumption of zero lead time is made, with exception for the sensitivity analysis
on lead time in Section 6.4. Furthermore, the analyses in this chapter are conducted in ceteris
paribus settings which entails that, except the parameter considered, all parameters are equal to
the values presented in Table 5.1.

The sensitivity analysis with regard to different parameters is conducted similar to the base case
scenario analysis in Chapter 5. However, the aim of this chapter is not to find near-optimal values
for the different settings of the parameters considered, but to indicate the directions and influences
of the parameters discussed. As a result only the initial step and the first step of the iteration of
the heuristic developed in Section 4.6 will be used. In addition, recall that this thesis focusses on
the effects of disruptions on a single retailer’s inventory and pricing decisions. Therefore, in this
chapter the sensitivity of the model to the disruption profile is more extensively analyzed compared
to the sensitivity analysis with regard to lead time and the demand process.

For examining the influence of several parameters this chapter aims at providing answers to the
following questions.

� What is the impact of each parameter on the base-stock level?

� What is the effect of each parameter on the retailer’s profit?

� What is the benefit, if any, using the combined inventory and pricing policy?

� What is the influence of the considered parameter on the combined inventory and pricing
policy?

Throughout this chapter simulation is used in order to obtain results for examining the influence of
several parameters. Due to the number of stochastic variables in the considered problem some of
the results are somewhat dispersed. However, the results provide good indications of the underlying
relationships between the examined variables and a single retailer’s pricing and inventory decisions.

6.1 Disruption rate

In Section 4.2.3 the supplier’s disruption profile was discussed. This section examines the influence
of the disruption rate (�) with regard to inventory and pricing decisions of a single retailer. For
this analysis the disruption rate is changed according to Table 6.1.
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Table 6.1: Disruption rates for sensitivity analysis
�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

6.1.1 Results

The first analysis aims to examine if the base-stock level (S) is influenced by the disruption rate. In
Figure 6.1 base-stock levels corresponding to different disruption rates are depicted. For obtaining
this figure solely a base-stock policy is used.

Fig. 6.1: Base-stock levels for disruption rates using a base-stock policy

From Figure 6.1 a clear pattern emerges. For disruptions with a low frequency - e.g. � = 0:1 -
base-stock levels are lower compared to frequent disruptions - e.g. � = 1. In order to examine if
profit and costs are affected by the disruption rate, graphs for different base-stock levels and the
corresponding profit and costs functions are depicted in Figure 6.2 and 6.3. In similar fashion to
Figure 6.1 for obtaining the subsequent figures solely a base-stock policy is used.

Fig. 6.2: Costs for different disruption rates Fig. 6.3: Profit for different disruption rates

From Figure 6.3 the influence of the disruption rate on profit for different base-stock levels is
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obtained. It can be observed that in Figure 6.3 the profit is lower for frequent disruptions compared
to infrequent disruptions. For infrequent disruptions - i.e. � = 0:1 - the observed profit is 4.93%
higher compared to frequent disruptions - i.e. � = 1. By Figures 6.2 and 6.3 the observed effect
of the disruption rate on base-stock levels of Figure 6.1 is confirmed. Furthermore, by increasing
base-stock levels profit for different disruption rates tend to converge. This convergent behavior
stems from the fact that for high base-stock levels the retailer has ample inventory to mitigate
disruptions risk and the associated costs largely consist of holding costs.

In order to develop understanding of the influence of the disruption rate on the pricing reference
inventory level (k) and the price increase (�), frequent disruptions are compared to infrequent
disruptions. Therefore, � = 0:8 is selected to represent frequent disruptions and � = 0:2 is selected
for the representation of infrequent disruptions, recall that for this analysis it is assumed that the
recovery rate equals 0.5. In Figures 6.4 and 6.5 for different combinations of k and � profit is
depicted with base-stock levels fixed to 6 for � = 0:2 and 8 for � = 0:8.

Fig. 6.4: Profit for combinations of k and �
when � = 0:2 and S = 6

Fig. 6.5: Profit for combinations of k and �
when � = 0:8 and S = 8

From Figures 6.4 and 6.5 it can be observed that profits are decreasing for increasing values of
k. Furthermore, it can be obtained that for both disruption rates profit is maximized when k is
low and � is high. As a result for � = 0:2 profit is maximized for k = 0 and � = 100% and for
� = 0:8 profit is maximized by using the following combination: k = 1 and � = 80%. Furthermore,
similar effects of k and � on revenue and costs as for the base case scenario are obtained for both
considered disruption rates (see Section E.1 in Appendix E).

From Section 5.2.2 it can be obtained that by incorporating the proposed policy base-stock levels
can be decreased compared to the traditional base-stock policy. Therefore, it is expected that a
similar observation can be made when incorporating k and � for both disruption rates. In Figures
6.6 and 6.7 the orange line depicts the traditional base-stock policy and the yellow line represents
the proposed policy. Note that due to the assumptions on k the profit for S = 1 for � = 0:8 is not
depicted.
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Fig. 6.6: Profit for � = 0:2 by using base-
stock policy or proposed policy with k = 0,
� = 100%

Fig. 6.7: Profit for � = 0:8, by using base-
stock policy or proposed policy with k = 1,
� = 80%

From Figures 6.6 and 6.7, in line with the expectations from the base-case scenario, it can be
obtained that for low base-stock levels profit is increased and for high base-stock levels profit is
decreased when using the proposed policy compared to the traditional base-stock policy. Another
observation is that for both cases the base-stock level can be decreased by using the proposed
policy. For � = 0:2 the profit can be increased with 2.86% and the base-stock level can be reduced
to 5. For � = 0:8 the profit can be increased with 1.89% while the base-stock level could be
decreased to 7.

An overview of revenue, costs, and profit for different disruption rates by using the base-stock
policy and the proposed policy is presented in Appendix E Section E.2.

6.1.2 Conclusion

The disruption rate affects the profit of the retailer for the traditional base-stock policy and the
proposed policy in the following manner: for an increased disruption rate the profit will be lower
(see Appendix E Section E.2). From the figures in Section E.2 in Appendix E, in line with the
analyzed disruption rates in the previous section, it can be concluded that by incorporating the
combined inventory and pricing policy profits can be increased for low base-stock levels. Although
revenue is decreased when using the proposed policy, changing the price results in lower demand
rates and as a result less back orders are observed. As a result of the decreased back orders, total
costs decline. This major decline in costs results in increased profit. An extra observation from
Appendix E is that by increasing the disruption rate differences in profit between the normal base-
stock policy and the proposed policy increase. This indicates that using the proposed policy is a
useful mitigation strategy for frequent and infrequent disruptions.

From Section 6.1.1 it can be inferred that base-stock levels can be reduced when implementing
the proposed policy for � = 0:2 and � = 0:8. In order to examine if implementing the proposed
policy results in lower base-stock levels for all disruption rates considered, a similar analysis for
these rates is conducted. Furthermore, it is examined if the determination of the pricing reference
inventory level is influenced by the disruption rate. In Figure 6.8 the different base-stock levels
and k levels for different disruption rates, for using the proposed policy, are presented.
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Fig. 6.8: Different k and S values for � when using the proposed policy

From Figure 6.8 it is observed that for an increased disruption rate base-stock levels, when using
the proposed policy, are demonstrating a similar pattern to the pattern observed in Figure 6.1 when
solely a base-stock policy is used. Note that the pattern in Figure 6.8 is not smooth due to the
number of stochastic variables in the simulation. By comparing Figure 6.1 and Figure 6.8 it can
be inferred that using the proposed policy base-stock levels could be reduced except for the most
frequent disruptions - i.e. � = 1. Furthermore, from the figures in Appendix E Section E.2 it can
be observed that for all considered disruption rates profit increases when the combined inventory
and pricing policy is implemented.

On the contrary to the base-stock level, values for k remain almost constant at 0 for different
disruption rates, due to the number of stochastic variables in the simulation study a peak is
observed for � = 0:8. This indicates that k is affected more by the demand rate, which in return
is determined by � and k, instead of the disruption rate. However, the difference between the
base-stock level and k is increasing in the disruption rate, which results in extra inventory held
by the retailer in order to be protected against frequent disruptions. Although it was expected
that, due to this extra inventory, for an increased difference between the base-stock level and k the
average price paid would decrease the opposite was observed (see Figure 6.9). For an increased
difference between the base-stock level and k the average price increases, which stems from the
fact that due to an increased frequency of disruptions prices change more often - i.e. net inventory
is equal or below k more times. Note that this direct translation of more frequent disruptions to
an increased number of price changes can be made due to the fact that the recovery rate is similar
across all cases.

36



Fig. 6.9: Average price paid for different disruption rates when using the proposed policy

Based on Figure 6.9, it is concluded that an increased disruption rate increases the average price
paid. From this it is expected that due to the increase in disruption rate, � will be increasing as
well. Therefore, the profit maximizing � values for the disruption rates are presented in Figure
6.10.

Fig. 6.10: Profit maximizing � for different disruption rates

From Figure 6.10 it is observed that the expected behavior for � does not hold and no real effect of
the disruption rate on � can be observed. A reason for this behavior can be found in the assumption
on reservation prices. Based on the reservation price the customer decides to buy the product or
not. Recall that the demand rate is provided by �c Pr (Pr � Pi) and that due to the price increase
the probability of customers willing to pay the increased price is decreasing, resulting in a decrease
in the number of items sold. In order to maximize profit, a trade-off between offered price and
pricing reference inventory level has to be obtained. Therefore, the maximal price increase o 100%
is not always selected for different disruption rates.

6.2 Recovery rate

The previous section examined the influence of the disruption rate on the traditional base-stock
policy and the proposed policy. In this section the influence of the recovery rate (�) is examined.
In order to represent long and short disruptions the recovery rate is varied from 0.1 - i.e. a low
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recovery rate to represent long disruptions - to 1.0 - i.e. a high recovery rate for short disruptions
- see Table 6.2.

Table 6.2: Recovery rates for sensitivity analysis
�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

6.2.1 Results

In order to examine the effects of the recovery rate similar steps as in the analysis of effects for
the disruption rate are carried out in this section. Note that in Figure 6.11 and the remainder
of this section the results for � = 0:1 are left out, because, this value leads to more extreme
results. By excluding � = 0:1 useful observations can be still made. The first analysis conducted
is to determine if the recovery rate affects the selection of the base-stock level when using the
traditional base-stock policy. In Figure 6.11 the profit maximizing base-stock levels are presented.

Fig. 6.11: Base-stock levels for recovery rates when using a base-stock policy

From Figure 6.11 it can be observed that for low recovery rates high base-stock levels are needed for
the retailer in order to maximize its profit. Furthermore, a clear relationship between the recovery
rate and base-stock level can be observed in Figure 6.11: the base-stock level is decreasing in the
recovery rate. Similar to the disruption rate it can be observed that, due to the selected holding
and back ordering costs, a minimum base-stock level of 4 is observed.

From the increased base-stock levels in Figure 6.11 it is expected that costs and profit are dramat-
ically affected by the recovery rate as well. Note that in these figures for � � 0:4 only the profit
functions until S = 15 are depicted. This is done because the maximal (or minimum, in case of
the cost function) is already obtained.
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Fig. 6.12: Costs for different base-stock lev-
els and recovery rates

Fig. 6.13: Profit for different base-stock lev-
els and recovery rates

From Figure 6.12 and 6.13 it can be inferred that for long disruptions - i.e. a low recovery rate -
the profit is lower than for short disruptions - i.e. a high recovery rate. Furthermore, the pattern
observed in Figure 6.11 is confirmed.

With the previous figures the effect of the recovery rate on profit and costs, when using the
traditional base-stock policy, are examined. In order to examine if the recovery rate has any effect
on the proposed policy first of all k and � need to be determined. In order to compare the effects
of different recovery rates on the proposed policy it is selected to represent long disruptions - i.e.
� = 0:2 - and short disruptions - i.e. � = 0:8. The corresponding initial base-stock levels for these
rates are 24 for � = 0:2 and 5 for � = 0:8.

Fig. 6.14: Profit for k and � combinations
when � = 0:2 and S = 24

Fig. 6.15: Profit for k and � combinations
when � = 0:8 and S = 5

From Figures 6.14 and 6.15 it can be concluded that for more severe disruptions profit is lower
regardless of the price increase used. Furthermore, it can be observed that for � = 0:2 the profit is
maximal for the following combination of the pricing reference inventory level and price increase;
k = 5 and � = 80%. For � = 0:8 the profit is maximized for the following combination: k = 0 and
� = 70% For an overview of the associated revenue and costs functions see Appendix F Section
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F.1. By comparing the difference in obtained k levels a direction for the influence of the recovery
rate is observed. From this observation it is derived that k is decreasing in the recovery rate.

In order to examine if base-stock levels can be reduced by using the obtained k and � values for
both the recovery rate cases the following figures are constructed.

Fig. 6.16: Profit for � = 0:2 using base-stock
policy and k = 5 and � = 80%

Fig. 6.17: Profit for � = 0:8 using base-stock
policy and k = 0 and � = 70%

The first observation from Figure 6.16 is that for S � 5 no profit line is depicted, due to the fact
that k = 5. Recall from Section 4.2.1 that the pricing reference inventory level is selected from the
following set (0; :::; S � 1). Since k = 5 the base-stock level has to be at least 6. In line with the
observed results for the disruption rate, incorporation of the proposed policy resulted in a decrease
of the base-stock level of 8 units and a profit increase of 19.24% for � = 0:2. For � = 0:8 the
base-stock level is not changed and due to implementing the policy the profit is decreased. These
differences stem from the fact that when net inventory is below or equal to k = 0 price is increased.
Although by changing the price the number of back orders is decreased, the decreased costs cannot
compensate for the abated revenue. This results in a lower profit observed for every base-stock
level when � � 0:6.

An overview of the effects of different recovery rates on revenue, costs and profit when using the
traditional base-stock policy and the proposed policy is presented in Appendix F

6.2.2 Conclusion

In order to examine the influence of the recovery rate on the proposed policy, the obtained new
base-stock levels and the profit maximizing pricing reference inventory level (k) after implementing
the proposed policy are presented in Figure 6.18 for different recovery rates. In this figure a clear
pattern is emerging. Note that the pattern of k values in Figure 6.18 is similar to the pattern
in Figure 6.11 for base-stock levels when using the traditional base-stock policy. Therefore, it is
stated that k is decreasing in the recovery rate.
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Fig. 6.18: k and S for different recovery rates when using the proposed policy

Another observation from Figure 6.18 is made when base-stock levels, obtained when using the
proposed policy, are compared with the base-stock levels from Figure 6.11. It can be observed that
for � � 0:7 lower base-stock levels can be obtained by using the proposed policy. For example, for
� = 0:2 the base-stock level could be reduced with 8 units when using the proposed policy. However,
when the recovery rate is high the policy does not result in lower base-stock levels compared to the
traditional base-stock policy (see Appendix F). In addition, it must be noted that for � � 0:6 profit
is decreased when using the proposed policy, due to a decreased demand rate. This stems from
the fact that for relatively short disruptions the retailer can be protected against back orders by
holding extra inventory for the time of the disruptions (see Figures F.9 and F.10 in Appendix F).
Therefore, contrary to results of the disruption rate, it can be concluded that the reverse pattern
-i.e. the differences between the traditional policy and the proposed policy is decreasing in the
recovery rate - is emerging.

The effect of the recovery rate on the base-stock level and (k) is examined in the previous part
of this section. In order to examine the influence of the recovery rate on �, the profit maximizing
� values for different recovery rates are depicted in Figure 6.19. In Figure 6.20 the average price
paid for the different recovery rates is depicted.

Fig. 6.19: Profit maximizing � for different
recovery rates

Fig. 6.20: Average price paid for different re-
covery rates when using the proposed policy

From Figure 6.19 it can be observed that for an increasing recovery rate, � is decreasing. Although
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no clear pattern is emerging it can be obtained that � is influenced by the recovery rate - i.e. �
decreases in the recovery rate. This stems from the fact that for short disruptions a major increase
in price will affect the demand rate negatively. As a result revenue is decreased dramatically and
profit is not increased, due to the fact that the abated costs cannot compensate for the decrease
in revenue. With regard to the average price paid it can be concluded that the average price paid
for low recovery rates is higher compared to high recovery rates (see figure 6.20). This stems from
the fact that in case of long disruptions the number of back orders has to be minimized more
dramatically compared to short disruptions due to the fact that a major cost component is back
ordering costs. The number of back orders is determined by the demand rate, recall that for high
� values the demand rate is decreased dramatically. Therefore, for situations with a low recovery
rate price is increased more dramatically compared to situations in which a high recovery rate is
considered.

6.3 Disruption and recovery rate comparison

In the analysis of Section 6.1 and 6.2 different effects of the disruption rate and recovery rate
are discussed. In this section a comparison between the effects of both rates is made in order to
determine which of the rates has a major influence on pricing and inventory decisions of a retailer.

In Figure 6.21 base-stock levels for using the base-stock policy and proposed policy for different
disruption and recovery rates are presented. In Figure 6.22 the profits, when using the base-stock
policy and the proposed policy, for the analyzed disruption and recovery rates are compared and
presented.

Fig. 6.21: Base-stock levels for different dis-
ruption and recovery rates

Fig. 6.22: Profit for different disruption and
recovery rates

From Figure 6.21 it can be obtained that for low recovery rates base-stock levels are significantly
higher for both the base-stock policy and the proposed policy compared to obtained levels for
the disruption rate. Furthermore, it is obtained that using the proposed policy results in a lower
profit increase for different disruption rates compared to gains in profit for the recovery rates.
Furthermore, for high recovery rates - e.g. � � 0:6 - using the proposed policy does not result
in an increased profit and base-stock levels are not increased - e.g. for � � 0:7. Based on this
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comparison and the analysis in Sections 6.1 and 6.2 it can be concluded that the recovery rate has
a major influence on the base-stock policy and the proposed policy.

6.4 Lead time

In the analysis of the base case scenario and the previous analysis it is assumed that lead time equals
0. Although this assumptions allows for a good examination on the influence of the disruption
profile on inventory and pricing decisions it also provides somewhat idealized results. Therefore, in
this section the influence of lead time will be examined by using the lead times presented in Table
6.3.

Table 6.3: Lead times used for sensitivity analysis
L

1 2 5 8 10

The lead times from Table 6.3 will be incorporated in the base case scenario from Chapter 5.

6.4.1 Results

The results for lead time are examined in similar manner to the results of the disruption and
recovery rate. Therefore, it is examined if the base case scenario disruption profile combined with
lead time will affect the selection of base-stock levels. For an overview of different base-stock levels
for the lead time from Table 6.3 see Figure G.1 in Appendix G. The general outline for these cases
is that base-stock levels are increased when lead time is increased. Furthermore, it can be stated
that lead time has a negative effect on the retailer’s profit especially for low base-stock levels. Both
observations stem from the fact that lead time affects all the orders in the supply process, resulting
in increased base-stock levels for the different lead times considered. Furthermore, due to lead time
the number of back orders is increased. As a result profit is decreased more dramatically for cases
in which a long lead time is considered.

In order to examine the effect of lead time on proposed policy a case with short lead time (2 days)
and long lead time (10 days) are compared to the results of the base-case scenario from Section
5.2.2. The determination of k and � is done in similar fashion as in the previous sections. See
Appendix G from which it is inferred that k = 1 and � = 100% when lead time equals 2. In
addition, k = 0 and � = 80% for the case in which lead time equals 10.
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Fig. 6.23: Profit for lead times base-stock
policy

Fig. 6.24: Profit for lead times using the pro-
posed policy

When Figure 6.24 is compared to Figure 6.23 it can be inferred that using the proposed policy
results in lower base-stock levels. Furthermore, incorporating the proposed policy results in higher
profits. Furthermore, no effects of lead time are observed when implementing the proposed policy.
This entails that using the proposed policy will increase profit and decrease base-stock levels
regardless of lead time. This observation is further supported by the figures for revenue, costs, and
profit in Appendix G.1. For which no discrepancy can be found with the results for the disruption
and recovery rate.

In comparison to the base case scenario in which a profit increase of 1.79% by incorporation of
the combined inventory and pricing policy. For the lead time case it was observed that profit was
increased with 4.42% when lead time equals 2 days and with 2.90% for lead time equals 10 days
when using the proposed policy. These results support that the incorporation of the proposed
policy results in increased profits. Furthermore, the base-stock levels were reduced to 10 and 22
respectively.

6.5 Demand process

In the previous sections of this chapter the analyses conducted, were focussed on the supply side
of the problem. In this section the focus is on the demand process. In Section 6.5.1 the customer
arrival rate characteristics will be changed. In Section 6.5.2 the sensitivity of the model for different
reservation price distributions is examined. For this section the gamma distribution is selected
because distribution does not allow for negative values. The uniform distribution is used due to
the fact that boundaries for the reservation price can be adjusted which results in the selection of
solely non-negative values.

6.5.1 Customer arrival rate

In this section the influence of the customer arrival process on the proposed policy will be examined.
As a result of a different arrival rate the demand rate is subject to change as well. In Table 6.4
different values for �c are depicted.
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Table 6.4: Customer arrival rates for sensitivity analysis
�c

2 4 8 16

Results

Due to the change in demand rate the selection of base-stock levels is changed. For an increased
�c it can be obtained that the base-stock levels are increasing compared to the base case scenario.
This stems from the fact that the demand rate is given by �c Pr (Pr � Pi). Because the reservation
price distribution is not changed, increasing �c results in a higher demand rate and subsequently in
higher base-stock levels. Another effect of the increased arrival rate is the increase in revenue and
subsequently an increase profit. This stems from the fact that the time to achieve 5,000 arriving
customers is decreasing when �c increases. Because � = 0:5 and � = 0:5 are not changed the
number of customers affected by disruptions increases, which translates into the increased number
of back orders for the normal base-stock policy (see Figure H.1 in Appendix H). Another effect
of the increasing arrival rate is the fact that expected values are increased, due to fact that the
expected values used in the simulation study are divided by the total time elapses. Because N is
fixed to 5,000 and �c increases the total time elapsed decreases and as a result expected values
increase. Therefore, the results of this analysis need to interpreted with relative care.

The results of using the different arrival rates when incorporating the proposed policy are depicted
in Table 6.5.

Table 6.5: Results for arrival rates by using the proposed policy
�c 2 4 8 16

S 4 8 13 23
k 1 0 2 7
� 30% 90% 70% 20%

From Table 6.5 the logic that for an increased demand rate the base-stock level has to be increased
is observed. Furthermore, these results indicate that for an increased number of customers that is
affected by disruptions k is increased. From Table 6.5 no clear pattern or relationship between the
customer arrival rate and the price increase is obtained.

6.5.2 Different demand distribution

In the previous section it is assumed that customer reservation prices are represented by a lognormal
distribution. However, in the literature a variety of other distributions is used in order to model
customer reservation prices (Talluri and van Ryzin, 2004). In order to study the effect of the
selected reservation price, the reservation price distribution is changed to a gamma distribution
or an uniform distribution with the expected value equal to the price initially offered price by the
retailer.
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Gamma distribution

From the introduction to this section it can be obtained that the expected value of the gamma
distribution equals 5. Furthermore, in order to have comparable results the variance will be set
equal to the variance of the lognormal distributed reservation prices used throughout this thesis.
When using the gamma distributed reservation prices no differences, compared to the base case
scenario, is obtained in the initial simulation run. Therefore, a base-stock level of 8 is used for
determining k and �. When k and � are determined it can be observed that using gamma distributed
reservation prices results in a higher profit for all combinations of k and �, see Figures 6.25 and
6.26. From these figures it is obtained that using gamma distributed reservation prices profit is
maximized for k = 2 and � = 70% which differs from the lognormally distributed reservation prices
for which k = 0 and � = 90% result in a maximal profit when the base-stock level is fixed to 8.

Fig. 6.25: Gamma distributions profit for
combinations of k and � when S = 8

Fig. 6.26: Lognormal distribution profit for
combinations of k and � when S = 8

The higher profits in case of the gamma distributed reservation is caused by the different Probability
Density Functions (PDF) of the gamma and the lognormal distribution which are depicted in Figure
6.27.

Fig. 6.27: PDF for gamma and lognormal distributions

By comparing the probability density functions of Figure 6.27 it can be obtained that the probabil-
ity for a customer having a reservation price between 5 and 10 is higher when gamma distributed
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reservation prices are considered, this is translated into an increased demand rate when using the
gamma distribution when price equals 5 (demand rate is 1.68 when �c = 4). Therefore, higher
profits are obtained when using gamma distributed reservation prices. Furthermore, the profit
decreases less steep in k for multiple � values when using gamma distributed reservation prices.
Which is another effect of the shape of the probability graph of the gamma distribution compared
to the lognormal distribution.

Although there exists a difference in profit for the two considered reservation price distributions
there exists no difference in the obtained effect for the proposed policy when using gamma dis-
tributed instead of lognormally distributed reservation prices. In Appendix H the effects of the
policy are depicted for the revenue, costs and profit. Furthermore, a profit increase of 3.42% is
obtained and the base-stock level is reduced to 7.

Uniform distribution

In the introduction of this section it is stated that for both distributions it was assumed that
the expectation is equal to the initial offered price. Furthermore, for the gamma distribution
the variance was assumed to be equal to the variance considered for the lognormally distributed
reservation prices. For the uniform distribution, however, when using an expected value of 5 results
in a different variance (8.33), due to the fact the boundaries for this distribution have to be set to
0 and 10. A direct result of using the uniform distribution is an increased number of items sold
compared to the base-case scenario. It can be expected that 50% of the customers is willing to pay
the initial offered price and therefore the demand rate changes to 2, due to the fact that �c = 4.
This change in demand rate stems from the PDF differences between the lognormal distribution
and the uniform distribution for which every customer valuation is between 0 and 10 is equally
likely to occur (see Figure 6.28).

Fig. 6.28: PDF for uniform and lognormal distribution

Due to the change in demand rate as a result o uniform distributed reservation prices mentioned
above, the base-stock level is increased to 11. In order to determine k and � and compare these
values to the results of the lognormally distributed reservation prices from Figure 6.26 the following
figure is depicted.
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Fig. 6.29: Profit for combinations of k and � using uniform distributed reservation price

When comparing Figure 6.29 with Figure 6.26 it is obtained that, due to different demand rates,
profits are higher when using uniform distributed reservation prices. Furthermore, it can be ob-
tained that profit is maximized for k = 4 and � = 30%. Incorporating these results leads to a
base-stock level of 9 and a profit increase of 2.05%. From Appendix H it can further be obtained
that for revenue, costs and profit no differences in the overall effects of the proposed policy are
obtained when using uniform distributed reservation prices.

6.5.3 Conclusion

In this section the influence of the customer arrival rate and the selected reservation price distribu-
tion was examined. It can be concluded that for all of these parameters the demand rate changes.
This change in demand rate is translated into the different base-stock levels before and after the
incorporation of the proposed policy. However, when comparing the results for the different ar-
rival rates and demand distributions with the results from the previous sensitivity analysis no real
differences are obtained with regard to the general outline of the policy.

48



Chapter 7

Conclusions, limitations and directions for
further research

In this chapter answers to the research questions from Section 3.5 combined with the main ob-
servations and conclusions from Chapter 6 are presented. Furthermore, managerial implications
are discussed in order to provide guidance in using the combined inventory and pricing policy.
Due to assumptions and the setting considered in this thesis some limitations arises, which will
be discussed in Section 7.3. This chapter is concluded with a discussion on directions for further
research.

7.1 Conclusions

In this thesis the influence of supply chain disruptions on a single retailer’s pricing and inventory
decisions was examined. By implementing a combined inventory and pricing policy a retailer has
the possibility to be better protected against the (financial) losses stemming from disruptions. In
the following sections conclusions with regard to the supplier’s disruption profile, the proposed
policy itself, and optimality conditions are discussed. The answers to the research questions in
Section 3.5 form the basis for the conclusions provided in the subsequent sections.

7.1.1 Disruption profile

In this section the main observations and conclusions with regard to the disruption profile are
discussed. From the analyses in Chapter 6 it can be inferred that the base-stock level is affected by
both constituents of the disruption profile. With regard to the disruption rate it can be concluded
that base-stock levels are increasing in the disruption rate until a maximum value, due to the
selected holding and back ordering costs, is obtained. The recovery rate has an opposite influence
on base-stock levels - i.e. base-stock levels are decreasing in the recovery rate. The range of base-
stock levels, when the disruption rate is fixed to 0.5, for different recovery rates is between 4 (for
� = 1) and 24 (for � = 0:2) while the range of base-stock levels, when the recovery rate is fixed
to 0.5, for different disruption rates is between 4 (for � = 0:1) and 8 (for � = 1). Therefore, it
can be concluded that the recovery rate has a significantly higher impact on the selection of the
base-stock levels when using the traditional base-stock policy.

When implementing the proposed policy similar effects for the disruption and recovery rate on
base-stock levels are observed. However, it must be noted that by using the proposed policy base-
stock levels could be lowered for cases with a low recovery rate (� � 0:7) compared to using a
traditional base-stock policy. When the recovery rate is high - i.e. � = 0:6 - using the proposed
policy has a negative effect on the retailer’s profit. This decrease in profit is caused by a decreased
demand rate, which will be discussed in more detail in Section 7.1.2.
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In similar fashion it was examined if the disruption profile has any effects on the pricing reference
inventory level (k) and the price increase (�). For this analysis opposite results with regard to the
disruption and recovery rate were obtained. The disruption rate does not withhold any significant
influence on the determination of k and �. For approximate every disruption rate considered in
this thesis k remained constant at 0. Furthermore, for � no clear pattern was emerging for the
different disruption rates considered. This stems from the fact that due to disruptions back orders
are observed. The resulting number of observed back orders is determined by the pricing reference
inventory level, price increase, and the duration of the disruption. Stated differently, due to k
and � the demand rate is changed and the period for this different demand rate is determined by
the recovery rate. The frequency - i.e. disruption rate - only determines the occurrence of the
disruption and the number of demand rate changes. This further explains the effect of the recovery
rate on k and �. With regard to k it can be concluded that it is decreasing in the recovery rate.
Furthermore, with regard to � it is observed that it is as well decreasing in the recovery rate,
although the pattern is less clear to observe than for k. As a result it can be concluded, in line
with previous statements, that the recovery rate has a major influence on the determination of the
base-stock level, pricing reference inventory level, and the price increase.

7.1.2 Combined inventory and pricing policy

In the previous section is was concluded that the disruption profile and in particular the recovery
rate affects the decision variables. It can be concluded that implementing the proposed policy will
result in an increased profit and a lower base-stock level for frequent and infrequent disruptions
with a high impact - e.g. low recovery rates - compared to holding extra inventory, in the form of
increased base-stock levels.

The main logic behind the increased profit is the following: as a consequence of changing the price
the demand rate is changed, due to the use of customer reservation prices. The demand rate is given
by �c Pr (Pr � Pi) and due to an increase in price Pr (Pr � Pi) is decreasing when net inventory
is equal to or below k. As a result of the decreased demand rate the number of back orders is
decreasing as well. Throughout this thesis it was assumed that back ordering costs represent 60% of
the initial offered price and holding costs were 2.5% of the initial offered price. Due to disruptions
the number of back orders increases which results in an increase in the associated back ordering
costs. Therefore, the effect of disruptions is translated into the back ordering costs of the retailer.
Combining this observation and the decreased demand rate as a result of implementing the proposed
policy results in dramatically decreased costs observed for all cases in the sensitivity analysis of
Chapter 6. However, another effect of the decreased demand rate is a decrease in revenue. This
decrease in revenue is, however, compensated by the abated costs resulting in an increase in profit.
Note that this logic only holds for low base-stock levels. If the retailer has a high base-stock level
there is ample inventory to sell to the customer even during disruptions. Furthermore, for high
recovery rates having ample inventory proved to be a useful mitigation strategy - i.e. for � � 0:6
- no profit increase was obtained by using the proposed policy. Which stems from the fact that
having back orders for a short period of time - e.g. during the disruption - can still increase the
profit of the retailer, due to the fact that the retailer still makes a margin on a back order.

In the previous part the effect of implementing the proposed policy on revenue, costs, and profit
was discussed with regard to the effect of a changing price on the demand rate. Another conclusion
of this thesis states that the base-stock level and k are defined independent of each other and are
individually determined by the disruption profile, and the recovery rate in particular. Furthermore,
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no pattern emerges for an increase or decrease of the difference between k and the base-stock level
with a relationship to the retailer’s profit.

A final examination of the interplay between the pricing reference inventory level and the price
increase is carried out. A general pattern that is emerging among all analyzed cases is that k is
decreasing in �, due to the fact that the demand rate is decreased. The magnitude of this decrease
is determined by �. The duration of the low demand rate period is partially determined by the
recovery rate and partially by the pricing reference inventory level. In order to maximize profit a
trade-off between k and � is obtained in order to minimize back orders. Therefore, not for all cases
considered the maximal price increase of 100% was selected.

7.1.3 Optimality conditions

Throughout this thesis no conditions for selecting optimal values of S, k, and � are determined.
This can be explained by using figure 7.1 in which net inventory development is depicted for the
case in which lead time equals 0 and the retailer faces disruptions in its supply chain.

Fig. 7.1: Net inventory changes when implementing the proposed policy

From figure 7.1 it can be obtained that during the period that the supplier is undisrupted net
inventory remains equal to the base-stock level (S), due to the zero lead time assumption. When
the supplier is disrupted net inventory is decreasing with a demand rate depending on the initial
offered price. When net inventory is below or equal to k the price is increased with �. Due to this
price increase the demand rate is decreased, recall that the demand rate is given by �c Pr (Pr � Pi).
As an effect of the decreased demand rate net inventory is decreasing more gradually until the
supplier is available again and net inventory is restored to a value above k which results in a price
decrease to the initial offered price. No optimality conditions could be derived from this process,
because it is not possible to determine if net inventory is below or equal to k and thus the timing
of the price increase resulting in a change in demand rate cannot be determined. This demand
rate is necessary to determine expectations for inventory level and back orders. Furthermore, due
to the fact that the supplier’s disruption profile is represented with a two state continuous time
Markov chain, it is not possible to determine the durations of multiple disrupted and undisrupted
periods. Therefore, no conditions similar to for example the newsvendor model could be derived.

51



Although no optimality conditions could be determined a heuristic is developed to determine near-
optimal solutions for the decisions variables. By using this heuristic the near-optimal strategy for
the base case scenario is to have a base-stock level of 6, a pricing reference inventory level of 0,
and a price increase of 90%. This resulted in a profit increase of 2.99% compared to using solely
the traditional base-stock policy.

7.2 Managerial implications

This chapter started by stating the main conclusions of this thesis and indicated that implementing
the proposed policy has a positive effect on the retailer’s profit, especially when base-stock levels
are low and disruptions have a high impact. Although the main determinants and behavior of this
policy are discussed, throughout this thesis no real guidelines for managers are provided. This
section discusses some scenarios in order to determine for which disruption profile the policy is
most relevant. Furthermore, some guidelines for implementing this policy are discussed.

7.2.1 Different scenarios

In order to provide information for which disruption profile the proposed policy is most usable,
four different scenarios are developed. For these scenarios the disruption profile is characterized in
the following manner.

1. Infrequent low impact

2. Frequent low impact

3. Infrequent high impact

4. Frequent high impact

The rates for these different scenarios are depicted in Table 7.1. In order to analyze these different
scenarios the other variables are kept similar to the base case scenario in Table 5.1. In this analysis
only the effect of implementing the proposed policy is measured and no optimization is carried out.

Table 7.1: Different scenarios
Scenario 1 2 3 4

� 0.2 0.8 0.2 0.8
� 0.8 0.8 0.2 0.2

In this section only the main conclusions for these different scenarios will be stated. For a brief
discussion on the results see Appendix I. In Table 7.2 the differences in base-stock levels, costs, and
profits when using the proposed policy compared to the traditional base-stock policy are depicted.
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Table 7.2: Comparison between base-stock policy and proposed policy
Scenario 1 2 3 4

S difference (units) 1 0 6 11
Costs difference (%) -8.33 -17.54 -38.80 -47.76
Profit difference (%) 0.21 -3.17 8.97 19.92

From Table 7.2 it can be concluded that using the proposed policy is most profitable when dis-
ruptions are frequent and have high impact. For the infrequent high impact case the second best
results of using the proposed policy are observed. The observation that the policy is most suitable
for infrequent and frequent high impact disruptions is in line with the conclusions of this thesis.
Furthermore, from figures in Appendix I and the results in Table 7.2 support for the conclusion
that the recovery rate has a major influence on the proposed policy is obtained.

In Table 7.2 negative results for scenario 2 are obtained. These results can be explained by the
results from the sensitivity analysis of the recovery rate which states that when the recovery rate
is greater than 0.6 implementing the policy has a negative effect on the profit. Although the same
recovery rate is used in scenario 1 and 2; scenario 1 has some positive results. This indicates that
some small changes in profit could be observed when the disruption rate is decreased.

7.2.2 Disruption rate or recovery rate investment

For managers it is of particular interest which of the parameters in the disruptions profile one
should invest in order to minimize the financial losses caused by disruptions. From the sensitivity
analysis, conclusions, and the previous analyzed scenarios it can be inferred that the recovery rate
has a major influence on the retailer’s profit compared to the disruption rate. Therefore, a manager
should invest in increasing the recovery rate.

7.2.3 Implementation

This thesis proposed and analyzed a policy that changes price when net inventory is below a
pricing reference inventory level when supplies are disrupted. Thereof, a continuous monitoring of
a retailer’s net inventory is required. Due to the use of computer systems inventory management
can easily be done with a continuous review model. Another pre-requisite for implementing this
policy is that prices can be changed easily. By using these two conditions this policy could be
easily implemented in an online retail environment.

This policy could be less applicable for supermarkets in which prices cannot be changed easily and
people have a better understanding of the price, product and many substitutes exist. However,
some adjustments to the model and more research on substitution of goods or perishability could
make this policy applicable for supermarkets.

P2 service level

In traditional inventory management literature the P2 service level is defined as the fraction of
demand that is directly delivered from stock and is also known as the fill rate. The fill rate is given
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by;

P2 = 1�
E (B)

E (D)

In which E (B) represents the expected back orders and E (D) represents the expected demand in
a simulation run. By implementing the proposed policy it can be obtained that the demand rate is
decreasing and as a result the expected back orders are decreasing, due to this decreasing behavior
the P2 service level for implementing the proposed policy is increasing. For example, the service
level for the base case scenario is increased from 90.17% to 94.74%.

7.3 Limitations

This thesis is conducted internally at the Eindhoven University of Technology and therefore several
assumptions on customer behavior, inventory management, and the supply process are made.
Based on the sensitivity analysis in Chapter 6 the limitations of this study are discussed. In
Section 7.4 some possibilities to omit these limitations are discussed.

7.3.1 Customer behavior

A first limitation of this thesis stems from the assumptions on customer behavior. In Section 4.1
it was assumed that customers act non-strategically. The main limitation from this assumption
stems from the fact that in real life customers are more aware of prices. Therefore, it seems more
natural to assume that customer behavior is affected by the changes in price made by the retailer.
Another implication of the non-strategic assumption is the fact that customers are not aware of the
disruptions. Although this assumption is valid for short and frequent disruptions - e.g. a truck delay
- the opposite is true for infrequent and long disruptions - e.g. a hurricane that destroys important
parts of the supply chain. Due to these differences in disruptions it could be argued that when
customers are aware of disruptions as a consequence ordering quantities are changed for example
customer panic buying (Shou et al., 2011). This points out another important limitation of this
thesis, namely that customer orders are limited to 1. This assumptions limits the study because
the quantity ordered by the customer can change when the offered price is increased. Changing
the afore mentioned assumptions will result in more realistic customer behavior patterns.

7.3.2 Price and costs

In the conceptual model in Section 4.2 the price increase was limited to be doubled at maximum.
However, it could be argued that due to a severe disruption the retailer wants to increase the price
with more than 100%.

Another important assumption on price stems from the assumption that customers act non-
strategically. As a result the retailer can increase and decrease the price against no costs. However,
it is more reasonable to assume that the retailer has to pay some costs due to the loss of goodwill
or brand equity when price is increased.

54



7.3.3 Optimality

From Section 7.1 it can be inferred that there exist no optimality conditions for the problem
analyzed in this thesis. Therefore, some of the solutions found for the analyzed settings in this
thesis cannot be translated into general guidelines for managers, or conditions for a supply chain
design. However, this thesis provides insight in the behavior of a retailer that has uncertain supplies
and manages demand via price.

7.3.4 Assumptions validity

The assumptions in this thesis are used in many of the studies on supply chain disruptions and
revenue management. Although these assumptions are based on literature in order to increase the
validity of the results the assumptions could be checked with an external party.

7.3.5 Sensitivity analysis

Although the main conclusion obtained from the analysis in Section 6.1 through 6.3 is that the
recovery rate does the retailer more harm a general remark must be made. It has to be stated
that both rates are analyzed in isolation. Therefore, the results represent only the effect of that
rate. However, based on the results for different scenarios in Section 7.2.1 it can be obtained that a
sensitivity analysis which incorporates more scenarios results in broader examination of the effects
of the disruption profile than the sensitivity analysis conducted in this thesis.

In the conceptual model it was stated that assuming a zero lead time in the sensitivity analysis
could make disruptions preferable for the retailer in order to minimize holding costs. From Section
7.1.2 and the sensitivity analysis in Chapter 6 it is inferred that for high recovery rates using
the proposed policy does not improve the retailer’s profit. Furthermore, in Chapter 6 lead time
was examined to have a negative influence on the retailer’s profit. Therefore, it is stated that
for a broader examination of the effects of the recovery rate lead time should be included in the
sensitivity analysis.

7.4 Directions for further research

In the previous section the main limitations of this thesis were discussed. In this section directions
for further research and possibilities to omit the previous discussed limitations are provided. The
new directions are discussed for customer behavior, retailer, product, supplier, and system consid-
ered. However, it must be noted that many of the directions mentioned in this section will increase
the complexity of the problem.

7.4.1 Customer behavior

The first limitation discussed was concerned with the assumptions on customer behavior. Further
research should examine what the influences is of using individual customer reservation price distri-
butions. In this thesis a general customer reservation price distribution with parameters equal for
all customers was assumed. However, when using customer individual parameterized reservation
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price distributions diversified reservation prices are obtained and subsequently, results more in line
with reality are obtained. In addition, to this model extension in combination with reservation
price distribution, a decreasing price dependent customer order quantity distribution can be used.
This omits the assumption of a customer ordering quantity of 1 and provides more realistic results
- i.e. customers are willing to pay a higher price but are buying less. Another important implicit
assumption made in this thesis is that the retailer can increase or decrease price against no costs,
because the customer acts as a non-strategic buyer. However, it is more reasonable to assume that
customers are aware of the prices and the retailer has to pay some costs for increasing the price
for the loss of customer goodwill or brand equity.

Section 6.5.1 examined the influence of an increased or decreased customer arrival rate. Recall
from Section 6.5.1 that the results needed to be interpreted with care. This stems from the fact
that an increased arrival rate results in an increased number of customers affected by a disruption.
Furthermore, an increased arrival rate reduces the time elapsed until a number of 5,000 customers
is observed. Consequently the expected values increase. Therefore, in order to obtain more reliable
results on the effects of the customer arrival rate the total of number of arriving customers has to
be increased simultaneously. In that case results for different arrival rates become more reliable.
Therefore, a combination between total customers and the arrival rate has to be found.

7.4.2 Product

For this thesis it was assumed that customers do not have an outside option or a substitute for the
product. In the Dell example of Section 1.1 a strategy to switch demand to undisrupted components
was used. In order to analyze the benefits of using the proposed policy a substitutive product could
be considered. When a substitute is considered one must make reasonable assumptions on the price
of the substitute and the availability of the substitute. The model presented in this thesis can be
further extended by including reservation price distributions for both products, on the contrary it
seems natural to assume a similar reservation price distribution for both products because they
are substitutes. Furthermore, switching costs - i.e. what are the costs of one customer switching
to the other product - could be included in the model.

Another possible extension of the model is to incorporate product perishability. Incorporating
product perishability leads to different use of the policy. Instead of using a price increase price
could be decreased in order to sell the products before it is considered scrap. Decreasing the price
with a percentage leads, according to the observed logic in this thesis, to an increased demand rate.
Due to this increased demand rate the number of items sold will increase and the retailer will be
out of stock quicker, which will in turn results in a larger amount of the retailer’s inventory that
does not have to be scrapped.

7.4.3 Retailer

Making the assumption that the retailer is unaware of the supplier’s disruption is valid. However,
in literature arguments are provided for sharing information on disruptions in order minimize the
risks stemming from them. From Snyder et al. (2010) it could be inferred that using contracts
to share information on disruptions could have valuable results for both the retailer and supplier.
Similarly it can be argued that by a collaboration between the supplier and retailer the proposed
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policy leads to different results, because, if the retailer is aware of the suppliers recovery rate the
retailer can adjust the pricing reference inventory level and price increase.

Feng and Chen (2003) consider a retailer with multiple pricing reference inventory levels. In this
thesis a single pricing reference inventory level was used. For future research multiple levels could
be included. For example, for multiple levels the price increase is between 0% and 50% for k1
and between 50% and 100% for k2, note that S > k1 > k2. Hereof, the demand rate is changed
multiple times. In extension multiple levels could be used to either indicate a price increase or
decease. In Federgruen and Heching (1999) it is obtained that when inventory exceeds the base-
stock level the price is decreased. However, it must be noted that using multiple pricing inventory
reference levels and different pricing tactics will increase the possible solution space of the problem
and therefore it’s complexity. In the previous section the extension of the model for product
perishability is discussed, using multiple pricing reference inventory levels could be of value for
cases in which perishable products are considered. Another application of time dependent pricing
reference inventory levels is to use these levels as a guidance for product introduction and price
becomes an indicator for the product maturity.

Another direction for further research on the pricing reference inventory level is to allow k to be
negative as well. In Section 4.2.1 it was assumed that k was not allowed to have negative values.
However, due to the assumption that all demand, not directly delivered from stock, is back ordered
it can be argued that the retailer allows for some partition of the demand to be back ordered and
price is increased dramatically if this level is reached.

This thesis assumed relatively high back ordering costs compared to the holding costs. This resulted
in a major component of the costs consisting of back ordering costs. Therefore, by changing the
demand rate a major decrease in costs was observed due to the fact that back orders are decreased
dramatically. However, different results could be obtained when the ratio of back ordering and
holding costs differs from the one considered in this thesis due to the effect of the selected costs
on the selection of base-stock levels. However, more research is needed in order to determine the
influence of costs on the proposed policy.

7.4.4 Supplier

In this thesis the sensitivity of the policy with regard to the disruption and recovery rate was
examined. In Section 7.2.1 four different scenarios were discussed and it was concluded that the
policy is most effective when disruptions are frequent and have a high impact. In order to develop
more understanding of the effects of the policy on retailer’s revenue, costs, and profit more scenarios
should be considered in future research. This could be extended with the incorporation of lead
time in order to determine in which situations the policy has the best results.

From the sensitivity analysis in Chapter 6 it can be inferred that the main influence of disruptions
on the proposed policy is the recovery rate. Furthermore, it can be stated that in a situation in
which no disruptions are present lead time affects the base-stock level in the following manner;
the base-stock level increases in lead time. However, the effects of lead time are less dramatic
compared to the influence of the recovery rate on base-stock levels. Therefore, it could be stated
that for cases in which lead time is short and the recovery rate is low, lead time does not have
an effect on the retailer’s profit anymore. On the contrary, lead time could influence the effects of
the proposed policy in cases where the recovery rate is high. In Section 6.4.1 it was observed that
implementing the proposed policy in the base case scenario extended with lead time will result
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in lower base-stock levels and increased profits. Therefore, it is argued that implementing the
proposed policy results in decreased base-stock levels and increased profits for cases in which lead
time used in combination with high recovery rates.

7.4.5 System

In this thesis a two-echelon system - i.e. a retailer and supplier - was considered. However, supply
chains nowadays consist of multiple echelons or different systems - e.g. assembly or distribution.
Thereof, the effects of using a proposed policy should be examined in a multi-echelon system in
which several of all constituents could be disrupted. In Atan and Snyder (2012) approaches for
different multi-echelon systems with disruptions are discussed. However, in these systems a known
demand rate is used, while in this thesis a price dependent demand function was incorporated.
When this demand function is incorporated in a multi-echelon system it provides the opportunity
to extend for example the model of Shang and Song (2003) in which policies in an undisrupted
serial system for optimal base-stock levels are developed. In line with the extension to a multi-
echelon system research could be focussed on settings in which multiple suppliers are present. For
example, the model for supplier selection of Dada et al. (2007) could be extended by incorporation
of pricing decisions and a price dependent demand function.

7.4.6 Applications

Final directions for further research arise when possible applications for the developed proposed
policy are examined. It could be argued that due to its nature of the proposed policy it is valuable
in the airline industry in which an increasing scarcity of the resource can lead to price increase.
In this thesis scarcity can be found during disruptions - i.e. shortage of supplies. Note that this
research could be combined with using multiple levels for the pricing reference inventory level.
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Appendix A

list of variables

In this appendix an overview of all the variables used in the model is presented.

A.1 List of variables

Table A.1: Event identifier

Variable Unit Explanation

i Counter Customer arrival

A.2 Decision variables

In Table A.2 an overview of the decision variables in the model is provided.

Table A.2: Decision variables

Variable Unit Explanation

S Units Base-stock level

k Units Pricing reference inventory level

� Percentage Price increase

A.3 Input parameters

In Table A.3 an overview of all the input parameters is provided.
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Table A.3: Input parameters

Variable Unit Explanation

h e/unit/day Holding costs

b e/unit/day Back ordering costs

P e/unit Initial price charged

Pi e/unit Price charged a time of ith customer arriving

L Days Lead time

Di Units Demand based on the offered price(Pi)

N Customers Total number of customers arriving

A.4 Input model parameters

Table A.4 provides an overview of the input parameters used for the stochastic models.

Table A.4: Input model parameters

Variable Unit Explanation

�c Customers Average number of arriving customers

�r e/unit Average reservation price of customers

Vr Variance of the reservation price

� Disruption rate

� Recovery rate

A.5 Other variables

In Table A.5 an overview of the other important variables in the model is provided.

Table A.5: Other variables

Variable Unit Explanation

Qi Units Number of units ordered by the retailer

Oi Units Total outstanding orders

Ii Units Inventory

Yi Units Net inventory max(0; Ii)

Bi Units Total number of back orders max(0;�Ii)

T Time Time of the N th arriving customer

63



Appendix B

Overview of assumptions

In Figure B.1 an overview of all the assumptions made in Chapter 4 is presented.

Fig. B.1: Overview assumptions
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Appendix C

Simulation model

In Figure C.1 the steps taken by the simulation model are presented.

Fig. C.1: Simulation model
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Appendix D

Base case scenario

In Chapter 5 a base case scenario was presented. In this appendix the results for this scenario not
presented in Chapter 5 are presented.

D.1 Results

Note that in Table D.1 the E (Costs) and E (Profit) are determined by using the variables in
Table 5.1

Table D.1: Result base case scenario
S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E (Costs) 2.98 2.32 1.87 1.57 1.39 1.29 1.23 1.21 1.23 1.28 1.34 1.41 1.49 1.58 1.68
E (Profit) 4.16 4.82 5.27 5.56 5.74 5.85 5.90 5.92 5.90 5.86 5.80 5.73 5.65 5.55 5.46

E[I] 0.59 1.28 2.04 2.85 3.70 4.57 5.46 6.35 7.26 8.18 9.10 10.03 10.96 11.89 12.83
E[B] 0.97 0.72 0.54 0.41 0.31 0.24 0.18 0.14 0.11 0.08 0.07 0.05 0.04 0.03 0.02

In Section 5.2.2 the profit and costs functions for several combinations of k and � are discussed.
In the following graph the effect on revenue is presented.

Fig. D.1: Revenue for different k and � combinations, S = 8

When the price is increased, the demand rate changes. This change in demand rate is reflected
in a change in inventory and back orders. For different � values inventory and back orders are
presented for a varying k levels.
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Fig. D.2: Inventory for different k and � com-
binations when S = 8

Fig. D.3: Back orders for different k and �
combinations when S = 8

67



Appendix E

Disruption rate

E.1 Revenue and costs for � = 0:2 and � = 0:8

In Section 6.1.1 the results of k and � on profit functions for disruption rates of 0.2 and 0.8 are
depicted. In this section of the appendix the results for combinations of k and � on revenue and
costs are presented. First of all an overview of � = 0:2 is presented followed by the results for
� = 0:8.

Fig. E.1: Revenue for � = 0:2 different com-
binations of k and �

Fig. E.2: Costs for � = 0:2 different combi-
nations of k and �

Fig. E.3: Revenue for � = 0:8 different com-
binations of k and �

Fig. E.4: Costs for � = 0:8 different combi-
nations of k and �

68



E.2 Results different disruption rate

For these figures, k and � are obtained after discovering the base-stock level for the traditional base-
stock policy, which is depicted as the orange line in figures below. When k and � are determined
a new analysis was run in order to obtain the yellow lines, which depict revenue, costs, and profits
for implementing the combined inventory and pricing policy. The difference (%) in these graphs
(grey lines) are determined by comparing the revenue, costs and profit of the base-stock policy
with the proposed policy.

Fig. E.5: Revenue, costs, and profit for � = 0:2 when using the base-stock policy or the proposed
policy

Fig. E.6: Revenue, costs, and profit for � = 0:3 when using the base-stock policy or the proposed
policy

Fig. E.7: Revenue, costs, and profit for � = 0:8 when using the base-stock policy or the proposed
policy
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Fig. E.8: Revenue, costs, and profit for � = 1:0 when using the base-stock policy or the proposed
policy
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Appendix F

Recovery rate

F.1 Revenue and costs for � = 0:2 and � = 0:8

In Section 6.2 the profit for different k and � combinations for � = 0:2 and � = 0:8 are presented.
In this section the revenue and costs graphs for similar combinations of k and � are presented.

Fig. F.1: Revenue for � = 0:2 for combina-
tions of k and �

Fig. F.2: Costs for � = 0:2 for combinations
of k and �

Fig. F.3: Revenue for � = 0:8 for combina-
tions of k and �

Fig. F.4: Costs for � = 0:8 for combinations
of k and �
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F.2 Results for different recovery rates

In this section the results for the traditional base-stock policy (orange line) and the combined
inventory and pricing policy (yellow line) and the difference (%) between the two (grey line) for
revenue, costs, and profit are presented in the graphs below.

Fig. F.5: Revenue, costs, and profit for � = 0:2 when using the base-stock policy or the proposed
policy

Fig. F.6: Revenue, costs, and profit for � = 0:3 when using the base-stock policy or the proposed
policy

Fig. F.7: Revenue, costs, and profit for � = 0:8 when using the base-stock policy or the proposed
policy
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Fig. F.8: Revenue, costs, and profit for � = 1:0 when using the base-stock policy or the proposed
policy

F.3 Back orders

In order to examine the differences between high � and low � values the number of expected back
orders are compared for � = 0:2 and � = 0:8 for the traditional base-stock policy and the combined
inventory and pricing policy.

Fig. F.9: Back orders for � = 0:2 for using
base-stock and proposed policy

Fig. F.10: Back orders for � = 0:8 for using
base-stock and proposed policy

73



Appendix G

Lead time sensitivity

In Figure G.1 the base-stock levels for different lead times are presented. Note that in Figure G.1
the triangles represented the corresponding S values for the lead times from Table 6.3.

Fig. G.1: Base-stock levels for different lead times using a base-stock policy

In Figure G.2 the profit for varying lead times and base-stock levels are presented when the retailer
uses solely a base-stock policy.

Fig. G.2: Profit for different lead times for using the base-stock policy

In order to determine the k and � values for the cases when lead time equals 2 and 10 it is checked
which combinations of k and � maximize the retailer’s profit. In Figure G.4 not for all k values the
profit is presented for different � values due to the fact that for increasing � values k is decreasing.
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Fig. G.3: Profit for L = 2, S = 11 when
using the proposed policy

Fig. G.4: Profit for L = 2, S = 24 when
using the proposed policy

G.1 Results for the proposed policy

In this section the results for incorporation of k and � for lead time of 2 days and 10 days.

Fig. G.5: Revenue, costs, and profit for L = 2 when using a base-stock or proposed policy

Fig. G.6: Revenue, costs, and profit for L = 10 when using a base-stock or proposed policy
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Appendix H

Results sensitivity demand process

H.1 Arrival rate

Fig. H.1: Back orders for different arrival rates

H.2 Gamma distribution

In these figures the traditional base-stock policy (orange line) is compared to the combined in-
ventory and pricing policy (yellow line). The differences between the base-stock policy and the
combined inventory and pricing policy are presented with the grey line.

Fig. H.2: Revenue, costs, and profit for gamma distributed reservation prices when using a base-
stock or proposed policy

H.3 Uniform distribution

In these figures the traditional base-stock policy (orange line) is compared to the combined in-
ventory and pricing policy (yellow line). The differences between the base-stock policy and the
combined inventory and pricing policy are presented with the grey line.
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Fig. H.3: Revenue, costs, and profit for uniform distributed reservation prices when using a base-
stock or proposed policy
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Appendix I

Scenario results

In this appendix the results for the different scenarios are presented. The results of the traditional
base-stock policy are presented with the orange line. The yellow line represents the use of the
combined inventory and pricing policy. The difference (%) between both policies is presented by
the grey line.

Scenario 1

Fig. I.1: Revenue, costs, and profit for scenario 1 when using a base-stock or proposed policy

Scenario 2

Fig. I.2: Revenue, costs, and profit for scenario 2 when using a base-stock or proposed policy
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Scenario 3

Fig. I.3: Revenue, costs, and profit for scenario 3 when using a base-stock or proposed policy

Scenario 4

Fig. I.4: Revenue, costs, and profit for scenario 4 when using a base-stock or proposed policy

I.1 Conclusion

In this appendix the results for the four different scenarios from Section 7.2.1 are presented. It
can be observed that for a situation in which disruptions are frequent and have a high impact -
i.e scenario 4 - the policy has the best overall effects. This observation is inline with the overall
conclusion of this thesis that the proposed policy is best suitable for situations in which disruptions
have a low recovery rate. Another important observation from this appendix is that for the case
in which disruptions are short and frequent the policy does not result in increased profits. This
stems from the fact that for short disruptions inventory proved to be a valuable mitigation strategy.
Furthermore, due to an increased price the demand rate is decreased. However, when disruptions
are short having back orders still results in an increased profit compared to no back orders at all.
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