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Abstract

Supply chain risk management is becoming increasingly important in the European chem-
ical industry, driven by the high utilization of an aged and unreliable naphtha cracker eet
and the pressure of shareholders on short term �nancial results. However little attention
is devoted to addressing high-impact, low-likelihood risks. We develop and integrate an
approach to identify, categorize and quantify risks and a methodology to evaluate the
costs of disruptions and the value of mitigation options based on a two-stage stochastic
program. We explicitly di�erentiate between disruption periods and business as usual to
decrease the model size by approximately 90%. Furthermore, we include the conditional
value at risk in the objective function to address the risk aversion of decisions makers.
Based on a case study of a European supply chain of a global chemical company, this
study shows that the e�ects of cracker outages are highest for highly integrated assets
and decrease further downstream in the supply chain. We conclude that infrastructure
investments that increase responsiveness to disruptions, such as decreasing leadtime of al-
ternative supply and increasing unloading provide the greatest value in mitigating supply
risks in chemical supply chains.
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Summary

The 2015 incidents and subsequent outages at the Shell Moerdijk plant received a lot of
media and industry attention. With severe supply chain disruptions having such a massive
impact on the image and �nancial performance, we observe chemical companies shift from
‘Nobody gets credit for solving problems that did not happen’ to an increased awareness
and interest to better understand and address high-impact, low-likelihood risks1.

Almost all chemical supply chains start with hydrocarbon molecules supplied by a
relatively small number of large crackers. Most crackers in Europe are aged assets, with
owners being reluctant to spend a lot of capital to improve or even maintain cracker reli-
ability. Since 2005, several crackers have been closed without being replaced. Meanwhile
the downward trend of crude oil prices improves the competitiveness of naphtha crackers
compared to crackers that rely on lighter feedstock. Due to this change in supply/demand
balance, we expect crackers will run at high utilization rate. There is a positive correla-
tion between operating rate and outages, and the impact of a cracker outage increases in
a short market. Meanwhile, large chemical companies divest parts of their business under
shareholder pressure. This leads to segregation of the traditionally integrated chemical
supply chains and the crackers and downstream nodes are no longer owned by the same
company. This research project is done in cooperation with a leading global materials
company, ChemComp, focused on a European production site that is heavily integrated
with an upstream cracker owned by CrackComp. The company produces and sells sev-
eral products (P1, P2 and P3a to P3e) produced from three di�erent feedstocks (F1, F2,
F3) that are sourced from the cracker and external suppliers. Furthermore, P1 serves as
feedstock for P2 and P3.

To improve the insight in supply disruptions and potential risk mitigation options,
we provide a methodology to identify, categorize and quantify risks and the impact of
disruptions. A speci�c risk mitigation option impacts several risks, whereas a speci�c risk
can be mitigated by several mitigation options. The kernel of the project is the devel-
opment and use of a two-stage stochastic optimization model to analyze these complex
interdependencies and dynamics in an integrated way.

Table 1: Identi�ed risk categories threatening the ChemComp supply chain

Risk category Location
Cracker outage CrackComp
F3 plant outage CrackComp
P1 plant outage ChemComp

Distillation tower outage ChemComp
Secondary supply risks supplier/rail

We identi�ed �ve risk categories threatening feedstock supply; presented in Table
1. Our analysis shows that the expected disruption costs for ChemComp in the sup-

1Chopra and Sodhi (2004); Rice and Caniato (2003)
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Figure 1: Frequency distribution of scenario
costs
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Figure 2: Average scenario cost division

ply chain relying on the CrackComp cracker negatively impact earnings before interest,
taxes, depreciation and amortization excluding inventory revaluation (EBITDA) by 3.2%.
However, Figure 1 clearly shows the unpredictable nature of disruptions and only judg-
ing the costs of disruptions based on the expected costs is not doing justice to this. We
include the conditional value at risk, the expected costs of the 10% worst case scenarios,
to address this nature.

As shown in Figure 2, lost sales is the major driver of the costs of disruptions; extra
transportation costs and shutdown costs have a minor impact. If there is no production,
there are also no variable P1 production costs and no need to source feedstocks. This
cost avoidance is also modeled.
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Figure 3: Frequency of disruption
costs per quarter

The P3 business delivering a steady, signi�cant
quarterly EBITDA meeting Wall Street’s expecta-
tion signi�cantly contributes to ChemComp’s mar-
ket capitalization. Figure 3 shows the frequency
distributions for the expected costs of disruptions
for a quarter including all risks and including only
the cracker and F3 plant risks, the two assets that
are owned by CrackComp and outside ChemComp’s
inuence.

Based on the insights presented in this study, we
establish four recommendations to ChemComp.

� First, our analysis shows that disruptions in the P3 infrastructure have a bigger
e�ect than disruptions in feedstock supply. We recommend to investigate the vul-
nerabilities of the P3 assets and conduct a similar analysis as in this study.

� Second, the contractual minimum quantities with CrackComp prove to be a sig-
ni�cant cost in the case of plant P1 disruptions. It would be valuable to analyze
formal and informal agreements that inuence these costs and how they could be
further decreased.

� Third, we recommend to reevaluate the F3 allocation strategy in case of disruptions.

� Fourth, we recommend to invest in extra F3 unloading capacity, and in shortening
the P3 distillation tower back-up time.
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ChemComp’s supply chain network is similar to those seen at peer companies. There-
fore, we can derive insights from this case study that are applicable for other players in
the chemical industry. First, the e�ect of unplanned cracker outages on performance is
stronger if the a�ected assets are more upstream, closer to the cracker and reduces for
assets further downstream. Generally, there are more alternatives to acquire feedstock
further downstream and the impact of outages of assets close to those downstream assets
have a bigger impact than cracker outages. Second, mitigation options that increase the
responsiveness have the biggest impact on decreasing the e�ect of outages, plants that
have a variety of sourcing options are advantaged. Third, in the chemical industry we
have seen mergers, acquisitions, and divestitures leading to a change in ownership of as-
sets. Although assets are eventually owned by di�erent companies, dependencies in the
supply chain are reciprocal and we believe there is a signi�cant mutual interest to assess
outage risks and mitigation options across assets, across companies.

With this study, we contribute to science in �ve ways.

� First, we contribute to the integration supply chain risk management (SCRM) and
supply chain network design (SCND) by providing a comprehensive methodology
to identify, categorize and quantify risks that aims to provide meaningful input for
a quantitative SCND models.

� Second, we introduce a methodology to evaluate the e�ect of risk mitigation options
by only explicitly evaluating the periods that a supply chain is under the e�ect of
a disruption using a stochastic two-stage optimization model. Our methodology
reduces model size by 90% and therefore allows to add more complexity to the
model or to analyze a larger amount of potential scenarios.

� Third, we answer to calls of both SCRM (Sodhi et al., 2012) and SCND (Ho et al.,
2015) literature by applying this methodology in an empirical study.

� Fourth, we show that the e�ect of including the CVaR as a robustness measure in
the objective function depends on the time horizon under study and the number of
risks included.

� Fifth, we introduce a formulation to model the minimum shutdown length in a set
of balance equations.

ChemComp strives for decisions based on objective data and data processing. We see
our approach as complementary to traditional approaches. The methodology developed
in our project has a fundamental, advantageous di�erence. It is relatively easy to model a
supply chain infrastructure in an objective way as a network of interconnected supply- and
demand-nodes. Once we have that model, we can concentrate all e�ort and discussions on
the quality of the data and assumptions feeding the model. Moreover, if there is a desire
to do a ‘what-if analysis’ based on di�erent business-, risk-, and mitigation-scenarios, it
is easy to have those di�erences reected in the model.

Using contemporary computer power with state-of the art mathematical optimization
software allows us to simulate thousands of scenarios in only a few hours. This is an
excellent way to deal with the stochastic nature of disruptions and how their negative
impact can be minimized by o�ering an array of potential mitigation options. The output
of those optimization runs show the �nancials, so use the language of those that eventually
make the investment decisions.
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Abbreviations and terminology

Table 2: Abbreviations and terminology

Term Meaning
BAU Business As Usual
Cracker Ethylene cracker
CVaR Conditional Value at Risk
EBITDA Earnings Before Interest, Taxes, Depreciation and Amortization

- We refer to the ‘Adjusted EBITDA before inventory revaluation’
if we refer to EBITDA

GBM Geometric Brownian Motion
F1 Feedstock type number 1, we consider 3 feedstock types
MDD Minimum Disruption Duration
MCP Monthly Contract Price
MIP Mixed Integer Program
MO Mitigation Option
mT metric Ton (1000 kg)
MTTF Mean Time To Failure
P1 Product number 1, we consider 3 products
P3a Variant a of product number 3, we consider 5 variants of product number 3
SAA Sample Average Approximation
SCN Supply Chain Network
SCND Supply Chain Network Design
SCRM Supply Chain Risk Management
SP Stochastic Programming
VaR Value at Risk
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Chapter 1

Introduction

The Japanese earthquake and subsequent tsunami, the September 11 attacks in 2001,
hurricane Katrina and the piracy attacks o�shore Somalia are only some of the major
disruptions that have challenged global supply chains in the recent past. However, it is
not always the inter-regional catastrophes that disrupt a supply chain. Incidents at a
single plant of a key raw material supplier can have disastrous e�ects on the continuity of
supply (Ltd., 2013). The accidents and subsequent outages at the Shell Moerdijk plant
are a recent example of supply chain disruptions in the chemical industry (Gonzalez,
2015).

These supply disruptions (amongst others) have shown in the past that the success
of a company is highly dependent on the success of its supply chain (Baghalian et al.,
2013). Hicks (2002) found that stock prices decrease 8.6% on average on the day of
the announcement of a supply chain disruption causing production or shipment delay.
Moreover, it is often followed by a decrease of as much as 20% in the next six months.
Despite this, Chopra and Sodhi (2004) argue that most companies focus on planning to
protect against recurrent low-impact risks while paying less attention to the high-impact,
low-likelihood risks. One possible rationale for this is clearly stated by a manager in a
study by Rice and Caniato (2003): ‘Nobody gets credit for solving problems that did not
happen’.

1.1 Motivation of study
Supply chain risk management is also gaining increasing awareness in the European chem-
ical industry. A majority of the chemical supply chains start with hydrocarbon molecules
supplied by a relatively small number of large crackers. Crackers in Europe are aged
assets owned by companies for which investments in commodity assets are not a priority.
Preventive maintenance capital investments are postponed as long as possible, resulting
in decreasing cracker reliability. Meanwhile, 11% of ethylene capacity has closed since
2005. Furthermore, with oil supply exceeding demand (even without the upcoming Iran
supply volume considered) the crude oil prices show a sustained downward trend. This
makes European naphtha crackers very competitive compared to crackers that rely on
lighter feedstock, and for the �rst time in many years the crackers are sold out. The
expectation is that they will run at 90% capacity for several more years, increasing the
impact and likelihood of unplanned outages.

Chemical commodities are shipped in large quantities, which makes storage and trans-
portation a challenging e�ort. Moreover, several of those commodities, e.g. ethylene and

1



CHAPTER 1. INTRODUCTION

butadiene, are extremely hazardous and storage and transportation are subject to strict
safety restrictions. This causes high dependency of downstream companies on a limited
eet of aged crackers that are the �rst node in large integrated and divergent supply
chains, resulting in signi�cant impact in the case of unplanned cracker outages. There-
fore, there is a strong desire to obtain quantitative insights in the long-term e�ect of
supply disruptions on the value, forecastability and volatility of earnings before tax, in-
terest, depreciation and amortization (EBITDA) and the e�ect of potential mitigation
options. This aids long-term decision makers to address the unreliability of supply of
feedstocks.

Meanwhile, the pressure of shareholders on chemical companies to boost pro�tability
by dividing up into smaller units or restructuring increases (Trager, 2015). Recent exam-
ples are the announced merger and subsequent split up of Dow Chemical and DuPont and
the intended divestiture of the performance materials business by Evonik (Primack, 2015;
Alperowicz, 2015). Consequently, the traditionally integrated chemical supply chains are
segregated and the crackers and its downstream nodes are no longer owned by the same
company.

Creating shareholder value drives the dividing and restructuring of chemical com-
panies into more focused entities. Focusing on long-term mitigation options might be
perceived to be in conict with the short term focus on creating shareholder value. How-
ever, Hendricks and Singhal (2003) have shown that supply chain glitches have the largest
negative impact on shareholder value compared to other events a�ecting the company.
Additionally, they show that the stock market penalizes �rms that experience glitches
irrespective of which link in the supply chain is responsible for that glitch. Therefore,
quantitative support for long-term decision making will not only improve the readiness
and decrease the e�ect of future supply disruptions, but also directly support the strategic
goals of chemical companies.

The motivation for this study is to aid chemical companies in increasing their insight
in high-impact, low-likelihood risks by providing an options evaluation tool that supports
getting insight in

� the e�ect of unplanned cracker outages on the performance of downstream supply
chains

� the e�ect of potential investment options in the supply chain network to mitigate
supply risks

� the trade-o� between investments to mitigate supply risks and shareholder value

To provide these insights, we conduct a case study in cooperation with a global leading
materials company focused on a European production site that is heavily integrated with
an upstream cracker of a supplier. We show the impact of supply disruptions at this
particular site and how the disruptions can be mitigated by investments in the supply
chain infrastructure.

1.2 Literature review
The challenge addressed in this thesis integrates two �elds of research that had long been
neglected but become increasingly mature �elds of research: supply chain risk manage-
ment (SCRM) and supply chain network design (SCND) under uncertainty. The goal of

2



CHAPTER 1. INTRODUCTION

this section is twofold. First, it introduces and outlines several key concepts that help to
de�ne the challenge faced by the chemical industry. Second, it supports the positioning
of the contribution of this study in these �elds of research.

1.2.1 Supply chain risk
Managerial researchers appear to use the term risk only to refer to the possible negative
outcomes while possible probabilities are less of an interest (e.g. Rowe, 1980; Mitchell,
1999). The argument used is that it is mostly the downside that seem to occupy the
managers (Khan et al., 2008). In line with this negative outcome focused de�nition, Ho
et al. (2015) de�ne supply chain risk as \the likelihood and impact of unexpected macro
and/or micro level events or conditions that adversely inuence any part of a supply
chain leading to operation, tactical, or strategic level failures or irregularities".

Literature is not unanimous in its de�nition of supply chain risk, nor how those risks
can be categorized. Several authors propose to divide risks between operational risk and
disruption risk (or catastrophic risk) (Tang, 2006; Sodhi et al., 2012). The �rst type of
risks is de�ned as frequent risk events, stemming from the inherent uncertainties in sup-
ply and demand while the latter refers to major disruptions, either natural or man-made.
Others propose a division between internal and external risks (Olson and Wu, 2010).
However, most research just identi�es risk types without overarching classi�cation. Ex-
ample categories are supply, operational, demand, security, macro, policy, competitive,
resource, disruptions, delays, systems, forecast, intellectual property, procurement, re-
ceivables, inventory, capacity, material ow, information ow and �nancial ow risks
(Chopra and Sodhi, 2004; Manuj and Mentzer, 2008; Tang and Musa, 2011). Based on
the available literature, Ho et al. (2015) synthesized a conceptual framework of supply
chain risks as shown in Figure 1.1. They divide risks into two categories, macro-risks and
micro-risks, similar to the division between disruption (catastrophic) and operational risk.
Micro-risks, frequent risk events, stemming from the inherent uncertainties in supply and
demand, can be divided into four types of risks: supply risk, manufacturing risk, demand
risk and infrastructural risk.

 

Figure 1.1: Conceptual Framework of Supply Chain Risks (Ho et al., 2015)

The di�erent discussed categorizations provide a conceptual understanding of the
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di�erent types of risks. However, they fail to group risks in a way that is necessary to
support a quantitative analysis, i.e. based on location of occurrence, impact and duration.

1.2.2 Supply chain risk management
Ho et al. (2015) synthesized di�erent SCRM de�nitions into a more precise and clear
SCRM de�nition: ‘an inter-organisational collaborative endeavor utilizing quantitative
and qualitative risk management methodologies to identify, evaluate, mitigate and mon-
itor unexpected macro and micro level events or conditions, that might adversely impact
any part of a supply chain’.

Based on a literature review, Manuj and Mentzer (2008) developed a model for risk
management and mitigation that consists �ve steps: risk identi�cation, risk assessment
and evaluation, selection of appropriate risk management strategies, implementation of
supply chain risk management strategies and mitigation of supply chain risks. While
Manuj and Mentzer (2008) developed a more general, qualitative supply chain risk man-
agement framework, there is a lot of research that focuses on speci�c risk management
strategies. Tang (2006) conducted a literature review on quantitative strategies/models
for managing supply chain risk. He suggested a classi�cation of four di�erent approaches
to mitigate supply chain risk and he classi�ed the articles reviewed in the area of supply
chain management according to these approaches and the issues highlighted in Figure
1.2. Based on this categorization, we can infer that the approach to mitigate the problem
under study falls within the category supply network design.

Figure 1.2: Strategic and tactical plans for managing supply chain risks (Tang, 2006)

1.2.3 Supply chain network design under uncertainty
The strategic design of the supply chain network is an essential part of the long-term
strategic planning of every company (Fleischmann and Koberstein, 2015). Simchi-Levi
et al. (2004) consider SCND as the primary and most important decision of supply chain
management for decreasing the costs and increasing the pro�ts of the whole supply chain.
SCND involves strategic decisions on the number, locations and capacity of required
production and distribution facilities of a company, or a set of collaborating companies,
as well as the selection of suppliers, subcontractors and 3PLs to serve demand of a
predetermined, but possibly evolving, customer base in a timely and e�cient manner
(Klibi et al., 2010; Sadghiani et al., 2015). Next to strategic decisions, SCND can involve
tactical and operational decisions (Farahani et al., 2014).

Stochastic programming in supply chain network design

The structural decisions in a SCN have to be made under uncertainty about the future
realization of random variables (Fleischmann and Koberstein, 2015). The dynamic and
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stochastic SCND problem is hard to capture by deterministic models. There is no guar-
antee about the performance of the design obtained by these models in future scenarios
(Klibi et al., 2010; Sahling and Kayser, 2016). However, most models proposed in the
literature are both static and deterministic and literature that integrates uncertainty in
supply chain management and SCND is still rare (Melo et al., 2009).

Two main directions of research have evolved to account for uncertainty in SCND
(Fleischmann and Koberstein, 2015). The �rst one seeks to extend deterministic models
in such a way that the solutions contain certain structures, e.g. based on graph theory,
that improve their performance under uncertainty (e.g. Kauder and Meyr, 2009). The
second research direction is based on the methodology of Stochastic Programming (SP).
A type of problem that is typically studied in SCND are recourse problems. The simplest
recourse models have two stages. In the �rst stage a decision is made on the structural
strategic decisions of the SCN. In the second stage there is a realization of the stochastic
elements (scenario) but there is also the operational ows decision to avoid the constraints
of the problem becoming infeasible. In real life and complex systems as supply chains, the
set of scenarios is possibly in�nite. Shapiro (2003) uses a Monte Carlo sampling technique
to approximate the original recourse problem with in�nite or an extremely large amount
of possible scenarios by a linear problem, the so called Sample Average Approximation
(SAA). This approach has been successfully applied to solve several SCND problems (e.g.
Santoso et al., 2005; Sch�utz et al., 2009; Klibi and Martel, 2012; Hamta et al., 2015).

Santoso et al. (2005) present a model to make the �rst stage strategic decision regard-
ing opening and closing of facilities and the acquisition of machines. In the second stage,
tactical production, acquisition and transportation quantity decisions are made. Uncer-
tain factors include demand and supply quantities and facility capacities. The objective
is to minimize expected costs.

Sch�utz et al. (2009) model a supply chain as a sequence of combination and splitting
processes. They make strategic decisions regarding facility location and the decisions
regarding production, inventory and transportation quantities are the second stage tac-
tical decisions. The uncertain parameters in their scenarios are costs, supply, capacity
and demand. The objective is to minimize the annualized �xed facility costs and the
expected operating costs of the supply chain.

Hamta et al. (2015) develop a model where strategic decisions are made in the �rst
stage, while the second stage contains tactical assembly line balancing decisions. Cus-
tomer demand is concerned as uncertain parameter. The objective is to minimize the ex-
pected costs of opening assemblers and operational transportation costs, costs for chang-
ing capacity and costs for opening/closing workstations.

1.3 Research questions
The aim of this study is to aid chemical companies in increasing their insight in high-
impact, low-likelihood supply risks by investigating the e�ect on company performance,
the potential investment options in the supply chain network design and the trade-o�
between investment and shareholder value. Based on the literature review, we identify
four research gaps that lead to three research questions that guide this study.

1. The links between SCRM and SCND are clear based on the literature review and
the aim of our study. A systematic analysis of supply chain risks should serve
as input for the design of a supply chain network. However, to the best of our
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knowledge, no systematic approach is available in literature that links the analysis
of supply chain risks, both on qualitative and quantitative grounds, to generate
possible scenarios for stochastic supply chain network design.

2. Stochastic models have shown to outperform their deterministic counterparts in
SCND, however models tend to become intractable and this is worsened when
adding second stage operational decisions (Klibi et al., 2010; Sch�utz et al., 2009).
This computational challenge remains a signi�cant research gap.

3. SCND structural decisions last over a long period of time and risk-averse decision
makers may want to avoid structural decisions that lead to very poor outcomes in
some of the scenarios (Fleischmann and Koberstein, 2015). Supply chain network
designs are robust, if they are capable to provide sustainable value creation under all
plausible future scenarios, both under business-as-usual conditions as well as under
disruptions (She� and Rice Jr, 2005; Klibi et al., 2010). However, the majority of
models is based on an expected value objective. To the best of our knowledge, the
e�ect of robustness measures in the objective on the optimal choice of supply chain
infrastructure investments to mitigate supply risks is not researched.

4. Researchers in SCRM and SCND observe that there is a shortage of empirical
research in those respective �elds of study (Sodhi et al., 2012; Ho et al., 2015).

Based on the motivation of the study and the identi�ed research gaps, the research
objective is de�ned as follows.

Develop an approach that integrates qualitative risk analysis with a quantitative de-
cision support tool to assess the costs of supply disruptions and risk mitigation options in
the supply chain infrastructure that supports chemical companies to achieve their strate-
gic goals.

To achieve the research objective, we de�ne three research questions:

1. How can the existing methodologies be deployed to identify, classify and quantify
supply risks?

2. What methodology can be developed to evaluate supply chain infrastructure miti-
gation options to create a robust infrastructure to support the long-term strategic
goals of chemical companies?

3. How does the robustness of the identi�ed recommendations depend on the chosen
solution methodology and on the formulation of the objective?

Answering these questions guides us through the process of understanding reality,
conceptualizing it and providing insights to the e�ect of unplanned cracker outages on
downstream chemical supply chains based on a quantitative model. Moreover, the answer
to these questions address the identi�ed research gaps and lead to the following scienti�c
contribution. First, we contribute to the integration of SCRM and SCND by providing a
comprehensive methodology to identify, categorize and quantify risks that aims to provide
meaningful input for a quantitative SCND models. Second, we contribute by addressing
the computational challenge of solving stochastic SCND models by distinguishing between
business as usual periods and disruption periods. To evaluate the e�ect of risk mitigation
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options on the disruption costs, there is no need to model the business as usual periods.
This decreases the model size by approximately 90%. Third, we include the robustness
measure conditional value at risk (CVaR) in the objective function and we show how it
inuences the optimal solution. Fourth, we answer to calls of both SCRM and SCND
literature by applying the developed methodology in an empirical study in the chemical
supply chain.

1.4 Scope
We limit ourselves to supply risk. More speci�cally, we include risks related to cracker
outages, as well as outages of other assets in the upstream supply chain and transportation
disruptions. Other identi�ed supply chain risk categories such as demand risk (see (e.g.
Ho et al., 2015)) are beyond our scope. Furthermore, the focus of this study is on high-
impact, low-likelihood risks. Consequently, we will not take into account the business
as usual randomness, unless it directly relates or inuences the frequency, duration or
impact of high-impact, low-likelihood risks.

In this study, we focus on the chemical supply chain. This means we target divergent
supply chains based on commodities with its transportation and storage challenges.

1.5 Methodology and thesis outline
We structure the research using the reective cycle of van Aken et al. (2012); see Figure
1.3. The case class that will help us position our research in literature is de�ned as supply
chain network design under supply uncertainty. The speci�c case under investigation is
the uncertainty in supply of a European chemical company that depends on cracker
outputs for its feedstocks. Based on the results and experience of the problem solving
process for this case (which happens in the regulative cycle), we develop generic design
knowledge that can be used to address similar cases within this case class in the chemical
industry.

Figure 1.3: Reective cycle (van Aken et al., 2012)

For our type of quantitative empirical research, the primary concern is to have a model
�t between observations in reality and the model developed for that reality (Bertrand and
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Fransoo, 2002). To structure the quantitative design, we rely on the model of Mitro�
et al. (1974); see Figure 1.4.

Figure 1.4: Quantitative research model (Mitro� et al., 1974)

In Chapter 2, we address research question 1 by providing a methodology to conceptu-
alize supply risks and to de�ne a set of quanti�ed risk categories. In Chapter 3 we develop
a stochastic two-stage supply chain risk mitigation options evaluation model and we pro-
vide a solution scheme to approximate this model by a mixed integer linear program.
This provides the answer to research question 2. We apply the developed methodology
in a case study at ChemComp in Chapters 4 and 5. This can be described as the model
solving e�ort in the model of Mitro� et al. (1974). These chapters provide the answer to
research question 3 and they provide us with insights into the e�ect of supply risks on
the European chemical industry. A discussion of the limitations and potential for further
research concludes the thesis in Chapter 6.
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Chapter 2

Risk identi�cation and assessment

Risk identi�cation and assessment are the �rst steps in a risk management process (Manuj
and Mentzer, 2008). However, the boundaries between these steps are vague. Therefore,
we split this process into three distinct steps: identi�cation, categorization and quanti�-
cation. Following these steps is essential to get a thorough conceptual and quantitative
understanding of the risks threatening a supply chain and to provide a basis for a quan-
titative analysis of supply chain mitigation options.

2.1 Identi�cation
Adhitya et al. (2009) proposed a structured approach to identify supply chain risks based
on methods from chemical process safety. The key element in this approach is a supply
chain ow diagram, which depicts all elements of the supply chain and the material and
information ows. The main advantage of this method is that it enables a systematic
and structured risk identi�cation.

Although this approach provides a solid basis to identify most of the risks, one should
be careful about relying on only one method. People are prone to biases in their judgment
that a�ect the outcome of the risk identi�cation process (Tversky and Kahneman, 1974).
An example of such biases is the bias due to the retrievability of instances, i.e. a person
is more likely to remember and name events that it is familiar with.

To overcome these biases, we enhanced the method of Adhitya et al. (2009) by dividing
the risk identi�cation process into two stages. In the �rst stage, participants identify and
point out risks based on a supply chain ow diagram. This is followed by the second
stage, which provides an overview of potential risk factors to participants based on the
work of Rao and Goldsby (2009); see Figure A.1 in the Appendix for an example. This
overview of risk factors combined with some examples from other industries stimulates
participants to think out of the box and identify less prevalent risks.

One important note regarding the risk identi�cation process is that participants should
be comfortable and feel free to assert any risk they perceive is important enough. Two
aspects in particular endanger this. The �rst is that people fear to be judged while
sharing risks, as if they are not capable to solve the risks or as if a risk is present because
they are not doing their job well. The second is shyness of the participant to assert
risks participants believe are too farfetched. Both aspects can be addressed by clear
communication of the goals and bene�ts of sharing the risks. Furthermore, it should
be stretched and acted upon that the claims made by participants are in no way used
to evaluate performance. Lastly, to address shyness, it helps when the interviewer can
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provide several unlikely risks to set the stage.

2.2 Categorization
A vast amount of risk categorizations have been proposed in literature, see section 1.2.1.
Those categorizations provide a conceptual understanding of the di�erent types of risks,
but they fail to group risks in a way that is necessary to support a quantitative analysis,
i.e. based on location of occurrence, impact and duration.

The supply chain ow diagram of Adhitya et al. (2009) can serve as a starting point
for a risk categorization �tting the purpose of this research, since a similar ow diagram
is used to identify risks and is a natural and easy understandable way to describe a
chemical supply chain. Based on Klibi and Martel (2012), we partition the supply chain
in hazard zones, delineating sets of supply chain infrastructure elements with similar
exposure characteristics. For each zone, the set of potential risks can be aggregated into
multihazards to capture similar known and unknown risky events in a single probability
distribution. These hazard zones are either one individual infrastructure component, a
set of components at a similar geographical location or the complete set of components
external or internal to the company’s production site as is depicted in Figure 2.1.

Figure 2.1: Schematic representation of examples of the three types of hazard zones

2.3 Quanti�cation
Three characteristics de�ne the consequences of exposure to a risk: frequency, duration
and impact. However, given the nature of low-likelihood disruptions, data to estimate
distributions for frequency as well as duration is limited, which makes quantifying those
risks a challenging e�ort. Furthermore, expert opinion is prone to biases, such as the
tendency to overestimate frequency of disruptions that happened recently (Tversky and
Kahneman, 1974). Literature has identi�ed several methods to address these biases by
applying statistical techniques to the opinion of multiple experts (Jacobs, 1995) or by
using more qualitative methodologies to include the opinion of multiple experts, such as
the Delphi method (Yousuf, 2007).

The general assumption in earlier work on frequency distribution is that the inter-
arrival time of disruptions are independent and exponentially distributed (e.g Banks,
2005; Snyder et al., 2015; Klibi and Martel, 2012). Based on this assumption, the available
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data points can be used to estimate the frequency parameter. However, deviation from
this distribution or parameter is justi�ed if expert arguments provide di�erent insights,
e.g. if the probability of disruptions increases or decreases over time. More advanced
concepts used in reliability theory to model the mean time to failure (MTTF) can be a
viable option to quantify frequency of supply chain risks in this case.

The most common assumption is that the duration of the disruption period is also
exponentially distributed (Snyder et al., 2015). However, similar to determining the fre-
quency parameters, a deviation from the exponential distribution should be considered
if strong evidence exists. Speci�cally looking at chemical production assets, outages can
generally be classi�ed into two categories. Most of the outages are caused by minor break-
downs, which can be repaired quickly without dependencies on unavailable, uncommon
spare parts or expert knowledge. These outages typically last a few days or even less than
a day. However, some accidents or disruptions have a di�erent nature, they are harder to
repair and require more time to organize the reparation process. The disruption duration
seems to be based on two di�erent modes of failure with distinct characteristics, a phe-
nomenon studied in Electromigration failure research in reliability theory (Fischer et al.,
2000). In this �eld, such a processes is described by a bi-modal log normal distribution,
with di�erent probability peaks for low duration risks and for the longer duration risks.

The last de�ning characteristic is impact, which can be de�ned by the fraction of
capacity that is a�ected by a disruption. Frequently, this will be a 0-1 decision. However,
if this is not the case, a uniform distribution based on available data and expert opinion
can be used to describe the impact distribution.

2.4 Process output
The process outlined in this chapter results in a set of hazard zones z 2 Z that consists
of one or more infrastructure components i that can be characterized by probability
distributions for frequency, duration and impact.
�z random variable describing inter arrival time of disruptions
F�
z (�) cumulative distribution function of inter arrival of disruptions in hazard zone z, z 2 Z

�z random variable describing disruption duration
F�
z (�) cumulative distribution function of duration of disruptions in hazard zone z, z 2 Z

�z random variable describing disruption impact
F�
z (�) cumulative distribution function of impact of disruptions in hazard zone z, z 2 Z

2.5 Conclusion
In this chapter we answered research question 1: \How can the existing methodologies be
deployed to identify, classify and quantify supply risks?" by providing a methodology to
identify, categorize and quantify risks in the chemical supply chain. It is based on linking
qualitative approaches from SCRM, that focus on identifying risks without quantifying,
and more formal descriptions of risks used in SCND literature, that assume already
categorized and quanti�ed risks. Although this approach is broader applicable than in
the chemical industry, the bi-model nature of the duration of the chemical production
assets appears to be characteristic for this industry and deviates from the more generally
assumed exponential distribution.
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Chapter 3

Risk mitigation evaluation model

To evaluate the impact of supply chain risks and potential value of risk mitigation options,
we need to capture the temporal hierarchy between the strategic design decisions and the
operational decisions. Furthermore, investigating each mitigation option or combination
of mitigation individually leads to an exponentially growing number of options that needs
to be reviewed. Therefore, we model the chemical supply chain as a two-stage stochastic
program with recourse based on a discrete temporal framework that makes a decision
about all mitigation options integrally. However, a real life case has an in�nite number
of potential future scenarios. To ensure tractability of the model, we introduce a solution
scheme based on an approximated linear program for a �nite set of scenarios.

We start this chapter by introducing the chemical supply chain conceptually. We argue
that the supply chain can be described by two states for the purpose of this research, either
as a supply chain during business as usual (BAU) or as a supply chain during disruption.
Second, we provide the formal two-stage stochastic program to evaluate the value of risk
mitigation options based. Third, we outline the procedure to generate scenarios that
serve as input for the optimization model. In the �nal section of this chapter, we propose
a solution scheme to approximate the intractable two-stage stochastic program. The
nomenclature used in this chapter can be found in Appendix B.

3.1 Supply chain
Let I be the set of supply chain network components (or nodes). The set of net-
work components can be split into intermediate production plants Ip, storage tanks I i,
(un)loading stations Iu and �nal production plants If . The latter represents a produc-
tion node for which all output is sold. Furthermore, the set of suppliers of feedstock Is
and the set of customers aggregated for a speci�c product Id are also part of the SCN
(Ip; I i; Iu; If ; Is; Id � I).

The SCN is built by linking supply chain components together. A supply chain
component is linked to a set of nodes upstream, U(i) � I; i 2 I and a set of nodes
downstream, D(i) � I; i 2 I. The quantity of output from node j 2 U(i) required by
node i relative to the output of node i is described by a ‘recipe’ or unit ratio �ij. Processes
at the infrastructure components take a certain amount of time, e.g. the lead-time of
ordering a product at a supplier or the production process of transforming input products
into the output product. Since this time can vary for the set of downstream nodes that will
be supplied, lead times �ij are speci�ed for every link between infrastructure component
i and its downstream nodes j 2 D(i). Furthermore, each network component i can be
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characterized by a maximum and minimum daily input capacity, output capacity and
inventory capacity for each period t (�maxit , �minit , �maxit , �minit , maxit and minit ). For some
nodes � = �, e.g. production nodes, but for others they can di�er, e.g. unloading nodes.
The set of capacity and leadtime parameters that de�ne the structural elements of the
supply is denoted by A.

3.1.1 Strategic decision variables
At the design time, strategic decisions have to be made on what supply chain network
constraints to relax. This includes investments to change A and the potential new links
between supply chain components to use during a discrete planning horizon T . For each
of the N decisions, the outcome can be represented by a binary variable yn. The set of
these potential decisions is represented by Y , and y 2 Y is a vector with a particular
realization for each of these decisions that constrains the operational decisions that we
introduce in the next section.

yn 1 if mitigation option n is implemented, 0 otherwise
cyn costs of implementing mitigation option yn

3.1.2 Operational decision variables
The strategic decisions constrain the set of feasible operational, or second stage, decisions
over the planning horizon. The operational decisions include decisions on product ows
(product sourcing, production and sales), inventory and shutdown of plants.

xijt product ow sent from node i to node j in period t, i 2 I; j 2 D(i); t 2 T
Iit inventory at node i at the end of period t, i 2 I; t 2 T
bit incoming product ow that exceeds inventory capacity at node i in period t,

i 2 I; t 2 T
hd;switchit 1 if node i is either started up or shut down in period t, 0 otherwise, i 2 I; t 2 T
hd;shutdownit -1 if node i is shut down in period t, 1 if it is started up, 0 otherwise i 2 I; t 2 T
hdit 1 if node i is down in period t, 0 otherwise, i 2 I; t 2 T
hbit 1 if node i is standby in period t, 0 otherwise, i 2 I; t 2 T

The set of all operational decisions for a scenario is represented by X .

3.1.3 Business as usual and disruptions
Based on the information at design time, the future is shaped according to two states. The
supply chain can operate under BAU conditions or under disruptions. A shift from the
BAU state to the disruption state is characterized by the inability to continue operations
according to the production schedule due to capacity constraints of a supply chain network
component caused by an unplanned event. When the supply chain is able to run again
according to the original production schedule, it is considered to be returned to the BAU
state. We call the particular realization of the future, or more practically a realization of
the random variables that de�ne the supply chain environment such as demand, feedstock
prices and supply disruptions a scenario.
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The set of disruptions in a scenario, e 2 E , is de�ned by time of occurrence te, duration
�e and impact �e. The start of period te is the beginning of disruption e. The periods
that the supply chain is a�ected by a disruption, denoted by set T � � T , can be divided
into two sets. The �rst set contains the periods where capacities or lead times of the
nodes in the a�ected hazard zone are perturbed (T �E � T �). The second set contains the
recovery periods (T �recovery � T �). In these periods, extra product has to be sourced and
produced to get inventories back to the base stock level and to let product ows return to
those in BAU. The duration of this recovery time re can be di�erent for each disruption
and depends on the time required to source enough extra supply to build up inventory.
Let the end of period tr 2 T �r � T �recovery be the moment of recovery, and tr the the last
period of the recovery phase. In addition, let te � u be the period u 2 f0; :::; Ug periods
before the �rst period of a disruption. Furthermore, we de�ne Te�u the set of periods t
that are 0 < t � u periods before the �rst period of one of the disruptions in a scenario.
Figure 3.1 graphically presents the order of events.
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Figure 3.1: Schematic overview of order of events during disruption

3.2 Disruption costs
A disruption reveals itself in a set of impacted nodes, and it causes a deviation from the
BAU production schedule. Naturally, the costs of disruptions only occur during disruption
periods. Therefore, it su�ces to compute the costs of the periods in a scenario with
disruptions compared to the BAU state instead of computing the EBITDA of a scenario.
To do so, we compare the operational decisions and product ows during a disruption to
those as if the same periods were BAU. To distinguish between the BAU capacities and
operational decisions and those under disruption, we introduce the following notation

wt parameter or operational ow decision w at period t in the BAU state, t 2 T
w�t parameter or operational ow decision w at period t during the disruption state, t 2 T �

The �xed costs do not change during a state change from BAU to disruption or vice
versa, thus we only need to take into account four types of variable costs: lost sales, re-
sourcing costs, transportation costs and shutdown costs. First, for each metric ton (mT)
of deviation from the production schedule, the company loses the potential to sell the
product at selling price mit at i 2 Id[If during period t. Second, changes in production
lead to changes in required supply. The original sourcing plan needs to be adapted to
�t the new production schedule. This generally leads to a decrease in costs for sourcing,
since less feedstock is required. However, due to disruptions in supply nodes, alterna-
tive sourcing might also be required to ensure continuation on the original production
schedule. Last minute sourcing has to address the resulting shortage, generally against
higher feedstock spot prices than the contractual prices agreed upon with a long-lasting
supplier. Let cfit be feedstock price at supply node i 2 Is in period t. Third, a change
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in sourcing does not only change feedstock prices, but also the associated transportation
costs ctijt, as well as transportation costs for changed product ows further downstream
in the supply chain. Lastly, if no input products are available at a company owned infras-
tructure component, the decision has to be taken to shutdown the process. Depending
on the plant, this process can be rather time consuming and there is a one-time cost
associated with shutting down a plant due to cleaning and repairs. We assume half of
these costs are paid at shut down and the other half at start up. The costs per switch
are cdi . Furthermore, the minimum time for cleaning and repairs is denoted by �. For
some production processes, it is possible to go into stand-by mode to avoid the high costs
of a shutdown. In this mode, the production process is essentially circulating the last
produced product at a cost of cbi � cdi per day.

The total costs di�er per scenario and depend on the realization of disruptions, feed-
stock prices, transportation costs, selling prices and demand (Dit). By !, we denote the
vector of these parameters. For our problem, we have ! = (E ; cf ; ct;m;D). Equation 3.1
states how the total costs depend on !.

C(!) =
X

t2T �
(

X

i2Id[If
mit(

X

j2U(i)

�gi)�1
X

j2U(i)

(xjit � x�jit)

+
X

i2Is
cfit

X

j2D(i)

(x�ijt � xijt)

+
X

i2I

X

j2D(i)

ctijt(x
�
ijt � xijt)

+
X

i2I

(cdih
d;switch;�
it + cbih

b;�
it ))

(3.1)

The �rst part of the costs are the costs due to lost demand. We have to account
for the fact that quantity of product that ows from the upstream nodes to the �nal
production nodes is not equal to the quantity produced. Other raw materials might be
part of the product, but they are out of scope. The raw materials are assumed to be
always available and the costs are assumed to be �xed. Therefore, they do not inuence
the disruption costs. To account for this di�erence in quantity, we deduce the quantity
produced from the inow quantities and the sum of respective unit ratios. The second
part represents the alternative sourcing costs, the third part the extra transportation
costs and the last part the shutdown and standby costs. Note that not every cost term
needs to be positive. A disruption can lead to cost savings for one of the terms, e.g. if
less feedstock is acquired since there is a disruption at the production plant. However,
this is o�set by a rise in the other cost terms.

3.3 Optimization model
We have de�ned what a scenario is and how the costs of disruptions can be determined.
To capture the variability of future scenarios, we model our supply chain as a two-stage
stochastic program with recourse that aims to minimize disruption costs. In this section,
we �rst introduce the �rst-stage problem, followed by the second-stage problem and how
they relate. For clarity, we initially de�ne the second-stage program without the option
to include mitigation options, but we introduce them in the second part of this section.
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3.3.1 First-stage problem

The objective of the model is to choose the risk mitigation options that minimize the
expected costs of disruptions in the future. This is operationalized by minimizing the
expected costs over the set of potential future scenarios S, by making strategic decisions Y
and operational decisions X � for every scenario s 2 S. The contribution of each scenario
depends on its probability of occurrence �(s).

As we argued before, SCND structural decisions last over a long period of time and
risk-averse decision makers want to avoid structural decisions that lead to poor outcomes
in some of the scenarios. Therefore, we introduce the conditional mean value at risk
(CVaR) in the objective function. The value at risk (VaR) gives the maximum costs
with a con�dence level of � �100% with � 2 (0; 1) (Sahling and Kayser, 2016). The CVaR
characterizes the mean value of the expected costs that are above the VaR. Therefore, the
CVaR indicates the conditional mean value of the expected cost of the worst (1� �)100%
risk scenarios. A risk averse decision maker would choose a high value of � in order
to minimize the worst expected costs. The objective function is the minimization of
the weighted sum of the expected costs and the CVaR, based on the weighting factor
� 2 (0; 1) that is chosen by the decision maker.

The resulting �rst-stage problem is

min �
X

s2S

�(s)C(!s; y) + (1� �)CV aR +
X

yn2y

cynyn (3.2)

Subject to

C(!s; y)� V aR � zs (3.3)

y 2 Y (3.4)

With C(!s; y) being the solution of the second stage problem and

CV aR = V aR + (1� �)�1
X

s2S

�(s)zs (3.5)

The linear formulation of the CVaR in constraint (3.3) and equation (3.5) is based on
Krokhmal et al. (2002).

3.3.2 Second-stage problem

We �rst introduce the second-stage problem without including mitigation options in the
formulation for simplicity. After the de�nition of the second-stage problem, we introduce
�ve di�erent kinds of mitigation options.

The second stage program is

minC(!s; y) (3.6)

Subject to
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I�i(t�1)s +
X

h2U(i)

x�hi(t���hits)s = I�its +
X

h2U(i)

�hi �
X

j2D(i)

x�ijts + bits 8i 2 I; t 2 T � (3.7)

x�hi(t���hits)s = �hi(
X

g2U(i)

�gi)
�1 X

g2U(i)

x�gits 8i 2 I; h 2 U(i); t 2 T � (3.8)

X

h2U(i)

x�hi(t���hits)s �
X

h2U(i)

�hi � �
�;min
its (1� hdit � h

b
it) 8i 2 I; t 2 T � (3.9)

X

h2U(i)

x�hi(t���hits)s �
X

h2U(i)

�hi � �
�;max
its (1� hdit � h

b
it) 8i 2 I; t 2 T � (3.10)

X

j2D(i)

x�ijts � �
�;min
its 8i 2 I; t 2 T � (3.11)

X

j2D(i)

x�ijts � �
�;max
its 8i 2 I; t 2 T � (3.12)

I�its � 
�;min
its 8i 2 I; t 2 T � (3.13)

I�its � 
�;max
its 8i 2 I; t 2 T � (3.14)

I�its +
X

fjjj2Iu\U(i)g

x�jits � Si 8i 2 Ii; t 2 T �r (3.15)

x�ijts � xijts 8i 2 Is; j 2 D(i); t 2 T �recovery (3.16)

hd;�i(t�1) � h
d;�
it � h

d;switch;�
it 8i 2 I; t 2 T � (3.17)

hd;�it � h
d;�
i(t�1) � h

d;switch;�
it 8i 2 I; t 2 T � (3.18)

hd;�i(t�1) � h
d;�
it = hd;shutdown;�it 8i 2 I; t 2 T � (3.19)

M(hd;shutdown;�it + 1) �
t+�iX

t
(1� hd;�it ) 8i 2 I; t 2 T � (3.20)

hd;�it + hb;�it � 1 8i 2 I; t 2 T � (3.21)

Xits = X�its 8t 2 Te�max(�ijt�s); t
� 2 Te; s 2 S (3.22)

hb;�it ; h
d;�
it ; h

d;switch;�
it ; hd;shutdown;�it 2 f0; 1g 8i 2 I; t 2 T � (3.23)

Constraints (3.7) ensure conservation of ow. At each node, the quantity received plus
starting inventory should be equal to the quantity sent plus ending inventory. Constraints
(3.8) ensure that for every upstream node the relative quantities from each upstream
node, i.e. that upstream nodes are not compensating for each other by sending more or
less product. In this way, there is a unique ratio of products of the di�erent upstream
nodes. Constraints (3.9) and (3.10) limit the inow of products to its capacity during a
disruption, or to 0 when the node is in shutdown or standby. Constraints (3.11) to (3.13)
limit the outow and inventory of the nodes. Constraints (3.15) force the inventory plus
what is in process at the related unloading facility to be equal or larger than the basestock
level Si at the end of a disruption to return to BAU state. Constraints (3.16) force the
sourcing decisions to be similar to those of BAU, for supply that will arrive during periods
t for which t 2 T but t =2 T �. Constraints (3.17) and (3.18) keep track of each shutdown
cycle (including shutdown and start up) to compute shutdown costs. Constraints (3.19)
and (3.20) force the shutdown to last the minimal length �i speci�ed for a shutdown. The
value of hd;shutdown;�it is -1 if a plant shuts down and the big M is larger than the biggest
�i, therefore the only way to not violate constraints (3.20) is to not switch the state
of the plant to running for �i periods. Constraints (3.21) ensure that a node cannot be
standby and in shutdown at the same time. In practice, this constraint does not inuence
the result. However, this cut makes the linear program relaxation stronger. Constraints
(3.22) ensure the transition of BAU to the disruption stage.

3.3.3 Risk mitigation options
The model introduced in the previous section serves as a basis to determine costs of low-
likelihood, high-impact supply chain disruptions and to evaluate the risks of supply chain
mitigation options. In this section, we introduce �ve types of risk mitigation options and
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how they can be implemented in the model. First, we start with the general example
by changing minimum or maximum input and outow of production nodes, followed by
increasing storage capacity and increasing the basestock level. Next, we discuss decreasing
the leadtime of supply nodes and we end with mitigation option of shortening the period
that capacity is inuenced by a disruption.

Several risk mitigation options inuence the starting situation of a disruption. How-
ever, we do not want to compute BAU for every combination of risk mitigation options
since computational time increases exponentially with the number of risk mitigation op-
tions. Therefore, we show how to approximate the e�ect of the risk mitigation options
on the BAU decisions by altering the period before the disruption.

Increased output or input capacity

A common risk mitigation option is to invest in maximum in- or output capacity of a
supply chain node, e.g. extra unloading capacity, production capacity or contracts with
increased quantities with suppliers. Alternatively, one could also investigate the option to
decrease the minimum in- or output capacity, which causes a plant to run on reduced rates
instead of going into an expensive shutdown. Such mitigation options can be modeled
without changing BAU, and it can be done by changing the right hand side (with � and
�) of constraints (3.9) to (3.12). As an example, let us increase the output capacity of
node i. We de�ne y� as the decision to invest in an increase (or decrease) in output
capacity increase of �y. The new constraint is as follows

X

j2D(i)

x�ijts � �max�;its + y���;yits ;8t 2 T
�; s 2 S (3.24)

Note that we have to include the risk mitigation capacity vector �y in the disruption
generation procedure described before to determine ��;max;y, since the extra capacity can
also be disrupted.

Storage capacity

If a disruption occurs, the available inventory will be used to continue production. It
is only after inventory is depleted, that production has to be decreased thus lost sales
incurred. Therefore, the second mitigation option we will add is adding extra inventory
capacity. The �rst part of including this mitigation option in the model is similar to that
of increased (or decreased) input and output capacity. Let y be the decision to invest in
an increase of inventory capacity and y be the extra inventory capacity to evaluate.

The e�ect of adding inventory on model (3.6) is a change in constraints (3.14) to

I�its = �;maxits + y�;yits ; 8t 2 T
�; s 2 S (3.25)

However, if the basestock level Si depends on of i (e.g. by the percentage si),
the e�ect of adding extra storage capacity would be underestimated with only changing
constraints (3.14). The actual inventory and Si will change in BAU, and this e�ect has
to be accounted for by changing the starting inventory, i.e. Ii(te�1)s, and by changing Si.
For simplicity, to keep the model feasible and non-quadratic, it is assumed that the extra
inventory caused by the increase of Si is stored in node i at te�1. To account for these
changes, we need to add Equation (3.26) as a constraint to model (3.6) and we need to
alter constraints (3.15) to constraint (3.27).
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I�its = (1� y)Iits + y(Iits + siyits);8t 2 Te�1; s 2 S (3.26)

I�its +
X

f8jjj2Iu\U(i)g

x�jits � Si + y(Iits + siyits);8t 2 T
�
r ; s 2 S (3.27)

Increase basestock level

Free capital is an important asset for companies. Therefore, the trade-o� between being
prepared for disruptions and free capital could lead to a low basestock level relative to
the storage capacity. Therefore, a third mitigation option to include is the investment
in a higher basestock level. In the case of a quantity determined basestock level, the
mitigation option is easier to implement than in the case of a ’percentage of maximum
inventory’ basestock level. Therefore, we only introduce the second here. Let ysi be
the decision to increase the basestock percentage to si;y. Since the basestock level only
inuences the inventory at a start of a disruption and the inventory at the end of a
disruption to force the decisions to go back to BAU, we add constraint (3.28) and change
constraints (3.15) to (3.29).

I�its = (1� ysi)Iits + ysisi;y
max
its ;8t 2 Te�1; s 2 S (3.28)

I�its +
X

f8jjj2Iu\U(i)g

x�jits � (1� ysi)si
max;�
its + ysisi;y

max;�
its ;8t 2 T �r ; s 2 S (3.29)

Decreasing the leadtime

Decreasing the leadtime from supply nodes increases the resilience of a supply chain in
its speed to react upon disruptions. However, changing leadtime is impossible to do by
altering characteristics of a node without making model 3.6 non-linear. Therefore, we
introduce a an equivalent node k which is a copy of node i 2 Is, except that the lead time
of node k is di�erent. Let yk be the decision to shorten the leadtime, than constraints
(3.11) and (3.12) have to be replaced by constraints (3.30) to (3.33).

X

j2D(i)

x�ijts � (1� yk)��;minits ; 8t 2 T �; s 2 S (3.30)

X

j2D(k)

x�kjts � yk��;minkts ;8t 2 T �; s 2 S (3.31)

X

j2D(i)

x�ijts � (1� yk)��;maxits ; t 2 T �; s 2 S (3.32)

X

j2D(k)

x�kjts � yk��;maxkts ; t 2 T �; s 2 S (3.33)

Furthermore, since supply is ordered in BAU based on the old leadtime, there is
still supply coming in that should have been arrived already with the new leadtime. This
leads to ’free supply’, no placed orders in the �rst few periods of T � and an overestimation
of the positive e�ect on costs of this mitigation option. To avoid this phantom supply
coming in, we add constraint (3.34).
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X

j2D(i)

x�ijts � (1� yk)
X

j2D(i)

xijts; t 2 Te�(�ijts��kjts); s 2 S (3.34)

Lastly, we have to adapt constraints (3.16) in the opposite way. To return back to
BAU, we can delay forced minimum ordering by the di�erences between the new and the
old leadtime.

Shorten disruption duration

For some disruptions it is possible to shorten the duration of disruptions by making
upfront investments. One way to implement this, is to generate two sets of perturbed
capacity vectors for the nodes for which the duration of a disruption can be decreased.
As example, we take the maximum output, ��;max, and alternative ��;max;y. Let yd be the
decision to invest in a mitigation option to shorten the e�ect of a disruption on capacity.
Constraints (3.12) should be adapted to the following form

X

h2U(i)

x�hi(t���hits)s �
X

h2U(i)

�hi((1� yd)��;maxits + yd��;max;yits );8i 2 I; t 2 T � (3.35)

3.4 Scenario generation
The optimization model introduced in the previous section determines the optimal set of
investments in the supply chain infrastructure to mitigate supply disruptions. To do so, its
objective is to minimize a combination of the CVaR and the expected costs of disruption
periods compared to the BAU situation for each scenario. In this section, we introduce
the procedure used to generate scenarios that serve as input in the optimization model.
This includes the generation of BAU parameters, the determination of BAU operational
decision variables and the generation of disruptions. Figure 3.2 schematically shows the
three steps in the scenario generation procedure and serves as guidance in this section.

Figure 3.2: Schematic overview of the three steps of scenario generation
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3.4.1 BAU uncertainty
Independent of the state of the supply chain, during BAU or disruption, the environ-
ment is characterized by uncertainty. We assume that during BAU, neither suppliers nor
company owned assets are disrupted, so that supply is always enough to satisfy demand.
Furthermore, we assume that demand is high enough to justify production above mini-
mum capacities. The �rst step of the scenario generation procedure is to generate values
for the the demand Dit, selling price mit, feedstock price, cfit, and transportation costs,
ctijt.

3.4.2 BAU decision rules
The second phase of the procedure determines BAU values for the operational decision
variables based on decision rules. The purpose of determining BAU operational decisions
is twofold. First, it ‘sets the stage’ when a disruption occurs. Based on sourcing and pro-
duction decisions during BAU, inventories uctuate and the quantity sourced at di�erent
nodes may vary. Both inuence the e�ect a disruption has on the supply chain. Second,
after a disruption, product ows and inventories need to return to their BAU quantities.
The reason to rely on heuristics over optimization to determine BAU decisions is twofold.
First, decision rules are a better representation of how decisions are made by supply
chain planners than optimization. Optimization requires resources that are generally not
available, e.g. the required training of supply chain planners. Second, decision rules are
more e�cient than optimization from a computational perspective.

We assumed 6 overarching decision rules that set a basis for a more in depth algorithm
tailored to the speci�c supply chain.

1. Sell as much as possible

2. Source at the cheapest possible option

3. Do not shutdown plants or put them in standby

4. Respect minimum and maximum capacities

5. Internal demand has priority over external demand

6. The sum of the physical inventory at each node i 2 I i and products in transit at
unloading nodes j 2 U(i) is larger than or equal to the adjusted basestock-level Si
1

Since we assume demand always exceeds supply and margins are positive decision rules
1, 5 and 6 are aimed at achieving maximum pro�t. However, we have to to so within the
structural boundaries of the supply chain (rule 4). Furthermore, to simplify allocation,
we assume internal demand has priority over external demand (rule 5). Generally, this
holds true since companies aim to maximize their total pro�t. Lastly, in the chemical
industry companies work with target inventories, that take into account the trade-o�
between the costs of capital captured in inventories and the preparedness for risks. We
depict these targets by rule 6.

1Si is an input parameter and can either be determined as an absolute value expressed in mT, or it
can be based on a certain basestock percentage (si) of the maximum inventory capacity (maxi )
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The BAU decision rules will translate the demand into a production schedule for
the �nal production nodes and a ’demand delivery schedule’ for the demand nodes. We
assume that there are no back orders, thus the inability to meet this schedule results in
lost sales. The result of this step, are values for each BAU decision variable in X .

3.4.3 Generating disruptions

The �nal step of the scenario generation procedure is to generate disruptions and associ-
ated perturbed capacity and lead time vectors. The risk identi�cation process, outlined
in Chapter 2, provides a set of risks that threaten a certain hazard zone z 2 Z with
associated frequency, duration and impact distributions (F�

z (�); F�
z (�) and F�

z (�)). These
distributions serve as input to generate a set of disruptions e 2 E , de�ned by time of
occurrence te, duration �e and impact �e.

Since we focus on high-impact, low-likelihood risks, we want to di�erentiate between
this type of risks and BAU variation. An intuitive division would be to look at period
that can be covered by the available inventory, since lost sales are avoided in this situation
and no large resourcing e�orts have to be undertaken. To exclude operational risks, we
introduce �minz and E = feje� � �minz g. This de�nes the minimum disruption duration
such that the disruption is considered as a high-impact, low-likelihood risk instead of
BAU variation, i.e. the minimum disruption duration for a disruption to be included in
a scenario.

3.5 Solution scheme

In most practical cases, the number of possible scenarios is in�nite. This leads to an
extremely complex, if not intractable, optimization model. Our goal is to get insight into
practical and relevant supply chain options to mitigate the high-impact, low-likelihood
risks. Therefore, in this section we propose a solution scheme to approximate the model.

The solution scheme consists of four stages. First we generate samples of scenarios
using a Monte Carlo method based on the scenario generation algorithm presented in
the previous section. Second, we apply a scenario selection procedure to create a more
representative sample of scenarios by dividing the sample of scenarios into ‘high-cost’
and ‘acceptable-cost’ scenarios. For these samples we solve a set of large MIPs, similar to
how it is done when solving stochastic programs with the Sample Average Approximation
(Kleywegt et al., 2002). This results in one or more proposed designs, which we evaluate
by solving the model with �xed risk mitigation options. Since this eliminates the �rst
stage decisions, this reduces to solving a large set of independent two-stage problems,
thus a larger sample can be used to achieve better cost estimates.

3.5.1 Scenario generation

The �rst phase is the generation of independent samples of scenarios using Monte Carlo
methods based on the scenario generation procedure outlined in Figure 3.2. The result
of this phase is M samples of N# scenarios.
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3.5.2 Scenario selection

Literature shows that solving the linear approximation of stochastic SCND models with
a relatively small sample size N provides good results to determine �rst stage decision
variables under an expected value objective formulation(e.g Klibi and Martel, 2012).
However, if a �% CVaR is added to the objective, only �% � N scenarios are used to
determine the CVaR. Especially if N is low (e.g. N = 10) the value of CVaR is expected
to be highly variable and not estimated based on a representative set. Therefore, we
partition the set of N# generated scenarios into a set of high risk scenarios and a set of
acceptable risk scenarios (Klibi and Martel, 2012).

Intuitively, there are two ways to partition this set, based on the number of disruption
days in a scenario and based on the costs for each scenario without mitigation options.
Partitioning based on days is preferred, since it is computationally less intensive. How-
ever, in Figure 3.3 we show examples that, although the correlation is high between
cumulative duration and costs, this is mainly the case for shorter, lower cost scenarios. If
we look at the 10% highest costs scenarios, only half of them is covered by the scenarios
with the most disruption days. This means that partitioning based on the number of
disruption days would not lead to a representative set of high-risk scenarios. Therefore,
the decision to partition based on duration or costs has to be made for each case study
individually.
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Figure 3.3: Correlation between total duration of disruptions and costs of disruptions for dif-
ferent minimum disruption durations (MDD)

Therefore, we partition the set of generated scenarios N# into a set of high risk
scenarios SH = fsjC(s) > (2 � �%)V aRg with associated high risk probability �H and
conditional scenario probabilities �(sjH); s 2 SH , and a set acceptable risk scenarios
SA = fsjC(s) < (2 ��%)V aRg with associated normal risk probability �A and conditional
scenario probabilities �(sjA); s 2 SA. The objective function 3.2 changes to

min �
X

i2A;H

�i
X

s2S

�(sji)C(!s; y) + (1� �)CV aR +
X

yn2y

cynyn (3.36)

For each of the M samples that are used to generate designs, we select N=2 scenarios
from SA and N=2 scenarios from set SH .

3.5.3 Design generation

Based on our limited set of scenarios, problem 3.2, becomes tractable. Solving the prob-
lem for M samples of scenarios leads to one or more (maximum M) di�erent proposed
combination of optimal investment decisions ym;�. Increasing sample size N leads to
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a convergence in proposed combinations that result from this step since it better ap-
proximates the real case where N = 1. However, previous work shows that even with
relatively small sample sizes N , e.g. N between 20 and 40, the set of di�erent ym;� is
small (e.g Santoso et al., 2005; Sch�utz et al., 2009; Klibi and Martel, 2012; Hamta et al.,
2015).

Changing the objective function 3.36, and more speci�cally changing the values for
� and � will inuence the suggested supply chain mitigation options that are economic
to invest in. Increasing � to 1 leads to an expected value formulation of the objective
function. Investments that have a relatively big impact on the high risk scenarios are less
likely to be part of ym;� compared to an objective function with � close to 0. A similar
pattern can be expected while increasing �, with the similar explanation that the focus
on high risk scenarios decreases.

3.5.4 Design evaluation

The result of the design generation phase is a set of maximum M candidate designs. For
each of these designs, we can solve N� independent second-stage problems for indepen-
dent scenarios. N� can be chosen a lot bigger than N , e.g. N� = 1000, therefore, the
value of ym;� can be determined with greater accuracy. Finally, the y� can be chosen as
the candidate solution (ym;�) that provides maximum value by the biggest decrease in
disruption costs. Note that the �nal solution is not necessarily optimal for the individual
scenarios, but it minimizes the objective based on expected costs and CVaR (Birge and
Louveaux 1997).

3.6 Conclusion

In this chapter, we answered research question 2: \What methodology can be developed
to evaluate supply chain infrastructure mitigation options to create a robust infrastructure
to support the long-term strategic goals of chemical companies?" We provided a method-
ology based on a stochastic mixed integer linear program to evaluate what risk mitigation
options should be implemented to decrease the costs of high-impact, low-likelihood disrup-
tions. Furthermore, we introduced a solution scheme to solve this, potentially in�nitely
large, model.

This methodology, combined with the risk identi�cation and assessment methodology
presented in Chapter 2, provides an integrated approach to analyze the costs of supply
disruptions. This addresses research gap 1: \No systematic approach is available in
literature that links the analysis of supply chain risks, both on qualitative and quantitative
grounds, to generate possible scenarios for stochastic supply chain network design". Our
approach helps to bridge the gap between the research �elds of SCRM and SCND by
providing a relevant model to support real life decision making.

The size of the proposed optimization model decreases linearly with the number of
periods included in the optimization model. Since we focus on high-impact, low-likelihood
disruptions, the disruption periods make-up approximately 10% of the total time horizon.
This implies that this methodology reduces model size by 90% and therefore it allows to
add more complexity to the model or to analyze a larger amount of potential scenarios.
With this approach, we address research gap 2: \the computational challenge remains a
signi�cant research gap when developing stochastic SCND models".
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Next to addressing the identi�ed research gaps, we contribute by introducing a for-
mulation to model the minimum shutdown length in a set of balance equations. This
shutdown process is essential in feedstock allocation decisions in the chemical industry.

By including the CVaR into the objective function, we allow decision makers to reect
their risk aversion in the optimal solution of risk mitigation options. This implies that
better trade-o�s can be made between the expected value of the long-term EBITDA
and the volatility and forecastability of the EBITDA. The �rst is maximized by relying
solely on the expected costs, while the latter two are increased by including the CVaR and
minimizing the e�ect of worst-case scenarios. In Chapter 5, we explore the observed e�ect
of the methodology developed in this chapter in the real life case of ChemComp. This
will allow us to answer research question 3: \How does the robustness of the identi�ed
recommendations depend on the chosen solution methodology and on the formulation of
the objective?"

25



Chapter 4

Case study

In the remainder of this work, we apply the proposed methodology to a case study at a
leading global materials company, ChemComp. In this section, we introduce the company
and the supply chain, followed by the results of the risk assessment and identi�cation step.
Next, we describe the procedures to generate scenarios.

S1 represents a large integrated site in ChemComp’s production, with production
facilities for Product 1 (P1), Product 2 (P2) and Product 3 (P3). The P3 business is
critical for the success of the company and operating the P3 assets at full capacity is of
strategic corporate importance.

Steady production at S1 is dependent on input of feedstock. Since ChemComp does
not own a cracker, it relies on suppliers. The major supplier of feedstock of this integrated
site is the cracker of CrackComp, providing 100%, 90% and 34% of the yearly intake
of Feedstock 1 (F1), Feedstock 2 (F2) and Feedstock 3 (F3) respectively. Moreover,
production of P1 plant supplies 88% of the downstream demand of production facilities
for P2 and P3 and the production of the P1 plant relies on the cracker for its feedstock
(F1 and F2) and utilities.

Outages of the CrackComp cracker are identi�ed as a signi�cant risk to ChemComp
operations because of the combination of likelihood and impact. Since 2010, ChemComp
faced 16 unplanned outages. The impact of an outage is high due to several reasons. The
�rst reason is the high dependency of site S1 on feedstock and utilities from the Chem-
Comp cracker. Second, F3 is an extremely hazardous gas and therefore storage is subject
to strict safety restrictions and expensive. Moreover, storage of F1 and utilities is physi-
cally practically impossible. Third, external supply has to enter the site via road or rail
which adds extra constraints to transportation and leads to higher prices and transporta-
tion capacity issues. Moreover, there are site limitations on railcar unloading capacity,
and limitations to the number of railcars permitted on-site. Fourth, a large portion of F3
supply is covered by supply contracts. However, if a cracker is down, ChemComp (like
other F3 consumers) needs to buy at the spot market, often at signi�cantly higher prices.

The supply risk caused by the high dependency on the CrackComp cracker is acknowl-
edged by the major stakeholders within ChemComp as having a signi�cant negative im-
pact on operations and consequently EBITDA. Adequate reaction on unplanned outages
is a key focus point of the product and feedstock businesses as well as operational sup-
porting functions such as supply chain. There is a strong desire to obtain quantitative
insights in the long-term e�ect of supply disruptions on the value, forecastability and
volatility of EBITDA and the e�ect of potential mitigation options.

Relating (1) the supply dependency of site S1 on the unreliable CrackComp cracker,
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(2) the importance of site S1 to ChemComp, (3) the strategic aim of ChemComp to
provide high, non-volatile and forecastable EBITDA and (4) the impact of supply chain
glitches on shareholder value, it can be concluded ChemComp is a representative example
facing the earlier outlined challenges faced by the European chemical industry.

4.1 Supply chain
The supply chain of site S1 is schematically depicted in Figure 4.1, showing the nodes
and interrelationships. We discuss the supply chain in more depth in this section and the
relevant parameter values can be found in Appendix C.1.

4.1.1 Production nodes
ChemComp owns 6 production plants at site S1, producing di�erent types of P1, P2 and
P3. The production plant of P1 is located close to the cracker of CrackComp and relies
on the cracker for its utilities. The other production plants are located on a separated
part of the site and they only rely on the cracker for feedstock. We refer to the di�erent
parts of the site as S1a an S1b respectively. S1a and S1b are connected via pipelines and
the leadtime between the two parts of the site is 1 day. Five distinguishable types of P3
are produced on �ve di�erent plants: P3a, P3b, P3c, P3d and P3e. All production of the
plants for P2 and P3 is sold to customers within ChemComp external to site S1 or to
customers external to ChemComp. The output of the P1 plant is used as feedstock for
the other site S1 production plants. The P1, P2 and P3e plants are continuous processes
with signi�cant shutdown costs and start-up times. For the other plants, shut-down costs
are negligible since they are batch processes.

Figure 4.1: Schematical depiction of the ChemComp S1 supply chain

4.1.2 Inventory nodes
After production, P1 is stored at S1a before it is send via an underground pipeline to the
storage facilities at S1b. F3 is only stored at S1b. All storage tanks have a maximum
inventory capacity, but also a minimum inventory capacity to ensure safe operation of
the tanks, pumps and pipelines. We aggregated the maximum and minimum capacity
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of the pipeline and the inventory in S1a, since all this inventory has to go through the
pipeline to go to S1b. Lastly, we add to dummy nodes with 0 inventory to channel the
ow of the di�erent F1 and F2 supply nodes to the P1 plant.

4.1.3 Unloading nodes

There are two individual unloading nodes for P1 and F3. The unloading of P1 is also
used to load P1 for demand external to the site. However, loading and unloading does
not occur at the same time since it is more e�cient to send P1 directly from the source
to the demand location. For the purpose of this research, it is only relevant to consider
unloading capacity, because we are investigating supply under disruptions. Therefore, we
only model the unloading capabilities of the node.

4.1.4 Supply nodes

The CrackComp cracker is currently the only supplier of F1 and the major supplier of F2.
For both products, minimum and maximum contractual quantities are determined per
year and, based upon that, per month. We work with average mininum and maximum
quantities. If ChemComp demand exceeds the maximum quantity for F1, extra F1 can
be purchased from CrackComp, generally at the same price as the contractual price.
For F2, there is a minor contract with another partner and further required F2 could
potentially be bought on the spot market. For F3, ChemComp has the �rst right on F3
from CrackComp at site S1 and from a second major supplier of F3 external to the site,
F3Comp. About a third of supply is acquired via contracts with other suppliers and on
the spot market. P1 is acquired on the spot market only if it is not produced at site S1.

4.1.5 Demand nodes

P1 produced at S1 is sold to a P1 customer on site S1 via contracts and the produced
P1 that remains after the demand of the other production plants and the P1 customer is
satis�ed is either sold externally on the market or send to other ChecmComp sites. Since
P1 is a commodity, the P1 sent to other ChemComp sites has to be replaced by spot
purchases in case of a disruption, which is at the same price as P1 could be sold on the
market. Therefore, we make no distinction between internal and external sales.

4.2 Risk identi�cation and assessment

The risk identi�cation and assessment phased followed the approach as outlined in chapter
2. To identify risks, interviews have been conducted with a broad range of interviewees
including supply chain planners and managers, production leaders, business leadership,
purchasing, �nance, and technology center members.

The risk categorization phase resulted in the 7 aggregated risks presented in Table
4.1. Some risks are left out of the analysis, such as terrorist attacks, since the impact of
those risks is site transcending and therefore outside the scope of a risk analysis of this
particular supply chain. In the remainder of this section, we outline the process followed
and the role of historic data and expert opinion in greater detail.
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Table 4.1: Identi�ed risk categories threatening the site S1 supply chain

Nr. (z) Risk Location A�ected nodes Frequency Duration Impact
(Distribution, (Distribution, (Distribution,
parameters) parameters) parameters)

1 ChemComp S1a F1 CrackComp Contract Exponential Bi-Modal Fixed
cracker outage (Crack- F1 CrackComp Spot � = 1

143 Log Normal 1
Comp) F2 CrackComp Contract �1 = 1:22; �1 = 0:06

F3 CrackComp Contract �2 = 2:75; �2 = 0:13
W1 = 0:86 (Weight

�1; sigma1)
2 F3 outage S1a F3 CrackComp Contract Exponential Bi-Modal Fixed

(Crack- � = 1
335 Log Normal 1

Comp) �1 = 0:62; �1 = 0:63
�2 = 2:8; �2 = 0:5

W1 = 0:67
3 P1 plant outage S1a P1 Exponential Bi-Modal Fixed

(Chem- � = 1
287 Log Normal 1

Comp) �1 = 0:86; �1 = 0:59
�2 = 2:35; �2 = 0:05

W1 = 0:71
4 Distillation S1b P3a Exponential Fixed Fixed

tower outage P3b � = 1
670 7 days 1

P3d
P3e

5 Site external Supplier, F2 External Exponential Exponential Fixed
disruption rail P1 External � = 1

41 � = 1
2:56 0.5

F3 F3Comp Contract
F3 Other

6 Unloading P1 S1b Unloading P1 Exponential Exponential Fixed
outage � = 1

40 � = 1
1:3 1

7 Unloading F3 S1b Unloading F3 Exponential Exponential Fixed
outage � = 1

40 � = 1
1:3 1

Time is measured in days

Risks 1 and 2 are supply risks stemming from the reliability of CrackComp assets.
In case the cracker is down, no F1, F2 and F3 can be sourced from CrackComp. Fur-
thermore, F3 can be unavailable if the F3 plant, the plant that processes cracker outputs
into F3, is down. Further downstream, an outage of the ChemComp owned P1 planned
is a risk for downstream P1 supply. Those three risks are risks related to capital in-
tensive production assets. Based on the limited data available for outages in the period
2011-2015 of these plants, we �t the data to known probability distributions and the
distribution appears to be a mixture distribution. This is con�rmed by the experience
that most of the disruptions can be solved quickly, or temporarily solved without a big
inuence on production. However, some accidents or disruptions have a di�erent nature,
they are harder to repair and their duration is signi�cantly longer. To address this na-
ture, we describe these outages by a mixture distribution that combines two log normal
distributions, with a high probability peak for low duration risks and a more attened
distribution for the longer duration risks.

Another important ChemComp asset is located between the inventory of F3 and all
P3 plants except P3c: a distillation tower that prepares F3 for P3production. Next to a
potential disruption asset, this tower needs to be cleaned every 2.5 years which causes a
long outage. Therefore, ChemComp invested in a back-up distillation tower, but it takes
a week to switch between towers in the case of a disruption. In quantifying this risk, we
assumed outages never last longer than 7 days, since the back-up tower has taken over
after that period.

The site also relies on external supply, which can be disrupted due to issues at a
supplier’s site or transportation issues such as bad weather and strike. We aggregated
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these risks into risk 5. However, impact varies between events, supply from di�erent
suppliers is not necessarily disrupted at the same time and with bad weather utilization
might decrease but not completely go to 0. Therefore, we work with an expected impact
of 0.5. Furthermore, unloading at site S1 is essential to get supply into storage tanks to
production. However, this unloading can be disrupted due to disruptions, or more likely,
because it is a public holiday. This happens frequently compared to the other disruptions,
but the disruptions are also rather short, mostly just 1 day.

4.3 Risk mitigation options
After the identi�cation of risks threatening the supply chain, we selected a set of risk
mitigation options that are endorsed by the interviewees as ways to minimize the e�ect of
disruptions. The mitigation options to evaluate are presented in Table 4.2. To de�ne each
mitigation option as a binary variable, we also speci�ed a quantity, either the new value
or the addition to the current infrastructure constraints. Furthermore, to determine the
costs of these mitigation options, a thorough investigation is necessary, which is outside
the scope of this research. Therefore, we relied on estimates by ChemComp experts to
determine a minimal value of the mitigation option before business decides to invest in
investigating the exact investment required.

Table 4.2: Identi�ed risk mitigation options to address supply risks at site S1

Nr. (n) Mitigation option Quantity Minimum value
(emillion / 5 year)

1 Extra storage P1 S1b +2kT 5
2 Increase basestock P1 90% (of max inv) 2.5
3 Extra storage F3 S1b +2kT 12
4 Extra unloading P1 S1b +350 mt 2.5
5 Extra unloading F3 S1b +350 mt 2.5
6 P1 independent of cracker after 2 days 23
7 Shorten distillation tower backup 2 days 1
8 Reduce leadtime P1 External 2 days 2.5
9 Reduce leadtime F3 F3Comp 2 days 2.5
10 No minimum contract quantity F1 0 7
11 No minimum contract quantity F2 0 7

4.4 Generation of random parameters
The main parameters inuencing the e�ect of a disruption in the S1 supply chain are the
volatility of feedstock prices and the current production schedule. Volatility of feedstock
prices inuences the margins, but also if it is more pro�table to source maximum contract
quantities or to split sourcing between contract and spot. Second, since the the P3 plants
are sold out and not a lot of storage is available for P2, lost production basically equals
lost demand. However, especially the P3 production schedules are not constant due to
regular short or longer cleaning periods and unplanned shutdowns. Supply disruptions
that coincide with planned cleaning have less e�ect than disruptions that happen during
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full capacity production. In this section, we outline the followed procedure for the scenario
generation process.

4.4.1 Generate BAU uncertainty

Based on historic data and supply chain expert opinion we expect transportation costs
to be constant. Furthermore, given the nature of the non-volatile production capacities
of chemical plants, we assume supply availability is constant in BAU and potentially
disrupted during disruption periods.

Feedstock prices

Prices of sold products depend for a major part on monthly contracts that depend on the
feedstock price. This means that it is not so much the absolute value that determines
the margins and thus e�ect of the costs of potential disruptions. However, the volatility
of feedstock prices that determines how contract prices are relative to spot prices has the
most impact on the margins and pro�tability. Therefore, in modeling feedstock prices we
do not focus on the absolute values, but on the volatility and price di�erences between
the di�erent kind of feedstocks.

Feedstock acquired by ChemComp are naphtha derivatives and they correlate to a
great extent with each other (see Appendix C.2.2 for an overview of historic price de-
velopments and correlations). To account for this correlation, we �rst generate naphtha
prices. Geman (2007) conclude that oil prices and its derivatives can be modeled as a
random walk. To achieve this, we rely on a geometric Brownian Motion (GBM), com-
monly used to model commodity prices (Li and Kouvelis, 1999). Based on the naphtha
prices, we generate F1 and F2 prices using an average spread between those products and
naphtha to generate representative volatility. Contrary to its feedstock, F1 and F2, both
the volatility and value of the price are relevant for P1 since P1 is sold and the F1/F2:P1
spread is the key driver to make the decision about the P1 production level. Therefore,
we model the prices of P1 as a bounded GBM, to make sure the P1 prices stays between
the maximum and minimum expected future F2:P1 spread bounds.

The prices of F3 show a much more disrupted path than that of the other feedstocks.
Average spread over Naphtha does not capture this volatility, nor does the price develop-
ment appear to be a random walk that justi�es using the GBM. Krichene (2006) devel-
oped a jump-di�usion model to capture sensitivity of prices to supply-demand shocks by
adding a Poisson jump component to the basic GBM model. Similar shocks characterize
the peak prices in F3. However, the jumps in F3 pricing do not seem to be independent,
within a few weeks after the prices went up, they return to normal levels. Experts within
ChemComp explain this due to the nature of the market, with extra imports in case of a
short market. Therefore, we assume jumps to be a combination of a sudden increase in
prices and a similar decrease after the market is settled. In this way, the generation of
peaks captures the real life volatility accurately enough for the purpose of this research.

For the di�erent types of feedstock, each month a monthly contract price (MCP)
is determined, based on the price developments in last month and the expected prices
next month. Given the nature of our prices generation process, price volatility and
development next month is independent of this month, therefore we assume the MCP is
determined every 30 days and it is the average of the past 30 days.

We refer to Appendix C.2.2 for a more thorough discussion of the feedstock price
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generation procedure, the data used in this phase and for an overview of the contractual
agreements with suppliers.

Selling prices

Selling prices are based on the sum of feedstock prices and a margin. They are mostly
�xed in contractual agreements. Given the this structure of prices, we determine selling
prices based on the average margin of the sold products. The assumption of constant
margins is justi�ed by historical data which shows stable margin patterns and this is
con�rmed by ChemComp experts. The margin in period t is based on the MCP of
feedstock in period t and the respective unit ratios.

Demand

For the �nal production nodes, we assume production schedule is a proxy for demand.
For the demand of the S1 customer of P1, production schedule actually is demand for
ChemComp. We distinguish between continuous production processes and batch pro-
cesses. For the �rst, since production is aimed to be constant, demand is not subject to
seasonal patterns and planned shutdowns are rare. Therefore, we assume production per
day is constant based on the historic average and the expected trend of that average. For
the batch production plants, average production per day is not a good indicator since
their production is a lot more volatile based on unexpected breakdowns, seasonality or
planned cleaning. Therefore, we partition the production schedule of the past two years in
separate weeks and delete the weeks with lower production due to supply disruptions. We
partition the remaining weeks in representative sets representing seasonality and longer
planned cleaning periods. To generate demand for a scenario, we use a bootstrapping
methodology to build up a representative production schedule for the time horizon under
study. See Appendix C.2.1 for a more thorough discussion about the processes followed
and the data used in the process. Lastly, we assume that there is always external P1 de-
mand. However, the decision how much P to produce to sell to other ChemComp plants
or at the market depends on the margin of P1 over its feedstock. If this margin exceeds
a certain threshold, the P1 plant will run at full capacity and if it is lower, the plant
will run at minimum capacity. The external P1 demand is assumed to be the remainder
between the full capacity and the site S1 demand of P1.

4.4.2 BAU Decision rules

The BAU decisions set the stage for an incoming disruption. For example, if in a certain
period the supply relies on full capacity output of the cracker, a disruption to the cracker
or F3 plant will have more impact than if most of the feedstock is coming from other
suppliers. Decisions for the BAU state are based on the current production schedule and
the e�ect of this production schedule on inventory. The decision rules are based on the
overarching rules presented in section 3.4.2. Furthermore, decisions propagate from the
most downstream demand and �nal production nodes to sourcing decisions at suppliers.
The followed algorithm is speci�ed in detail in Appendix C.3.
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4.4.3 Generate disruptions
Disruptions are generated according to the process described in section 3.4.3 and quan-
ti�ed risk categories presented in table 4.2. The followed algorithm is speci�ed in detail
in Appendix C.4.

4.5 Model adaptations
We adapt the general model presented in chapter 3 in four ways, to adapt it to the speci�c
ChemComp situation.

Primary and secondary risks

The risks presented in the previous section can be divided into risks that independently
are expected to have a big inuence on the performance of the site and a set of risks of
which the e�ect is negligible, unless it occurs simultaneously with one of the primary risks.
For example, an issue with unloading of F3 of two days has no e�ect if the cracker and the
F3 plant are running, and the small unloading hick-up can be covered by inventory and
inow from the cracker of CrackComp. However, if the cracker is down and the supply
needs to be replaced by external suppliers, there is no inow at all and a risk that is small
in isolation has a big impact in this situation. Since the model we developed is aimed at
analyzing the costs of low-likelihood, high-impact risks we include only the disruptions
from secondary risks 5, 6 and 7 if they coincide with one of the primary risks 1, 2, 3 or
4. Furthermore, most of them can be anticipated better (e.g. an announced strike or
expected snow) than the unplanned asset outages. This is accounted for by the fact that
the information about these risks, is available when a primary risk occurs.

Naive BAU decision rules

The algorithm to derive BAU decision rules in this case study bases its decisions only on
the past and the present. In real life however, short term future expected developments
such as anticipated contract prices are taken into consideration while designing supply
schedules. Since many contract prices are based on the prices in the previous months, the
last days of the month, it is possible to predict the contract prices of the next month with
high accuracy. If they are expected to be higher or lower than the current prices, this
information is part of the decision making process. To analyze the e�ect of these naive
BAU decision rules, and to get a better estimate of the costs of disruptions, we solve
the model for each scenario two times. First, we solve it with the generated scenario s,
second we solve the same time horizon but with zero impact disruptions sBAU . The costs
of disruptions are C(!s; y)�C(!sBAU ; y). If we rely on the naive BAU decision rules, we
underestimate the costs of disruptions by 4.4% compared to this approach.

S1 Customer P1 contract

ChemComp has a contract with S1 Customer P1 to supply P1 at the S1 site. However,
during a disruption it is not bene�cial for ChemComp to deliver P1 to this customer
instead of supplying P2 production, especially if this leads shutting down the P2 plant
because a lack of supply. In practice, the S1 Customer of P1 is cooperative in trying to
decrease its production if P2 is already producing at minimum run rate. To model this
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behavior in a linear way, an arti�cial non-delivery penalty is introduced slightly higher
than the P2 margin. This ensures that �rst P2 production is decreased to minimum run
rate before the supply of P1 to the S1 Customer (which is sold at lower margins than
P2) is reduced. In computing costs of a scenario, we have to account for this penalty.

Unknown investment costs

As mentioned earlier, we do not know the investment associated to the mitigation options
investigated. Therefore, we assume for this case study that cyn is the minimum saving
before the investment is even considered. Furthermore, we investigate the e�ect of making
investment costs 0, but limiting the number of mitigation options to n, this means we
have to add constraint 4.1 to problem (3.2).

X

yn2y

yn � n (4.1)
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Chapter 5

Simulation and results

In this chapter, we present the results of disruption costs analysis of site S1 of ChemComp
based on the risk mitigation options evaluation model. The �rst part of the chapter
focuses on the costs of disruptions and contains a sensitivity analysis of the disruption
costs. In the second part, we evaluate the risk mitigation options and we conclude the
chapter with additional insights.

5.1 Time horizon
For the analysis in this chapter, we chose a time horizon of 5 years to investigate the
e�ects of mitigation options for the following reasons.

� ChemComp has long term contracts with CrackComp, that have to be renegotiated
for a new term that starts in 2020.

� The cracker has a major turnaround every 5 years and the most recent turnaround
�nished in 2015. The 5 year horizon is expected to cover the period to the next
turnaround and therefore can be expected to show a similar risk pro�le as the last
5 years, upon which we base our data.

� We focus on long-term mitigation options. Therefore, we want to investigate the
e�ects of mitigation options over a longer period.

We limit the evaluation period to 5 years, since long term investment decisions are
limited to this period within ChemComp. Furthermore, uncertainty increases over time
and it becomes harder to imagine the potential future scenarios over a longer time horizon.
Moreover, more scenarios are necessary to capture this increased uncertainty and this
increases computational time.

At the end of the chapter, we provide some additional insights on the e�ect of disrup-
tions during shorter time periods.

5.2 Minimum disruption duration
Figure 5.1 shows the results of the distribution of disruption costs for scenarios with
di�erent �min, the minimum disruption duration (MDD). It is clear that the e�ect of
excluding disruptions with a duration of maximum 2 days has only a small e�ect on
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the frequency distribution while excluding risks of three days or more has a big e�ect.
Table 5.1 supports these �ndings by showing how the average costs over all the scenarios
depends on the MDD 1. This can be explained by the fact that the maximum storage
capacity of F3 covers about 2.5 days of inventory if the P3 plants run at full capacity.
This means that disruptions lasting less than 3 days can be fully covered by the available
inventory without the costs of lost sales. However, if a disruption last longer, the high
margin P3 production is likely to be a�ected. The sta� of ChemComp acknowledges that
the short, 1 or 2 day disruptions, are almost considered to be part of BAU. Since our
focus in this research is on the high-impact disruptions, for the remainder of this chapter
we only include disruptions with a minimum duration of 3 days. We elaborate on the
structure of the disruption costs in the next section.

6%

8%

10%

12%

14%

16%

F
re

qu
en

cy
 

Frequency of scenarios within a certain range of costs due to disruptions  

MDD = 3
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

F
re

qu
en

cy
 

Euro per 5 years 

MDD = 3

MDD = 2

MDD = 1

Figure 5.1: Frequency distribution of costs of scenarios for minimum distribution durations
(MDD) 1, 2 and 3 days

Table 5.1: Expected costs for di�erent MDD (n = 650) for 5 years

MDD Average (million e)
1 103.4
2 100.0
3 78.0

5.3 Disruption costs
First, we discuss the implications of the total disruption costs for a scenario, followed by
an overview of the four types of costs that de�ne disruption costs. We �nish this section
by looking into the major cost drivers, lost sales and resourcing costs, in more detail.

The expected disruption costs for ChemComp in the S1 supply chain negatively im-
pacts the EBITDA before inventory revaluation by 3.2%. However, Figure 5.1 clearly
shows that only judging the costs of disruptions on the expected value is not doing jus-
tice to the nature of disruptions. There are scenarios with limited disruptions, where
EBITDA does not su�er as much as an average scenario, and there are worst-case scenar-
ios. The latter are contained in the 10% CVaR. The expected costs of the 10% worst case

1For con�dentiality reasons, the costs are scaled
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scenarios is 1.6 times as much as the average. This nature of the frequency distribution
underlines the challenge in taking decisions. It is a trade-o� between the risk a decision-
maker is willing to take and to what extent it wants to hedge the risk. A combination of
average and CVaR increases the insight into disruption costs.

The shape of the frequency of disruption costs looks like a normal distribution. This
shape can be explained by the law of large numbers that applies because of the relatively
long time horizon and the di�erent types of risk that we take into account. First, in a
time horizon of �ve years, even a high cost scenario has periods with low or normal risks
pro�les and vice versa. Therefore, the extremes tend be attened out to the mean. A
similar e�ect occurs when taking multiple independent risks into account. We show in
section 5.7 that the shape of the frequency distribution will change if we shorten the time
horizon.

5.3.1 Division of disruption costs
In Figure 5.2, we divided the total average costs of disruptions into the four di�erent
categories we de�ned in Chapter 3 and used in equation 3.1. Furthermore, we explic-
itly added the production costs of the only intermediate production plant P1, since the
variable utility costs are saved when the P1 plant is in shutdown.
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Figure 5.2: Division of costs in average scenario

The division of costs scales with the total costs of a scenario. Based on this, we can
conclude that the division is independent of the total scenario costs. This is caused by
the fact that the division of costs is driven by a similar set of underlying risks for each
scenario. The major driver of the costs of disruptions are lost sales. At the other side, the
resourcing e�orts lead to savings compared to BAU, since less supply needs to be sourced
if less is produced. Obviously, production costs are also less than in BAU because of this
reason. Extra transportation costs and shutdown costs only contribute a minor part to the
total costs. The minor contribution of transportation costs can be explained by the fact
that transportation costs are low compared to feedstock costs (about 3%) for externally
sourced feedstock and (< 1%) for feedstock sourced at CrackComp. A potential way to
simplify the model would be to approximate transportation costs in the feedstock price,
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however the bene�t of this change on computational performance is expected to be low.
The low contribution of shutdown costs is caused by the high cost of shutdowns, both
in terms of actual shutdown costs and cost of lost sales during the minimum shutdown
period. Unless there is no other alternative, e.g. when there is no feedstock supply
available for the P1 plant, the decision is made to put a plant in shutdown. However,
including shutdown is essential, since keeping the continuous plants open leads to lost
sales at other plants, that could have been avoided if the continuous plants were put in
shutdown. The fact that the major cost driver of shutdowns appears to be observed at
other plants instead of at the shutdown plants, allows for a potential approximation of
the shutdown formulation, e.g. by limiting the decision of shutting down a plant to the
�rst period of a disruption. This simpli�cation potentially has a signi�cant impact on the
model performance, since the number of binary variables required to model the shutdown
process is 75% of the total number of binary variables in the model.

Lost sales

The lost sales can be split into the di�erent sold products; see Figure 5.3. The external
P1 demand is the biggest contributor to lost sales. This is as expected since the products
that use P1 as feedstock (P2 and various types of P3) have higher margins than P1 sold
directly and therefore have priority in P1 allocation. Furthermore, due to contractual
obligations, the S1 Customer P1 demand has higher priority. Therefore, external P1 sales
will be decreased to 0 before the others will be decreased. Moreover, contrary to the other
nodes that use P1, it makes no sense to acquire external P1 to sell it at the market. It is
cheaper to directly send P1 from the source to the demand location.
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Figure 5.3: Division of lost sales and lost margin of average scenario cost

However, margins on P1 are low compared to the other products and this leads to
a situation where the lost sales of the di�erent P3 products lead to the highest lost
margins. Especially the high margin P3a and P3b products contribute for a large part
of lost margin (44%) relative to their contribution to lost sales (22%).

Resourcing

The e�ect of resourcing can be split into savings and costs; see Figure 5.4. The savings
consist of products that do not have to be sourced since there is no production or products
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that cannot be sourced since the supply node is disrupted. On the other side, there are
costs to source alternative feedstock to make up for the disrupted supply.
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(b) Resource costs
(e108 million per 5 years)

Figure 5.4: Division of resource savings and resource costs

On average, over the time horizon under investigation, the savings are caused for
a major part by feedstock that is not sourced from the ChemComp cracker because
of disruptions. Furthermore, there are extra savings if the P1 plant or the distillation
tower are down. In that case, minimum contractual quantities are sourced at the cracker.
However, the minimum contractual quantities have to be respected, so F1, F2 and F3 have
to be sourced, which cannot be used to produce. The forced sourcing of this unwanted
feedstock leads to a total costs of e36.2 million over �ve years. The major part of this
are F2 (70.3%) and F1 (21%). F3 contributes 8.2%, also including externally sourced F3.

To make up for the supply that cannot be sourced from the ChemComp cracker,
alternative P1 and F3 are sourced externally to ensure production of the P3 and P2
plants and to deliver S1 Customer P1 demand.

5.3.2 Excluding risks
To get a better insight in the drivers of disruption costs, we conducted �ve additional
analysis where we excluded one of the four major risks or the secondary external inow
risks. In Figure 5.5, we present the expected costs and the CVaR for each of these
analysis. Based on the graph, we can conclude that the e�ect of F3 plant outages and
the secondary outages only have a minor e�ect. This can be explained by the fact that
F3 plant outages only a�ect the F3 supply and happen on average only half as often as
a cracker outage which has a similar e�ect on F3. As discussed before, the secondary
risks generally have a short duration and most of them can be anticipated better (e.g. an
announced strike or expected snow) than the unplanned asset outages. Furthermore, it
appears that excluding the cracker (31%), P1 plant (30%) and distillation tower (29%)
disruptions each lead to a reduction of disruption costs of almost a third. However, the
drivers for this reduction are di�erent.

Excluding distillation tower disruptions

Obviously, excluding the distillation tower leads to a reduction in lost sales and lost
margin of the P3 plants. As expected, the optimal solution avoids lost sales of the high
margin P3a and P3b products (decrease by 99.9% to practically 0). This can be explained
by the fact that in the case of F3 supply disruptions that cause a lack of F3, �rst the
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Figure 5.5: Comparison of expected costs and CVaR when excluding di�erent risks

production rates of the lower margin trains that have a higher unit-ratio of F3 in their
products are reduced. This is supported by the results that show that the low-margin
P3d and P3e lost margin (25% and 75% decrease respectively) does not decrease as much
as the P3a and P3b lost margin. Furthermore, since we do not explicitly include P3
plant disruptions, F3 demand is always as planned, so there is no waste of F3 because
inventory wants to exceed storage capacity. This cost pattern leads to the conclusion that
it is mostly the P3 infrastructure unreliability that causes disruption costs to be high for
the P3 business, compared to the role of feedstock disruptions.

Excluding P1 plant disruptions

The major driver for the disruption cost reduction assuming the P1 plant has zero dis-
ruptions is related to the minimum sourcing quantities of F1 and F2 of the ChemComp
cracker. Furthermore, the lost margin of P1 decreases by 26% . Two other e�ects, that
are related to each other but both work in opposite directions, are the decrease in P1
production savings (29%) and because there is more production, there are less costs for
resourcing of P1 (decrease of 34%).

Excluding cracker outages

Contrary to excluding the P1 plant or distillation tower outages, the e�ect of excluding
the cracker outage does not have one major driver. Lost margin is decreased by 75% for
P1 and 33% for P3d. Furthermore, the net savings of resourcing and the savings caused
by non-production of the P1 plant decreases and there are lower costs for externally
sourced F2 that is lost, because the P1 plant has a higher utilization since it does not
need to shut down because of a cracker outage.

Excluding the cracker outages leads to another valuable insight. The CVaR for this
scenario is higher compared to excluding the other two risks that lead to a similar expected
costs decrease. Excluding the cracker outages increases variability of the scenario costs
overall. This can be explained by the fact the cracker outages are the most frequent
outages and therefore have the biggest e�ect in attening the extremes. This insight
helps to support the �nding that increasing the number of included disruptions stimulates
scenarios to lead to costs close to the mean because the periods with more and the
periods with less disruptions cancel each other out. The number of risks to include can
be inuenced by �min (minimum disruption duration), the risks to consider or the time
horizon under investigation.
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5.3.3 Di�erent cracker scenarios

The cracker outages are perceived as the major concern for ChemComp. We have shown
that indeed the cracker outages are the major contributor to disruption costs caused by
external supply. Furthermore, the expectations about the reliability of the cracker vary
among ChemComp sta�. We assumed that the duration distribution of cracker outages
will be similar to how it has been the past 5 years, between the past major turnarounds.
However, the cracker gets older and the utilization of European crackers in general is
expected to be higher the coming years. To analyze the e�ect of decreased reliability of
the cracker outages, we analyze three cracker outage scenarios in addition to the base
scenario. In scenario 1 and 3 we increase the variance of the second peak (�2 = 0:5) and
in scenario 2 and 3 we increase the conditional probability of having a longer outage if
there is a cracker outage (W1 = 0:5). This leads to the three scenarios in Figure 5.6.
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Figure 5.6: Three di�erent disruption duration (in days) distributions for cracker outages

Table 5.2 shows that the e�ect of increasing the the probability on longer outage
disruptions has a signi�cant e�ect on both the average disruption costs (23% increase)
as well as the CVaR (14%). Increasing the variability of the longer duration outages has
only a minor e�ect on the expected costs (1%) and CVaR (1%). This can be explained by
the fact that increasing the variability of the second peak also increases the probability
of shorter disruptions, and therefore the e�ect of the relatively infrequent longer duration
outages is partly canceled out by the increased frequency of shorter disruptions.

Table 5.2: Expected costs and CVaR for di�erent cracker outage scenarios

Expected Costs CVaR Average cumulative Average costs per
(emillion) (emillion) disruption duration day

(days) (emillion)
Base 100 155.5 139 0.719
Scenario 1 100.2 157.6 139 0.721
Scenario 2 122.0 177.8 184 0.663
Scenario 3 122.7 183.3 192 0.639
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5.4 Design generation
Now we have a clear understanding of the costs of disruptions, the next step is to evaluate
risk mitigation options. The �rst step is to generate designs that we analyze in further
depth. In line with earlier research, we �nd that even with N as low as 20, for M = 20
runs the resulting designs converge to only one or two proposed designs. Initial analysis
with N = 60 did not lead to di�erent results, however, decreasing N from 60 to 20
reduces computational time by approximately 95%. Therefore, we choose N = 20 in this
research. For every 20 scenarios, we generated 100 scenarios to allow scenario selection.
Table 5.3 provides an overview of the parameters we used to generate designs and the
resulting set of designs that showed to be optimal in one or more runs.

Table 5.3: Proposed designs for di�erent simulation set-ups

Set-up Selection CVaR
�, � Proposed Designs

1 Base No - 95% - (5, 7, 10, 11) 5% - (5, 7, 9, 10, 11)
2 Base No 0.1, 0.5 100% - (5, 7, 10, 11)
3 Base Yes 0.1, 0.5 100% - (5, 7, 10, 11)
4 Base Yes 0.05, 0.5 100% - (5, 7, 10, 11)
5 S3 Yes 0.1, 0.5 100% - (5, 7, 10, 11)
6 Half Base, half S3 Yes 0.1, 0.5 95% - (5, 7, 10, 11) 5% - (5, 7, 9, 10, 11)
7 Base, MO Free Yes 0.1, 0.5 100% - (1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11)
8 Base, MO Half Price Yes 0.1, 0.5 65% - (5, 7, 10, 11) 25% - (5, 7, 9, 10, 11)

10% - (3, 5, 7, 10, 11)
9 Base, 5 Best MO Yes 0.1, 0.5 95% - (3, 6, 7, 10, 11) 5% - (3, 5, 7, 10, 11)
1: Extra storage P1 S1a, 5: Increase basestock P1, 3: Extra storage F3, 4: Extra unloading P1 S1b

5: Extra unloading F3 S1b, 6: P1 plant independent of cracker, 7: Shorten distillation tower backup, 8: Reduce leadtime

P1 External, 9: Reduce leadtime F3 F3Comp, 10: No minimum contract quantity F1, 11: No minimum contract quantity F2

It is clear from the resulting designs that there is one design that appears to be the
optimal design considering the trade-o� between value of the investment and the minimum
investment threshold. The rationale for the preference of these mitigation options is
evident given our understanding of the cost structure. Shortening the distillation tower
backup is a relatively cheap way to address most of the P3 lost sales and margin. Changing
the contract structure with ChemComp to get rid of the minimum quantities addresses
most of the unplanned P1 plant outage costs that are caused by ChemComp being forced
to source F1 and F2 from the cracker, even if they cannot use it. Lastly, increasing the
unloading capacity of F3 relaxes the constraint that is put on maximum input into the
S1 site. Currently, the daily capacity of unloading is lower than the maximum demand
of F3, thus if the cracker is down, it can occur that even if there is enough supply in the
market, there still is lost production.

There are a few other conclusions we can draw from the generated designs in the
di�erent scenarios:

1. The generated designs do not depend on the formulation of the objective function.
The mitigation options that address the average scenario also are most e�ective in
addressing the high risk scenarios. This is bene�cial from an investment perspective,
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companies prefer to invest in infrastructure that is more certain to provide value.
Investing in infrastructure that is only used in high risk scenarios is more di�cult
to justify.

2. The generated designs do not depend on deteriorating cracker reliability. The pre-
ferred designs are similar in both the base scenario and scenario 3 for cracker outage
duration. This insight also supports the strength of the recommendations. Inde-
pendent of the realization of this uncertain parameter in the future, the same value
of the same options is expected to outweigh their investment.

3. The identi�ed risk mitigation options all decrease the costs of disruptions. If we
make the risk mitigation options free, they are all included in the optimal design.

4. Increasing storage capacity of F3 and making plant 1 independent appear to provide
a greater decrease in disruption costs than increasing unloading capacity of F3.
However, they require bigger investments and therefore are not included in the
generated designs that include the investment tradeo�.

5.5 Design evaluation
The next step is to evaluate the generated designs. To do so, we �x the �rst stage
decision variables to the proposed designs and we solved N� = 1000 independent second
stage problems. The results are presented in Table 5.4.

Table 5.4: Expected costs and CVaR for the proposed designs

Design (MO
included)

Expected Costs
(emillion)

CVaR
(emillion)

Minimum Investment
(emillion)

Base 100 155.5 0
3 93.3 140.4 12
5 94.3 139.4 2.5
6 94.7 140.4 23
7 81.7 121.6 1
9 94.7 140.1 2.5
10 90.8 132.1 7
11 85.8 125.9 7
5,7 76.4 111.5 3.5
5,9 91.1 135.3 5

5,7,10,11 53.2 76.8 17
5,7,9,10,11 51.8 72.9 19.5

Based on the results we can conclude that investing in the mitigation options increase
unloading F3, shorten distillation tower backup, no minimum contractual quantity F1 and
no minimum contractual quantity F2 is the optimal design when focused on decreasing
expected costs. The marginal bene�t of the additional mitigation option decreasing F3
F3Comp leadtime does not outweigh its investment. However, the marginal bene�t com-
bined with the decrease in CVaR, makes investing the option to invest in decreasing the
leadtime for F3 a viable option.
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A second conclusion we can draw is that we need to distinguish between the structural
supply chain network mitigation options and the two more commercial, contract-focused
mitigation options. Removing the minimum quantities for F1 and F2 from the Chem-
Comp contract only inuences the savings because of resourcing, but does not inuence
the lost sales, production, transportation and shutdown costs. Exploring the e�ect of
these commercial mitigation options is a good idea independent of the infrastructural
supply chain mitigation options. Therefore, for the remainder of this section, we focus
on the analysis of the latter.

The results we �nd when evaluating designs are in line with the earlier results. The
reduction in costs is biggest when invested in the distillation tower to shorten the start-up
of the back-up tower from 7 to 2 days. This is mainly caused by the decrease in lost sales
of P3. Second, the value of extra F3 storage and making the P1 plant independent provide
the highest value, but not enough to justify investment. Both increasing unloading of F3
and decreasing the leadtime of F3 lead to a reduction in costs higher than it investment.
However, the combination only leads to savings of 82% of the sum of the individual
savings. From this we can conclude that the bene�ts of both mitigation options are not
independent because they both inuence the incoming F3 from F3Comp. However, since
we base our trade-o� on estimated costs, ChemComp should investigate the required
investments for both mitigation options in more depth to make a more informed decision
on which mitigation options to include.

5.6 Business insights
Linking results from the analysis of disruption costs and potential risk mitigation options
to ChemComps’s infrastructure provides us the following insights. This may help relating
the potential investments to the funding business.

1. The major part of the disruption costs a�ecting the high margin P3 production are
caused by the F3 infrastructure itself. The lost margin over 5 years of P3 trains is
caused for 75% by the distillation tower and is not caused by feedstock disruptions
such as cracker outages. Shortening the back-up time between the two distillation
towers reduces the lost margin of P3 by 43% compared to the current situation.

2. The P3 trains are not 100% reliable. This is kept out of scope in this research,
however if all the P3 trains would run at full capacity the total lost margin of the
P3 trains would be 2.2 as high, of which 53% is caused by the distillation tower. This
means that the impact of external feedstock supply outages increases in absolute
terms, but also relative to the e�ect of distiller outages when the utilization of the P3
trains increases. This has two reasons. First, more lost sales have occurred during
the reaction time between the outage and the moment extra externally sourced F3
arrives. Second, the maximum unloading capacity is limiting the externally sourced
F3 that can enter the site. Consequently, also the value of reducing the F3 leadtime
from F3Comp and increasing the unloading capacity for F3 will increase.

3. If the F3 supply is hit by cracker or F3 plant outages, it is optimal to reduce the run
rate of the P3d plant over the other plants since it has the lowest margin relative
to the F3 input. Although the margins are higher than for P3c, the F3 input is
1.8 times as high. In practice however, P3c is generally reduced before P3d. This
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result indicates that this strategy should be rediscussed. However, a more in depth
analysis that considers the di�erent unit ratios for the di�erent grades should be
conducted before conclusions are drawn.

4. The minimum contract quantities with CrackComp potentially contribute to 23.4%
of the total disruption cost for ChemComp over 5 years. However, in practice,
formal and informal negotiations with CrackComp lead to higher exibility than
captured in our formal mathematical model. Therefore, this number is an upper
bound, but nonetheless it serves as an incentive to more thoroughly research this
commercial mitigation option to reduce disruption costs.

5. A major part of the lost sales is contributed by P1, a low margin product. How-
ever, the lost margins of P1 contribute to only a small part of the total costs. The
relative importance of the lost P1 sales further decrease if we include the business
perspective. The margins of P1 are too volatile to base long-term investment de-
cisions on. The relatively steady margins on the high-margin P3 products drive
business decisions, because they de�ne the stock value. However, of the mitigation
options suggested in Table 5.3, only making the P1 plant independent a�ects P1 lost
margin. This means, the other mitigation options either inuence the higher mar-
gin products or the costs. Therefore, there is no need to account for this business
perspective in the analysis.

6. If ChemComp would decide to invest in any of the mitigation options, for other
reasons than to address the disruption costs, the investment does not have to be
justi�ed by savings in disruption costs only. The disruption costs reduction can
serve as an extra argument to support the investment.

5.7 Reduced time horizon

Based on the analysis, we provided recommendations to ChemComp how they can mit-
igate their long term expected disruption costs. Furthermore, we elaborated how these
mitigation options inuence the worst-case scenarios for the next 5 years. However, our
analysis also showed that increasing the number of included scenarios, e.g. by increasing
the time horizon, leads to scenarios where the peaks are already attened.

To get more insight in this phenomenon, we shorten T to a fourth of a year, a quarter.
The P3 business delivering a steady, signi�cant quarterly EBITDA meeting Wall Street’s
expectation signi�cantly contributes to ChemComp’s market capitalization. We analyze
the potential impact of the identi�ed risks and we investigate the impact of cracker and
F3 plant outages, since they cannot be controlled by ChemComp, contrary to P1 plant
and distillation tower outages.

Figure 5.7 shows the frequency distributions for the expected costs of disruptions for
a quarter including all risks and including only the cracker and F3 plant risks. The shape
of the distribution di�ers from the same distribution for a 5 year period, since the horizon
is not long enough to let low-risk and high-risk periods cancel each other out. 31% of
the quarters experience no disruptions. The second peak in the frequency distribution
strikes out. This is caused by the fact that the costly distillation tower outages have a
�xed length.
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Figure 5.7: Frequency of disruption costs per quarter for all identi�ed risks and the cracker and
F3 plant risks exclusively

5.7.1 Mitigation options

To get a preliminary insight in how the time horizon impacts the mitigation options,
we conducted two design generation experiments; one based on a pure expected costs
approach and one with including 10% CVaR. The results are presented in Table 5.5.

Table 5.5: Proposed designs for di�erent simulation set-ups with a quarter as time horizon

Set-up Selection CVaR
�, � Proposed Designs

1 Base No - 65% - (5, 7, 10, 11) 25% - (7, 10, 11)
5% - (7, 9 ,10, 11) 5% - (5, 7, 9, 10, 11)

2 Base No 0.1, 0.5 65% - (5, 7, 10, 11) 25% - (3, 5, 7, 10, 11)
5% - (7, 9 ,10, 11) 5% - (5, 7, 9, 10, 11)

Although a more in-depth analysis is necessary, these preliminary results provide
us with several insights. The �rst and most obvious is that more di�erent designs are
proposed. This can be explained by the fact that since the scenarios are more variable
with smaller T , the expected costs will be more variable and a higher N is required to get
to estimates with reasonable con�dence bounds. We chose N = 60 in these experiments,
but it is possible to increase N even more, since the size of the scenarios, and thus the
model, decreases proportionally with T .

Second, adding the CVaR to the objective function appears to a�ect the choice of
optimal mitigation options. Although the optimal set of mitigation options appears to
be similar to the one identi�ed with T = 5, investing in extra inventory of F3 is chosen
in 25% of the proposed designs when CVaR is included. This can be explained by the
fact the the worst case scenarios are not extreme enough relative to the average to justify
investment when T = 5, but they are when T = 0:25. Extra unloading of F3 is also
chosen more frequently when CVaR is included in the objective function. This indicates
that it is e�ective in addressing worst-case scenarios.
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5.8 Cost development during cracker outage
Cracker and F3 plant outages are a major concern for ChemComp. We analyzed the
e�ect of these outages as a part of supply network and concluded that these outages are
indeed the major external factor disrupting feedstock supply and impacting EBITDA.
To provide a better understanding of the costs of these outages, we analyzed how the
disruption costs develop with increasing length of the outage; see Figure 5.8.
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Figure 5.8: Development of disruption costs of cracker and F3 plant outages

The �rst conclusion is that costs keep increasing with longer cracker and F3 plant
outages. However, there are several key moments where the marginal costs start to
decrease. First, after 5 and 8 days the alternative supply of F3Comp and the market
arrives at the site. After this period, the cracker supply is covered by the market, while
before this time a shortage of F3 could lead to lost sales for the P3 products. Second, for
the cracker outage, a second decrease in marginal costs per day is experienced after 10
days, since unplanned shutdown costs of the P1 plant do not increase anymore. Before
10 days, it is optimal to let the plant run in standby, since the costs of 1 day in standby
are 1/10 of the shutdown costs, but for a disruption longer than 10 days it is cheaper to
pay the shutdown costs.

However, costs keep increasing with time for three reasons. First, feedstock needs to
be resourced at higher prices and higher transportation costs. Second, external supply
that enters the site cannot exceed unloading capacity, the remainder still is lost sales.
Third, for the cracker outage, lost sales of P1 continue as long as the outage lasts.

5.9 Computational performance
For this particular case study, the risk mitigation options evaluation model is written in
python 2.7. The model uses Gurobi Optimizer 6.05 for the optimization. The calculations
were carried out on a Intel(R) Xeon(R) dual CPU 2.66 GHz PC with 10.0 GB of installed
RAM running Windows 7. Since the model size depends on the the number of disruption
periods, it varies with every run. We provide an indication of how the computational
performance depends on T and N based on the average value for the runtime variable in
Gurobi over 20 runs in Table 5.6.
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Table 5.6: Computational performance

T runtime(seconds) N runtime(seconds)
0.25 0.98 20 126.15
0.5 2.14 40 536.28
1 7.22 60 1323.80
2 24.26
5 119.20
N = 20, no scenario selection T = 5, with scenario selection

5.10 Conclusion and insights
The results in this chapter provided methodological insights addressing research gap 3:
\the e�ect of robustness measures in the objective on the optimal choice of supply chain
infrastructure investments to mitigate supply risks is not researched", and consequently
answered research question 3: \How does the robustness of the identi�ed recommen-
dations depend on the chosen solution methodology and on the formulation of the ob-
jective?", as well as provided insights into the e�ect of unplanned cracker outages on
chemical supply chains.

5.10.1 Methodological insights
The e�ect of including the CVaR in the objective function and consequently the e�ect of
scenario selection depends on the time horizon and the number of risks included. Those
two aspects inuence the shape of the supply disruption cost distribution. A longer
time horizon and a greater amount of included risk categories atten out the peaks that
characterize disruptions. This is caused by the reduced e�ect of worst-case disruptions
on the scenario cost, because it is leveled out by less risky periods in the same scenario.
This result implies that decision makers that aim at designing robust supply chains should
not only focus on the long term performance of a supply chain. The robustness of their
EBITDA performance is exposed to investors on a quarterly basis and we need to be
aware that the mitigation options that reduce the variance of the quarterly EBITDA
are di�erent from the mitigation options that are optimal from an economic perspective
over a longer time horizon. Concluding, the impact of including the CVaR as robustness
measure in the objective function decreases when this measure is evaluated over a longer
time horizon.

5.10.2 Insights for the chemical industry
A recent internal ChemComp competitive analysis shows that ChemComp’s supply chain
network is similar to those seen at peer companies. Therefore we expect that the insights
acquired from this ChemComp case study will contain elements that also apply to other
players in the chemical industry.

� The impact of cracker outages increases with the degree of integration with the
cracker company. Assets that are directly connected to the cracker and depend on
it either for feedstock or utilities are hit hardest by cracker outages. However, plants
further downstream that have multiple sources of feedstock are more severely im-
pacted by outages of assets closer upstream. This implies that chemical companies
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should focus their investigation of the e�ect of cracker outages on the assets that are
closest to the cracker in the supply chain network. For plants further downstream,
they should devote their resources to increasing the reliability of assets closer to the
production plant.

� Mitigation options that increase the responsiveness to cracker outages have the
biggest impact on decreasing the e�ect of outages. The marginal costs of an ex-
tra day of a cracker outage decreases when alternative supply enters the site. If
chemical companies aim to decrease the cost of disruptions, one of their �rst steps
should be to investigate possibilities to shorten leadtime of external supply. While
making investment decisions to open new plants, decision makers should take into
account the response times, leadtimes and quantities of alternative sources of sup-
ply. Locations that have a variety of sourcing options are advantaged, both in terms
of the number of suppliers and the di�erent modalities to transport it to the site
(pipeline, rail and barge). This is obviously true for chemical companies that do
not own a cracker, but also for companies that do own a cracker since the value of
their business increases if they are less prone to supply chain glitches.

� Cracking is a process with a divergent output. Since inventories to store outbound
supply from the crackers are limited in terms of days of material ow that can be
stored, an outage in one of the outlets can have a severe impact on the ability to
run the cracker. The business partners in this supply chain need to collaborate to
optimally address their mutual interest of reducing and mitigating outages. In the
chemical industry we have seen mergers, acquisitions, and divestitures leading to a
change in ownership of assets. Although assets are eventually owned by di�erent
companies, we believe there is a signi�cant mutual interest to assess outage risks
and mitigation options across assets, across companies.
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Chapter 6

Conclusion

In Chapter 5 we provided insights on supply disruptions for the chemical industry. In
this chapter, we reect upon the scienti�c contribution of this study, guided by the
research questions de�ned in the introduction. Furthermore, we outline directions for
future research and we conclude by providing recommendations to ChemComp.

6.1 Scienti�c contribution
By answering the three research questions that guided this study, we address the four
research gaps that we de�ned in the introduction.

1. How can the existing methodologies be deployed to identify, classify and quantify
supply risks?

A vast amount of risk categorizations have been proposed in SCRM literature; see Chapter
1. Those categorizations provide a conceptual understanding of the di�erent types of
risks, but they fail to group risks in a way that is necessary to support a quantitative
analysis, i.e. based on location of occurrence, impact and duration. Furthermore, work
in SCND assumes that the risks and uncertainties are already quanti�ed. In Chapter
2, we contribute to the integration SCRM and SCND by providing a comprehensive
methodology to identify, categorize and quantify risks that aims to provide meaningful
input for quantitative SCND models.

2. What methodology can be developed to evaluate supply chain infrastructure miti-
gation options to create a robust infrastructure to support the long-term strategic
goals of chemical companies?

To evaluate the impact of supply chain risks and value of risk mitigation options, we need
to capture the temporal hierarchy between the strategic design decisions and the opera-
tional decisions that are made based on how the future unfolds. Stochastic models that
capture this uncertainty have been shown to outperform their deterministic counterparts
in SCND (Klibi et al., 2010; Sch�utz et al., 2009). Therefore, in Chapter 3 we modeled the
chemical supply chain as a two-stage stochastic program with recourse based on a discrete
temporal framework that makes a decision about all mitigation options integrally. By
including the CVaR in the objective function, we allow a trade-o� between minimizing
the expected costs and focusing on more robust supply chains by minimizing the costs of
worst-case scenarios.
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The future can unfold in an in�nite number of ways and this raises computational
challenges for stochastic SCND models. We contribute in addressing this gap by intro-
ducing a methodology to evaluate the e�ect of risk mitigation options by only explicitly
evaluating the periods that a supply chain is under the e�ect of a disruption. This reduces
model size by approximately 90% and therefore it allows to add more complexity to the
model or to analyze a larger amount of potential scenarios.

Furthermore, we contribute by introducing a formulation to model the minimum
shutdown length in a set of balance equations.

Finally, we answer to calls of both SCRM (Sodhi et al., 2012) and SCND (Ho et al.,
2015) literature by applying this methodology in an empirical study in cooperation with
ChemComp.

3. How does the robustness of the identi�ed recommendations depend on the chosen
solution methodology and on the formulation of the objective?

In Chapter 5 we contribute to science by showing that the impact of including the CVaR as
robustness measure in the objective function reduces when disruption costs are evaluated
over a longer time horizon and a higher number of included risk categories. Both level out
the peaks that characterize disruptions. Consequently, the worst-case scenarios show less
deviation from the mean and this reduces the e�ect of the CVaR term in the objective.
This implies that decision makers that aim at designing robust supply chains should not
only focus on the long term performance of a supply chain. The robustness of their
EBITDA performance is exposed to investors on a quarterly basis and we need to be
aware that the mitigation options that reduce the variance of the quarterly EBITDA are
di�erent from the mitigation options that are optimal from an economic perspective over
a longer time horizon.

6.2 Future research
The results of our research show that the e�ect of including the CVaR in the research
objective reduces when the time horizon under investigation increases. An interesting
alley for further research would be to investigate how to include robustness measures
in a model with a longer horizon in such a way that they also addresses the worst-case
disruption periods within a scenario.

In the proposed model, it is assumed that future information about a speci�c dis-
ruption period is known at the start of a disruption period. We have shown that this
is a reasonable assumption in the chemical industry, where contract prices, disruption
durations and demand schedules tend to be known in advance or can be estimated with
high accuracy based on past experience. However, this limits the applicability of the
model in situations with a lot of disruptions. In this case, the disruptions can happen so
frequently, that they coincide and in that case the model prepares for the second disrup-
tion by increasing inventory and ordering extra feedstock on the spot market in advance.
A direction for future research would be to explore methodologies to better reect the
uncertainty faced during a disruption period into the options evaluation model.

A potential e�ect of disruptions that is outside the scope of the current model is
that customers might switch to another supplier if disruptions last for a longer period,
temporarily or permanently. This e�ect can be included by penalizing longer disruptions.
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Probably, this will lead to a bigger impact of including the CVaR in the objective function,
since the peaks are arti�cially enlarged by this penalty.

Although our approach reduces the size and complexity of the model, tractability is
still an issue that limits the number of scenarios to include. E�orts to further simplify the
model can focus on approximating the plant shutdown binary variables. For each plant,
for each period, three binary variables are required to model shutdown and standby. One
way to decrease this complexity is to limit the shutdown decision to the �rst period of a
disruption and to exclude decisions that are known to be infeasible beforehand given the
minimum shutdown duration.

Similar to most work in the �eld of supply chain risk management this research is
a�ected by data availability. The type of disruptions we investigate happen infrequently,
which makes it hard to �t probability distributions on the data. Therefore, the reliance on
expert opinion is still signi�cant. Also in this study, expert opinion can be biased by recent
cracker outages of the cracker of CrackComp. Although we have shown that the optimal
risk mitigation options in this case study are robust given di�erent cracker disruption
pro�les, the research can improve by including data on outages of other comparable
crackers. We learned that cracker owners are somewhat reluctant to share this data. An
alternative approach is to cooperate with other customers of European crackers, who are
not necessarily competitors of ChemComp, to gain more quantitative support for expected
cracker outage pro�les. This insight will be valuable for a range of chemical companies
that have to address similar challenges regarding cracker reliability as ChemComp.

Since we focus on long-term mitigation options in this research, we did not explicitly
include the reactive risk management strategies of ChemComp sta�. The quantitative
model is bounded by the formal rules, while people are not. A more in depth analysis
of used risk management strategies and including them into the model can enhance the
accuracy of the results. However, it is important to keep the trade-o� in mind between
adding extra complexity and creating an insightful set of cause and e�ect relations that
allow the outputs of the model to be explained based on the inputs. The model aims
to provide insight in disruption costs and the e�ect of mitigation options. Currently, it
does so based on straightforward parameters. Therefore, the results can be related to
these parameters and this stimulates discussions that provide additional insight and aid
the decision maker.

6.3 Recommendations ChemComp

We establish four recommendations to ChemComp. First, our analysis shows that dis-
ruptions in the P3 infrastructure have a bigger e�ect than disruptions in feedstock supply.
We recommend ChemComp to investigate the vulnerabilities of the P3 assets and con-
duct a similar analysis as in this study. Second, the contractual minimum quantities with
CrackComp prove to be a signi�cant cost in the case of P1 plant disruptions. It wwill be
valuable to analyze formal and informal agreements that inuence these costs and how
they could be further decreased. Third, we recommend to reevaluate the F3 allocation
strategy in case of disruptions. Fourth, we recommend to invest in extra F3 unloading
capacity, and in shortening the distillation tower back-up time. The latter investment is
included in the ChemComp investment plan already, however the value of decreasing the
costs of disruptions is not explicitly part of the investment proposal and therefore our
results provide extra support for this decision.
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Supply chain risk management is an area that increasingly gains interest of Chem-
Comp executives. This project focused on site S1. However, similar projects can be
conducted at other operating sites that face asset reliability issues reducing the EBITDA
potential. The methodology developed in this research can easily be applied to other sup-
ply chains within ChemComp by changing parameter values. The bene�t of doing such
analysis is twofold. First, it increases the understanding of risks threatening a particular
supply chain, the potential costs and how these costs can mitigated. These insights can
provide extra support for investment decisions that aim to improve BAU. Second, doing
similar projects at di�erent parts of the company leads to the identi�cation of best prac-
tices that can be applied company wide and thereby increase the e�ciency and e�ectivity
of risk management within ChemComp.

However, it is important that the results of such analysis are used as input to support
decision making, rather than the de�nitive answer to a question. Di�erent ChemComp
stakeholders have di�erent interests if it comes to short term value or long term security.
The interpretation of the results of these analysis depends on the balance between these
interests.

SRCM goes beyond the scope of this research. For example, people play a key role
in SCRM. The recommendations in this research provide ways to make risk management
easier, but the decisions that are taken at the moment of a disruption are and remain the
major driver of the e�ect of disruptions. Relationships with suppliers at operational level
have proven to beat communication via the o�cial channels and are extremely valuable
to adequately react to disruptions. Therefore, ChemComp should keep SCRM as a key
focus point in all levels of the organization and aim to involve its suppliers and customers
wherever possible.

Finally, the quantitative optimization approach used in this research is atypical within
ChemComp. However, we believe that the bene�ts of this approach are not limited
to supply chain risk management projects. Optimization models are a powerful tool
to quantify the investment and allocation trade-o�s and their e�ect on EBITDA that
are faced in reality. Furthermore, decision makers can include di�erent expert opinions
to conduct sensitivity analysis that further enhance the insights that support decision
makers.
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Appendix A

Risk factor overview
Risk Cascade �± A Brainstorm Framework  

Environmental 
�‡Policy 
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�‡Product 

Company �‡Infrastructure 
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Problem 
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�‡Information 
availability 

�‡Institutional rules 
�‡Risk 
interrelationship 

1. What events did 
happen? 

2. What events could 
happen? 

3. What are the long-term 
trends? 

 

Figure A.1: Risk factor overview to support phase two risk identi�cation based on (Rao and
Goldsby, 2009)
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Notation

Table B.1: Indices

i; j; h; g Node
t Time period
s Scenario
z Hazard zone
� Indicator for parameter or variable during disruption

Table B.2: Risk quanti�cation parameters

�z random variable describing inter arrival time of disruptions
F�
z (�) cumulative distribution function of inter arrival of disruptions in hazard zone z, z 2 Z

�z random variable describing disruption duration
F�
z (�) cumulative distribution function of duration of disruptions in hazard zone z, z 2 Z

�z random variable describing disruption impact
F�
z (�) cumulative distribution function of impact of disruptions in hazard zone z, z 2 Z
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Table B.3: Sets

I Set of nodes
Ip Set of production nodes
I i Set of inventory nodes
Iu Set of (un)loading nodes
If Set of �nal production nodes
Is Set of supplier nodes
Id Set of demand nodes
U(i) Set of nodes upstream of node i
D(i) Set of nodes downstream of node i
T Set of time periods
S Set of scenarios
Z Set of hazard zones
Iz Set of infrastructure nodes in hazard zone z 2 Z
A Set of leadtime and capacity parameters
E Set of disruptions
Y Set of strategic decision variables
X Set of operational decision variables
Xs Set of operational decision variables in scenario s
Xts Set of operational decision variables in period t in scenario s
Xits Set of operational decision variables on node i in period t in scenario s
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Table B.4: Parameters

�ij Unit ratio of required product from node i by node j relative
to the output in node j, j 2 D(i)

�ij Leadtime from i to j
�maxits Maximum input capacity of node i in period t in scenario s
�minits Minimum input capacity of node i in period t in scenario s
�maxits Maximum output capacity of node i in period t in scenario s
�minits Minimum output capacity of node i in period t in scenario s
maxits Maximum inventory capacity of node i in period t in scenario s
minits Minimum inventory capacity of node i in period t in scenario s
Si Basestock level at node i
si Basestock level percentage of maximum inventory at node i (Si = simaxi )
Dits demand at node i in period t in scenario s, i 2 Id \ If
mits selling price at node i in period t in scenario s, i 2 Id \ If

cfits feedstock price at node i in period t in scenario s, i 2 Is
ctijts transportation costs from node i to node j in period t in scenario s,

i 2 I; j 2 D(i); t 2 T
cdi Shutdown costs for node i (per event)
cbi Standby costs for node i (per period)
cyn Cost of mitigation option n
�i Minimum shutdown time of node i
�min Threshold duration for disruptions to be included in E
�(s) Probability of scenario s
zs Auxiliary variable to determine CVaR
� Percentage of scenarios to include in CVaR
� Weighting factor to determine weight of expected costs and CVaR

in objective function
!s vector with realization of disruptions, feedstock prices, transportation

costs, selling prices and demand for scenario s

Table B.5: Decision variables

yn 1 if mitigation option n is implemented, 0 otherwise
xijts product ow sent from node i to node j in period t in

scenario s, j 2 D(i)
bits incoming product ow that exceeds inventory capacity at node i

in period t in scenario s
Iits inventory at node i at the end of period t in scenario s
hd;switchits 1 if node i is either shut down or started up in period t

in scenario s, 0 otherwise
hd;shutdownits -1 if node i is shut down in period t in scenario s, � 0 otherwise
hdits 1 if node i is down in period t in scenario s, 0 otherwise
hbits 1 if node i is standby in period t in scenario s, 0 otherwise
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Table B.6: Parameters and sets to describe disruption time path

T � Set of periods that the supply chain is a�ected by a disruption,
i.e. duration of disruption and recovery

T �E Set of periods that the disruption is still present
T �recovery Set of periods after the disruption to get back to BAU
T �r Set of �nal periods of recovery
Te�u Set of periods t that are 0 < t � u periods before the �rst period of a disruption
te �rst period of disruption e
te�u period u periods before the �rst period of disruption e
tr �nal period of disruption e
�e duration of disruption e
re duration of recovery after disruption e
tr last period before return to BAU after disruption e
�e impact parameter of disruption e
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Case Study Data

This appendix supports Chapter 4 in providing input data an the detailed scenario gen-
eration algorithms. First, we will start out by providing an overview of the structural
parameters. Second go into detail on the scenario generation procedure.

C.1 Structural parameters
In table C.1 we provide an overview of the structural parameters used in the case study.
The cells marked by x are relevant in this study. The empty cells indicate that a particular
structural parameter of a node is not constrained and the gray cells indicate that they
are not relevant for that particular node in this case study.

C.1.1 Node parameters

Table C.1: Overview of the node de�ning parameters for the case study

Node Parameter
type Node �max �min �max �min max min si cdi cbi k
Is F1 CrackComp Contract x x

F1 CrackComp Spot x x
F2 Pipeline x

F2 CrackComp Contract x x
F2 External x x
P1 External x

F3 CrackComp Contract x x
F3 F3Comp Contract x x

F3 Other x
Ipi P1 x x x x x x x x x 5
Id S1 Customer P1 x

External Demand P1 x x
Iu Unloading P1 x x x x x

Unloading F3 x x x x x
Ii P1 + Pipeline (S1a) x x x x x x

P1 (S1b) x x x x x
F3 x x x x x

F1 (Dummy) x x x x x
F2 (Dummy) x x x x x

If P2 x x x x x x x
P3a x x x x x x x x
P3b x x x x x x x x
P3c x x 0 x x x x
P3d x x x x x x x x
P3e x x x x x x x x

Empty: not constrained, gray: not applicable

C.1.2 Node connections
In table C.2 we outline how the di�erent nodes are connected to each other. Node
connections are speci�ed by unit ratio, leadtime and transportation costs.
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Table C.2: Node connections

Is Downstream
Nodes

Node F1 (Dummy) F2 (Dummy) Unloading P1 Unloading F3 P1 (S1a)
F1 CrackComp Contract x

F1 CrackComp Spot x
F1 Pipeline x

F2 CrackComp Contract x
F2 External x
P1 External x

F3 CrackComp Contract x
F3 F3Comp Contract x

F3 Other x

Ipi Downstream
Nodes

Node P1 (S1a)
P1 x

Iu Downstream
Nodes

Node P1 (S1b) F3
Unloading P1 x
Unloading F3 (x

Ii Downstream
Nodes

Node P1 P1 (S1b)
F1 (Dummy) x
F2 (Dummy) x

P1 (S1a) x

Ii Downstream
Nodes

Node S1 Customer P1 External Demand P1 P2 P3a P3b P3c
P1 (S1b) x x x x x x

Ii Downstream
Nodes

Node P3a P3b P3c P3d P3e
F3 x x x x x

The data is presented as follows: (�ij , �ij , ctij)

C.2 Generate BAU parameters
In this section, we provide the data and a more in depth methodology on how we generated
BAU parameters.

C.2.1 Demand
P2

P2 is produced according to a continuous process, the intake is rather constant Figures
C.1 and C.2 show the production schedule based on P1 intake of the period 2011-2015
as well as for 2015. The peaks can be explained by a high intake of P1 to prepare for a
switch in product. However, the average remains stable over the last year as well as over
the years before. Therefore, we assume the production schedule of P2 constant.

P3c

Similar to P2, P3c is a continuous production plant with high shutting down costs. The
production schedule shows similar uctuations as the P2 production. This e�ect is even
stronger since every 7 days, the plant will be cleaned and no production takes place.
However, given the continuous nature of the demand, we assume the production schedule
of P3c to be constant. Although the data in Figure C.3 shows that the production in the
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Figure C.1: P2 production for the period 1/1/2011 - 31/12/2015
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Figure C.2: P2 production for the period 1/1/2015 - 31/12/2015

�rst 10 months of 2015 is on par with the average production and the last two months of
2015 show a decrease in demand. However, there is no indication that this is structural,
therefore we assume the production to be constant.

Figure C.3: P3c production for the period 1/1/2011 - 31/12/2015

S1 Customer P1

ChemComp has a contract with S1 Customer P1 to supply P1. Based on the demand
pattern of the last 4 years presented in Figure C.4 and 2015 in more detail presented
in Figure C.5 two aspects strike out. First, there is seasonality of demand which can
be explained that the product of S1 Customer P1 is used in the construction industry,
which is unable to work in cold and snowy weather. Second, there is a planned and
legally required TA every year. To account for this, the bootstrapping method is slightly
adapted. For every year, the demand for 8 weeks during winter periods is determined on
a sample where seasonality was strongest, in the months December and January. The

65



APPENDIX C. CASE STUDY DATA

remaining weeks in a year are sampled based on the o�-take between the �rst of April
and the 30th of September. Lastly, the required TA is represented by 0 demand in one
speci�ed week of every year.

Figure C.4: S1 Customer P1 demand for the period 1/1/2012 - 31/12/2015

Figure C.5: S1 Customer P1 demand for the period 1/1/2015 - 31/12/2015

P3 trains

Each P3 train produces various grades of P3 in a process that is characterized by frequent
stops due to planned cleaning, disruptions and product switches. Contrary to the con-
tinuous P3c and P2 plants, the costs of a production stop are marginal and a restart can
be initiated quickly. Furthermore, the production schedules of the P3 trains are charac-
terized by a planned major cleaning period of 7 days every half year. Figure C.6 shows a
typical production schedule for a P3 train in the form of the production schedule. Since
no major changes in demand are expected (the plants are sold out and are expected to
remain sold out), the bootstrapping pool will be based on the production weeks of 2014
and 2015, excluding the TA weeks and weeks with disruptions caused by the supply side.
Every 26th week will be replaced by a ’major cleaning period’ without demand lasting a
week.

C.2.2 Feedstock Prices
The inventory level at a disruption depends on the order decisions before a disruption.
We assume that the cheapest available feedstock (including handling and transportation
fees) is sourced. Feedstock prices depend on contractual agreements and spot prices.
Contracts depend on the average price of the previous month and include a discount
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Figure C.6: P3b production for the period 1/1/2015 - 31/12/2015

and therefore are generally preferred over spot prices. However, it is possible that spot
prices decrease to a point where they become cheaper than contract prices. In this case,
contractual sourcing will go to minimal quantities. However, inventory is lower during
the leadtime of those externally sourced products.

Since feedstock acquired by the company are naphtha derivatives, prices are corre-
lated; see table C.3. However, F3 clearly shows a di�erent pattern than the other deriva-
tives. We developed the procedure outline in this section to generated feedstock prices.
The procedure relies on a naphtha price generation, the major driver of the company’s
feedstock prices, to assure correlation between other feedstocks.

Table C.3: Correlation between feedstock prices

Price Naphtha F1 F2 P1 F3
Naphtha 1 0.79** 0.89** 0.76** 0.53**

F1 - 1 0.75** 0.8** 0.27**
F2 - - 1 0.87** 0.18*
P1 - - - 1 -0.12***
F3 - - - - 1

*** p < 0:05, * p < 0:01, ** p < 0:0001

Step 1: Generate naphta prices

It is assumed that the price of naphtha follows the geometric Brownian Motion (GBM)

dP = �Pdt+ �Pdz (C.1)
where dz is the increment of a Wiener process. Furthermore, since we are interested

in volatility and not in absolute prices, we assume that the ’drift’ � = 0. Volatility
is based on the volatility of the returns of weekly spot prices of Naphta provided by
ICIS from December 2007 until December 2015. The volatility over this period is 3.95%.
Figure C.7 shows the price movements from 2008 until 2015 and three separate generated
price movements. Due to the nature of the generation process, the average volatility of
generated scenarios goes to 3.95% when the number of generated scenarios increases.

Step 2: Generate F1 and F2 prices

For F1 there is no alternative to the CrackComp cracker in the current situation. For
F2 the largest part of supply is also covered by a contract with minimum quantities with
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Figure C.7: Naphtha price for the period 2008 - 2015 and 3 examples of generated prices for
the periods 2016-2020

CrackComp. Volatility of prices is however relevant for F1 if we consider the mitigation
option to make the P1 plant independent by allowing external sourcing via the pipeline.
For F2, volatility is relevant for the minor part that is sourced external to CrackComp.
Since we are only interested in volatility and not so much in the exact prices, F1 and
F2 are highly correlated with each other and naphtha and since sourcing decisions for
both products are made independently with di�erent contract thresholds, we assume that
the feedstock prices are described by the naphtha price plus the average spread over the
period 2008-2015.

Step 3: Generate P1 prices

Contrary to its feedstock, F1 and F2, both the volatility and value of the price are relevant
for P1. Although it is not so much the absolute value, as the spread between P1 and its
feedstock. This spread determines the margin of P1, the key driver to make the decision
if the P1 production level is at minimum to deliver P1 to the downstream nodes at site
S1, or if the production level is at maximum to also deliver to other ChemComp plants
or sell to the market. The threshold for this decision is certain margin over feedstock. P1
price developments can be described by the P1:F2 spread.

P1 prices are generated similarly to naphtha prices using a GBM, to assure represen-
tative volatility (drift = 0%, volatility = 4.44%). However, upper and lower bounds for
the P1 price are de�ned by maximum and minimum values of the P1:F2 spread +/- 10%
for upper and lower bound respectively. Figure C.8 shows an example of generated F2
and P1 prices and the spread. Keeping in mind that F1 follows a similar volatility path
as F2, it is clear that the P1 margins will be volatile in the model, thus representing a
realistic situation where sometimes it is bene�cial to run the P1 plant at full capacity,
and sometimes it is not.

Step 4: Generate F3 prices

The prices of F3 show a much more disrupted path than that of the other feedstocks. Av-
erage spread over naphtha does not capture this volatility, nor does the price development
appear to be a random walk that justi�es using the GBM. Krichene (2006) developed a
jump-di�usion model to capture sensitivity of prices to supply-demand shocks by adding
a Poisson jump component to the basic GBM model. Inter arrival time of jumps is ex-
ponentially distributed with parameter �. Similar shocks characterize the peak prices in
F3. However, the jumps in F3 pricing do not seem to be independent. Within a few
weeks after the prices went up, they return to normal levels. Experts within ChemComp
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Figure C.8: Examples of randomly generated prices for F2 and P1 and the P1:F2 spread for the
period 2016-2020

explain this due to the nature of the market, with extra imports in case of a short market.
Therefore, we assume jumps to be a combination of combination of a sudden increase in
prices and a similar decrease after the market is settled.

Although the underlying process of the jumps can be traced back to the nature of
the market, this is outside the scope of this research. However, the purpose of generating
peaks in this study is to capture similar volatility potential in the scenario generation as
is present in real liefe. Using historic data of peaks we are able to generate similar jumps
in our scenarios. We identi�ed two jumps for which the F3:naphtha spread exceeded two
times the average spread in the period 2010-2015. Both peaks above two times the average
are indeed symmetrical in their exceptional price levels in the sense that the number of
periods for the price to increase is almost similar to the number of periods for the price
to decrease (10:10, peak price = 3.73 * average and 10:7, peakprice = 2.18 * average).
Therefore, we assume that the prices go up linearly for the �rst half of the price and go
down for the second half. The mean inter arrival time is exponentially distributed with
parameter � = 2=(52 � 6) and the duration of a peak is exponentially distributed with
parameter � = 2=(20 + 17). The magnitude of a peak is uniformly distributed between 2
and 4 times the average F3:naphtha spread.

Concluding, the generated F3 price depends on the generated naphtha price, the
average F3:naphtha spread and the price jumps that follow a Poisson process. Figure C.9
shows three example realizations of this process. Although the peaks do not show the
same whimsicality as the real F3 peaks, they serve their purpose in disrupting the spot
price and they inuence the preference over spot or contract purchases.

Figure C.9: Examples of randomly generated F3 prices for the period 2015 - 2020
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Contract prices

For each of the di�erent nodes, the daily selling prices are either based on the MCP, the
spot price or a combination of both. We used di�erent pricing formulas based on the
di�erent types of feedstocks and discount rates for each of the supply nodes.

C.2.3 Selling prices
The average margins used in this study are based on historical ChemComp data for P2
and P3 respectively. Selling prices for P1 are based on the spot price.

C.3 BAU decision rules
Algorithm 1 provides an overview of the detailed decision rules used to de�ne the BAU
decision variables. However, they are created according to the following rules

1. Sell as much as possible

2. Respect minimum and maximum capacities

3. The sum of the physical inventory at each node i 2 I i and products in transit at
unloading nodes j 2 U(i) is larger or equal than the adjusted basestock-level Si 1

4. Internal demand has priority over external demand

5. Do not shutdown plants or put them in standby

6. Source at the cheapest possible option

C.4 Generate disruption parameters
Algorithm 2 provides a detailed receipe how disruptions are generated in this research.
The process outlined in algorithm 2 used to generate disruption parameters is similar to
the process outlined in Chapter 3.

1Si can either be determined as an absolute value expressed in mT, or it can be based on a certain
basestock percentage (si) of the maximum inventory capacity (maxi )
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Algorithm 1 Determine BAU operational decisions
1: procedure DetermineBAUDecisionVars (I;A;X ; T )
2: for s 2 S do
3: for t 2 T do
4: for i 2 Id [ If [ Ip do
5: for h 2 U(i) do
6: �maxits  Dits
7: xhits  �maxits �hi
8: end for
9: end for

10: for i 2 Ii do
11: O  Si �

P
j2D (i) xijts

12: for h 2 U(i) do
13: H  ;
14: if h 2 Iu then
15: for g 2 U(h) do
16: H  H [ fgg
17: end for
18: else
19: H  H [ fhg
20: end if
21: Sort H based on cfh(t� �its)s + cth(t� �its)s
22: end for
23: nr  1
24: while O > 0 do
25: h nrth element of H
26: if h 2 Iu then
27: xgh(t� �ijts)s  max(O;�i)
28: O  O � xgh(t� �ijts+1)s
29: else
30: xjits  max(O;�maxi )
31: O  O � xjits
32: end if
33: nr  nr + 1
34: end while
35: end for
36: for i 2 Iu do
37: for j 2 D(i) do
38: xjits  

P

h2U (i)
xhi(t� �ijts)s

39: end for
40: for i 2 I do
41: hd;switchits  0
42: hd;shutdownits  0
43: hdits  0
44: hbits  0
45: Iits  Ii(t� 1)s +

P

h2U (i)
xhi(t� ��hits)s �

P

h2U (i)
�hi �

P

j2D (i)
xijts

46: end for
47: end for
48: end for
49: end for
50: end procedure
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Algorithm 2 Generate disruptions and determine disruption parameters
1: procedure DetermineDisruptionParameters (Z; T;A)
2: for all s 2 S do
3: for all z 2 Z do
4: Using F�

z (�) generate a set of te of disruption arrival moments
5: for all te do
6: Using F �

z (�) generate time to recovery �e
7: Using F�

z (�) generate impact parameter �e
8: if �e � �minz then
9: Add ftjteg to Te

10: Add ftjte � t � te + �eg to T �E
11: re  te + �e + re
12: Add ftjte + �e � t � trg to T �recovery
13: end if
14: end for
15: for all i 2 Iz; t 2 T �E do
16: Compute [��its; ��its; �its] = �e � [�its; �its; its]
17: end for
18: end for
19: end for
20: end procedure
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