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Chapter 1

Introduction

The semiconductor industry is concerned with many di�erent areas. One of
those areas is circuit simulation. Circuit simulation helps to understand the
way in which circuits work. Besides it is also useful for predicting errors and
for optimizing the design of the circuits before actually constructing them. Cir-
cuit simulation uses mathematical models describing the behavior of both the
individual components and the interactions between them. Predicting the be-
havior of a circuit before building it improves the e�ciency and provides useful
information to the circuit designers. Moreover, in the case of integrated circuits
for example, the simulation of circuits is one of the main tools in which circuit
design relies. This is the case, because performing experiments is usually very
expensive and unpractical.

We can summarize this by saying that, circuit simulation is a key tool in the
electronics industry. One of the characteristics in this industry is the always
increasing complexity of the circuits. The number of components in a single
chip keeps increasing day after day. For example, in Figure 1.2 we can observe
a typical integrated circuit manufactured by photographic process. In �gure
1.1, we can observe a graph showing the growth of the number of transistors in
di�erent commercial integrated circuits. This is known as Moore’s Law.

Nowadays it is very common to �nd circuit designs involving a very large
number of components. Consequently the mathematical models describing the
circuits also contain many variables. This characteristic makes direct solvers,
like Gaussian elimination for instance, to be very time consuming. This hap-
pens specially when extra interactions between the components, like inductive
coupling, are taken into account. The usage of iterative solvers is also restricted,
due to the inde�niteness and the poor spectral properties of the correspondent
linear systems. We will discuss this more precisely in further chapters.

The problem at hand can be classi�ed as saddle point problem. Solution
techniques have been proposed to tackle this kind of systems. In our particular
case we will concentrate on developing exact factorizations of the RLC circuit
equations. The key component for constructing these factorizations will be the
Schilders factorization. In this work we present how to achieve this goal. To
that extend we organized this thesis as follows.
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Introduction

Figure 1.1: Moore’s Law, source Wikipedia

This �rst chapter contains the introduction. In the second chapter we re-
view the basics of circuit simulation. We focus on constructing the equations
describing the behavior of RLC circuits. We also analyze the properties of the
derived system of equations. In the third chapter we try to give an overview of
the strategies for solving linear equations, algorithms and their corresponding
complexities are included. Later, the saddle point problems are introduced and
we present some of the di�culties that arise when using iterative solvers with
non symmetric and inde�nite matrices. In this same chapter we also present
the Schilders factorization; this idea will lead us later to the factorizations of
the circuit equations.

Chapter 4 develops the particular RL case. First we discuss in detail the
step of rearranging the incidence matrix. We include a proof of the existence of
such rearrangement and provide an algorithm for �nding the involved permuta-
tion matrices. Then we present the RL factorization and discuss the frequency
dependencies of the factor matrices. The �rstly presented factorization is then
reorganized to take the form of a factorization of type LDU.

In chapter 5, we treat the more general case of the RLC circuits. First we
prove the invertibility of the RLC system. Then we reorganize the circuit equa-
tions and write in a more suitable form for developing the factorization. With
this information in hand we proceed to construct the factorization. We provide
proofs for the existence of the factorization.

In order to show how the factorizations work, we present some small illus-

2



Introduction

Figure 1.2: Microprocessor manufactured by photographic process. Wikimedia
Commons, Picture by Angeloleithold 2004, Dec

trative examples in chapter 6. Then we formalize the usage of the factorizations
for developing direct solvers. This is done by stating it in terms of algorithms
for each case. We derive expressions for the time complexity of each of the al-
gorithms and compare it with the time complexity of direct LU decomposition.
Furthermore we provide two circuit examples, one for the RL case and one for
the RLC case, in which we are able to increase the number of components arbi-
trarily. This allows us to compare the performance of the algorithms in practice.
We include and discuss the numerical results.

Finally we include a last chapter containing the conclusions and some ideas
for future work.
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Chapter 2

Circuit Equations

In this chapter we review the basics of circuit simulation. We start by handling
the topology of the circuit. Then we introduce Kirchho�’s Laws and the Branch
constitutive relations. Finally these are put together and written in terms of
a di�erential algebraic equation. The properties of the system are discussed as
well. We took [2] and [17] as main references for this chapter.

2.1 Circuit Equations
Theoretically speaking a circuit is a set of interconnected nodes. These connec-
tions are either simple ideal wires or more complicated components like resistors
R, inductors L, and capacitors C. Additional to these components we consider
the current sources. In order to formulate the circuit equations we �rst need to
describe its topology. This is done by means of the so-called incidence matrix
A. Each row of the matrix A is associated with one branch of the circuit and
the columns correspond to the circuit nodes. By convention, a row has +1 in
the corresponding source node, �1 in the destination node and 0 everywhere
else. Notice that one of the columns (ground) needs to be removed in order to
avoid redundancy. As an example let us consider the circuit with three nodes
in Figure 2.1.

Figure 2.1: Three Nodes Circuit

The incidence matrix for this circuit is given in (2.1). Note that the rows

4



2.2 Kirchho�’s Laws Circuit Equations

were ordered according to the labeling of the branches in Figure 2.1. With the
topological information in hand we can proceed to include Kirchho�’s laws.

A =

N1 N2 N3
z }| {0

@
1 �1 0
1 0 �1
0 1 �1

1

A

9
=

;

B1
B2
B3

(2.1)

2.2 Kirchho�’s Laws
Kirchho�’s current law states that the sum of all branch currents entering any
closed surface is zero. In our case we are dealing with nodes, for this particular
case, Kirchho�’s current law says that all currents entering a node add to zero.

Kirchho�’s voltage law states that the sum of all branch voltages along any
closed loop in a circuit add to zero. This can be formulated in the following
way. Let ib, vb and vn be the vectors of branch currents, branch voltages and
node voltages respectively. Then Kircho�’s current and voltage laws read

AT ib = 0; Avn = vb: (2.2)

In order to fully describe the system, the only thing missing are equations
describing the behavior of the branch elements. We will consider four kinds of
elements. Namely resistors, inductors, capacitors and current sources. These
kind of circuits are known as RLC circuits. With this idea in mind it is useful
to decompose the matrix A and the corresponding vectors as follows:

A =

2

6
6
4

Ai
Ag
Ac
Al

3

7
7
5 ; vb =

2

6
6
4

vi
vg
vc
vl

3

7
7
5 ; ib =

2

6
6
4

ii
ig
ic
il

3

7
7
5 ; (2.3)

where the subscripts i,g,c and l denote current source, conductance, capacitor
and inductor respectively. With this decomposition Kirchho�s current law (2.4)
appears in the following way:

AT
i ii + AT

g ig + AT
c ic + AT

l il = 0; (2.4)

Kirchho�s voltage law (2.5) simply says

Aivn = vi; Agvn = vg; Acvn = vc; Alvn = vl: (2.5)

2.3 Branch Constitutive Relations
We now need to include the branch constitutive relations, for each set of com-
ponents in our circuit. These equations are:

ii = It(t); ig = Gvg; ic = C
d
dt

vc; vl = L
d
dt

il; (2.6)

5



2.4 System Formulation Circuit Equations

where It(t) denotes the vector of current-source values, G and C denote the
conductances and capacitances and are diagonal matrices. The matrix L denotes
the inductances, L is diagonal in the absence of inductive coupling. Inductive
coupling adds o�-diagonal terms, but the matrix remains symmetric and positive
de�nite. The whole system can be described by using only il and vn. Thus
equations (2.4),(2.5) and (2.6) can be written as:

Alvn � L
d
dt

il = 0 (2.7a)

AT
i It(t) + AT

g GAgvn + AT
c CAc

d
dt

vn + AT
l il = 0 (2.7b)

and in system form,

�
0 Al

AT
l AT

g GAg

� �
il
vn

�
+

�
�L 0
0 AT

c CAc

�
d
dt

�
il
vn

�
= �

�
0

AT
i

�
It(t)

(2.8)

2.4 System Formulation
In the previous derivation it was assumed that a branch can contain a pure
inductor. In practice it is very natural to model an inductor in series with a
resistor. If we consider this, then the �rst equation in (2.7) would include an
extra term Ril accumulating the resistances. This leads to the system:

�
�R Al

AT
l AT

g GAg

� �
il
vn

�
+

�
�L 0
0 AT

c CAc

�
d
dt

�
il
vn

�
= �

�
0

AT
i

�
It(t)

(2.9)
Now multiplying by �1 in all the equations we get the system:

�
R �Al

�AT
l �AT

g GAc

�

| {z }
G

�
il
vn

�
+

�
L 0
0 �AT

c CAc

�

| {z }
C

d
dt

�
il
vn

�
=

�
0

AT
i

�

| {z }
B

It(t)

(2.10)
Notice that now il stands for the current of the inductor-resistor branches. It is
common to write this system in general form:

Gx(t) + C
d
dt

x(t) = Bu(t): (2.11)

This system is formulated as a symmetric but inde�nite system. This is due
to the form of the �rst matrix G of our system. Matrices with that structure
can be decomposed in the following way:

�
A P

P T �D

�
=

�
I 0

P T A�1 I

� �
A 0
0 S

� �
I A�1P
0 I

�
(2.12)

Where S = �(D + P T A�1P ) is the Schur complement of A in the system
matrix. Then using Silvester’s Law of Inertia [14, p.403] we conclude that

6



2.5 Complex Phasor Analysis Circuit Equations

the matrix has positive and negative eigenvalues. Consequently our system is
inde�nite as well. Here it was assumed that A is invertible. This condition is
clearly ful�lled by our system.

2.5 Complex Phasor Analysis
Often we are interested in the sinusoidal steady-state behavior of the circuit, i.e.
we want to know how the circuit behaves when applying excitations with �xed
frequency. This is known as the Alternating Current or AC analysis. In order
to �nd this behavior we can make use of the so-called complex phasor analysis.
We consider the circuit equations in general form (2.11), and an input at a �xed
frequency u(t) = �cos(!t + �). Here ! and � stand for the frequency and the
amplitude respectively.

Now we realize that the input can be seen as the real part of a complex
exponential, namely

�cos(!t + �) = Re(�ei!t+�) = Re(�ei!t): (2.13)

In order to include sinusoidal inputs we consider a more general input,
namely u = �ei!t. This leads to the system in complex variable z(t) =
x(t) + iy(t).

Gz(t) + C
d
dt

z(t) = B�ei!t; (2.14)

Now replacing z(t) by a complex exponential we get:

G(Z(w)ei!t) + C
d
dt

(Z(!)ei!t) = B�ei!t; (2.15)

after di�erentiation and canceling ei!t we �nd:

GZ(w) + i!CZ(w) = B� (2.16)

Thus Z(!) is obtained after solving this linear system of complex matrices;

Z(w) = (G + i!C)�1B�: (2.17)

For the special case of our RLC circuit, i.e. substituting G and C we get the
system:

��
R̂ P̂

P̂ T �Ĝ

�
+ i!

�
L̂ 0
0 �Ĉ

�� �
ir + iii

vr + ivi

�
=

�
0

AT
i

�
�: (2.18)

Here ir represents the real part of the current vector, and ii the imaginary part
(the same for the vector of voltages). � is a vector with the amplitudes of the
source signals. Since these values only act as scaling factors one usually takes
� = 1. Additionally we have P̂ = �Al, R̂ = R, L̂ = L, Ĝ = AT

g GAg and
Ĉ = AT

c CAc (see (2.10).
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2.6 Eigenvalue Properties Circuit Equations

This system has the advantage of being symmetric but it is complex and
some of the properties of the submatrices are lost, for instance R̂ + i!L̂ is not
positive de�nite anymore. This system can also be rewritten as a real system
of equations.

0

B
B
@

R̂ �!L̂ P̂ 0
!L̂ R̂ 0 P̂
P̂ T 0 �Ĝ !Ĉ
0 P̂ T �!Ĉ �Ĝ

1

C
C
A

0

B
B
@

ir
ii
vr
vi

1

C
C
A =

0

B
B
@

0
0

AT
i

0

1

C
C
A � (2.19)

By using the same argument as above we can see that the system is inde�nite
and also non symmetric. The spectral properties of the system in complex form
and in real form are di�erent. In what follows we will analyze these properties
briey.

2.6 Eigenvalue Properties
To discuss the spectral properties of the system formulations we will consider
the following example.

Figure 2.2: Circuit with one current source and two RL branches

For this simple circuit, after setting the node number 3 as ground we get:

Al =
�

1 �1
1 0

�
; Ai =

�
0 �1

�
and P =

�
�1 1
�1 0

�
(2.20)

Now let us take the following values for resistances and inductances. Notice
that we assume the inductors to be coupled, the o� diagonal terms represent
the coupling.

R =
�

1 0
0 1

�
; L =

�
4 1
1 2

�
(2.21)

For the system written in complex form (2.18) we check that the system
is in fact inde�nite. In Figure 2.3 we observe the location of the eigenvalues
of the complex matrix in (2.18), the four eigenvalues are real (since ! = 0).
Two eigenvalues are negative while the other two are positive. In Figure 2.4
we can observe the paths of the eigenvalues till the value ! = 2:2. We realize
that the eigenvalues on the left half plane tend to zero. The real part of the

8



2.6 Eigenvalue Properties Circuit Equations

Figure 2.3: Spectrum of the system in
complex form with ! = 0.

Figure 2.4: Spectrum trajectories of
the system in complex form with ! 2
(0; 2:2).

eigenvalues in the right half plane is always bigger that 1 and the imaginary part
grows monotonically with the frequency !. This kind of eigenvalue distributions
are generally considered unfavorable for solution by Krylov subspace methods
[5, p.16],[6],[11]. We will point this in a more quantitative manner in further
chapters.

Figure 2.5: Spectrum of the system in
stable complex form with ! = 0.

Figure 2.6: Spectrum trajectories of the
system in stable complex form with ! 2
(0; 2:2).

The complex system (2.18) can be transformed into a complex system with
the property of being positive semistable. This means that for all � 2 �(A)
we have Re(�) � 0. This can be achieved by multiplying the second set of
equations by -1. Thus we get the equivalent system:

��
R̂ P̂

�P̂ T �Ĝ

�
+ i!

�
L̂ 0
0 Ĉ

�� �
ir + ii

vr + vi

�
=

�
0

�AT
i

�
�; (2.22)

The spectrum of this system can be seen in Figures 2.5 and 2.6. In the �rst
Figure, the eigenvalues appear in conjugate pairs and their real part is in fact
positive. In Figure 2.6 we observe that the eigenvalues stay in the right half
plane, two of the eigenvalues tend to zero and the real part of the other two
remains bounded by one. Their imaginary part grows together with !.

9



2.6 Eigenvalue Properties Circuit Equations

Figure 2.7: Spectrum of the system in
real form with ! = 0.

Figure 2.8: Spectrum trajectories of the
system in real form with ! 2 (0; 2:2).

The system in real form ( 2.19) is inde�nite as it was stated before. Since
the systems is now real, then the eigenvalues appear in conjugate pairs. First
in Figure 2.7 we observe the position of the eigenvalues when ! = 0. In this
Figure all the eigenvalues have multiplicity two. When ! > 0 the eigenvalues
stop being real and appear in conjugate pairs (see Figure 2.8). We �nd the same
behavior as in the case with the complex system. The eigenvalues on the left
half plane tend to zero while the real part of the other ones is bounded from
below by 1. In fact we can observe that the spectrum of the real system can be
obtained by including the conjugates of the eigenvalues found in the complex
form.

Figure 2.9: Spectrum of the system in
stable real form with ! = 0.

Figure 2.10: Spectrum trajectories of
the system in stable real form with ! 2
(0; 2:2).

As it was done before for the system in complex form the real system can
also be reformulated in a positive semistable form. This can be achieved by
multiplying by -1 the last two set of equations of the system (2.19). In Figures
2.9 and 2.10 we can observe the path of the eigenvalues of the system in this
form. Again we can observe that the pro�le of the spectrum of the system in
real from can be obtained from the pro�le for the complex stable form by adding
the "missing" conjugate pairs.

This description provides us with useful information. First we know that
the systems are in fact inde�nite. A more detailed description regarding the

10



2.6 Eigenvalue Properties Circuit Equations

problems that arise when dealing with inde�nite and nonsymmetric systems will
be treated with more detail in the next chapter. Nonetheless, this formulation
can be changed to a positive semide�nite form. This property might be useful
when applying iterative techniques, but we will concentrate more in developing
factorizations and their use for implementing direct solvers. We will be able to
construct a factorization of the circuit equations in real form.

11



Chapter 3

Matrix Decompositions

In this chapter we review some strategies for the solution of linear systems
namely, direct and iterative solvers. We briey analyze their properties and we
discuss some of the problems one might face when dealing with inde�nite and
non symmetric systems. We go back to our special kind of systems, the saddle
point problem, and discuss some of the solution methods heading �nally toward
Schilders factorization, which is the path we will follow later to solve the circuit
equations. As a main source for the algorithms presented in this chapter we
refer to the book by Demmel [13].

3.1 Linear Solvers
In order to solve a linear system we have the choice between direct and iterative
solvers. The usual arguments to use iterative methods are mainly computer
storage and computation time. But it is important to notice that iterative
solvers require some expertise and if CPU time and storage are not really at
stake, then it is simpler to apply a direct solver.

Algorithm 1 Gaussian Elimination Algorithm
INPUT: n � n non singular matrix A = aij , vector b
OUTPUT: solution vector x s.t Ax = b
1. for i = 1; :::; n � 1 (for each row i)
2. for j = i + 1; :::; n (subtract a multiple of row i through n)
3. bj = bj � aji

aii
bi (actualizing vector b)

4. for k = i; :::; n (in columns i through n)
5. ajk = ajk � aji

aii
aik (to zero out column i below the diagonal)

6. end for
7. end for
8. end for
9. Solve resulting upper triangular system with backward substitution

A direct method leads, in the absence of rounding errors, in a �nite and
�xed amount of work, to the exact solution of the given linear system. These
rounding errors can be handled very well by means of pivoting strategies. The
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3.2 LU Factorization Matrix Decompositions

main problem of direct solvers is that their complexity, in the general case, is
of order O(n3), which for very big systems might become too expensive.

In scienti�c computing lots of computational time is spent solving systems
of linear equations. These systems can be really large, for instance in compu-
tational uid ow problem and in circuit simulation. In the latter case some of
the designs might involve variables to the order of one million. The process of
solving the unknowns from these large linear systems implies lots of computa-
tional work. The standard direct approach is Gaussian elimination (Algorithm
1).

Now we will analyze the complexity of this algorithm. For a system with n
equations and n unknowns we need 2(n � 1)2 operations for creating zeros in
the �rst column. Then, for the second column we need 2(n � 2)2 operations.
Thus to eliminate all the elements in the lower triangular part we require 2

3 n3

operations. Finally the resulting system comes in upper triangular form:
0

B
B
B
@

a11 a12 : : : a1n
0 a22 : : : a2n
...

. . .
0 0 : : : ann

1

C
C
C
A

0

B
B
B
@

x1
x2
...

xn

1

C
C
C
A

=

0

B
B
B
@

b1
b2
...

bn

1

C
C
C
A

(3.1)

This system can be easily solved by means of backward substitution. Leading
to a complexity of order n2, which is a relatively minor cost for large values of n.
Altogether we see that the cost of preforming Gaussian elimination to a system
is proportional to n3.

For very large systems Gaussian Elimination is not very attractive and in
some cases the computation time might be just not a�ordable. Nonetheless,
once Gaussian Elimination has been performed, the resulting lower triangular
system can be solved fast (order n2). A question comes out naturally. How to
improve the performance of the algorithms in order to �nd a factorization of
the system?

A factorization of a matrix A is a representation of A as a product of several
simpler matrices. The solution to the original system can be found faster by
solving a sequence of systems involving these matrices. In this sense the matrices
are simpler.

3.2 LU Factorization
Usually Gaussian Elimination is carried out by �rst factorizing the matrix A
and then solving the simpler systems. To do so we recall the following theorem.

Theorem 1. LU Decomposition If the n by n matrix A is nonsingular, there
exist a permutation matrix P , a nonsingular lower triangular matrix L, and a
nonsingular upper triangular matrix U such that A = P LU . The system Ax = b
is then solved by solving P LUx = b as follows:

LUx = P T b (permuting entries of b)
Ux = L�1(P T b) (solving with forward substitution)
x = U�1(L�1P T b) (solving with backward substitution)

There is a condition for having the factorization without needing a permu-
tation matrix. This result is stated as follows.
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3.3 Cholesky Decomposition Matrix Decompositions

Theorem 2. The following statements are equivalent:
1. There exists a unique unit lower triangular L and nonsingular upper trian-
gular U such that A = LU .
2. All leading principal submatrices of A are nonsingular.

Without much e�ort similar theorems can be proved to deliver LDU factor-
izations.

Theorem 3. If A is a n � n nonsingular matrix then, there exist a permuta-
tion matrix P , a nonsingular lower triangular matrix L a nonsingular diagonal
matrix D and a nonsingular upper triangular matrix U such that A = P LDU

The algorithm for computing these factorizations (LU or LDU) is just Gaus-
sian elimination. Pivoting strategies can lead to some extra properties of the
factors. For example by using "partial pivoting" we can assure that all entries of
L are bounded by 1 in absolute value. This is the most common implementation
of Gaussian elimination. There is some other pivoting strategy that is almost
never used in practice, the Gaussian elimination with complete pivoting. In this
case the permutations are chosen in such a way that a11 is the largest entry
in absolute value in the whole matrix. The following algorithm shows how to
perform a PLU decomposition.

Algorithm 2 LU Decomposition Algorithm
INPUT: n � n non singular matrix A = aij
OUTPUT: permutation matrix P , unit lower triangular matrix L and a

nonsingular upper triangular matrix U such that A = P LU (overwriting L
and U on A

1. for i = 1; :::; n � 1
2. apply permutations so aii 6= 0 (permute L and U too)

(for partial pivoting, swap rows j and i of A and of L where
jaij j is the largest entry in jA(i : n; i)j)

3. A(i + 1 : n; i) = A(i + 1 : n; i)=A(i; i),
A(i + 1 : n; i + 1 : n) = A(i + 1 : n; i + 1 : n) � A(i + 1 : n; i) � A(i; i + 1 : n)

4. end for

In the last line of the algorithm, A(i + 1 : n; i) � A(i; i + 1 : n) is the product
of an (n � i) � 1 matrix (L21) by a 1 � (n � i) matrix (U12), which yields an
(n� i)� (n� i) matrix. This is the general setting for Gaussian Elimination. In
order to increase speed of solution and decrease storage it is important to exploit
any special structure of the matrix. For example if the matrix is symmetric and
positive de�nite (s.p.d.) the computation time as well as the storage, for solving
Ax = b can be decreased by a half.

3.3 Cholesky Decomposition
Lets us recall that a matrix A is said to be symmetric if and only if A = AT

and positive de�nite if and only if xT Ax > 0 for all x 6= 0. Now we recall the
following theorem from the literature.
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3.4 Nonsymmetric Matrix Iterations Matrix Decompositions

Theorem 4. 1. If X is nonsingular, then A is s.p.d if and only if XT AX is
s.p.d.
2. If A is s.p.d. and H is any principal submatrix of A (H = A(j : k; j : k),
j � k), then H is s.p.d.
3.A is s.p.d if and only if A = AT and all of its eigenvalues are positive.
4. A is s.p.d. if and only if there is a unique lower triangular nonsingular
matrix L, with positive diagonal entries, such that A = LLT . A = LLT is called
the Cholesky factor of A.

The next algorithm delivers the Cholesky factorization of a symmetric pos-
itive de�nite matrix A.

Algorithm 3 Cholesky Algorithm
INPUT: n � n s.p.d. matrix A = aij
OUTPUT: lower triangular nonsingular matrix L such that A = LLT

1. for i = 1; :::; n
2. ljj = (ajj �

P j�1
k=1 l2

jk)1=2

3. for i = j + 1; :::; n
4. lij = (aij �

P j�1
k=1 likljk)=ljj

5. end for
6. end for

If A is not positive de�nite, then this algorithm will fail by attempting to
compute the square root of a negative number or by dividing by zero; this is
the cheapest way to test if a symmetric matrix is positive de�nite.

As with Gaussian elimination, L can overwrite the lower half of A. Only the
lower half of A is referred to by the algorithm, so in fact only n(n+1)=2 storage
is needed instead of n2. The number of ops is just half the ops of Gaussian
elimination. Pivoting is not necessary for Cholesky to be numerically stable.

3.4 Nonsymmetric Matrix Iterations
So far we have seen that direct Gaussian Elimination might be too expensive
for very large linear systems. We also reviewed some results regarding matrix
decompositions as LU decompositions and the Cholesky factorization. Some of
these results will be used later in further chapters. Now we will discuss the
iterative schemes.

For the application of iterative schemes one usually has sparse patterns in
mind, for instance linear systems arising from �nite element or �nite di�erence
approximations of a partial di�erential equation. However the structure of the
operator plays no explicit role in any of these schemes, and they may also suc-
cessfully be used to solve certain large dense linear systems. Some iterative
methods may be much faster for special problems, like for Poisson Solvers to
mention an example. For matrices that are not positive de�nite nor symmetric
the situation can be more problematic. It is often di�cult to �nd a proper itera-
tive method or a suitable preconditioner. In our special case (Circuit equations)
we are dealing with a so called saddle point system. Since these systems are
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3.4 Nonsymmetric Matrix Iterations Matrix Decompositions

inde�nite and in our special case also non symmetric, they represent a signif-
icant challenge for solver developers. To make this clear we recall a paper by
Nachtigal [4].

In this paper [4] the speed of convergence of nonsymmetric matrix itera-
tions is studied. The iterative schemes that are analyzed in that paper are
CGN (Conjugate Gradient Iteration Applied to the Normal Equations), GM-
RES (Generalized Minimal Residual Method), and CGS (a Biorthogonalization
Algorithm adapted from the Biconjugate Gradient iteration).

Figure 3.1: Example with Identity Matrix. All three methods converge in one
step. (Source [4])

.

First in �gure 3.1 we observe how the three methods behave when applied to
the identity matrix. As expected, all methods converge after one single iteration.
For the experiment the identity matrix of size 40 was used. A random real initial
vector x0 and right hand side r with independent normally distributed elements
of mean 0 an variance 1 were taken. On the other hand we will see what happens
when the system is non symmetric and inde�nite. For instance if we consider
the next system, involving a n � n matrix:

Cx = r; where C =

0

B
B
B
B
B
@

0 1
0 0 1
0 0 0 1
...

. . . . . .
1 0 : : : 0 1

1

C
C
C
C
C
A

(3.2)

The matrix C can be obtained from a simple permutation of the identity
matrix. Nonetheless this matrix is already nonsymmetric and inde�nite,
the elements of the right hand side r, were taken to be independent normally
distributed with mean 0 an variance 1. After this simple change we can observe
(Figure 3.2) that both GMRES and CGS perform in a very bad way. During the
�rst N � 1 (recall that for this example it is considered N = 40) iterations no
improvement is observed for both GMRES and CGS. Only till the last iteration
both methods converge. Meanwhile, since CT C = I, the CGN method converges
after one single step, but we will see that this is not always the case.

All this happens after applying a simple permutation to the identity matrix.
In a more general case that it is also explored in the same paper by Nachtigal.
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3.4 Nonsymmetric Matrix Iterations Matrix Decompositions

Figure 3.2: Example with Matrix C. GMRES and CGS converge till iteration
N . CGN converges after one single iteration.(Source [4])

.

They show that the three methods converge in a slow way when a random
matrix R of size 40 � 40 was taken.

The entries of the matrix R were independent normally distributed random
numbers with mean 0 and variance 1. Such matrix has condition number O(N)
on average and smoothly distributed singular values [18], so that CGN will
require N steps for convergence. The eigenvalues are approximately uniformly
distributed in a disk of radius

p
N about the origin, thus GMRES and CGS

will also require N steps to converge. In Figure 3.3 we can observe that the
convergence of CGS is oscillating, while the other two are monotonic. It is
important to notice that only GMRES exhibits the convergence in N steps that
would be achieved by all three methods in exact arithmetic.

Figure 3.3: Example with Random Matrix. All three methods require N itera-
tions. (Source [4])

.

At this point it is time to mention that CGN, GMRES and CGS are the
best nonsymmetric matrix iterations. This in the sense that, for calculations in
exact arithmetic measured by the residual norm, no other iteration ever outper-
forms these three by more than a constant factor, except in certain examples
involving special initial residuals. Roughly speaking, the convergence of CGN is
determined by the singular values of A. If A is normal or close to normal, then
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3.5 Saddle Point Problems Matrix Decompositions

the convergence of GMRES is determined by the eigenvalues of A; the singular
values and in particular the condition number, have nothing to do with it.

If A is far from normal the convergence of GMRES becomes slower by a
potentially unbounded factor. To make this clear we cite the paper by Green-
baum [3]. In this paper it is shown that any nonincreasing convergence curve
is possible for GMRES. The convergence of CGS is very close related to that
of GMRES, but the convergence of CGS is additionally a�ected by instabilities
that are not yet fully understood.

3.5 Saddle Point Problems
From the previous examples we can conclude that nonsymmetric and inde�nite
systems are indeed a challenging problem for solver developers. In our case it is
important to notice that we are dealing with a system with this characteristics.
Nonetheless we still have some special structure.

Ax = b; or
�

A B
BT �C

� �
x
y

�
=

�
b
c

�
(3.3)

These kind of systems are known as saddle point type, and they arise not
only in circuit simulation but in very di�erent kinds of applications. In recent
years there has been a surge of interest in saddle point problems, and di�erent
solution techniques have been proposed for solving this type of systems. A
direct attempt for solving this system is direct eliminations of the unknowns x.
This can be done for the more general case when C 6= 0, but only in order to
illustrate the idea of the method we will assume C = 0. Assuming this we can
solve for the vector x and get:

x = A�1b � A�1By; (3.4)

and substituting this in the other set of equations we get:

BT A�1By = BT A�1b � c: (3.5)

This approach is known as the range space method or the Schur complement
method [5]. This approach is attractive if the order m of the reduced system is
small and if linear systems with coe�cient matrix A can be solved e�ciently.
The main disadvantages are the need for A to be nonsingular (which is not a
necessary condition, for the \whole" system matrix A, to be nonsingular), and
the fact that the Schur complement S = �BT A�1B may be completely full and
too expensive to compute and factor. However, when B has no dense columns
and A is such that A�1 is sparse, then the Schur complement is usually quite
sparse. In these cases this approach performs well.

Another method that is in some sense complementary to the previous method
is the null space method. This method only works for the case when C = 0.
Here the variables y are eliminated from the system as follows. It is assumed
that there is a matrix Z which columns are a basis for the null space of BT ,
i.e. BT Z = 0. Let us further assume that ŷ is particular solution of BT Bŷ = c.
Then the solution set of BT x = c can be written as:

x = Bŷ + Zz; (3.6)
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3.6 Schilders’ Factorization Matrix Decompositions

Substituting this expression for x in the �rst set of equations, we obtain:

AZz + By = b � ABŷ: (3.7)

Multiplying this by ZT and using the fact that ZT B = 0, we �nd

ZT AZz = ZT b � ZT ABŷ: (3.8)

The null space method has the advantage of not requiring A�1. And the
coe�cient matrix looks more attractive than the one obtained with the range
method, provided A is a sparse matrix. However, in order not to perturb the
sparsity, one will have to take care that the matrix Z is also rather sparse. This
means that a sparse basis for the null space has to be used. For certain problems
this is certainly possible (for our special case we will prove that this can be done).
With the discussion so far it should be clear that the solution of inde�nite and
nonsymmetric systems is a di�cult task, and that their treatment is far from
being uniform. In our case we will focus on developing solution strategies based
in the so called Schilders Factorization.

3.6 Schilders’ Factorization
The Schilders factorization has been developed for systems of the form [1], [5]:

A =
�

Â B̂
B̂T 0

� �
x
y

�
=

�
a
b

�
; (3.9)

where Â is a n�n nonsingular and symmetric matrix, and B̂ is a n�m full rank
matrix. It is assumed that m � n. The Schilders factorization is constructed in
the following way. First we perform the LQ of the matrix B̂. This means that
we construct an n � n permutation matrix � and an m � m orthogonal matrix
Q such that,

�B̂ = BQ (3.10)

where B is of lower trapezoidal form. Furthermore we require the top m � m
part of B to be nonsingular. Now we can de�ne:

Q =
�

� 0
0 Q

�

and let A = �Â�T , then

QAQT =
�

A B
BT 0

�
(3.11)

The Schilders factorization can be performed in this �nal form of the system
as follows.

Lemma 1. Let A and B be as in the foregoing, and write BT = (B1; B2)T ,
where B1 is the m � m top part of B. Then there exist D1 an m � m diagonal
matrix, D2 an (n � m) � (n � m) diagonal matrix, L1 an m � m strictly lower
triangular matrix, L2 an (n � m) � (n � m) strictly lower triangular matrix and
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3.6 Schilders’ Factorization Matrix Decompositions

M an (n � m) � m matrix, such that:

�
A B

BT 0

�
=

0

@
B1 0 L1
B2 In�m + L2 M
0 0 Im

1

A

0

@
D1 0 Im
0 D2 0

Im 0 0

1

A

0

@
BT

1 BT
2 0

0 In�m + LT
2 0

LT
1 MT Im

1

A

(3.12)

Using the previous lemma. The following theorem can be proved.

Theorem 5. Let Â be an n � n symmetric , positive de�nite matrix, B an
n � m matrix of full rank, m � n, and set

A =
�

Â B̂
B̂T 0

�
:

Then there exist an n � n permutation matrix �, an m � m orthogonal matrix
Q, an m � m diagonal matrix D1, an (n � m) � (n � m) diagonal nonsingular
matrix D2, an m � m strictly lower triangular matrix L1, an (n � m) � (n � m)
strictly lower triangular matrix L2, and an (n � m) � m matrix M , such that
�BQT is lower trapezoidal and

A = QLDLT QT ;

where
Q =

�
0 �T

QT 0

�

L =

0

@
Im 0 0
L1 B1 0
M B2 In�m + L2

1

A

D =

0

@
0 Im 0

Im D1 0
0 0 D2

1

A

We can observe that with this factorization the original matrix is decom-
posed into simpler matrices, for which the solution can be calculated by simple
backward or forward substitution, which are of order O(n2). Thus we will at-
tempt to use Schilders factorization as a basis for developing a decomposition
of the circuit equations in the next chapters.
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Chapter 4

Factorization of RL Circuits

As we saw in the previous chapter certain symmetric inde�nite systems can be
decomposed by means of the Schilders factorization. The system of equations
for RLC circuits is no longer symmetric and the structure is also di�erent from
the one for which the Schilders factorization can be directly performed. In this
chapter we �rst start by constructing a factorization for RL circuits. In this
special case no capacitive e�ects are taken into account (i.e. C = O). We
also assume that there are no pure conductances in the circuit (i.e. G = 0).
Under this assumptions the matrix has a structure for which a Schilders type
factorization can be performed. Moreover this factorization also provides us
with a proof of the existence and uniqueness of solutions of the AC analysis of
RL circuits.

4.1 Incidence Matrix Decomposition
As we saw above one of the main ingredients in the Schilders Factorization is
to rearrange the matrix B̂. In the general case this is done by means of the LQ
decomposition. This means we construct an n � n permutation matrix � and
an m � m orthogonal matrix Q such that,

�B̂ = BQ (4.1)

where, B is of lower trapezoidal form.
For the case of circuit equations our matrix B̂ has more properties. It is an

incidence matrix. For such matrices it is possible to make the decomposition
by means of only permutations. This means that the equation above holds but
with both � and Q being permutation matrices. Of course B remains in lower
trapezoidal form. This is stated in the following theorem.

Theorem 6. Incidence Matrix Decomposition Let P̂ be the n � m (n<m)
incidence matrix associated with a connected network, after deleting one column
(grounded node). Then there exist �1 an n � n and �2 an m � m permutations
matrices such that:

�1P̂ = P�2 (4.2)

where P T = (P1; P2)T with P1 is an m � m lower triangular and nonsingular
matrix.
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4.1 Incidence Matrix Decomposition Factorization of RL Circuits

Proof : We will proceed by induction over m (remember that the number
of nodes of the network is m + 1).

When m = 1 we have P̂ = v, where v is a vector. Since there are only 2
nodes we have vi 6= 0 for all i = 1; :::; n1, where n1 is the number of branches
of the graph with only 2 nodes. For this case it is enough to take �1 = In and
�2 = Im. Now assume the theorem is true for any graph with m nodes (with an
n2 �m�1 incidence matrix), and let P̂ be an arbitrary n3 �m incidence matrix.

Let us remember that P̂ was obtained after deleting one of the original
columns (the ground node). Since the graph is assumed to be connected, there
exists at least one branch which either starts or ends at the ground node. Let
this branch be in position i with corresponding node in position j, and de�ne
�r (n � n) and �m (m � m) the row permutation matrices that interchange the
rows number 1 and i and the rows 1 and j respectively. Then we have:

�rP̂�c =
�
v M

�
: (4.3)

Since the branch lies between the node j and the grounded node we have �rst
that v1 = x 6= 0. Furthermore this also implies that the �rst row of M has to
be zero. Thus we have:

�rP̂�c =
�

x 0
v eP

�
(4.4)

where eP is an incidence matrix associated with the original network after delet-
ing the node j. Thus, by the inductive step there exist permutation matrices
�r1, �c1 such that �r1 eP = eP1�c1 with eP1 being lower trapezoidal with invert-
ible top. Finally by de�ning

�r2 =
�

1 0
0 �r1

�
; and �c2 =

�
1 0
0 �c1

�
(4.5)

we have,

P =
�

x 0
� eP1

�
= �r2

�
x 0
v eP

�
�T

c2 = �r2�rP̂�c�T
c2 (4.6)

where � is a permutation of the vector v. Clearly the matrix P is lower trape-
zoidal and since x 6= 0, then the top part of the matrix is invertible. The
required permutation matrices are given as follows.

�1 = �r2�r; and �2 = �c2�T
c (4.7)

QED.

The decomposition can be performed by means of algorithm 4. In this
algorithm, when looking at the third step, a natural question comes out. Is it
always possible to �nd such k and l?. The answer is yes and it is provided by
the argument given in theorem 6. The complexity of this algorithm is O(n2),
making use of sparse structures to store the incidence matrix P̂ .

In Figure 4.1 and 4.2 we can see the shape of an original 47 � 29 incidence
matrix and its rearranged lower trapezoidal form after applying algorithm 4.
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4.2 RL Factorization Factorization of RL Circuits

Algorithm 4 Incidence Matrix Algorithm
INPUT: n � m incidence matrix B̂
OUTPUT: matrix B in lower trapezoidal form, �1, �2 row and column
permutation matrices s.t. �1B̂ = B�2

1. De�ne B = B̂, �1 = In;n, �2 = Im;m
2. for i = 1; 2; :::; m do
3. Find k; l such that

P m
j=i jBk;j j = 1 and Bk;l 6= 0

4. Permute rows i and k of matrices B and �1
5. Permute columns i and l of matrix B, permute rows i and l of matrix �2
6. end for

Figure 4.1: Original incidence matrix
(47 � 29)

Figure 4.2: Incidence matrix in lower
trapezoidal form (47 � 29)

In Figure 4.3 we can observe a 452 � 256 incidence matrix in its original
form. After applying our algorithm we get the matrix in lower trapezoidal form
(Figure 4.4). This provides us with an important tool to factorize the circuit
equations.

4.2 RL Factorization
In this chapter we are working with RL circuits, this means that, we consider
circuits without capacitors and without pure conductances (i.e. Ĉ = Ĝ = 0).
Now let m + 1 be the number of nodes and n the number of branches in the
circuit. Thus equation (2.19) takes the following form:

23



4.2 RL Factorization Factorization of RL Circuits

Figure 4.3: Original incidence matrix
(452 � 256)

Figure 4.4: Incidence matrix in lower
trapezoidal form (452 � 256)

A =

0

B
B
@

R̂ �!L̂ P̂ 0
!L̂ R̂ 0 P̂
P̂ T 0 0 0
0 P̂ T 0 0

1

C
C
A

0

B
B
@

ir
ii
vr
vi

1

C
C
A =

0

B
B
@

0
0

AT
i

0

1

C
C
A � (4.8)

where R̂ is an n � n diagonal positive de�nite matrix, L̂ is an n � n symmetric
positive de�nite matrix and P̂ is an n � m incidence matrix. Since P̂ is an
incidence matrix we can then apply algorithm 4 and �nd permutation matrices
�1 (n � n), �2 (m � m) such that �1P̂ = P�2. Then de�ning

Q =

0

B
B
@

�1
�1

�2
�2

1

C
C
A (4.9)

and letting R = �1R̂�T
1 and L = �1L̂�T

1 we get:

QAQT =

0

B
B
@

R �!L P 0
!L R 0 P
P T 0 0 0
0 P T 0 0

1

C
C
A (4.10)

where P T = (P1; P2)T . Moreover, due to the way the algorithm was constructed
we have that P1 is an m � m nonsingular lower triangular matrix and P2 is an
n � m � m containing the rest of the incidence matrix. Now let us subdivide
the matrices R and L as follows.
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4.2 RL Factorization Factorization of RL Circuits

R =
�

R11 R12
R21 R22

�
; L =

�
L11 L12
L21 L22

�
(4.11)

then, de�ning the permutation matrix �3 as follows:

�3 =

0

B
B
B
B
@

Im
Im

In�m
In�m

I2m

1

C
C
C
C
A

(4.12)

We can rearrange the equations by multiplying with �3, we have that:

�3QAQT �T
3 =

0

B
B
B
B
B
B
@

R11 �!L11 R12 �!L12 P1 0
!L11 R11 !L12 R12 0 P1
R21 �!L21 R22 �!L22 P2 0

!L21 R21 !L22 R22 0 P2
P T

1 0 P T
2 0 0 0

0 P T
1 0 P T

2 0 0

1

C
C
C
C
C
C
A

(4.13)

Let us organize this matrix in the following blocks.

�3QAQT �T
3 =

0

@
A11 A12 B1
A21 A22 B2
BT

1 BT
2 0

1

A (4.14)

here

B1 =
�

P1
P1

�
; B2 =

�
P2

P2

�
and Aij =

�
Rij �!Lij

!Lij Rij

�
; i; j 2 f1; 2g :

(4.15)
Once our system equation have been set in this form we can perform a Schilders
type factorization. Such kind of factorizations have been developed to construct
preconditioners for nonsymmetric saddle point matrices [7]. We construct the
factorization as it is stated in the next theorem.

Theorem 7. The matrix for the RL circuit arranged as in 4.14 can be decom-
posed in the following way:
0

@
A11 A12 B1
A21 A22 B2
BT

1 BT
2 0

1

A =

0

@
B1 0 L1
B2 L2 M
0 0 I2m

1

A

0

@
D1 0 I2m
0 D2 0

I2m 0 0

1

A

0

@
BT

1 BT
2 0

0 U2 0
U1 F I2m

1

A

(4.16)
where M is an 2(n � m) � 2m matrix,F is an 2(n � m) � 2m matrix. D1 is
2m � 2m diagonal, L1 is 2m � 2m strictly lower triangular and U1 is 2m � 2m
strictly upper triangular. Meanwhile the matrices D2, L2 and U2 are 2(n�m)�
2(n � m) nonsingular matrices with D2 diagonal, L2 lower triangular and U2
upper triangular.

Proof : First notice that the last matrix from the decomposition is not
necessarily the transpose of the �rst one, in contrast with the original Schilders
factorization. We now observe that the factorization holds if and only if the
following equations are satis�ed.
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B1D1BT
1 + B1U1 + L1BT

1 = A11 (4.17)

B1D1BT
2 + B1F + L1BT

2 = A12 (4.18)

B2D1BT
1 + B2U1 + MBT

1 = A21 (4.19)

L2D2U2 + B2D1BT
2 + B2F + MBT

2 = A22 (4.20)

Using (4.17) we can �nd D1, U1 and L1. First let us recall that B1 is
invertible, in fact we have:

B�1
1 =

�
P �1

1
P �1

1

�
: (4.21)

Now we can multiply equation (4.17) by B�1
1 from the left and by B�T

1 from
the right:

D1 + U1B�T
1 + B�1

1 L1 = B�1
1 A11B�T

1 : (4.22)

From this equation, using the fact that U1 is upper triangular, L1 is lower
triangular and that P �1

1 is also lower triangular we get:

L1 = B1strlow
�
B�1

1 A11B�T
1

�
; U1 = strupp

�
B�1

1 A11B�T
1

�
BT

1 ; (4.23)

and
D1 = diag

�
B�1

1 A11B�T
1

�
; (4.24)

where \diag" means to take only the diagonal elements of the matrix, \strlower"
means to take the strictly lower part of the matrix, and \strupp" means to take
the strictly upper part of a matrix. We can now proceed to compute the matrices
F and M from equations (4.18) and (4.19) respectively. In fact we �nd,

F = B�1
1

�
A12 � B1D1BT

2 � L1BT
2

�
; M =

�
A21 � B2D1BT

1 � B2U1
�

B�T
1 :
(4.25)

We are left with the problem of �nding the matrices D2, L2 and U2. To do
so we write equation (4.20) as follows,

L2D2U2 = A22 � B2D1BT
2 � B2F � MBT

2 ; (4.26)

By performing an LDU decomposition on the matrix in the right hand side
we can �nd the last matrices. The remaining step is to show that in fact this
last matrix can be decomposed. This can be achieved by applying Cholesky
decomposition to some submatrices. We will prove this fact in the following
section (see lemma 2). This completes the proof. QED.

4.3 Dependences on w

Now we proceed to show that the matrices D2, L2 and U2 can be found. In order
to do so we will �rst explore how w plays a role in the factorization. By doing
so we will also prove that the matrices D2, L2 and U2 exist and are nonsingular.
In the previous section we found expressions for the matrices D1,U1 and L1
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in terms of B�1
1 and A11. By substituting the expressions for B�1

1 and A11,
namely

B�1
1 =

�
P �1

1
P �1

1

�
; A11 =

�
R11 �!L11

!L11 R11

�
(4.27)

we �nd that,

D1 =
�

diag(P �1
1 R11P �T

1 )
diag(P �1

1 R11P �T
1 )

�
; (4.28)

L1 =
�

P1strlow(P �1
1 R11P �T

1 ) 0
!L11P �T

1 P1strlow(P �1
1 R11P �T

1 )

�
(4.29)

and

U1 =
�

strupp(P �1
1 R11P �T

1 )P T
1 �!P �1

1 L11
0 strupp(P �1

1 R11P �T
1 )P T

1

�
: (4.30)

Using these previous expressions we can describe more precisely the matrices F
and M . In fact we get

F =
�

P �1
1 R12 � low(P �1

1 R11P �T
1 )P T

2 �!P �1
1 L12

!(P �1
1 L12 � P �1

1 L11P �T
1 P T

2 ) P �1
1 R12 � low(P �1

1 R11P �T
1 )P T

2

�

(4.31)

M =
�

R21P �T
1 � P2upp(P �1

1 R11P �T
1 ) �!(L21P �T

1 + P2P �1
1 L11P �T

1 )
!L21P �T

1 R21P �T
1 � P2upp(P �1

1 R11P �T
1 )

�
:

(4.32)
Here upp and low stand for taking the lower and the upper part of a matrix,
i.e. including the diagonal.

The only terms remaining to be determined are L2,D2 and U2.These matrices
are to be taken out from the LDU decomposition of Ŵ := A22 � B2D1BT

2 �
B2F � MBT

2 (see (4.26)). This is stated in the next lemma.

Lemma 2. De�ne Ŵ := A22 � B2D1BT
2 � B2F � MBT

2 with the expression
given above for the matrices involved. Then Ŵ can be factorized as follows:

Ŵ =
�

L2;1 0
!L2;2 L2;3(!)

� �
D2;1

D2;2(!)

� �
LT

2;1 �!LT
2;2

0 LT
2;3(!)

�
(4.33)

where L2;1, L2;2 and D2;1 are matrices independent of ! and L2;3 and D2;2 are
functions of !. Additionally we have that L2;1 and L2;3 are nonsingular lower
triangular matrices, D2;1 and D2;2 are diagonal and nonsingular as well.
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Proof : using the previous expressions we see that the matrix Ŵ has the
following 2 � 2 block structure,

Ŵ11 = R22 � R21P �T
1 P T

2 � P2P �1
1 R12 + P2P �1

1 R11P �T
1 P T

2

Ŵ12 = �!(L22 � P2P �1
1 L11P �T

1 P T
2 + L21P �T

1 P T
2 + P2P �1

1 L12)

Ŵ21 = !(L22 � P2P �1
1 L11P �T

1 P T
2 + L21P �T

1 P T
2 + P2P �1

1 L12)

Ŵ22 = R22 � R21P �T
1 P T

2 � P2P �1
1 R12 + P2P �1

1 R11P �T
1 P T

2

(4.34)

From here we �rst realize that these blocks can be written as follows.

Ŵ11 = Ŵ22 =
�
�P2P �1

1 I
�

�
R11 R12
R21 R22

� �
�P �T

1 P T
2

I

�
(4.35)

�Ŵ12 = Ŵ21 = !
�
�P2P �1

1 I
�

�
L11 L12
L21 L22

� �
�P �T

1 P T
2

I

�
: (4.36)

It is important to observe that both matrices (in the right hand side of
equations (4.35) and (4.36)) are symmetric and positive de�nite. Thus we �rst
realize that, L2;1,D2;1 can be computed from the LDU decomposition of the
matrix Ŵ11. Having Ŵ11 invertible is a su�cient condition (theorem 3) for
decomposing the matrix as an LDU product. In our particular case we have
even more properties, Ŵ11 is symmetric and positive de�nite and thus it can be
decomposed as an LDLT product (theorem 4). Additionally we know that the
matrices L2;1 and D2;1 are invertible. With this information we �nd out that
the matrix L2;2 has the following expression.

L2;2 = Ŵ21L�T
2;1 D�1

2;1 (4.37)

After doing some computations we are left �nally with the problem of de-
termining L2;3 and D2;2 such that,

L2;3D2;2LT
2;3 = Ŵ11 + !2Ŵ21Ŵ �1

11 Ŵ21: (4.38)

The matrix on the right hand side of the equation appears as the sum of two
matrices. Ŵ11 is clearly symmetric and positive de�nite, the second matrix is
also symmetric, and since the inverse of a positive de�nite matrix is also positive
de�nite, we can conclude that !2Ŵ21Ŵ �1

11 Ŵ21 is also positive de�nite (despite
the case when ! = 0 which leads to a positive semide�nite matrix). Finally we
use that the sum of two symmetric and positive de�nite matrices is symmetric
and positive de�nite. Thus the matrix can be decomposed as a LDLT product
by means of Cholesky (see algorithm 3) and consequently nonsingular matrices
L2;3 and D2;2 can be found. These matrices are clearly dependent of !. This
concludes the argument. QED

It is important to notice that all the matrices, excluding L2;2 and D2;2, are
either independent or linearly dependent of !. This plays an important role
because this matrices need to be calculated only once.
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4.4 Final Factorization
The previous results can be summarized in the following theorem.

Theorem 8. Let A be the matrix associated with an RL circuit (see 4.8). Then
there exist an n � n permutation matrix �1 and an m � m permutation ma-
trix �2 such that �1B�T

2 is lower triangular. Moreover there also exist, an
2(n � m) � 2m matrix M , an 2(n � m) � 2m matrix F , an 2m � 2m diagonal
matrix D1, an 2m�2m strictly lower triangular matrix L1, an 2m�2m strictly
upper triangular matrix U1, and 2(n�m)�2(n�m) invertible matrices D2, L2
and U2, with D1 diagonal, L2 lower triangular and U2 upper triangular, such
that:

A = �eL eD eU�T ;

where

� =

0

B
B
@

0 0 �T
1;1 0 �T

1;2 0
0 0 0 �T

1;2 0 �T
1;1

�T
2 0 0 0 0 0

0 �T
2 0 0 0 0

1

C
C
A ;

eL =

0

@
I2m 0 0
L1 B1 0
M B2 L2

1

A ; eU =

0

@
I2m U1 F
0 BT

1 BT
2

0 0 U2

1

A

eD =

0

@
0 I2m 0

I2m D1 0
0 0 D2

1

A ;

where B1 is the top 2m � m part of �1B�2T , and B2 is the lower 2(n � m) � m
part. �1;1 is the matrix formed by the �rst m columns of �1, �1;2 is the matrix
formed by the last n � m columns of �1.

Proof : To �nd the matrices �1 and �2 we use theorem 6. Then we arrange
the matrix as in (4.14), and apply the decomposition given in theorem 7. Let
�3 and Q be as in (5.24) and (4.9), respectively. Then let �4 be the following
permutation matrix:

�4 =

0

@
0 0 I2m

I2m 0 0
0 I2(n�m) 0

1

A : (4.39)

Using this permutation we observe that:

QT �T
3 �T

4 =

0

B
B
@

0 0 �T
1;1 0 �T

1;2 0
0 0 0 �T

1;2 0 �T
1;1

�T
2 0 0 0 0 0

0 �T
2 0 0 0 0

1

C
C
A

| {z }
�

: (4.40)
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Then we observe that:
0

@
0 0 I2m

I2m 0 0
0 I2(n�m) 0

1

A

| {z }
�4

0

@
B1 0 L1
B2 L2 M
0 0 I2m

1

A

0

@
0 I2m 0
0 0 I2(n�m)

I2m 0 0

1

A

| {z }
�T

4

=

0

@
I2m 0 0
L1 B1 0
M B2 L2

1

A ;

(4.41)
and

�4

0

@
BT

1 BT
2 0

0 U2 0
U1 F I2m

1

A �T
4 =

0

@
I2m U1 F
0 BT

1 BT
2

0 0 U2

1

A : (4.42)

The �nal step is to realize that:

�4

0

@
D1 0 I2m
0 D2 0

I2m 0 0

1

A �T
4 =

0

@
0 I2m 0

I2m D1 0
0 0 D2

1

A ; (4.43)

and this concludes the proof. QED

An important remark can be done at this point. The previous theorem does
not assume that the original matrix A is invertible. Thus theorem 8, provides
us not only with a factorization of the matrix but it also tells us that the matrix
A is invertible. This follows after realizing that,

0

@
0 I2m 0

I2m D1 0
0 0 D2

1

A

�1

=

0

@
�D1 I2m 0
I2m 0 0
0 0 D�1

2

1

A ; (4.44)

and since D2 is invertible it follows that A is also invertible.
This means that a solution to the Alternating Current Analysis of an RL

circuit always exist and moreover this solution is unique. In the next chapter we
will �rst have to prove the invertibility of the system matrix and then proceed
to develop the factorization.
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Chapter 5

Factorization RLC Circuits

In this chapter we develop a factorization for the general case of circuits, i.e.
including capacitive e�ects. In contrast with the RL case, for the RLC case
we �rst have to prove that the system associated with circuit is nonsingular,
this result will be used later to develop the factorization. As a second step we
rewrite the circuit equations in a new form. This new formulation involves more
variables than the original one, nonetheless we are able to factorize the system
of equation written in this new form.

5.1 Invertibility of the RLC system
Let us recall the equation for the RLC circuit from (2.19). The system has the
form: 0

B
B
@

R̂ �!L̂ P̂ 0
!L̂ R̂ 0 P̂
P̂ T 0 �Ĝ !Ĉ
0 P̂ T �!Ĉ �Ĝ

1

C
C
A

0

B
B
@

ir
ii
vr
vi

1

C
C
A =

0

B
B
@

0
0

AT
i

0

1

C
C
A � (5.1)

This system can be rewritten as:

A =
�

A B
�BT C

�
; (5.2)

where

A =
�

R̂ �!L̂
!L̂ R̂

�
; B =

�
P̂ 0
0 P̂

�
(5.3)

and

C =
�

Ĝ �!Ĉ
!Ĉ Ĝ

�
: (5.4)

Where R̂ is a positive de�nite diagonal matrix, P̂ is of full column rank. Then
we can make the following observations. First it is easy to realize that the
symmetric part of A (H = 1

2 (A + AT )) is:

H =
�

R̂ 0
0 R̂

�
: (5.5)
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thus H is positive de�nite and consequently also invertible. A second obser-
vation is that, since P̂ has full column rank then also B has full column rank.
Additionally we can check that C is positive semide�nite. With these properties
we can prove that the matrix A is invertible. We do it by means of the next
lemma. The proof is based in a more general result by Benzi and Golub [6].

Lemma 3. Let A be a matrix with the structure given in (5.2). Now let H =
1
2 (A + AT ) be positive de�nite, D = 1

2 (C + CT ) be positive semide�nite and B
be of full rank. Then A is nonsingular.

Proof : Suppose that Av = 0 with vT = (xT yT ). Then we have vT Av = 0,
thus by performing the following calculations:

0 = vT Av = xT Ax + xT ByT � yT BT x + yT Cy = xT Hx + yT Dy; (5.6)

since H is positive de�nite and D is positive semide�nite, we can conclude that
xT Hx = 0 and yT Dy = 0. Now since H is positive de�nite then x = 0. Now
using the �rst block equation of Av = 0 we have:

Ax + By = 0; (5.7)

since x = 0 then we have By = 0, and �nally using that B has full column rank
we conclude that y = 0 as well. This means v = 0, which implies that A is
invertible. QED

Now we will proceed to rewrite the system in a di�erent form, the system
in this new form will be later factorized. First let us recall that our system
consist of four kinds of elements. Namely resistors (pure resistors), inductors(in
series with a resistor), capacitors and current sources. We will further assume
the input frequency is always strictly positive (i.e. ! > 0). This is acceptable
because when w = 0 the system has a rather simple form, namely:

0

B
B
@

R̂ 0 P̂ 0
0 R̂ 0 P̂

P̂ T 0 �Ĝ 0
0 P̂ T 0 �Ĝ

1

C
C
A

0

B
B
@

ir
ii
vr
vi

1

C
C
A =

0

B
B
@

0
0

AT
i

0

1

C
C
A �: (5.8)

This system can be easily factorized, to this purpose it is enough to observe
that:

�
R̂ P̂

P̂ T �Ĝ

�
=

�
I 0

P̂ T R̂�1 I

� �
R̂ 0
0 �(Ĝ + P̂ T R̂�1P̂ )

� �
I �R̂�1P̂
0 I

�
(5.9)

The factorization can be completed after observing that Ĝ+P̂ T R̂�1P̂ is positive
de�nite, then we can apply Cholesky to decompose it as an LDLT product. This
provides us with the factorization. It is important to notice that R̂�1 is diagonal
and that the Schur complement Ĝ + P̂ T R̂�1P̂ remains sparse.
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5.2 Circuit Equations (Revisited)
In the previous section we saw that we can assume ! > 0. With this assumption
we will get an equivalent formulation of the circuit equations. As it was done
before we consider the involved matrices arranged as follows.

A =

2

6
6
4

Ai
Ag
Ac
Al

3

7
7
5 ; vb =

2

6
6
4

vi
vg
vc
vl

3

7
7
5 ; ib =

2

6
6
4

ii
ig
ic
il

3

7
7
5 ; (5.10)

where the subscripts i,g,c and l denote current source, resistor, capacitor and
inductor(in series with a resistor) respectively. With this decomposition Kirch-
ho�s current law (2.4) appears in the following way.

AT
i ii + AT

g ig + AT
c ic + AT

l il = 0; (5.11)

Kirchho�s voltage law (2.5) simply says

Aivn = vi; Agvn = vg; Acvn = vc; Alvn = vl: (5.12)

We consider the following branch constitutive relations:

ii = It(t); ig = Gvg; ic = C
d
dt

vc; vl = (L
d
dt

+ R)il; (5.13)

where It(t) denotes the vector of current-source values, G and C denote the
conductances(of the pure resistors) and capacitances and hence are diagonal
matrices. The matrix R denote the resistances that are in series with the in-
ductors hence it is also diagonal. The matrix L denotes the inductances and
it is diagonal in the absence of inductive coupling. Inductive coupling adds
o�-diagonal terms but the matrix remains symmetric and positive de�nite.

Now we will write the system using ig, ic, il and vn. Thus we get the
following equations:

G�1ig � Agvn = 0 (5.14a)

C�1ic � Ac
d
dt

vn = 0 (5.14b)

(L
d
dt

+ R)il � Alvn = 0 (5.14c)

AT
g ig+AT

c ic +AT
l il = �AT

i It(t) (5.14d)

We can rewrite the equations in system form (note that Kirchho� equations
was multiplied by minus one):

0

B
B
@

G�1 �Ag
C�1

R �Al

�AT
g �AT

c �AT
l 0

1

C
C
A

0

B
B
@

ig
ic
il
vn

1

C
C
A +

0

B
B
@

0
0 �Ac

L 0
0 0 0 0

1

C
C
A

d
dt

0

B
B
@

ig
ic
il
vn

1

C
C
A =

0

B
B
@

0
0
0

AT
i

1

C
C
A It(t)

(5.15)
Then using the complex phasor analysis the system takes the following form:
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2

6
6
4

0

B
B
@

G�1 �Ag
C�1

R �Al

�AT
g �AT

c �AT
l 0

1

C
C
A + i!

0

B
B
@

0
0 �Ac

L 0
0 0 0 0

1

C
C
A

3

7
7
5

0

B
B
@

igr + iigi
icr + iici
ilr + iili

vnr + ivni

1

C
C
A =

0

B
B
@

0
0
0

AT
i

1

C
C
A �

(5.16)
This system can be rewritten as a real system:

0

B
B
B
B
B
B
B
B
B
B
@

G�1 �Ag
G�1 �Ag

C�1 +!Ac
C�1 �!Ac

R �!L �Al
!L R �Al

�AT
g �AT

c �AT
l 0 0

�AT
g �AT

c �AT
l 0 0

1

C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
@

igr
igi
icr
ici
ilr
ili

vnr
vni

1

C
C
C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
@

0
0
0
0
0
0

AT
i

0

1

C
C
C
C
C
C
C
C
C
C
A

�

(5.17)
We multiply by minus one the third blocks row. And since we assume ! > 0

then we can divide by ! in the third and fourth block rows. We also permute
these rows and get the following:

0

B
B
B
B
B
B
B
B
B
B
@

G�1 �Ag
G�1 �Ag

1
! C�1 �Ac

� 1
! C�1 �Ac

R �!L �Al
!L R �Al

�AT
g �AT

c �AT
l 0 0

�AT
g �AT

c �AT
l 0 0

1

C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
@

igr
igi
icr
ici
ilr
ili

vnr
vni

1

C
C
C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
@

0
0
0
0
0
0

AT
i

0

1

C
C
C
C
C
C
C
C
C
C
A

�

(5.18)
Now we further permute rows and get:

0

B
B
B
B
B
B
B
B
B
B
@

G�1 �Ag
1
! C�1 �Ac

R �!L �Al
G�1 �Ag

� 1
! C�1 �Ac

!L R �Al

�AT
g �AT

c �AT
l 0 0

�AT
g �AT

c �AT
l 0 0

1

C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
@

igr
igi
icr
ici
ilr
ili

vnr
vni

1

C
C
C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
@

0
0
0
0
0
0

AT
i

0

1

C
C
C
C
C
C
C
C
C
C
A

�

(5.19)
Finally permuting columns we get:
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0

B
B
B
B
B
B
B
B
B
B
@

G�1 0 �Ag
0 1

! C�1 �Ac
R �!L �Al

0 G�1 �Ag
� 1

! C�1 0 �Ac
!L R �Al

�AT
g �AT

c �AT
l 0 0

�AT
g �AT

c �AT
l 0 0

1

C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
@

igr
icr
ilr
igi
ici
ili

vnr
vni

1

C
C
C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
@

0
0
0
0
0
0

AT
i

0

1

C
C
C
C
C
C
C
C
C
C
A

�:

(5.20)
This formulation is equivalent to the original formulation (5.1), and hence

the matrix is also invertible (see lemma 3).

5.3 RLC Factorization
In the previous section we reformulated the RLC circuit equations. Let m+1 be
the number of nodes of the circuit and n be the number of components. Then
matrix of the system is of the form:

A =

0

B
B
@

X̂ Ŷ P̂ 0
�Ŷ X̂ 0 P̂
P̂ T 0 0 0
0 P̂ T 0 0

1

C
C
A ; (5.21)

where

X̂ =

0

@
G�1

0
R

1

A ; and Ŷ =

0

@
0

1
! C�1

�!L

1

A (5.22)

are n � n matrices. The incidence matrix P̂ is of size n � m and is given by:

P̂ =

0

@
�Ag
�Ac
�Al

1

A : (5.23)

Since P̂ is an incidence matrix then we can again apply algorithm 4 and �nd
an n � n permutation matrix �1 and an m � m permutation matrix �2 such
that �1P̂ = P�2. Here P is an incidence matrix in lower trapezoidal form, i.e.
P T = (P T

1 P T
2 ), where P1 is lower triangular and invertible. Thus by de�ning Q

and �3 as follows,

Q =

0

B
B
@

�1
�1

�2
�2

1

C
C
A ; �3 =

0

B
B
B
B
@

Im
Im

In�m
In�m

I2m

1

C
C
C
C
A

: (5.24)

We �nd that:
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�3QAQT �T
3 =

0

B
B
B
B
B
B
@

X11 Y11 X12 Y12 P1 0
�Y11 X11 �Y12 X12 0 P1
X21 Y21 X22 Y22 P2 0
�Y21 X21 �Y22 X22 0 P2
P T

1 0 P T
2 0 0 0

0 P T
1 0 P T

2 0 0

1

C
C
C
C
C
C
A

; (5.25)

where the matrices X and Y are de�ned and organized in blocks as follows.
Observe that X11 and Y11 are of size m � m, and that X22 and Y22 are of size
(n � m) � (n � m).

�1X̂�T
1 =: X =

�
X11 X12
X21 X22

�
; �1Ŷ �T

1 =: Y =
�

Y11 Y12
Y21 Y22

�
: (5.26)

In order to perform the decomposition, we will arrange the matrix in the same
way in which it was done in the previous chapter.

�3QAQT �T
3 =

0

@
A11 A12 B1
A21 A22 B2
BT

1 BT
2 0

1

A ; where Aij =
�

Xij Yij
�Yij Xij

�
: (5.27)

Now we are ready to prove the following theorem that will lead us to the
�nal factorization.

Theorem 9. The matrix associated with the RLC circuit (5.27), can be decom-
posed as follows:
0

@
A11 A12 B1
A21 A22 B2
BT

1 BT
2 0

1

A =

0

@
B1 0 L1
B2 I2(n�m) M
0 0 I2m

1

A

0

@
D1 0 I2m

0 Ŵ 0
I2m 0 0

1

A

0

@
BT

1 BT
2 0

0 I2(n�m) 0
U1 F I2m

1

A

(5.28)
where M is an 2(n � m) � 2m matrix,F is an 2(n � m) � 2m matrix. D1 is
2m � 2m diagonal, L1 is 2m � 2m strictly lower triangular and U1 is 2m � 2m
strictly upper triangular. The matrix Ŵ is of size 2(n � m) � 2(n � m), and
moreover since the original system is invertible then Ŵ is also invertible.

Proof : Just as it was done in the proof of theorem 7, we realize that the
statement is true if the next equations are satis�ed.

B1D1BT
1 + B1U1 + L1BT

1 = A11 (5.29)

B1D1BT
2 + B1F + L1BT

2 = A12 (5.30)

B2D1BT
1 + B2U1 + MBT

1 = A21 (5.31)

Ŵ + B2D1BT
2 + B2F + MBT

2 = A22 (5.32)

again multiplying (5.29) by B�1
1 from the left and by B�T

1 from the right we
�nd expressions for L1, U1 and D1:

L1 = B1strlow
�
B�1

1 A11B�T
1

�
; U1 = strupp

�
B�1

1 A11B�T
1

�
BT

1 ; (5.33)

D1 = diag
�
B�1

1 A11B�T
1

�
: (5.34)
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Using (5.30) and (5.31) we �nd expressions for M and F ,

F = B�1
1

�
A12 � B1D1BT

2 � L1BT
2

�
; M =

�
A21 � B2D1BT

1 � B2U1
�

B�T
1 :
(5.35)

Finally from (5.32) we get:

Ŵ = A22 � B2D1BT
2 � B2F � MBT

2 : (5.36)

This concludes the decomposition. Now, since the original matrix A is invertible
it follows that the product of the three matrices is invertible. After some per-
mutations, one can check that the �rst and the last matrices in the product are
invertible. Thus the matrix in the middle is invertible. This matrix is invertible
if and only if Ŵ is also invertible, because:

0

@
D1 0 I2m

0 Ŵ 0
I2m 0 0

1

A

�1

=

0

@
0 0 I2m

0 Ŵ �1 0
I2m 0 �D1

1

A : (5.37)

this �nishes the argument. QED

This provides us with all the ingredients to �nd factorization for the RLC
circuit equations. The only step left is to use an LDU decomposition of the
matrix Ŵ . This can be done because Û is nonsingular (see theorem 3). Thus
there exist matrices of size 2(n � m) � 2(n � m), L2, D2, U2 and �e such that:

�eL2D2U2 = Ŵ (5.38)

where L1 is lower triangular, D2 is diagonal, U2 is upper triangular and �e is
permutation matrix.

Using this LDU decomposition and theorem 9 we get the �nal decomposition
for the RLC circuit equations. This is stated in the following theorem.

Theorem 10. Let A be the matrix associated with an RLC circuit as it appears
in (5.20). Then there exit permutation matrices Q, �3, �E, and invertible
matrices eL, eD , eU , with eL lower triangular, eD "almost" diagonal, and eU upper
triangular. Such that:

A = QT �T
3 �T

E�T
4

eL eD eU�4�3Q

where:

Q =

0

B
B
@

�1
�1

�2
�2

1

C
C
A ; �3 =

0

B
B
B
B
@

Im
Im

In�m
In�m

I2m

1

C
C
C
C
A

;

�E =

0

@
I2m

�e
I2m

1

A ; �4 =

0

@
0 0 I2m

I2m 0 0
0 I2(n�m) 0

1

A

eD =

0

@
0 I2m 0

I2m D1 0
0 0 D2

1

A
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and

eL =

0

@
I2m 0 0
L1 B1 0

�T
e M �T

e B2 L2

1

A ; eU =

0

@
I2m U1 F
0 BT

1 BT
2

0 0 U2

1

A

Proof : The proof is analogous to the one in theorem 8. Here it is only
important to take care with the next calculations:

�T
E

0

@
B1 0 L1
B2 �eL2 M
0 0 I2m

1

A =

0

@
B1 0 L1

�T
e B2 L2 �T

e M
0 0 I2m

1

A ; (5.39)

and

�4

0

@
B1 0 L1

�T
e B2 L2 �T

e M
0 0 I2m

1

A �T
4 = eL: (5.40)

QED
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Chapter 6

Time Complexity

In this chapter we analyze how the RL and the RLC factorizations work. First
we show some illustrative examples for each of the cases. Then we make a
derivation of the time complexity of both factorizations. Finally we provide
some examples with circuits of arbitrary size which allows us to compare the
time complexity quantitatively. The execution time of the solving using the
factorizations is compared to the one obtained when solving by means of LU
decomposition.

6.1 Small RL example
In order to show how the RL factorization works we will consider the circuit
in Figure 6.1. Here we have m + 1 = 3, the number of nodes, and nl = 3, the
number of inductors, which is also the number of total branches because in this
case there are no current sources, because this is only an example to show how
the factorization works.

Figure 6.1: Simple RL Circuit

Then constructing the incidence matrix we have:

Al =

0

@
�1 1
0 �1
1 0

1

A : Thus P̂ =

0

@
1 �1
0 1

�1 0

1

A : (6.1)
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Furthermore let:

R =

0

@
5

6
7

1

A ; L =

0

@
2 1 1
1 3 1
1 1 4

1

A : (6.2)

In this case we consider inductors with coupling, that is why the matrix L
has nonzero entries in the o�-diagonal. Now we proceed to construct the RL
factorization of the matrix as it was done in chapter 4, we will consider ! = 1.
First we need to construct the permutations matrices �1 and �2, by applying
algorithm 4 we �nd:

�1 =

0

@
0 0 1
0 1 0
1 0 0

1

A ; �2 =
�

1 0
0 1

�
and de�ne Q =

0

B
B
@

�1
�1

�2
�2

1

C
C
A

(6.3)
Then we have:

�1R̂�T
1 =: R =

0

@
7

6
5

1

A ; �1L̂�T
1 =: L =

0

@
4 1 1
1 3 1
1 1 2

1

A (6.4)

and

�1P̂�2 =

0

@
�1 0
0 1
1 �1

1

A ; and identify P1 =
�

�1 0
0 1

�
; P2 =

�
1 �1

�
(6.5)

Furthermore we �rst compute P �1
1 and by de�ning (remember that m = 2

and nl = 3):

P �1
1 =

�
�1

1

�
; �3 =

0

B
B
B
B
@

I2
I2

I1
I1

I2

1

C
C
C
C
A

(6.6)

And we �nd

�3QAQ�T
3 =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

7 0 �4 �1 0 �1 �1 0 0 0
0 6 �1 �3 0 �1 0 1 0 0
4 1 7 0 1 0 0 0 �1 0
1 3 0 6 1 0 0 0 0 1
0 0 �1 �1 5 �2 1 �1 0 0
1 1 0 0 2 5 0 0 1 �1

�1 0 0 0 1 0 0 0 0 0
0 1 0 0 �1 0 0 0 0 0
0 0 �1 0 0 1 0 0 0 0
0 0 0 1 0 �1 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(6.7)
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We recognize the structures (see theorem 7):

A11 =

0

B
B
@

7 0 �4 �1
0 6 �1 �3
4 1 7 0
1 3 0 6

1

C
C
A ; A12 =

0

B
B
@

0 �1
0 �1
1 0
1 0

1

C
C
A ; B1 =

0

B
B
@

�1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 1

1

C
C
A

A21 =
�

0 0 �1 �1
1 1 0 0

�
; A22 =

�
5 �2
2 5

�
B2 =

�
1 �1 0 0
0 0 1 �1

�
(6.8)

Then we can calculate:

B�1
1 A11B�T

1 =

0

B
B
@

7 0 �4 1
0 6 1 �3
4 �1 7 0

�1 3 0 6

1

C
C
A ; (6.9)

from here we conclude (see again theorem 7),

D1 =

0

B
B
@

7 0 0 0
0 6 0 0
0 0 7 0
0 0 0 6

1

C
C
A ; L1 =

0

B
B
@

0 0 0 0
0 0 0 0

�4 1 0 0
�1 3 0 0

1

C
C
A ; U1 =

0

B
B
@

0 0 4 1
0 0 �1 �3
0 0 0 0
0 0 0 0

1

C
C
A :

(6.10)
With the information above we �nd:

M =
�

�7 6 6 �5
�1 1 �7 6

�
; F =

0

B
B
@

�7 1
6 �1

�6 �7
5 6

1

C
C
A (6.11)

Finally we �nd that:

Ŵ = A22 � B2D1BT
2 � B2F � MBT

2 =
�
18 � 151518

�
(6.12)

Now we need to decompose this matrix as stated in lemma 2. Thus we realize
that:

L2;1 = 1 and D2;1 = 18 (6.13)

hence we can compute

L2;2 = Ŵ21L�T
2;1 D�1

2;1 = 15(1)
1
18

=
15
18

(6.14)

and it is only left to �nd

L2;3D2;2LT
2;3 = Ŵ11 + !2Ŵ21Ŵ �1

11 Ŵ21 = 18 + (�15)(
1
18

)(�15) =
549
18

: (6.15)

Thus we have,

L2 =
�

1 0
15
18 1

�
; D2 =

�
18 0
0 549

18

�
U2 =

�
1 � 15

18
0 1

�
: (6.16)

Despite some extra permutations, this completes the factorization.
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6.2 RL Complexity
Now we will analyze the time complexity of solving the circuit equations with
the RL factorization. For this purpose let m + 1 be the number of nodes in the
circuit, nl the number of inductors (in series with a resistor) and ni the number
of current sources. Then the circuit equations have the form:

A =

0

B
B
@

R̂ �!L̂ P̂ 0
!L̂ R̂ 0 P̂
P̂ T 0 0 0
0 P̂ T 0 0

1

C
C
A

0

B
B
@

ir
ii
vr
vi

1

C
C
A =

0

B
B
@

0
0

AT
i

0

1

C
C
A (6.17)

The size of the matrix A, is then 2nl + 2m, the number of current sources does
not play a role in the size of the system actively. Then we can conclude the
complexity of solving the equations via the LU decomposition is:

O
�
(2(nl + m))3 + (2(nl + m))2�

(6.18)

The cubic term comes from computing the LU decomposition the quadratic term
comes from the solving the respective upper triangular and lower triangular
systems.

Now we analyze the complexity of solving the circuit equations using the RL
factorization. In this case the size of the system equation remains 2(nl + m).
The algorithm to solve the equations using the RL factorization is conformed
roughly as follows.

Algorithm 5 RL Solution Algorithm
INPUT: circuit equations matrices: Al,Ai, R, L and a frequency !
OUTPUT: solution vector x for the frequency ! with, xT = (ir; ii; vr; vi)T

1. Determine permutation matrices �1 and �2, transforming P̂ into
lower trapezoidal form (see algorithm4)

2. Transform the system matrix A with Q leading to R,L and P
3. Arrange the system matrix in blocks Aij (see (4.14)
4. Determine P �1

1 and thus �nd the matrices D1,L1 and U1(see theorem7)
5. Perform the Chosleky decomposition on Ŵ11 and Ŵ11 + !2Ŵ21Ŵ �1

11 Ŵ21,
leading to the matrices D2, L2 and U2 (see lemma2)

6. Apply the correspondent permutations, solve with backward substitution
the upper triangular system eU , solve with forward substitution
the lower triangular system eL and apply eD�1 (see theorem8)

The �rst step of the algorithm is performed by using algorithm 4. Thus we
incur in n2

l operations. Multiplying by the permutation matrix Q as well as
the arrangement of the system matrix, are basically read and write operations.
Performing Cholesky decomposition needs 1

3 (nl � m)3) operations, in our case
we need to apply this algorithm twice. Solving the resulting upper and lower
triangular systems requires O((2(nl + m))2) operations.

So far we have discussed most of the steps in the algorithm, now we go a bit
deeper into step number 4. This step seems to be rather simple but it deserves
more discussion. The easy part is the computation of P �1

1 , this involves O(m2)
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operations, because P1 is lower triangular and sparse (it contains at most 2
nonzero entries per row). The most delicate issue here, is the computation of
the product P �1

1 A11P �T
1 . The computation of P �1

1 L11P1�T acts in the same
way. The matrix P1 was set to be lower triangular and very sparse, hence the
inverse is also lower triangular, but it might be full though. This might happen,
for example, when

P1 =

0

B
B
B
@

1
�1 1

. . . . . .
�1 1

1

C
C
C
A

: (6.19)

In this special case we have that the inverse is full, in fact:

P �1
1 =

0

B
B
B
@

1
1 1
...

...
. . .

1 1 1

1

C
C
C
A

: (6.20)

From this we can conclude that performing the products P �1
1 R11P �T

1 and
P �1

1 L11P1�T , depends on the properties of P1, in bad cases it might take up
to the order of O(m3) operations. In some other cases it might happen that we
require no operations, for instance if P1 = Im. Adding altogether and omitting
factors, we can conclude that the worst case complexity of the algorithm is:

O
�
n2

l + (nl � m)3 + m3 + (2(nl + m))2�
(6.21)

In the previous expression some factors were left in order to identify the problem
from which they come from. For instance, the term m3 comes from the problem
of calculating the product associated with P �1

1 . Provided that P �1
1 remains

sparse, the complexity of solving by using the RL decomposition,

O
�
n2

l + (nl � m)3 + (2(nl + m))2�
(6.22)

the other terms can not be avoided. From this, we can conclude that the RL
solution algorithm performs the best when P �1

1 remains sparse and nl � m is
small. In any case we can conclude that, for systems big enough, solving with
the RL factorization is better than solving by using direct LU decomposition.

An extra comment deserves to be made here. In the discussion before we
assumed to be interested in solving the system only for a �xed frequency !.
In general one is interested not only in one speci�c value of ! but rather in a
whole frequency range. In chapter 4 it was shown how many of the matrices of
the factorization are either independent or linearly dependent of !. This means
that all these matrices need to be computed only once. The only matrices
that need to be recalculated are L2;3 and D2;2 (lemma 2). Meanwhile, with
the LU decomposition everything needs to be recomputed again. This provides
one extra argument for solving with the RL factorization, specially when one is
interested in �nding the solution for many di�erent values of !.
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6.3 RL Study Case
Above we discussed the time complexity of solving the circuit equations with
direct LU decomposition and with the RL factorization. Now we will analyze
this more quantitatively. In order to do so we will consider the circuit in Figure
6.2.

Figure 6.2: RL Circuit

The size of this system can be measured with the number N . Our circuit has
2N + 1 nodes and hence m = 2N . The number of RL branches is nl = 3N � 2.
The matrices corresponding to this circuit take the form.

Al =

0

@
M1 0
0 M2

IN �IN

1

A ; (6.23)

where

M1 =

0

B
B
B
@

0 �1
1 �1

. . . . . .
1 �1

1

C
C
C
A

M2 =

0

B
B
B
@

1 �1
1 �1

. . . . . .
1 �1

1

C
C
C
A

: (6.24)

Here Al is of size (3N � 2) � 2N , the blocks M1 and M2 are of size (N1) � N .
Additionally we have Ai = (�1; 0; : : : ; 0). All the resistances are assumed to
have the same value r = 2:5, the inductances are set to l = 1:25�10�9. Further
more we assume a coupling between parallel inductors that are next to each
other (see Figure6.2). The coupling will be denoted by a a factor 0 � p � 1, i.e.
a proportional value to the value of the inductances. Thus R = rI3N�2 and

L =

0

@
IN�1 pIN�1
pIN�1 IN�1

M3

1

A ; where M3 =

0

B
B
B
@

1 p
p 1 p

. . . . . . . . .
p 1

1

C
C
C
A

: (6.25)

We selected this circuit because we can vary its size arbitrarily with the
parameter N . Furthermore we can also observe how the introduction of coupling
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a�ect the performance of the methods. For the case N = 2 we computed
the solution for the voltage at node 3, using the RL decomposition and using
Systems and Control toolbox of MatLab. In Figure 6.3 we observe the result
obtained with Systems and Control Toolbox, meanwhile in Figure 6.4 we can
see the results obtained after solving with the RL factorization. Since the RL
factorization is exact (despite roundo� error), both graphs coincide as expected.

Figure 6.3: Solution of the System and
Control Toolbox for the voltage at node
3

Figure 6.4: Solution with RL algorithm
at node 3

The previous observation validate the results obtained with the RL factor-
ization, now we will briey explore the e�ect of the coupling factor. In Figure
6.5 we can observe how the curve of the voltage in node 3 changes with di�erent
coupling factors. The higher the coupling factor is, the less steep the magnitude
plot is. The phase changes in a similar way, for higher coupling factors the phase
curve is "pulled" to the right (Figure 6.6).

Figure 6.5: Magnitude plot for di�erent
coupling factors

Figure 6.6: Phase plot for di�erent cou-
pling factors

In order to analyze the time complexity, we implemented both solution meth-
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ods in MatLab. We increased the size of the circuit (see Figure 6.2) by increasing
the parameter N . First we can express the time complexity in terms of the vari-
able N . Using that for our circuit m = 2N and nl = 3N � 2, we have that the
complexity of solving, with direct LU decomposition, the RL circuit in Figure
6.2 for a �xed frequency is:

O([2(5N � 2)]3 + [2(5N � 2)]2): (6.26)

When solving with the RL algorithm we have the following. For this special
circuit, the generated P �1

1 is unfortunately not sparse enough. For instance in
Figure 6.7 we can observe the sparsity structure of the matrix for the case when
N = 20. This structure is not sparse enough to avoid expensive computation
time for the calculation of the product P �1

1 R11P �T
1 . In Figure 6.8 we can check

that in fact the product becomes a full matrix, incurring in O(m3) ops.

Figure 6.7: Matrix P �1
1 Figure 6.8: Product P �1

1 P �T
1

From the discussion above we can conclude that for this special circuit the
time complexity of solving the circuit equation with the RL algorithm is:

O([N � 2]3 + [2N ]3 + [3N � 2]2 + [2(5N � 2)]2): (6.27)

This will reect in the numerical results. The following computations were
performed in MATLAB on a PC with processor IntelPentiumCoreDuo2 1.86GHz
with 1GB RAM. In Figure 6.9 we can observe the computation times for di�erent
values of N . Here we consider p = 0, i.e. no inductive coupling. As expected,
for small values of N , we can see that the RL Algorithm takes more time that
solving with direct LU decomposition. This happens because, for small values
the terms that determine the running time are the second order terms. The RL
ALgorithm performs more procedures of order 2 than the LU decomposition this
leads to more operations for small values of N . Nonetheless, once N is bigger
that 102, the dominant terms determining the computation time are the terms
of order 3. Consequently the computation time of the RL algorithm starts to
be shorter than the one of the direct LU decomposition. The di�erence might
not look very large, but this is only due to the logarithmic scale. For instance,
when N = 512 direct LU decomposition uses 147:2sec, while the RL algorithm
needs only 55:98sec,i.e. almost one third of the time.

When we include a coupling factor p = 0:1 (Figure 6.10), the computation
times for the RL algorithm remain almost the same. This is not the case for
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6.3 RL Study Case Time Complexity

Figure 6.9: Solution running times for
RL circuits without coupling p = 0

Figure 6.10: Solution running times for
RL circuits with coupling p = 0:1

direct LU decomposition. For instance, when N = 256, the computation time of
the RL algorithm is 0:861sec for the problem without coupling and 0:995sec for
the problem with coupling. Meanwhile, for the same value of N the computation
time of direct LU decomposition is 1:129sec for the problem without coupling
and 3:962sec for the problem with coupling. This e�ect becomes more clear
for higher values of N . For N = 1024, the computation time of direct LU
decomposition increases from 147:2sec to 294:3sec, while the computation time
of the RL algorithm changes only from 55:98sec to 56:8sec.

Figure 6.11: Executions time for the
modi�ed RL circuits without coupling

Figure 6.12: Executions time for the
modi�ed RL circuits with coupling

In order to explore how the structure of the network a�ects the complexity
of the RL algorithm, we will consider a modi�ed version of the circuit in Figure
6.2. We will keep the parameter N , but we will consider only two vertical
branches instead of N . This leads to a circuit with m = 2N nodes and nl = 2N
branches. Thus solving with direct LU decomposition leads to the order of
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[2(2N)]3 +[2(4N)]2 ops. Using the RL algorithms needs about [2N ]2 +[2N ]3 +
[2(4N)]2 operations. It is important to notice that the the term \nl � m", in
the complexity of the RL algorithm (6.21), vanishes. This means that for this
special case Cholesky decomposition does not need to be applied.

In Figure 6.11 we can see the computation times for the problem without
coupling. Figure 6.12 displays the results for the problem with a coupling factor
of p = 0:1. For the case without coupling the RL Algorithm is more expensive
when N � 256, for bigger values of N the RL algorithm it is already cheaper.
Moreover, it might be a bit di�cult to observe it in the Figure, but the slope
of the curve of the RL algorithm is smaller than the one for direct LU. This
means that if we increase the size of N , then the di�erence in time will also
increase. This e�ect can be observed more clearly, for the case with coupling
(see Figure 6.12), here for N = 256 the computation time with the RL algorithm
is of 0:49sec, while with direct LU is 1:08sec.

The di�erence in computation times keeps increasing together with N . For
example when N = 1024 the direct LU needs 85:12sec, while RL algorithm
takes 22:76. The RL algorithm changes from being 2 times cheaper to be 4
times cheaper than direct LU decomposition. We can check again that the
introduction of the coupling factor does not greatly a�ects the performance of
the RL algorithm. For example for N = 256, the computation time of the RL
algorithm moves from 0:38sec for the case without coupling, to 0:49 for the
problem including coupling, meanwhile the time of the direct LU changes from
0:46sec to 1:08. This fact is more clear when N = 1024, in this case direct LU
changes from 26:88sec, for the problem without coupling, to 85:12sec to the
problem with coupling. This is not the case for the RL algorithm, the time
here moves from 16:02sec, for the case with no coupling to 22:76sec for the case
with coupling. If this property holds in general, then this will be an extra pro
for choosing the RL algorithm to �nd the solution of RL circuits. In any case,
due to the analytic analysis of the complexity, we can conclude that the RL
algorithm will perform better, for circuits large enough.

6.4 Example: RLC Ladder Circuit
Above we discussed the RL factorization in detail, now we will do the same with
the RLC factorization. To this extend we will use a circuit that is used as basic
model for transmission lines, the so called RLC Ladder circuit (see Figure 6.13).
We will use N , the number of blocks, as a variable to measure the size of the
circuit.

Figure 6.13: RLC Ladder Circuit with N Blocks

The RLC ladder with N blocks, contains m + 1 = N + 2 nodes and 3N
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branches. To be more precise we have, nl = N , ng = N and nc = N , where
nl, ng, nc denote the number of inductors, conductances and capacitors in the
circuit. The matrices Al, Ag, Ac are of size N � N + 1 and have the form:

Al =

0

B
B
B
@

1 �1 0
0 1 �1

. . . . . .
0 0 1 �1

1

C
C
C
A

; Ag = Ac =

0

B
B
B
@

0 1 0
0 0 1

. . . . . .
0 0 : : : 0 1

1

C
C
C
A

(6.28)

Additionally we have Ai = (�10; : : : ; 0). For us to show the RLC factor-
ization works we will �rst consider the case N = 1. For appearance purposes
we will consider R = 2, L = 3, C = 1

4 and ! = 1. The matrix of the circuit
equations in standard form (2.19) is:

0

B
B
@

R̂ �!L̂ P̂ 0
!L̂ R̂ 0 P̂
P̂ T 0 �Ĝ !Ĉ
0 P̂ T �!Ĉ �Ĝ

1

C
C
A (6.29)

and substituting the chosen values we have:
0

B
B
B
B
B
B
@

2 �3 �1 1 0 0
3 2 0 0 �1 1

�1 0 0 0 0 0
1 0 0 � 1

5 0 1
4

0 �1 0 0 0 0
0 1 0 � 1

4 0 � 1
5

1

C
C
C
C
C
C
A

: (6.30)

On the other hand, the reformulation of the circuit equation (5.20), which
we need in order to apply the RLC factorization, are:

0

B
B
B
B
B
B
B
B
B
B
@

G�1 0 �Ag
0 1

! C�1 �Ac
R �!L �Al

0 G�1 �Ag
� 1

! C�1 0 �Ac
!L R �Al

�AT
g �AT

c �AT
l 0 0

�AT
g �AT

c �AT
l 0 0

1

C
C
C
C
C
C
C
C
C
C
A

(6.31)

and substituting the correspondent values we get:
0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

5 0 0 0 0 0 0 �1 0 0
0 0 0 0 4 0 0 �1 0 0
0 0 2 0 0 �3 �1 1 0 0
0 0 0 5 0 0 0 0 0 �1
0 �4 0 0 0 0 0 0 0 �1
0 0 3 0 0 2 0 0 �1 1
0 0 �1 0 0 0 0 0 0 0

�1 �1 1 0 0 0 0 0 0 0
0 0 0 0 0 �1 0 0 0 0
0 0 0 �1 �1 1 0 0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (6.32)
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We can clearly observe how the size of the matrix increases by 4 = 2(ng + nc).
We also recognize the matrix arranged in blocks P̂ , X̂ and Ŷ ,

P̂ =

0

@
0 �1
0 �1

�1 1

1

A ; X̂ =

0

@
5 0 0
0 0 0
0 0 2

1

A ; Ŷ =

0

@
0 0 0
0 4 0
0 0 �3

1

A : (6.33)

After applying algorithm 4 to P̂ we �nd:

�1 =

0

@
1 0 0
0 0 1
0 1 0

1

A ; �2 =
�

0 1
1 0

�
; then �1P̂�T

2 =

0

@
�1 0
1 �1

�1 0

1

A := P (6.34)

and identify

P1 =
�

�1 0
1 �1

�
; P2 =

�
�1 0

�
; then P �1

1 =
�

�1 0
�1 �1

�
(6.35)

Furthermore, as it was done for the general case, we de�ne the following
permutation matrices:

Q =

0

B
B
@

�1
�1

�2
�2

1

C
C
A ; �3 =

0

B
B
B
B
@

I2
I2

I1
I1

I4

1

C
C
C
C
A

(6.36)

Then we have:

�1X̂�T
1 =: X =

0

@
5 0 0
0 2 0
0 0 0

1

A ; �1Ŷ �T
1 =: Y

0

@
0 0 0
0 �3 0
0 0 4

1

A ; (6.37)

and thus

�3QAQT �T
3 =

0

@
A11 A12 B1
A21 A22 B2
BT

1 BT
2 0

1

A ; where (6.38)

A11 =

0

B
B
@

5 0 0 0
0 2 0 �3
0 0 5 0
0 3 0 2

1

C
C
A ; A12 =

0

B
B
@

0 0
0 0
0 0
0 0

1

C
C
A ; B1 =

0

B
B
@

�1 0 0 0
1 �1 0 0
0 0 �1 0
0 0 1 �1

1

C
C
A

(6.39)

A21 =
�

0 0 0 0
0 0 0 0

�
; A22 =

�
0 4

�4 0

�
; B2 =

�
�1 0 0 0
0 0 �1 0

�
: (6.40)

Then we have:

B�1
1 A11BT

1 =

0

B
B
@

5 5 0 0
5 7 0 �3
0 0 5 5
0 3 5 7

1

C
C
A ; D1 =

0

B
B
@

5 0 0 0
0 7 0 0
0 0 5 0
0 0 0 7

1

C
C
A (6.41)
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L1 =

0

B
B
@

0 0 0 0
�5 0 0 0
0 0 0 0
0 �3 �5 0

1

C
C
A ; U1 =

0

B
B
@

0 �5 0 0
0 0 0 3
0 0 0 �5
0 0 0 0

1

C
C
A (6.42)

and

M =
�

5 5 0 0
0 0 5 5

�
; F =

0

B
B
@

5 0
5 0
0 5
0 5

1

C
C
A (6.43)

The matrix which need to be LDU decomposed (see theorem 9) is:

Ŵ =
�

5 4
�4 5

�
; (6.44)

and after applying the LDU decomposition we �nd:

�e =
�

1 0
0 1

�
; L2 =

�
1 0

� 4
5 1

�
; D2 =

�
5 0
0 41

5

�
; U2 =

�
1 4

5
0 1

�
: (6.45)

This �nishes the factorization, just some reordering, to �nd the matrices eL, eD
eU , is left to the reader. In Figure 6.14 we can observe the magnitude and the
phase plots of the voltage at node 2, for the RLC circuit with N = 1. The curve
of the magnitude starts to bend for frequencies higher that ! = 10�2(rad=sec).

Figure 6.14: Magnitude and Phase of the Voltage at node 2 in a RLC Ladder
with 1 block
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6.5 RLC Complexity
In the previous section we saw more clearly how the RLC factorization can be
computed. This RLC factorization can be used to solve the equations of an
RLC circuit. But �rst let us make a comment on the complexity of solving the
equation with direct LU decomposition. For this case we can use the normal
formulation (2.19). The size of the matrix is then 2(nl +m), thus the complexity
is:

O([2(nl + m)]3 + [2(nl + m)]2); (6.46)

where, nl is the number of inductors (in series with a resistor) branches and
m + 1 is the number of nodes in the RLC circuit. Now we will discuss the
complexity of using the RLC factorization for a direct solver. The steps to do
this are put together in algorithm 6.

Algorithm 6 RLC Solution Algorithm
INPUT: circuit matrices: Al,Ac, Ag, Ai, R, L, G, C and a frequency !
OUTPUT: solution vector x for the frequency !

xT = (igr; icr; ilr; igi; ici; ili; vr; vi)T

1. Determine G�1, C�1, write the equations as in (5.20) and �nd permutation
matrices �1 and �2, transforming P̂ into lower trapezoidal form (see algorithm4)
2. Transform the system matrix A with Q leading from the matrices X̂,Ŷ and P̂

to X, Y and P
3. Arrange the system matrix in blocks Aij (see (5.27)
4. Determine P �1

1 and thus �nd the matrices D1,L1 and U1(see theorem7)
5. Perform an LDU decomposition on Ŵ (see theorem 9), leading to

the matrices �e, D2, L2 and U2
6. Apply the correspondent permutations, solve with backward substitution

the upper triangular system eU , solve with forward substitution
the lower triangular system eL and apply eD�1 (see theorem10)

Since G and C are diagonal, the computation of G�1 and C�1 is a problem
of linear complexity. Finding the permutation matrices �1 and �2 takes about
(nl +ng +nc)2 ops with algorithm 4. Multiplying by Q and �3 is cheap because
both matrices are permutations. Since P1 is lower triangular and sparse (at most
two nonzero values per row), then the calculation of P �1

1 takes only m2 ops.
Computing the products P �1

1 X11P �T
1 and P �1

1 Y11P �T
1 might take up to

O(m3) operations, in case P �1
1 is not sparse enough. If the matrix is sparse

then then computing the products is cheap. Performing an LDU decomposition
on the matrix Ŵ costs about [2(nl + ng + nc � m)]3 operations. Finally solving
the resulting lower and upper triangular systems needs [2(nl + ng + nc + m)]2
operations. Altogether the complexity of the RLC algorithm is:

O([nl+ng+nc]2+m2+m3+[2(nl+ng+nc�m)]3+[2(nl+ng+nc+m)]2): (6.47)

Provided P �1
1 is sparse enough the complexity reduces to:

O([nl +ng +nc]2 +m2 +[2(nl +ng +nc �m)]3 +[2(nl +ng +nc +m)]2): (6.48)
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It should be clear that the RLC algorithm might be more expensive that
applying direct LU decomposition. This happens mainly because the RLC al-
gorithm increases the size of the system equations in order to provide the fac-
torization. Nonetheless, in some cases, the RLC algorithm can be faster than
direct LU decomposition. We will show this by analyzing the case of the RLC
ladder circuit.

The results displayed in Figures 6.15, 6.18, and 6.19 were performed in
MatLab in a PC with processor AMD Turion64X2 1.60GHz with 2GB RAM. In
Figure 6.15 we see the running times for solving the RLC ladder with di�erent
number of blocks. For this case direct LU decomposition is always faster than
the RLC algorithm. We observe how the curve for the RLC algorithm always
lies above the one for direct LU decomposition.

Figure 6.15: RLC Ladder Circuit with N Blocks

We can explain this in an analytic form as well. We just need to remember
that nl = ng = nc = m = N then using direct LU needs:

O([4N ]3 + [4N ]2) (6.49)

operations. To calculate the complexity of the RLC algorithm we can use ex-
pression (6.48). We can in fact use this expression, because for this case P �1

1
is sparse enough, the sparsity structure of P �1

1 and P �1
1 P �T

1 can be seen in
Figures 6.16 and 6.17 respectively. Using the expression we get the complexity:

O([3N ]2 + N2 + [4N ]3 + [8N ]2): (6.50)

This expression is clearly bigger than the one for direct LU decomposition,
because of the extra terms of order 2.

At �rst glance it might seem not such a good a idea to use the RLC algorithm,
but luckily this is not always the case. For instance, if we considered a modi�ed
version of the RLC ladder circuit the RLC algorithm performs better than
direct LU decomposition. We will consider the RLC ladder with the same block
structure, but we will \delete" some of the vertical branches. The way in which
we will remove the vertical branches is as follows.

Given a proportion of vertical branches to be removed 1�p, we �rst compute
bpNc, where bxc denotes the biggest integer smaller or equal than x. Then we
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Figure 6.16: Matrix P �1
1 Figure 6.17: Product P �1

1 P �T
1

start by removing capacitors branches from left to right (see Figure 6.13), till we
have removed bpNc capacitor branches in total. In the same, but this time from
right to left we remove the same quantity of conductances. Thus the modi�ed
version of the RLC ladder satis�es nl = N ,m = N and ng = nc = pN , where
N is the number of blocks in the circuit.

In Figure 6.18 we can see the computation times for the modi�ed version of
the RLC ladder circuit with factor p = 0:5. For small values of N direct LU is
still faster that the RLC algorithm, but in contrast to the previous case, this
time the RLC algorithm reaches the performance of direct LU for N = 256. For
di�erence in performance increases with N . When N = 1024 direct LU needs
12:83sec, while the RLC algorithm needs 10:35sec. Later for N = 2054 LU
needs 96:53 and the RLC algorithm needs 76:13, the di�erence in computation
times changes from about 2sec to about 20sec. For this case the RLC algorithm
behaves better than direct LU decomposition. We can again explain this, using
the expressions for the time complexity.

Since for the modi�ed RLC the number of resistor-inductor branches nl and
the number of nodes m + 1 do not change, then the complexity of direct LU
remains the same. Meanwhile, ng = nc = b0:5Nc, thus nl + ng + nc = 2N and
nl + ng + nc � m = N . Then the expression for the complexity of the RLC
algorithm now reads:

O([2N ]2 + N2 + [2N ]3 + [2(3N)]2); (6.51)

the only term of third order in the previous expressions is [2N ]3, which is smaller
compared to [4N ]3, the leading term in the complexity of solving via direct LU
decomposition.

This e�ect is more clear when we study the running times for solving the
modi�ed version of the RLC ladder with factor p = 0:2. For this case the
complexity of the RLC factorization is:

O([1:4N ]2 + N2 + [0:8N ]3 + [2(2:4N)]2); (6.52)

while the complexity of solving with direct LU stays the same. Numerical results
appear in Figure 6.19. The di�erence between the computation times is now
evident. Already for N = 64 the RLC algorithm performs better than direct
LU. For larger values of N the RLC algorithm is much faster. For instance for
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Figure 6.18: RLC Ladder Circuit with N Blocks

N = 256, the elapsed time for RLC is 0:03sec while the one for direct LU is 0:24.
As another example, when N = 2048 direct LU needs 95:89sec while the RLC
algorithm needs only 2:58sec, this is a time reduction factor of 36. Con�rming,
that for this case, the RLC algorithm performs much faster than direct LU.

Figure 6.19: RLC Ladder Circuit with N Blocks

With these examples we can get some useful information to know when it
is advisable to use the RLC algorithm instead of LU decomposition for solving
directly the circuit equations. First it is very important to remark, that for RL
circuit circuit case, the RL algorithm is always better than direct LU. Provided
that the circuit is big enough.

For the case of RLC circuits, we can say the following. If the circuit contains
just some few capacitors and few conductances, then the RLC algorithm should
perform better than direct LU. We can give a reason for this by examining the
expression for the complexity of the RLC algorithm. We immediately observe
that we require ng + nc � 2m for the RLC algorithm to be faster than direct
LU decomposition. If this condition is not ful�lled then there is no chance for
the RLC algorithm to perform better than direct LU decomposition. For this
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cases is better to discard the RLC algorithm.
On the other hand, if the condition is ful�lled, the RLC algorithm might

be much faster than direct LU decomposition, as it was shown in the example
above. This �nishes our discussion of the usage of the RL and RLC factorization
for implementing direct solvers. The kind of factorization developed here can
also be used to �nd preconditioners for iterative schemes, but we will not discuss
it here. Such kind of preconditioner matrices has already been addressed by
Schilders [1] and also by Cao [7], leading to very interesting results.
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Chapter 7

Conclusions

In mathematical terms, the main problem we were concerned along this thesis
is the solution of inde�nite and non symmetric linear equations. Such kind of
systems arise in di�erent areas. We showed how these systems appear in elec-
tronics, in the simulation of RLC circuits for our particular case. In this area,
there is a special need for fast solvers, mainly because nowadays the circuits
contain a very large number of components. This last condition make direct
solvers very expensive and thus not a�ordable. From the point of view of iter-
ative solvers, the poor spectral properties of the matrix, delay the convergence
of the iterative schemes. In simple words, developing e�cient solvers for these
kind of systems is not a trivial issue.

The matrix associated with the RLC circuit falls in the class of saddle point
matrices. Many e�orts have been done to develop solution methods for this
kind of problem. In this thesis we reviewed some of these methods, as well
as the basics of linear equations, in order to make the work as self contained
as possible. The Schilders factorization is a method in which we made special
emphasis. Based on this factorization, we were able to construct factorizations
for both, �rst for the case of RL circuits and, after some extra e�ort rewriting
the original equations, for the general case of RLC circuits as well.

7.1 Contribution of this work
It is important to mention that in this thesis, we constructed and provided
proofs for the existence of the factorizations mentioned above. We achieved
this in the following way. First we discussed the problem of rearranging the
incidence matrix in to lower trapezoidal form, we also included an algorithm
to perform such rearrangement. Then we treated the case RL, and by proving
the existence of this factorization we were also able to conclude that the matrix
associated with the RL circuit is invertible. In contrast, for the RLC case we
�rst had to prove the invertibility of the original matrix, then reformulate the
circuit equations in to a slightly di�erent form and �nally we constructed the
factorization.
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7.2 Future Work Conclusions

The presented factorizations can be used for implementing direct solvers or
to construct preconditioners in order to apply iterative schemes. This was al-
ready mentioned in the literature [1] [7]. In this text we were more concerned
analyzing the use of these factorizations for implementing direct solvers. We
stated this in terms of an algorithm for each case. Furthermore we provided
a comparison, in terms of the time complexity, between these algorithms and
applying the direct LU decomposition. This was done analytically and also nu-
merically to give an idea of how the algorithms will behave in practice.

From the discussion regarding the time complexity of the algorithms we were
able to conclude the following. Provided that the circuit is big enough, the RL
factorization is always faster that applying direct LU decomposition. Unfortu-
nately, this not always the case for the general RLC factorization. In this case
we found that sometimes applying the RLC factorization is de�nitely not rec-
ommended. A condition when this happens, was stated in terms of the number
of capacitors, conductances and nodes in the RLC circuit. Despite this fact,
by means of the example of the RLC ladder circuit we were able to show that
there are still some cases when applying the RLC algorithm is much cheaper
than applying direct LU factorization. One extra advantage that was appointed
but not yet exploited here, is the fact that for di�erent input frequencies only
a small part of the factorizations needs to be recomputed. This could lead to
more advantages.

7.2 Future Work
We already mentioned that the frequency dependences of the factor matrices
should be further explored and exploited. This problem has a lot to do with
rearranging the incidence matrix into lower trapezoidal form. In general the
reordering is not unique and consequently there is room for trying to �nd an
optimal one. In terms of graph theory, the problem of rearranging the matrix
is equivalent to �nding an spanning tree in the circuit network. We already
mentioned and gave references for the possibility of constructing preconditioners
using the factorizations as basis. Another possibility would be to try to use
them, together with a model order reduction technique, in order to �nd model
reduction algorithms, better suited for RLC circuits; which is very important in
the industry.
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