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Abstract

Flocking workers are commonplace in many picker-to-parts warehouses where pickers traverse
through an aisle system to collect items. As space is typically con�ned, this often results in
mutual blocking of workers. Such worker congestion can in
ict serious harm on the productivity of
a warehouse. Research on this issue is not abundant, though some academics have picked up the
topic in the last decade. The little work that exists is highly theoretical and focuses on stylised
settings. Conversely, this study aimed to maintain a strong link with reality to ensure practical
relevance of its results. To this end, data from a real-life warehouse were analysed in a case study.

Data-driven approaches have been explored and developed that enhance insight in the issue
of congestion. A tool is presented that visualises logged warehouse data in a dynamic fashion.
Methods for measurement are proposed and the congestion coe�cient|a versatile measure for the
extent of congestion|is introduced. Four causes of congestion were identi�ed in diagnosis of the
case warehouse. A regression analysis of the congestion coe�cient led to simple prediction models.
Finally, suggestions are made for reduction of congestion in the case warehouse.



MANAGEMENT SUMMARY

Problem statement

The problem investigated in this master thesis project is worker congestion in picker-to-parts ware-
houses. In a picker-to-parts warehouse the workers traverse through the aisles to move to the
items that need to be retrieved; despite the movement towards mechanisation in the industry, such
’classical’ warehouses still form the vast majority in practice. Worker congestion takes place when
workers on the warehouse 
oor hinder one another when they need to be at the same place at the
same time. Delays are inevitable in such situations because workers block each other and are forced
to wait; obviously, this impairs performance.

The existing research on congestion is highly theoretical, primarily based on mathematical
analyses and simulation of oversimpli�ed settings; as a result, these academic results have limited
practical relevance. In this research I aimed to maintain a strong link to practice by studying a
real-life warehouse and taking a data-driven approach. In this light, the main research objective
for this master thesis project was set as:

Exploration of data-driven approaches to analyse and address congestion in real-
life warehouses.

This objective was translated into �ve sub-objectives regarding 1. visualisation, 2. measurement,
3. diagnosis, 4. prediction, and 5. prevention of congestion.

Visualisation

Warehouse Management Systems (WMSs) often, to a greater or lesser extent, log data regarding
the operation it supports. The activity trail is a log of the activities performed by workers on the
warehouse 
oor; it is a very rich source of information that hides useful insights. As plain text
however, these data are not comprehensible at a glance. Visualisation is a powerful method to make
data such as the activity trail easily accessible. I used AnyLogic to create a tool that visualises
the activity trail in a dynamic fashion: the activities and movements of workers are animated on
a schematic map of the warehouse layout. Next to the basic animation of worker movements,
functionality is implemented in the tool to maximise its utility. Amongst other things, the tool can

� highlight congestion;
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� trail worker paths;

� mark visited pick locations;

� show heatmaps for congestion and pick activity;

� show time graphs for congestion and pick activity.

Measurement

Meten is weten (’measuring is knowing’); a conventional wisdom known by every Dutchman. The
start of a solution often starts with good comprehension of the problem, and measurement can
provide the necessary insight. A data mining algorithm (the ’w-algorithm’) was developed to
calculate ’#workers nearby’ w of individual activities (logged records) in the activity trail. This
measure re
ects the number of other workers ’nearby’ (spatially and temporally within a certain
range) at execution of an activity and serves well as ’base unit’ for congestion measurement.

The congestion coe�cient CC proposed in this report is an aggregate measure of w and is
calculated as the average value of w of a set of activities. The congestion coe�cient is a plain but
versatile means to quantify spatial and temporal variability in congestion, which is done by simply
choosing di�erent sets of activities to average over (e.g. all activities executed in a certain aisle, on
a certain day, in a certain warehouse area in a certain hour, etc).

Diagnosis

Through analysis of the congestion coe�cient, four causes of congestion were identi�ed for the
warehouse under study:

I Number of pickers;

II Spatial clustering of pick locations;

III Temporal clustering of pick tour starts;

IV Against-direction travelling.

Prediction

Four simple regression models were developed that can be used to predict the congestion coe�cient
for the warehouse under study. The most extensive of the four models can explain 79% of the
variance in the congestion coe�cient. It was also found that cause I|the number of pickers
working concurrently in the warehouse|is the major determinant of congestion, as it can already
explain 59% of the variance in the congestion coe�cient, whilst the remaining 20% is accounted
for by causes II and III.
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Prevention

I propose three ’incremental changes’ that reduce congestion and are rather easy to implement in
the warehouse under study. The �rst one involves randomisation of the storage assignment, which
decreases the spatial clustering of pick locations (congestion cause II). Second, an aisle-skipping
strategy is described that ensures that not all pickers start at the same place in the warehouse
(congestion cause III). The third of the incremental changes regards the Pick Sequence Numbers
(PSNs) of warehouse locations, which are currently assigned in a way that results in much against-
direction travelling (congestion cause IV). By reassignment of the PSNs, smarter routing through
the warehouse|with less against-direction travelling|can be realised.

I also describe how congestion could be reduced through bucket brigades. Adaptation of bucket
brigades would involve a more ’radical change’, though it does not require any capital investment
and can easily be tested in a pilot project. Picking by bucket brigade is essentially a pick-and-pass
zoning strategy with intelligent rules. The bucket brigade protocol is such that the order of pickers
in the line and the zone boundaries automatically �nd their own optimum. As such, the picking
system constantly balances itself, leading to a very e�cient and congestion-free operation.

Recommendations

The following recommendations are made for Vanboxtel (company wherein this master thesis
project place) and Colfridis (company responsible for the warehouse under study).

For Vanboxtel

� Investigate how congestion measurement can be integrated in WMS

� Investigate how congestion visualisation can be integrated in WMS

� Perform research on congestion prevention as dynamic trade-o�

For Colfridis

� Run a pilot project with bucket brigades

� Investigate if storage assignment can be randomised

� Investigate if aisle-skipping can be employed

� Reassign the PSNs
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CHAPTER

ONE

PROBLEM AND OBJECTIVES

This introductory chapter starts with a description of the problem central to this research (Section
1.1). Subsequently I mention the di�erent parties that were involved in this project (Section 1.2).
The research objectives are set out thereafter (Section 1.3). The chapter concludes with an outline
of this report as guidance for the reader (Section 1.4).

1.1 Problem statement

Warehouses play a key role in many supply chains. Traditionally, warehousing was mostly done
in-house and looked upon as a ’cost center’. More and more, the warehousing function is being
outsourced to Logistics Service Providers (LSPs); the global market for warehousing and storage is
projected to grow at an annual rate of 8.52% over the period 2014-2019 (Sandler Research, 2015).
Next to this trend, warehouses are no longer merely seen as being tedious but necessary, yet as a
core function that can add value: the warehouse as a ’pro�t center’.

Companies strive after e�ective and e�cient warehouse operations to cut costs and meet lead
times. Increased automation and the use of IT have driven the logistics industry forward; a swing
whereof the warehousing sector has also bene�ted. The majority of warehouses nowadays is sup-
ported by a Warehouse Management System (WMS). Nonetheless, still many corporations face
challenges in exploiting the full potential of their warehouses. Ofttimes, managers try to push
warehouse throughput by increasing the number of workers. Overutilisation of the system can
however seriously in
ict damage on the productivity of individual workers and can arguably even
be detrimental for the system as a whole.

One of the crucial concerns is congestion, which can come in multiple forms. Warehouses can
for example have congested conveyors when these lack capacity. Congestion can also occur when
work piles up in a sequential system in the case where a faster worker is placed before a slower
worker in the line. The problem investigated in this master thesis project however regards worker
congestion in picker-to-parts warehouses. Despite the movement towards mechanisation in the
industry, picker-to-parts warehouses still form the vast majority; according to De Koster et al.
(2007) over 80% of all warehouses in Western-Europe employ such a system where human workers
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CHAPTER 1. PROBLEM AND OBJECTIVES

move trough an aisle system to pick items. Worker congestion takes place when workers on the
warehouse 
oor hinder one another when they need to be at the same place at the same time.
Delays are often inevitable in these cases because workers block each other, and are forced to wait
until the congestion resolves; obviously, this impairs performance. It is therefore undesirable to
have workers 
ocking together, even more so since warehouse aisles are typically con�ned to limit
space usage and travel distances.

Congestion issues typically arise in high-activity warehouse areas that attract many workers,
thereby forming a bottleneck in the process. Sometimes this may be unavoidable, though frequently
it is a result of design simplicity or plain design errors. Practitioners and academics are increasingly
aware of the impact of congestion, and focus more and more on addressing it. As will be discussed
in the literature review (Chapter 3), some researchers have picked up congestion as a theme and
provide suggestions as to how to reduce it. So far it is just a start though, and far from a mature
�eld of research.

1.1.1 Defining congestion

Before proceeding any further, I want to provide good understanding as to what is meant by the
term congestion in this report. To this end, two de�nitions of worker congestion in a picker-to-
parts warehouse are given. The �rst one is rather conceptual, whereas the second one has a more
operational nature.

Congestion involves ’accumulation’ or ’clustering’1 of workers, i.e. multiple workers need to be
’at the same place at the same time’. In addition, for it to be called congestion, I require that
this accumulation is also associated with reduced performance of the involved workers. The �rst
de�nition summarises the above conceptually:

D1 "Congestion is the accumulation of warehouse personnel (and their vehicles) in a certain
area of the warehouse, hindering their operations."

Worker congestion is characterised by a spatial and a temporal dimension: it occurs at some
place in the warehouse (spatial dimension) at some point in time (temporal dimension). Accumula-
tion can be seen as concurrent spatial and temporal proximity of workers, or, using the terminology
of Kisilevich et al. (2009), accumulation can be interpreted as a spatio-temporal cluster of workers.
The second de�nition exploits this notion and formulates congestion in terms of two requirements
operationally:

D2 "Congestion takes place when there is (i) a spatio-temporal cluster of workers, and (ii) re-
duced performance of the involved workers."

1.2 Involved parties

Several parties were involved in this master thesis project; I will shortly mention them here for a
proper understanding of the reader. The project was executed by commission of Vanboxtel, a �rm
that develops logistic solutions for other companies. The �rm is mainly active in the warehousing
sector, and one of their most important o�erings is a WMS. Being aware of the impact congestion
can have on the warehouse operation, Vanboxtel wants to learn more about the dynamics behind

1The terms accumulation and clustering will be used interchangeably throughout this report.
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CHAPTER 1. PROBLEM AND OBJECTIVES

congestion and explore methods to address the issue. For Vanboxtel it was desirable that this
project maintained a strong link to practice and would be primarily data-driven. Therefore, this
research was based on data logged by a Vanboxtel WMS in a real-life warehouse.

The project data was made available by Colfridis, a Belgian LSP, and customer of Vanboxtel.
Colfridis runs multiple warehouses in which they take over the warehouse operations of their cus-
tomers. These warehouses employ a Vanboxtel WMS and generate many data. The speci�c data
used in this project regards the warehouse that is responsible for processing of the e-commerce of
a supermarket chain (one of Colfridis’s customers of which the name is omitted to respect con�-
dentiality wishes).

1.3 Research objectives

The main research objective for this master thesis project was set as:

Exploration of data-driven approaches to analyse and address congestion in real-
life warehouses.

The following more concrete sub-objectives were de�ned to guide the project:

1. Visualisation: development of a tool that can dynamically visualise logged warehouse data
and show congestion;

2. Measurement: development of a measurement method to quantify congestion;

3. Diagnosis: identi�cation of the main causes of congestion;

4. Prediction: development of simple prediction models;

5. Prevention: �nding ways to reduce congestion.

1.4 Thesis outline

This thesis proceeds with a description of the chosen methodology in Chapter 2. This chapter also
introduces and describes the warehouse that has been studied for this research. After that, an
overview of the current literature on congestion is given in Chapter 3. This literature review ends
with the identi�cation of a gap in the literature, which this research aimed to address. The �ve
chapters thereafter respectively consider the �ve sub-objectives formulated in the previous section:
Chapter 4 regards the visualisation, Chapter 5 the measurement, Chapter 6 the diagnosis, Chapter 7
the prediction, and Chapters 8 and 9 the prevention sub-objective. This report concludes by listing
the main �ndings, providing recommendations, and pointing out directions for future academic
research in Chapter 10.
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CHAPTER

TWO

METHODOLOGY

This chapter regards the approach to this master thesis project. I �rst explain why the case study
was chosen as methodology (Section 2.1 ). Then the research case is introduced and its relevant
characteristics are described (Section 2.2). The warehouse layout and pick operation are elaborated
on in more detail in sections 2.2.1 and 2.2.2 respectively.

2.1 Case study

The methodology I chose for this research project was a case study. This choice was appropriate
since congestion had not yet received a lot of attention in the literature. The little work that has
been done is highly theoretical in nature, almost always lacking a clear link to practice. Conversely,
by focusing on a real-life warehouse, this research would naturally be practice-driven. Furthermore,
due to the limited foundation in warehouse congestion research, it was too early for general models;
a case study would serve well to further explore the topic. In addition, congestion is a very complex
phenomenon a�ected by many di�erent factors. A case study could serve to gain insight in these
factors.

The case that was studied is a warehouse responsible for processing of the e-commerce of a
supermarket chain. A food e-commerce warehouse made for a suitable case, as congestion was
expected (or even known) to be an issue of signi�cance in such settings. Also, the food e-commerce
market is expected to grow rapidly over the course of the coming �ve years (Askew, 2016). Char-
acteristics of the food e-commerce market are: extensive assortments, many small orders, tight
delivery times, and the use of third-party shipping companies. These characteristics have their
in
uence on the warehouse operation and the presence of congestion.

A critical question that one might ask is to what extent the results of this case study can
be generalised to other settings. The uniqueness of the warehouse under study could restrict
the applicability of the results to other warehouses. Hence, one may for example wonder wether
the results also apply to non-food e-commerce warehouses, or even to other food e-commerce
warehouses. I acknowledge that each warehouse is unique and requires its own speci�c analysis.
Nonetheless, despite its uniqueness, the case that was studied has similarities with many other
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warehouses. Patterns that are visible in this case therefore very likely also play a role in other
warehouses.

2.2 The case

The research case was a warehouse operated by Colfridis. Colfridis o�ers warehousing for parties
that wish to outsource this operation. The warehouse explored in this project is used to process
the e-commerce of a supermarket chain. More speci�c: it is used for the non-perishable part of
the e-commerce; perishable (fresh) products are processed in a di�erent warehouse. The warehouse
predominantly stores daily wares such as soda, beer, wine, tobacco, cookies, crisp, and co�ee.
Non-food products such as razor blades and condoms are also present, but form a minority.

The warehouse has started the operation in the end of the year 2013; ever since, its activities have
scaled up signi�cantly together with the growth of the e-commerce market. As a result, the amount
of rack space and warehouse 
oor in use has gradually increased over time as additional aisles were
successively appended. Naturally, this also had an e�ect on the workforce; nowadays, more workers
need to operate concurrently to be able to process all orders. From a logistic viewpoint, complexity
has increased. One of the manifestations hereof is the issue of worker congestion, which made
the Colfridis warehouse a suitable case for this research. A picture taken within the warehouse is
attached as Figure 2.1.

Figure 2.1: Picture from within the Colfridis warehouse
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2.2.1 Warehouse layout

Figure 2.2 shows a schematic top view of the Colfridis warehouse. The warehouse can be divided
in two parts, in what I will refer to as the ’long-rack section’ and the ’short-rack section’. The
long-rack section consists of a series of seven parallel aisles of about 80 meters long and 3 meters
wide; the short-rack section consists of many short aisles of about 7 meters long and 1.2 meters
wide that are positioned perpendicular to the aisles in the long-rack section. Each long rack is split
up in 22 equal-sized bays, i.e. sections bounded by an upright on either side. Some of the bays
constitute a passage through the rack; these are indicated by red lines in the �gure. The big square
in the top-left corner of the �gure indicates the place where pickers prepare their pick cart before
a pick tour, and drop o� the assembled orders after completion of a pick tour.

Figure 2.2: Schematic representation of the warehouse

2.2.2 Pick operation

Picking is the leading activity in the Colfridis warehouse: it takes up almost half of all work
time (more on this in Section 4.1.2). The pick operation involves pickers traversing through the
warehouse aisles to collect items requested in customer orders. Using the pick cart shown in
Figure 2.3, they can collect up to 24 dispatch units (DPUs) in one pick tour. In this case, a DPU
corresponds to a crate. Each DPU is comprised of one or more items to be picked. A customer order
is comprised of one or more DPUs, depending on which and how many items are requested. All
items are stored within reach of the pickers, and can be accessed without the help of a reachtruck
or other device.
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Figure 2.3: Pick cart used in the warehouse

Routing and storage strategy

Basic routing strategies (see e.g. Petersen, 1997; Roodbergen & De Koster, 2001) are used in the
Colfridis warehouse to determine the sequence in which pick jobs are assigned to a picker. A
traversal routing strategy with z-picking is used in the long-rack section. In the short-rack section,
a return routing strategy is used because the short aisles border to a wall at the back-end. Another
noteworthy di�erence between both sections is that, while workers drive on their pick cart through
the long-rack section, they enter aisles by foot in the short-rack section and leave the pick cart in
the adjoining long aisle; the reason is that the short aisles are very narrow, and driving in them on
a pick cart would be impractical.

The assignment of storage locations to items constitutes a fairly unsophisticated process. In
principal, the storage policy can be classi�ed as a family grouping strategy with weight considera-
tion. Under family grouping, similar products are located within the same area of the warehouse
(De Koster et al., 2007). In the Colfridis warehouse items are clustered in groups such as co�ee
products, beers, and crisps. The weight of the items within a family group determines where in the
warehouse the group is located. ’Heavy groups’ (e.g. wines, beers, sodas) are located in the long
aisles nearest to the short-rack section, whilst lighter groups (e.g. co�ees, teas, cakes) are located
in the long aisles further away from the short-rack section.

To minimise product damage, pick tours �rst pass by the racks storing the heavy items, whilst
the racks visited later in the tour contain lighter items. This way, the heavy items enter the crates
�rst, and lighter items are stacked on top. Rack 4 is used for the storage of so-called uglies. Uglies
are items that are impractical in their handling, for example because they are too large to �t in a
crate. These items are collected in dedicated pick tours, in which exclusively ugly items are picked.
The aisle adjoining rack 4 is therefore skipped in ’regular pick tours’. Note that although racks 4
and 5 are adjacent, rack 5 stores regular items and not uglies. The reason is that pick locations
within rack 5 cannot be accessed from the aisle adjoining rack 4; these locations are accessed from
the aisle adjoining racks 5 and 6. Figure 2.4 should provide clarity on the routing and directions
in the warehouse.
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Figure 2.4: Routing in the warehouse

Picking around the cart

Observation of the pick operation at Colfridis made clear that workers do not move their pick cart
after every pick. Instead they make several picks ’around the cart’, then step on the cart to drive
further down the aisle, and subsequently make another set of picks around the new position of the
cart. Figure 2.5 illustrates this strategy. Pickers work in this way because subsequent pick locations
are often very nearby each other, and it is then more e�cient to simply walk to the next location
instead of stepping up the cart, move it, and get o� again.

Figure 2.5: Worker picking around his cart

Pick sequence number

For a good comprehension, it is important to understand the pick sequencing from an operational
viewpoint. In the Vanboxtel WMS used by Colfridis, each pick location gets assigned a ’pick
sequence number’ (PSN), that determines the order in which locations are visited in a pick tour.
After the assignment of 24 DPUs to a pick cart, the pick locations to be visited are known, and a
pick sequence can be determined. To do that, the PSNs of all locations are ordered in an ascending
order; the location with the lowest PSN is visited �rst, then the location with the one to lowest
PSN, and so forth all the way to the location with the highest PSN. The routing indicated in Figure
2.4 is implemented by assigning low PSNs to the locations in the short racks and the �rst long racks
that store the heavy items, and assigning gradually increasing PSNs to the locations in the racks
further towards the other end of the warehouse.
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CHAPTER

THREE

LITERATURE REVIEW

In this chapter I discuss the scienti�c work currently available on warehouse congestion. The
literature review was performed for two main reasons, namely (i) to get acquainted with the
research topic, and (ii) to identify shortcomings and literature gaps in the current body of knowledge
on warehouse congestion.

First, the issue of congestion is placed into context (Section 3.1) and di�erent types of conges-
tion are mentioned (Section 3.2). Next, research on the impact of congestion on performance is
reviewed (Section 3.3). Prevention of congestion, the most studied topic within warehouse conges-
tion research, is addressed thereafter (Section 3.4). Finally, some concluding remarks are made and
a literature gap is formulated (Section 3.5).

3.1 Introduction

The literature on warehouse operations traditionally implicity assumed a single-worker environ-
ment. Real-life warehouses almost always involves multiple order pickers performing the picking
activity simultaneously. Congestion takes place when too many workers accumulate in the same
warehouse area at the same time. As a result, the involved workers may experience blocking-caused
delay. Depending on the reaction of the workers to congestion, the blocking-caused delay takes the
form of waiting time or additional travel time. A worker experiences waiting time when another
worker blocks the route, and he chooses to wait until the route is free again. It is also possible that
a worker chooses to take a detour to circumvent the congestion; in this case the worker experiences
additional travel time instead of waiting time. Research on the multi-worker environment with
consideration of congestion is scarce; only recently, some academics started looking into the topic.

The occurrence of blocking-caused delay implies that alternative performance measures for
warehouse e�ciency are needed instead of the ’classical measures’ travel distance and travel time,
as these do not re
ect the impact potential blocking-caused delay. More appropriate measures are
system throughput, i.e. the number of picks per time unit (see e.g. Gue et al., 2006; Pan & Shih,
2008), or order ful�lment time (see e.g. Pan et al., 2012; Pan & Wu, 2012). Both system throughput
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and order ful�lment time are a�ected by the occurrence of blocking-caused delay, whereas the travel
distance and travel time are not.

Ruben & Jacobs (1999) described an essential trade-o� of storage assignment in relation to
congestion. They argued that clustering of popular products into a certain warehouse area can be
used to minimise travel distances, but comes at the cost of congestion in the aisles. Activities are
concentrated in the popular zones as the popular products require a lot of material handling. The
risk of congestion is naturally higher in such tra�c-intensive zones. Another relevant trade-o� is
related to aisle width. Narrow aisles can be used to minimise the required warehouse 
oor space
and travel distances, but may obviously lead to increased congestion.

3.2 Types of congestion

Di�erent types of worker congestion can be distinguished (see e.g. Hong et al., 2012; Parikh &
Meller, 2009). First of all, there is a di�erence between unidirectional and bidirectional aisles:
unidirectional aisles have a dedicated travel direction whereas bidirectional aisles can be traversed
through in both directions. Furthermore, there is a di�erence between narrow aisles and wide
aisles. In a narrow aisle it is not possible for two workers to cross each other (when they move
in opposite directions, in a bidirectional aisle), or for the rear worker to overtake the front worker
(when they move in the same direction, in either a unidirectional or bidirectional aisle). In a wide
aisle it possible for workers to cross or overtake each other.

Two types of blocking may take place in a narrow aisle. Aisle-entrance blocking takes place
when ’worker A’ wants to enter a biderectional aisle, but �nds ’worker B’ present in the aisle already
traversing in the opposite direction. In this case, worker A has to wait at the end of the aisle until
worker B has left the aisle, or take a detour through a di�erent aisle. Aisle-entrance blocking can
be avoided through the use of unidirectional aisles, for example by means of a one-way traversal
routing system. In-the-aisle blocking can take place when two workers are traversing in the same
direction in the same aisle. The rear worker is blocked in the aisle when he has to wait for the front
worker to move on; again, he can choose to wait or take a detour. Pick-face blocking is a third type
of blocking that may occur in both narrow and wide aisles. It takes place when worker A wants to
pick from a certain location, but �nds worker B already present at that location. In this scenario,
worker A has to wait until worker B moves to his next pick location. Figure 3.1 shows a graphical
representation of the above-described types of blocking.

Figure 3.1: Aisle-entrance blocking (A), in-the-aisle blocking (B), and pick-face blocking (C)
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I note that in addition to the types of worker congestion summarised in Figure 3.1, there are
other forms of warehouse operation ine�ciency that can be classi�ed as congestion. Consider for
example the situation where a worker faces an empty pick location: the worker is ’blocked’ when
he has to wait until this empty location gets replenished. Or consider a sequential zone-picking
system, where work may pile up if a faster worker precedes a slower worker in the line (see e.g.
Bartholdi & Eisenstein, 1996). Such kinds of blockage are sometimes referred to as congestion. This
research focuses however on worker congestion where blocking is a result of workers obstructing the
aisle; other types of congestion like the two described here will not receive much attention in the
remainder of this report.

3.3 Extent of congestion

The phenomenon of congestion in warehouses is in general not easy to grasp. In order to be able to
measure the magnitude of the congestion problem in a certain warehouse, it is necessary to formulate
an operational de�nition of congestion. An operational de�nition of congestion is highly dependent
on characteristics of the warehouse. For example, in a warehouse with very narrow and con�ned
aisles, two warehouse workers may already experience congestion when they have to be in the same
aisle, whereas in a warehouse with wide aisles there would be no problem. Nonetheless, several
studies have tried to quantify the extent of congestion and the impact on warehouse performance.
All four studies described here assumed randomised storage.

Gue et al. (2006) built analytical and simulation models to investigate the e�ects of pick density
in narrow-aisle warehouses. Their major �nding was that, as an aisle gets busier (that is, the number
of pick locations in it increases), picker congestion becomes less of a concern. This counterintuitive
notion is based on the fact that the ratio of the pick locations to the number of pickers increases, and
thus, workers are more likely to ’spread out’. Parikh & Meller (2010) developed analytical models
to estimate worker blocking in a narrow-aisle warehouse under non-deterministic pick times. Parikh
& Meller (2009) estimated the e�ects of pick-face blocking in warehouses with wide aisles. A recent
study by Heath et al. (2013) analysed the impact of congestion in wide-aisle low-level picker-to-
parts warehouses. Their approach was based on agent-based modelling (ABM) simulation, and
they identi�ed three components of congestion. The main component they called blocking, which
represents the time the worker is stopped due to tra�c. Another major component is what they
called extra walking, which denotes the extra time individuals spend walking to pick an item because
the closest pick location is blocked. The third|relatively inconsiderable|component is travel
related, and refers to the additional travel time associated with attempting to avoid tra�c and
collisions. Figure 3.2 shows the relative importance of the three components.

Figure 3.2: Distribution of congestion time across its components
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3.4 Prevention of congestion

Initially, research on warehouse operations was blind for congestion. Because the impact of con-
gestion is not negligible, some researchers started focussing on the design of operating policies that
explicitly take congestion e�ects into account. Hong et al. (2012) presented an integrated batch-
ing and sequencing procedure for narrow-aisle warehouses that aims to minimise pick time, which
included congestion delays. Chen et al. (2013) developed a routing method that aims to prevent
picker congestion. Their model made use of Ant Colony Optimization (ACO), and was restricted
to only two order pickers. Chen et al. (2014) later extended the work of Chen et al. (2013) by
allowing for more than two pickers. Furthermore, their routing method is online, so that routes
are dynamically adjusted during the order-picking task to prevent congestion from happening. Pan
& Shih (2008), Pan & Wu (2012), and Pan et al. (2012) considered the context of a picker-to-
light system with narrow aisles. In a picker-to-light system the order pickers are guided through
the warehouse by an infrastructure of lights. Their models captured the e�ect of aisle-entrance
blocking. Pan & Shih (2008) assumed a traversal routing strategy, and compared random storage
assignment with Jarvis & McDowell’s (1991) storage policy (’JM storage’ for referral). They found
that random storage yields lower levels of congestion, because warehouse space is utilised more
uniformly than under the popularity-based JM storage policy. Pan & Wu (2012) derived analytical
approximations for the throughput time of a pick tour, and validated the analytical results by
means of simulation. They investigated combinations of three di�erent routing policies (traversal,
return, and composite) and four di�erent storage assignment policies (random, within-aisle, across-
aisle, and diagonal). They found that across-aisle storage assignment is superior. They argued that
the equal distribution of popular items over di�erent aisles reduces the extent of congestion in the
aisles. In addition, they showed the existence of a maximum capacity of order pickers: beyond a
certain level for the amount of order pickers in a warehouse, the adding of additional pickers does
no longer signi�cantly decrease throughput time. The underlying mechanism behind this notion
is the fact that congestion increases with the number of pickers, and thus, the extra pick capacity
is being o�set by increased blocking. Pan et al. (2012) developed a storage assignment heuristic
to accompany a traversal routing strategy. Their heuristic initially applies JM storage (which as-
sumes a single-picker environment and thereby abstracts from congestion e�ects). Subsequently,
the heuristic adjust the assigned storage for a certain part of the aisles by distributing the popular
items more evenly. The goal of this second step is to reduce congestion. The authors used ana-
lytical approximation and simulation to compare their new heuristic with random storage and JM
storage. They found that random storage minimises congestion, but leads to large travel distances.
On the other hand, JM storage minimises travel distances, but leads to increased congestion as the
number of pickers increases. The new heuristic outperforms both random storage and JM storage
by exploiting features of both approaches. It balances the trade-o� between travel distance and
congestion. The extent to which the new heuristic resembles, to a greater degree, random storage
or JM storage depends on the number of pickers.

A strategy for the prevention of congestion that is used in practice, but has not yet been
addressed by academics, is the allocation of (popular) items to multiple locations. Such a strategy
can ensure that activity is spread out over the warehouse 
oor, because items can be stored and
retrieved at di�erent places; as a result, not all workers have to visit the same location for the same
item and congestion bottlenecks are prevented.
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3.5 Literature gap

As mentioned, research on warehouse congestion is still in its infancy. The little academic work that
has been done, is purely theoretic. Most of the authors created a very stylised setting by making
simplifying assumptions to facilitate their theoretical analyses. As a result, practice is left aside;
none of the studies discussed in this chapter considered real-life data. The absence of any empirical
veri�cation of the theoretical �ndings in these studies constitutes a clear gap in the literature.

By taking a data-driven approach, this research aimed to address the gap in the literature.
Logged data from an actual warehouse formed the foundation of the analysis in Part II and the
design in Part III, and therefore, the link to practice is very strong in this project.
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Part II:

Analysis
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CHAPTER

FOUR

VISUALISATION

This chapter is about visualisation of warehouse data. I �rst introduce the data that formed the
foundation of this master thesis project (Section 4.1). The type and format of the data is described
to provide the reader with a good sense of the context. In addition, it is explained why this research
focused on the pick operation. Second, the visualisation tool that was developed for this project is
presented and elucidated (Section 4.2). The main use of the tool has been the gathering of insight
in the Colfridis warehouse operation, but it is also used throughout this report to illustrate �ndings.

4.1 Data

The analysis in this research was based on the Colfridis warehouse data of February 2016, as logged
by the WMS. February 2016 was an average month for the warehouse in terms of the amount of
items picked and shipped.

4.1.1 Activity trail

In consideration of worker congestion, the most important information is stored in the activity trail.
The activity trail is a log of the operational activities executed on the warehouse 
oor, and can be
seen as a virtual trace of the workers. The terminals used by workers frequently send information
to the WMS. For example, when a worker has completed a pick, he makes a ’pick con�rmation’; at
this point, a record is created in the activity trail wherein the details regarding the activity (in this
case the pick con�rmation) are stored. Some of the important information contained in a record
are:

� the timestamp: a date and time;

� the location: an x- and y-coordinate;

� the worker name, and;

� the jobcode, indicating the type of activity.
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The activity trail belongs to the class of spatio-temporal data, i.e. "data to which labels have
been added showing when and where they were collected" (Cressie & Wikle, 2015). These kind of
data are very useful|if not essential|in analysis of congestion, because congestion is characterised
by a spatial and a temporal dimension, as described in Section 1.1.1.

Table 4.1 illustrates the format of the activity trail. As indication for the extent of activity
logging: the activity trail of the Colfridis warehouse of February 2016 contains about 850.000
records logged by 146 di�erent workers.

Table 4.1: Format of the activity trail

Name Date Time X Y Jobcode � � �
...

...
...

...
...

...
HENRY 16-2-2016 4:04:52 14.2 50.2 SORT-DPUSCAN � � �
HENRY 16-2-2016 4:04:52 14.2 50.2 SORT-CONF � � �
HENRY 16-2-2016 4:05:05 16.1 54.9 SORT-LOCSCAN � � �
HENRY 16-2-2016 4:05:15 16.1 54.9 SORT-DPUSCAN � � �
HENRY 16-2-2016 4:05:15 16.1 54.9 SORT-CONF � � �

...
...

...
...

...
...

JOHN 18-2-2016 16:09:15 88.4 25.8 PICK-CONF � � �
JOHN 18-2-2016 16:10:40 79.8 25.8 PICK-LOCSCAN � � �
JOHN 18-2-2016 16:10:52 79.8 25.8 PICK-CONF � � �
JOHN 18-2-2016 16:11:09 74.7 25.8 PICK-LOCSCAN � � �
JOHN 18-2-2016 16:11:21 74.7 25.8 PICK-CONF � � �

...
...

...
...

...
...

Locations in the activity trail

Each activity in the activity trail is logged at a certain location. The x- and y-coordinate of the
activity correspond with the x- and y-coordinate of this location. While workers move along an
aisle, and locations are positioned in a rack, there is a (minor) discrepancy between the exact
position of the worker at execution of an activity, and the position logged in the activity trail. The
discrepancy cannot be large because the log of an activity to the trail is a result of a scan action
of the location by the worker, which ensures that the worker is nearby the logged location.

Next to the discrepancy between location and worker, there is also a di�erence between the
position of a worker and his pick cart. As explained in Section 2.2.2, pickers do not move their cart
after every pick. Instead they only sometimes drive their cart and then make several picks around
the cart. As a result, it is di�cult|if not impossible|to deduce the position of the cart from the
information in the activity trail.

4.1.2 Focus on the pick operation

The total amount of time spent on di�erent activities can be extracted from the activity trail.
The pie chart in Figure 4.1 shows the distribution of work time in February 2016. ’Picking’|the
extraction of items from their storage locations|was the most time-consuming activity accounting
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for 43% of total work time (29% for ’travelling’ between pick locations, and 14% ’at location’).
’Storage’|the insertion of received items in storage locations|also took up a signi�cant amount
of time with 31% of the total. The ’pick cart preparation’ activity (about 8% of the total time)
precedes picking, and involves the placement of crates on the cart. ’Pick cart distribution’ (about
13% of the total time) follows the picking activity, and it involves the emptying of the pick cart
and putting the crates on their respective places. The ’quality control’ and ’manual displacements’
activities were infrequent as they required but 2% of the total work time each.

Both the pick and the storage operation require that workers move through the aisles of the
warehouse, and are therefore potentially subject to worker congestion e�ects. For this project, I
chose to focus the further analysis on the pick operation because it takes up most of the work time.
Also, it could be expected that congestion issues are greater for picking than they are for storage,
as pickers usually visit many di�erent locations to extract single items, whereas storage workers
visit fewer locations and insert many items at once. In addition, picking is, generally speaking, by
far the most costly activity; Drury (1988) found that more than 60% of all operating costs in a
typical warehouse can be attributed to order picking. Coyle et al. (1996) reported similar numbers:
they stated that 50-75% of the total operating costs can be attributed to order-picking processes.

Figure 4.1: Distribution of work time

Pick tours

Pickers normally make multiple picks tours within a shift. Figure 4.2 illustrates the typical form of
a pick tour. The �gure is a screenshot of the visualisation tool that will be presented in the next
section, and it shows a trail of the path traveled by a picker.

For a good sense of the pick operation, some statistics about pick tours are provided in Table
4.2. The average pick tour in February 2016 had a duration of a little more than one hour and
a distance of more than 800 metres. A pick tour visited, on average, about 140 di�erent pick
locations at which about 147 picks were made (multiple picks can be made at the same location
when a certain item needs to be collected for di�erent orders). An interesting observation is that
the majority of the pick tours almost span the entire warehouse, all aisles (except for the aisle
storing the uglies) are mostly travelled through completely.
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Figure 4.2: Visualisation of a (partial) pick tour

Table 4.2: Pick tour statistics

Duration 1:09:26
Distance (m) 827.3
#pick locations 139.3
#picks 147.4

4.2 Map animation

4.2.1 Dynamic visualisation of spatio-temporal data

The activity trail is a very rich source of information, and may hide useful insights. In its text format
however, as illustrated in Table 4.1, these data are not comprehensible at a glance. Visualisation
is a powerful method to make spatio-temporal data such as the activity trail easily accessible, and
there are many ways of doing so (see e.g. Andrienko et al., 2003). Map animation is a common and
natural approach that captures the spatial and temporal dimension of the data to its full extent,
thereby allowing for identi�cation of spatial, temporal, and spatio-temporal variability. The method
involves the animation of object movements on a map resembling the spatial layout. It primarily
serves exploratory purposes, e.g. the inference of knowledge on movement and clustering patterns.
Querying is a more directed approach where data is �ltered and/or aggregated based on conditions
on the location and/or time. This method is oftentimes used in a con�rmatory manner to answer
a concrete question or to assess conjectures.

The next section introduces a visualisation tool based on map animation, which was used to
explore the dynamics of congestion. Querying techniques were used later in the process.
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4.2.2 Tool

Figure 4.3 shows a screenshot of the visualisation tool I developed using AnyLogic1. The tool is fed
with two types of input data: static data on the spatial layout (information on warehouses, racks,
bays, nodes, and roads) and dynamic data on the movements (stored in the activity trail). The
tool mimicks historical worker movements in an animation. Workers are represented by a dot, the
colour of which indicates the activity type being performed. Important to note is that the tool does
not visualise the pick cart that workers use. The reason for this is that, as explained in Section
4.1.1, the activity trail does not hold information on the positioning of carts.

Functionality

Next to the straightforward animation of worker movements, additional functionality is imple-
mented in the tool to maximise its utility. Amongst other things, the tool can

� highlight congestion;

� trail worker paths;

� mark visited pick locations;

� show heatmaps for congestion and pick activity;

� show time graphs for congestion and pick activity.

Applications of these functions can be found throughout this report.

Assumptions for movement animation

The position of workers is logged at particular points in time, namely when an activity is performed.
What happens in the time between two successive activities is a ’black box’. In the absence of
continuous data, assumptions need to be made regarding movement path and movement speed. I
made the following two assumptions:

A1 Workers move along the shortest path.

A2 Workers move with constant speed.

The following can be said with respect to the validity of these assumptions. A1 expresses
knowledge and rationality of the workers, i.e. workers know what the shortest route between two
locations is and also choose to go by this road. Given that the warehouse aisle system is pretty
structured, pick tours generally follow the same pattern, and workers are expected to work as
e�cient as reasonably possible, assumption A1 is likely to be satis�ed. A2 is more probable to be
violated, for example when congestion takes place, because then workers are forced to slow down or
even stop. Also without congestion there may be variability in the speed with which workers move.
Workers are humans and not robots, as such they are subject to the physical e�ects of emotion,
tiredness, etc. in
uencing their speed of work; or they may simply halt for a chat with a colleague.

1AnyLogic is a commercial java-based simulation software package.
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Figure 4.3: Screenshot of the visualisation tool



CHAPTER

FIVE

MEASUREMENT

The previous chapter presented a visualisation tool by means of which congestion can be studied
in a qualitative manner. Complementary to this, it is desirable to have quantitative tools for a
more objective and formal analysis. This chapter describes the development of such quantitative
measures of congestion.

First, the ’base unit’ of congestion measurement #workers nearby w is introduced, together
with an algorithm for its computation (Section 5.1). I subsequently describe the concept of route
utilisation u, which was used to relate worker accumulation to worker performance (Section 5.2).
I show that accumulation of workers is associated with reduced travel speed of workers, caused by
waiting time due to blockage. The improvement potential, both in terms of travel speed increase
and waiting time reduction, of accumulation reduction is calculated and presented to provide an
idea of the impact of congestion. Finally, the congestion coe�cient CC is presented as simple but
versatile measure for the extent of congestion in a warehouse (Section 5.3).

5.1 Worker accumulation

The de�nition of congestion employed in this research requires worker accumulation and a per-
formance reduction as result of this accumulation. A �rst step in establishing when and where
congestion took place is therefore the identi�cation of historical instances of worker accumulation.
From the perspective of an individual worker, accumulation can be seen as the presence of (many)
other workers nearby; in other words, a worker faces accumulation when there are (many) other
workers in his proximity. This notion can be exploited to determine the extent of worker accumula-
tion (expressed as the number of workers nearby) around individual activities in the activity trail.
I used a data mining approach based on the logic described here to add the ’#workers nearby’ �eld
to each activity in the activity trail. The �eld is an indication for the degree to which the activity
took place in an ’accumulated context’.
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5.1.1 Introducing w

The #workers nearby|referred to as w from here on|of a record or historical activity (each record
in the activity trail corresponds with a single activity executed by some worker) is de�ned as

"The number of other workers nearby the worker that executed the
activity at time and place of execution of this activity."

The word ’other’ in this de�nition expresses that the worker who executes the activity for which
w is determined, is excluded in the count of the number of workers. This implies that the minimal
possible value of w for an arbitrary activity is zero, which indicates that|besides the worker who
executed the activity|no other workers were nearby. The word ’nearby’ in the de�nition of w
should be interpreted as ’temporally and spatially proximate to’; hence, other workers are only
counted when they were nearby in the sense of both time and space.

Travel direction

The de�nition of w does not explicitly consider the travel direction of workers. Taking the per-
spective of an individual worker travelling in a certain direction, one could argue that worker
accumulation ahead is more likely to cause blockage than worker accumulation behind. This is par-
ticularly the case in a system with unidirectional aisles where overtaking is not possible (or rare),
because in such a warehouse a worker will never (or rarely) experience hinder of workers in his rear,
but only of workers in front. Although this notion is not explicitly captured in the de�nition of w,
incorporation of the e�ects of travel direction can be managed in the operationalisation of the term
nearby in the de�nition, by means of an asymmetrical geographical range in the determination of
spatial proximity.

5.1.2 w-algorithm

Values of w for activities in the activity trail can be calculated with the ’w-algorithm’. Conceptually,
this algorithm determines the value for w of a record by counting the number of other records that
have a timestamp and a location within a certain (limited) range of the timestamp and the location
of the ’record-to-be marked’, i.e. the record in the activity trail for which w is determined. To make
sure that a worker is not counted twice, records logged with a name of a worker that is already
counted are not included. Moreover, the location of the record should be positioned in the same
aisle as the location of the record-to-be marked. The reason for this requirement is that although
workers being in di�erent aisles may be very nearby in terms of straight line distance, they are not
expected to hinder each other.

The w-algorithm is a data mining algorithm that calculates w based on spatio-temporal cluster-
ing (Kisilevich et al., 2009), as essentially workers are being grouped based on spatial and temporal
proximity. I de�ne the following parameters for a formal de�nition of the w-algorithm.

� T̂ : temporal threshold value that determines if a record is close enough in time to the record-
to-be-marked;

� X̂: spatial threshold value that determines if a record is close enough in distance in the
x-dimension to the record-to-be-marked;
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� Ŷ : spatial threshold value that determines if a record is close enough in distance in the
y-dimension to the record-to-be-marked;

There are three conditions that determine whether a certain record t is counted in determination
of w for the record-to-be-marked r:

(i) Temporal condition: Time(r) � T̂ � Time(t) � Time(r) + T̂ ;

(ii) Spatial condition: split in a condition on the aisle and conditions on the coordinates;

(a) Aisle condition: the locations of records t and r are positioned in the same aisle;

(b) Coordinates conditions:

(1) X(r) � X̂ � X(t) � X(r) + X̂;

(2) Y (r) � Ŷ � Y (t) � Y (r) + Ŷ ;

(iii) Worker condition: the worker who executed the activity logged in record t has not already
been counted;

If a record t satis�es the temporal, spatial, and worker conditions with respect to record r, then
the w for record r is increased by 1. Hence, to determine w for a certain record, all other records
in the activity trail need to be checked on the three conditions. Using pseudocode, Algorithm 1
describes a procedure that computes w for all records in the activity trail.

Algorithm 1 w-algorithm

for each record r in the activity trail do
initialise RecordCounter = 0
for each record t 6= r in the activity trail do

if record t satis�es conditions (i), (i), and (iii) with respect to record r then
RecordCounter  RecordCounter + 1

end if
end for
w(r)  RecordCounter

end for

Sensitivity

The parameters T̂ , X̂, and Ŷ de�ne the ’sensitivity’ of the algorithm: the smaller their values,
the less records will satisfy all conditions, and thus the lower the value for w, and vice versa. The
suitability of a set of parameter values is highly dependent on the context such as the aisle structure
of the warehouse and the size of the pick cart.

5.1.3 Results of the w-algorithm at Colfridis

The w-algorithm was applied to the activity trail of February 2016 to analyse the extent of worker
accumulation in the Colfridis warehouse. The algorithm’s parameter setting is discussed in Ap-
pendix A. In addition to the parameter setting used throughout this research, which does not
consider travel direction, the appendix also discusses an alternative parameter setting that does
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take travel direction into account. It is shown that the algorithm yields similar results under both
parameter settings. It does therefore not make much di�erence which of the two parameter set-
tings is used; I chose to use the parameter setting that does not take travel direction into account,
because it employs a symmetrical geographical range around the worker for the spatial proximity
criterion, which is arguably desirable because of the frequent mutual overtaking of workers in the
Colfridis warehouse.

The algorithm yielded values for w ranging between 0 and 7. In other words: all activities that
took place in February 2016 were performed with either 0, 1, 2, 3, 4, 5, 6, or 7 other workers nearby.
Figure 5.1 shows the distribution of pick activities (more speci�c: the ’pick con�rmation’ records)
over the eight possible values of w. It is clear that the graph is decreasing; higher values occur less
frequent. The vast majority of picks (64.3%) were executed with no (zero) workers nearby, which
corresponds to the case of no worker accumulation. Picks executed with more than 3 workers
nearby were so seldom that their joint occurrence was less than 1%.

Figure 5.1: Distribution of picks over w
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Temporal and spatial variability

Figure 5.2 shows the distribution of pick activities over w on di�erent days of the week. It can be
seen that there were signi�cant di�erences between di�erent days. The degree of worker accumu-
lation was lowest on Tuesdays and highest on Sundays. There was a roughly gradual growth of
worker accumulation from Tuesday to Sunday within the weeks.

Figure 5.2 also shows the distribution of pick activities over w in di�erent parts of the warehouse.
It can be seen that the degrees of worker accumulation in the long-rack section and the short-
rack section were quite similar. The �gure ’zooms in’ on the long-rack section by distinguishing
individual racks. Notable di�erences were present between racks; some racks (such as rack 12) had
signi�cantly more worker accumulation than others (such as rack 5). In rack 4, where the uglies
are stored, there was hardly any worker accumulation at all as close to 100% percent of the picks in
that rack were performed with zero workers nearby. This can be explained by the fact that usually
only one picker is appointed to collect the ugly items; thus it is also only this worker that is moving
in the aisle adjoining rack 4.

Figure 5.2: Distribution of w and corresponding CC per weekday, section, and rack
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5.2 Route utilisation

The previous section described how I established when and where worker accumulation took place in
the Colfridis warehouse. This section explains how worker accumulation can be related to measures
of worker performance, namely travel speed and waiting time; the concept of route utilisation is
introduced to facilitate this.

5.2.1 Travels in a pick tour

In a pick tour, workers traverse trough the aisles of the warehouse to visit a bunch of pick locations.
Once a certain pick is completed, a worker travels to his next pick location. I denote the process
of moving from one pick location to another as a ’travel’. A travel can be identi�ed and de�ned as
a particular sequence of two records in the activity trail: a ’pick con�rmation’ followed by a ’pick
location scan’, from here on denoted as pc and pl records respectively. Based on the timestamps
and locations of a pc and subsequent pl record, it is possible to calculate the travel time, travel
distance, and, as a result of these, the travel speed.

5.2.2 Introducing ur

I introduce the route utilisation ur to be able to relate the travel speed of a worker to the degree of
worker accumulation he experiences whilst traveling. The route utilisation is a measure of worker
accumulation on a travel route, and is assigned to individual travels as de�ned by subsequent pc
and pl records. It is de�ned as the average of the #workers nearby of the pc record w (pc) and
#workers nearby of the pl record w (pl), rounded down to the nearest integer value. The route
utilisation can be interpreted as an average of worker accumulation at the start of a travel and
worker accumulation at the end of a travel. Goal of the rounding is to limit the range of ur and
thereby increase the number of occurrences for individual values of ur; especially for higher|and
less frequent|values of the input variables w (pc) and w (pl) this may be necessary to ensure enough
instances for the calculation of reliable aggregate measures (which is done in Section 5.2.5, where
ur will be related to travel speed). Formally, the route utilisation ur for travel r is de�ned as

ur =

�
w (pc) + w (pl)

2

�
: (5.1)

5.2.3 ur at Colfridis

Application of formula 5.1 on the travels in the activity trail of February 2016 yielded route utilisa-
tions ranging between 0 and 7. Figure 5.3 shows the distribution of travels over the route utilisation.
The �gure is very similar to Figure 5.1, which shows the distribution of picks over w; this makes
sense because the formula for the route utilisation is heavily based on w.
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Figure 5.3: Distribution of travels over ur

5.2.4 Correlation w and ur

With a correlation coe�cient of 0.92, the variables w and ur are strongly related1. Figure 5.4 shows
a plot of the relation between w and ur. The size of the dots in this �gure indicate the magnitude
of occurrence of a value pair; the dots in the lower-left corner are larger because, as mentioned
before, lower values for w and ur are much more frequent than higher values. Some of the value
pairs with high values for w and ur are so infrequent, that their corresponding dots are not visible
in the �gure. The �gure shows a fairly structured cloud of dots, on which a straight line would
provide a good �t. Alongside the high correlation coe�cient, the �gure below provides additional
proof that w and ur are highly similar.

Figure 5.4: Plot illustrating correlation between w and ur

1To address potential concerns regarding the e�ect of rounding in the formula for the route utilisation on the
correlation between w and ur , I also calculated the correlation coe�cient when the route utilisation would not be
rounded. The correlation coe�cient between the unrounded route utilisation and w is 0.95, slightly higher than the
0.92 that was found without rounding. It can be concluded that the rounding hardly a�ects the correlation coe�cient.
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5.2.5 ur and travel speed

Figures 5.6a and 5.6b show the average travel speed of pickers for di�erent values of the route
utilisation in the long-rack section and the short-rack section respectively. These �gures distinguish
’intra-rack’, ’intra-aisle’, and ’inter-aisle’ routes. An intra-rack route starts and ends at the same
rack; an intra-aisle route starts at a certain rack and ends at the opposing rack in the same aisle;
an inter-aisle route starts and ends in di�erent aisles. Both �gures show downward lines, implying
that the higher the route utilisation, the lower the travel speed. This e�ect was stronger in the
long-rack section, both in absolute and relative sense. As can be seen in the graphs, there were
major di�erences in travel speed between the di�erent categories of routes. Generally, the intra-rack
routes had the lowest travel speeds and the inter-aisle routes had the highest speeds. A probable
explanation for this observation are the di�erences in travel distance (Figure 5.5): the lower the
travel distance, the less time there is to gather speed, and the lower the average travel speed, and
vice versa.

Based on the negative relation between travel speed and route utilisation, it can be concluded
that increased worker accumulation (as quanti�ed by route utilisation) generally leads to reduced
performance (as quanti�ed by travel speed). Most likely, the worker accumulation causes mutual
blocking of workers, which leads to forced waiting time and thereby to lower average travel speeds.
For the Colfridis warehouse it is fair to conclude that worker accumulation as a rule goes together
with congestion, because it typically results in lower travel speeds.

Figure 5.5: Average travel distances
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(a) Long-rack section (b) Short-rack section

Figure 5.6: Travel speed of workers against the ur

(a) Long-rack section (b) Short-rack section

Figure 5.7: Occurrence percentages for di�erent values of ur
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5.2.6 Improvement potential

Figures 5.7a and 5.7b show the distribution of travels in February 2016 over the route utilisation,
per route category. One can quickly get an idea of the extent of congestion by jointly considering
Figure 5.6 and Figure 5.7; the top �gure shows the performance reduction as a result of worker
accumulation, while the bottom �gure shows how often this performance reduction occurred. It is
possible to quantify the improvement potential of congestion reduction by comparing the realised
travel speed to the ’optimal’ travel speed. I use the term optimal speed to refer to the average
speed that is realised when a worker does not experience congestion; in other words, the optimal
travel speed is the speed realised on travels with a route utilisation of 0.

Table 5.1 shows the improvement potential for the average travel speed for the di�erent cat-
egories of routes. The intra-rack and intra-aisle routes in the long-rack section have the greatest
potential for improvement. By aggregating over all categories of routes it was found that the
average travel speed could increase by 7.4%, would all congestion be resolved. Table 5.2 shows
the corresponding reduction in waiting time underlying this increase in travel speed. The average
waiting time per travel, as currently experienced by workers in the Colfridis warehouse, is deduced
to be 1.1 seconds|7.4% of the average travel time of 14.91 seconds, that is. For february 2016,
this summed up to a little over 70 hours of total waiting time for all workers combined.

Table 5.1: Percentage increase in average travel speed would all congestion be resolved

Average speed
Now Optimal Improvement potential

Long-rack section
Intra-rack 0.74 0.81 +8.4%
Intra-aisle 1.92 2.07 +7.5%
Inter-aisle 4.24 4.30 +1.4%

Short-rack section
Intra-rack 2.16 2.18 +1.2%
Intra-aisle 2.70 2.74 +1.3%
Inter-aisle 2.71 2.75 +1.5%

Section change 2.61 2.97 +14.1%

Overall 1.49 1.61 +7.4%

Table 5.2: Reduction in waiting time would all congestion be resolved

Average travel time Average waiting time
Now Optimal Improvement potential

Overall 14.91 s 13.80 s -1.10 s per travel
-70.01 h per month
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5.3 Congestion coefficient

The previous section explained that an increased route utilisation is typically associated with in-
creased levels of congestion, because of the inherent travel speed reduction. It was also mentioned
in Section 5.2.4 that the route utilisation ur and the worker accumulation w are strongly correlated
with a correlation coe�cient of 0.92. As such, w generally goes together with travel speed reduction
as well. Therefore, w can be used as a surrogate measure for congestion. In this light and for the
sake of simplicity, the strict distinction between accumulation and congestion is left behind from
here on and in the remainder of the report. In terms of congestion de�nition D2 as formulated
in Section 1.1.1, this means that requirement (ii) is dropped. This allows for the expression of
congestion in terms of w.

5.3.1 Introducing CC

I de�ne the congestion coe�cient CC as w aggregated in the spatial and temporal dimension.
It can be calculated as the average of w of picks made in some warehouse area (e.g. the entire
warehouse, a single rack, a single bay) within some time interval (e.g. a month, a day, an hour).
Thus

CC =
1

jP j

X

p2 P

w (p) (5.2)

where P is the set containing all picks made in a certain warehouse area within a certain time
interval. The congestion coe�cient quanti�es the degree of worker accumulation in a single num-
ber. The overall CC for the Colfridis warehouse in February 2016 was 0.49. On average, picks
were executed with 0.49 other workers nearby. Besides the detailed distribution of w, Figure 5.2
also shows the corresponding congestion coe�cients for the di�erent weekdays and parts of the
warehouse.
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5.3.2 Temporal and spatial variability

The temporal and spatial variability of congestion can be insightfully summarised in a time graph
(Figure 5.8) and a heatmap (Figure 5.9) respectively.

Figure 5.8: Congestion time graph: overview of temporal variability

Figure 5.9: Congestion heatmap: overview of spatial variability
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SIX

DIAGNOSIS

With the visualisation tool and congestion measures the necessary qualitative and quantitative tools
for analysis are in place. A diagnosis led to the identi�cation of four main causes of congestion in
the Colfridis warehouse. Each of these causes is explained in detail in this chapter.

6.1 Cause I { Number of pickers

A fairly obvious factor related to worker accumulation is the amount of pickers that is working in
the warehouse concurrently. Naturally, one would expect that the higher the number of pickers in
the warehouse, the higher the degree of worker accumulation and corresponding congestion e�ects.
This commonsensical notion has been demonstrated theoretically by Pan & Wu (2012) using both
analytical results and simulation. Figure 6.1 proves that the e�ect was also present in the Colfridis
warehouse. A clear pattern is visible: the higher number of concurrently active pickers, the higher
the congestion coe�cient. Therefore, I identi�ed the number of pickers as a cause of congestion.

Figure 6.1: Distribution of w and corresponding CC for di�erent levels of the number of pickers
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6.1.1 Explanation of temporal variability

Chapter 5 already mentioned the existence of time-bound di�erences in the congestion coe�cient.
These di�erences can be explained by the number of concurrently active pickers. Figure 6.2 shows
the average number of pickers working concurrently on di�erent weekdays whilst Figure 6.3 shows
the congestion coe�cient on di�erent weekdays. In joint consideration of both �gures one can see
that Tuesdays and Wednesdays had the lowest levels of concurrently active pickers, and also the
lowest congestion coe�cients. Furthermore, the Sundays had the highest level of concurrently active
pickers, and also the highest congestion coe�cient. There was one slight deviation from the general
pattern: Saturdays had a higher congestion coe�cient than Fridays, whilst the average number of
pickers was lower. This ’irregularity’ can be explained by the fact that the spatial distribution of
picks, which is discussed in the next section, was extra skew on Saturdays.

Figure 6.2: Average number of concurrently active pickers per weekday

Figure 6.3: Distribution of w and corresponding CC per weekday

6.2 Cause II { Spatial clustering of pick locations

Figure 6.4 shows the distribution of picks in February 2016 over the warehouse; it illustrates that
the Colfridis warehouse had an uneven distribution of activities. One can see that a great majority
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of almost 85% of the picks took place in the long-rack section. There were substantial di�erences
between the aisles in the long-rack section. Notable is that the aisle adjoining racks 11 and 12
accounted for more than one quarter of all the picks1. The area framed by the red square accounted
for more than half of the picks. Obviously, it can be concluded that pick activity was spatially
clustered. This clustering can be seen at a glance in the pick activity heatmap shown in Figure 6.5.

Figure 6.4: Distribution of picks over the warehouse

Figure 6.5: Pick activity heatmap

6.2.1 Explanation of spatial variability

The place-bound di�erences in the congestion coe�cient mentioned in Chapter 5 can be explained
by the uneven spatial distribution of pick activity. Figure 6.6 shows how much the individual long
racks account to the total amount of picks made in the warehouse. Figure 6.7 shows the congestion
coe�cients of these racks. A clear pattern is visible in joint consideration of these �gures: the
higher the percentage of total picks in a rack, the higher the congestion coe�cient of that rack.
Racks 5 and 6 accounted for the lowest percentage of picks, and also had the lowest congestion
coe�cients. Racks 11 and 12 accounted for the highest percentage of picks, and also had the highest
degree of worker accumulation. Note that racks 1 and 4 are not considered here because they have
deviating characteristics|rack 1 adjoins the short-rack section and rack 4 stores the uglies|and
can therefore not properly be compared to the other racks.

1Returning to the statement made in the previous section about the extra skew distribution on Saturdays: on
Saturdays the aisle adjoining racks 11 and 12 even accounted for almost one-third of the picks. This explains why
the degree of worker accumulation is relatively high on Saturdays, even though the average number of concurrently
active pickers is not ’proportionally’ high.
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The �nding that there is more congestion in areas where there are many picks contradicts the
main �nding of Gue et al. (2006). They stated that when there are many picking points workers
are likely to ’spread out’, thereby avoiding congestion. They also state that when there are many
picking points, workers spend more time picking and less time travelling, and thus experience less
congestion because only whilst travelling a worker can be blocked. While this statement may be
true under the assumptions the authors make for their model, it does arguably not hold in the
Colfridis warehouse. The discrepancy of results can be explained by the fact that Gue et al. (2006)
considered a stylised theoretical setting, whereas this study is practice-driven and based on actual
warehouse data. The authors abstract from the presence of pick vehicles. Especially with a large
pick cart like in the Colfridis warehouse, the more picking points there are in a certain area, the
more pickers|and thus the more pick carts|will be present in that area, and the more likely it is
that pick-face blocking (recall Section 3.1) is of concern.

Figure 6.6: Percentage contribution to the total number of picks per rack in the long-rack section

Figure 6.7: Distribution of w and corresponding CC per rack in the long-rack section
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6.2.2 Subcause IIa { Clustering of popular items

A common storage strategy in warehouse operations is the clustering of popular items in certain
areas of the warehouse, so as to minimise travel distances. Such an approach is usually referred to
as ’class-based storage’ or ’ABC storage’ (see e.g. De Koster et al., 2007). This strategy implies
a skew distribution of activities over the warehouse 
oor, and is therefore notorious for paving
the way of congestion. The correlation between popular item clustering and congestion has been
addressed and demonstrated by various authors in academia (see e.g. Ruben & Jacobs, 1999; Pan
& Shih, 2008). In the Colfridis warehouse there is in principal no intent to cluster popular items
because pick tours typically span the entire warehouse anyway, causing the travel distance to be
more or less constant. However, because items are clustered per family group (see Section 2.2.2),
and some groups are more popular than others, there is in fact still clustering of popular items.
The most popular groups, i.e. the daily wares such as co�ee, tea or pasta products are placed in
racks 9 to 12. As can be seen in Figure 6.7, these racks also had the highest congestion coe�cients.

6.2.3 Subcause IIb { Amount of pick locations/pick location size

A second factor that in
uences the spatial distribution of pick activity are the sizes of pick locations.
When items are small, pick locations can also be small, and many pick locations can be placed within
a small area. The other way round, larger items need larger locations, and not so many of them
can be placed within the same area. Naturally, a rack that contains many small locations and thus
stores many small items, usually attracts more pickers than a rack storing fewer di�erent items.
This e�ect was also present in the Colfridis warehouse. Figure 6.8 shows how the pick locations
were distributed over the warehouse; it is clear that some racks contain many small locations, whilst
other contain lesser but larger locations. In comparison of Figure 6.8 to Figure 6.7, one can see
that the racks with more pick locations generally had a higher congestion coe�cient.

Figure 6.8: Distribution of pick locations over the warehouse on Sunday February 21
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6.3 Cause III { Temporal clustering of pick tour starts

When a group of pickers starts working at the beginning of a new shift, they all start their pick
tour at the same place, namely the short-rack section. They subsequently all follow the same path
through the aisles of the warehouse, towards the racks furthest away from the long-rack section
(recall Figure 2.4, which shows the general routing pattern). As a consequence, there is a ’moving
cluster’ that displaces within the warehouse. After some time|usually about two hours|the
pickers have spread out over the warehouse 
oor, and the moving cluster dissolves.

Figure 6.10 shows three screenshots of the tool visualising the data of a Sunday evening soon
after the start of a pick shift. All pickers start working at the same time around 9:15 PM. Figures
6.10a, 6.10b, and 6.10c depict the situations at 9:27 PM, 9:55 PM, and 10:15 PM respectively. The
displacing accumulation is clearly visible in the �rst hour of this pick shift. This pattern did not
only occur on this particular Sunday evening; moving clusters were generally present when many
pickers started their pick tours at the same time.

I consider the pick shifts that start on Sunday evenings to quantify the e�ect of the described
pattern on the extent of congestion. Many workers (typically about 16) start picking between 9:00
and 9:30 PM on these evenings. This workforce subsequently remains constant for the next �ve
hours, up to Monday 2:00 AM. Figure 6.9 shows the congestion coe�cient in the �rst two of these
�ve hours (from Sunday 9:00 to 11:00 PM) and in the last three of these �ve hours (from Sunday
11:00 PM to Monday 2:00 AM). The di�erence is obvious: the congestion coe�cient for the �rst
two hours after the start of the shift (’shift start’) was signi�cantly higher than for the last three
hours (’no shift start’), whilst the amount of active pickers was roughly equal.

Based on the quantitative observation illustrated in Figure 6.9 and the qualitative observation
illustrated in Figure 6.10 I concluded that the temporal clustering of pick tour starts leads to
accumulation, and therefore is a cause of congestion.

Figure 6.9: Distribution of w and corresponding CC shortly after the start of a shift and further
into the shift
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(a) 9:27 PM: Accumulation around the short-rack section

(b) 9:55 PM: Accumulation in the center

(c) 9:15 PM: Accumulation at racks 11 and 12

Figure 6.10: Illustration of a moving cluster
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6.4 Cause IV { Against-direction travelling

The aisles in the long-rack section are intended to be one-directional. By means of the visualisation
tool, however, one can almost instantly observe that pickers ofttimes move in the ’wrong direction’.
In fact, almost half (49%) of the intra-rack travels in the long-rack section were against the direction
of the aisle. For the intra-aisle travels in the long-rack section this was almost 40%. Despite the
fact that there are almost as much ’against-direction travels’ as ’in-direction travels’ in the Colfridis
warehouse, there is still an overall motion in the direction of the aisle because the in-direction travels
are generally longer as illustrated in Figure 6.11. The against-direction intra-rack travels (black
arrows) are always within the same bay, and therefore not longer than the width of a bay (3.6
metres). The against-direction intra-aisle travels (red arrows) are typically longer as they are not
bounded within one bay, but within three bays. The above-described patterns are a result of the
PSN assignment.

Figure 6.11: Routing within a long aisle

6.4.1 PSN assignment

A distinction can be made between intra-rack travels|for which against-direction travelling is
unintentional|and intra-aisle travels|for which against-direction travelling is intentional. PSNs
are currently assigned at bay level, implying that locations in distinct bays have di�erent PSNs,
but all locations within a bay have the same PSN. The bays are assigned PSNs so that the overall
direction of an aisle is guaranteed; however, this is not the case within bays. By lack of distinctive
PSNs within bays, the order of visit of locations is based on location number. This order does not
consider aisle direction and therefore intra-rack travels are regularly, but unintentionally, against
the direction. The intra-aisle travels are intentionally against the direction to implement a routing
policy with characteristics of the z-pick policy proposed by Goetschalckx & Ratli� (1988). The
idea behind this is too limit the amount of side changes.

6.4.2 Relation with route utilisation

Against-direction travels on average have a higher route utilisation than in-direction travels. Figure
6.12 shows the ratio of against-direction travels over in-direction travels for di�erent values of the
route utilisation. The �gure can be interpreted as follows; the ratio for intra-rack travels with a
route utilisation of 4 is about 2, this means that against-direction intra-rack travels with a route
utilisation of 4 occurred twice as often as in-direction intra-rack travels with a route utilisation of
4. The fact that the graphs are increasing indicates that against-direction travels are more likely
to have higher route utilisations than in-direction travels. Furthermore, since the ratios for travels
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for both intra-rack and intra-aisle travels with a route utilisation of 0 are below 1, the in-direction
travels are more likely to experience no worker accumulation than the against-direction travels.

Based on these observations, I concluded that travelling against the general direction of an
aisle contributes to worker accumulation, and therefore is a cause of congestion. Reverse causality
due to avoidance routing|the choice of workers to travel back (against the direction) to �rst pick
from other locations when faced with accumulation ahead|can be ruled out in this case, because
workers in the Colfridis warehouse are guided by a voice-picking system. The only control a worker
has with respect to the order of pick locations is his ability to skip a certain location, which can
for example be useful when a location is encountered empty.

Figure 6.12: Occurrence ratio of against-direction travels over in-direction travels against ur
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Design
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CHAPTER

SEVEN

PREDICTION

In this chapter I explore the possibilities of prediction of congestion. Prediction models may be
useful in various ways: immediate action can be taken when much congestion is predicted for the
nearby future (short-term), the e�ect of fundamental changes to the warehouse operation can be
predicted (long-term), and they provide additional insight in the relationships between congestion
and its causes.

The method of regression analysis was used to develop four simple prediction models (Section
7.1). Results of the regression are outlined thereafter (Section 7.2). Lastly, a discussion of those
results is provided to make sense of them and put them into perspective (Section 7.3).

7.1 Modelling

This section describes the construction of prediction models for congestion in the Colfridis ware-
house. More speci�c: it describes a regression analysis in which the congestion coe�cient (or a
transformation thereof) is the predicted variable. First, multiple predictor variables are introduced
based on the causes of congestion identi�ed in Chapter 6. Second, these predictors are used to
compose regression models.

7.1.1 Model detail

As mentioned before, congestion has a spatial and a temporal dimension; stated di�erently, it
occurs at a certain place at a certain time. As such, the prediction of individual congestion events
is very challenging and probably to complex at this point. A more realistic approach is to predict
congestion at an aggregate level. Therefore, I chose to aggregate the spatial dimension of congestion
at the level of the complete warehouse (as opposed to, say, the level of individual aisles) and the
temporal dimension at the level of an hour. Thus, the model was designed to predict the congestion
within the Colfridis warehouse in a certain hour.

Next to the fact that it is complicated to predict congestion at an individual level it can be
argued that, in practice, knowledge of future congestion at an aggregate level is of more signi�cance
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than knowledge of individual future congestion events; the impact of single instances of congestion is
not very large, whereas an overall increased degree of congestion can be expected to harm warehouse
performance substantially.

7.1.2 Predictor variables

In this section I introduce the predictors for the regression models; in essence, these predictors are
operationalisations of three of the four congestion causes distinguished in the previous part.

NrPickers (cause I)

The predictor variable NrPickersh denotes the average number of concurrently active pickers in
hour h; it is straightforwardly computed by dividing the hour h in 12 parts of 5 minutes each,
counting the number of pickers that were active in each of the twelve parts, and taking the average
of these twelve numbers. Parts in which there were no (zero) pickers active, for example because
the pickers were having a break, are excluded from the average. Figure 7.1 shows the distribution
of NrPickersh for the hours in February 2016 wherein picking was being performed.

Figure 7.1: Occurrence percentages for the values of NrPickersh in February 2016

SpatClust and NrPicks (cause II)

The predictor variable SpatClusth denotes the degree of spatial clustering of pick locations in
hour h. Ripley’s K function (Ripley, 1976) was used to construct a statistical measure of spatial
clustering, see Appendix B for a detailed description of how this was done. The essence of the
measure is that it increases with the degree of clustering, see Figure 7.2.

45



CHAPTER 7. PREDICTION

Figure 7.2: Three spatial distributions of pick locations with increasing degrees of clustering

A relevant factor that a�ects the relation between the degree of spatial clustering and congestion
is the total number of picks to be made; pick locations may be very clustered, though as long as these
locations are not too numerous, overall congestion will likely not be a great issue. In other words:
the e�ect of spatial clustering on congestion is moderated by the number of picks. I introduce the
predictor variable NrPicksh, the total number of picks that were made in hour h, to be able to
incorporate the e�ect of the number of picks.

TempClust (cause III)

The predictor variable TempClusth denotes the degree of temporal clustering of pick tour starts
in hour h; it is calculated by considering each individual pick tour start t in hour h, counting
the ’#starts nearby’ s (t), i.e. the number of other pick tours that started within a time interval
of ten minutes (earlier or later), and taking the average of these values. Equation 7.1 provides
a mathematical formulation for TempClusth and Table 7.1 illustrates the calculation for three
subsequent hours.

TempClusth =
1

jThj

X

t2 Th

s (t) (7.1)

where Th denotes the set of of pick tours started in hour h.

Table 7.1: Illustration of TempClust calculation

Hour h Pick tours t 2 Th TempClusth

1
Start minute 13 14 16 21 25 28 33 33 36 39 50 53 58

s (t) 3 3 4 5 5 5 5 5 4 3 3 3 3 3.92

2
Start minute 0 45 51

s (t) 3 1 1 1.67

3
Start minute 4 5 12 37 40 48 49 51

s (t) 2 2 2 1 3 3 3 2 2.25
...

...
...

...

7.1.3 Models

This section presents four regression models. The models vary in complexity with respect to the
number of predictor variables and applied data transformations. In terms of the causes of congestion
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identi�ed in Chapter 6, models A and B exclusively incorporate cause I, while models C and D
incorporate cause I, II, and III.

Model A: simple regression

Equation 7.2 describes regression model A. The model assumes a simple linear relationship between
the number of active pickers NrPickers and the congestion coe�cient CC: adding one additional
picker will result, on average, in an increase of �1 of the congestion coe�cient.

CC = �+ �1NrPickers (7.2)

Model B: simple regression with log-transformations

Equation 7.3 describes regression model B. Model B is as model A, only with a log-transformation
on both the predicted and predictor variable. The model assumes a linear relationship between the
natural logarithm of the number of active pickers ln (NrPickers) and the natural logarithm of the
congestion coe�cient ln (CC): a 1% increase in the number of active pickers will result, on average,
in an increase of �1% of the congestion coe�cient.

ln (CC) = �+ �1 ln (NrPickers) (7.3)

Model C: multiple regression with log-transformations

Equation 7.4 describes regression model C. Model C is an extension of model B; it adds the degree
of temporal clustering of pick tour starts TempClust and the interaction term NrPicks*SpatClust
which quanti�es the degree of spatial clustering of pick activity moderated by the number of picks
made. Both terms are included in linear form, assuming that a unit increase in ln (NrPickers)
and NrPicks � SpatClust will result, on average, in an increase of �2 and �3, respectively, of the
congestion coe�cient, holding the other predictor variables constant.

ln (CC) = �+ �1 ln (NrPickers) + �2TempClust + �3NrPicks � SpatClust (7.4)

Model D: multiple regression with log- and quadratic transformations

Equation 7.5 describes regression model D. Model D is as model C, only with a quadratic transfor-
mation of the predictor variables TempClust and SpatClust. The underlying assumption is that
an increase in these degrees of clustering has a stronger e�ect on the extent of congestion when
they are already higher.

ln (CC) = �+ �1 ln (NrPickers) + �2TempClust2 + �3NrPicks � SpatClust2 (7.5)
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7.2 Results

This section describes the regression results of models A, B, C, and D as formulated in Section 7.1.3.
The regression equations and associated diagnostics were calculated in the R environment1 using
Ordinary Least Squares (OLS) estimation. Appendix C provides a discussion on the assumptions
underlying the OLS estimation procedure.

7.2.1 Evaluation

The regression analysis was based on the data of February 2016; data of the �rst two weeks (1
February to 14 February) served as training set and was used to calibrate the regression models
whilst data of the latter two weeks (15 February to 28 February) served as test set and was used
to assess the predictive power of the resulting models. Both the training and the test set contain
336 hours of which Ntrain = Ntest = 153 cases could be used for the calibration and validation (the
other hours did not have picking activity). Given the limited number of predictor variables used
and the relatively high coe�cients of determination realised, the number of cases should be enough
for an ’excellent’ prediction level according to Knofczynski & Mundfrom (2008).

Model fit (in-sample validation)

The coe�cient of determination R2 and the adjusted R2 are provided in Table 7.2 as measures of
how well the calibrated models �t the training set. R2 denotes the proportion of variance in the
predicted variable|either CC or ln (CC)|that can be explained by the predictors. The adjusted
R2 ’penalises’ the introduction of ’bad’ predictor variables, and is included to compare the simpler
model B to the more extended models C and D. The maximum value for both the R2 and its
adjusted variant is 1, which indicates that all variance can be explained by the model. Simply said,
the higher the adjusted coe�cient of determination, the better the model.

Cross-validation (out-of-sample validation)

The Mean Absolute Error (MAE) and the Mean Signed Deviation (MSD) are provided in Table
7.2 as measures of prediction accuracy of the calibrated models. They are calculated as

MAE =
1

Ntest

NtestX

i=1

jpi � mij (7.6)

and

MSD =
1

Ntest

NtestX

i=1

pi � mi (7.7)

1R Core Team (2014). R: A Language and Environment for Statistical Computing . R Foundation for Statistical
Computing, Vienna, Austria
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respectively, where pi is the predicted value and mi the real (measured) value in hour i. The
MAE is a simple measure that indicates how far o� the prediction on average is. Potential under-
or overprediction is disregarded by the MAE. Therefore, the MSD is also considered; when it is
positive the model structurally predicts too high values, when it is negative the model structurally
predicts too low values. Ideally, the MAE is as low as possible and the MSD close to 0. Figure
7.3 is a time graph showing both the observed and predicted congestion coe�cient for the last two
weeks of February, and can be used to inspect individual prediction errors. The graph only shows
the predictions of model C for the sake of clarity. The predictions of the other models are rather
similar and generally follow the same pattern.
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Table 7.2: Summary of regression results

Model A Model B Model C Model D
Estimate p-value Sign. Estimate p-value Sign. Estimate p-value Sign. Estimate p-value Sign.

Predicted variable CC ln (CC) ln (CC) ln (CC)
Predictor variables Intercept 0.170 < 2E-16 *** Intercept 0.037 0.0299 * Intercept 0.102 3.89E-09 *** Intercept 0.058 4.11E-05 ***
(Standardised) NrPickers 0.217 < 2E-16 *** ln (NrPickers ) 0.251 < 2E-16 *** ln (NrPickers ) 0.086 0.0005 *** ln (NrPickers ) 0.175 < 2E-16 ***

TempClust 0.058 1.29E-09 *** TempClust2 0.048 1.16E-12 ***
NrPicks :SpatClust 0.073 4.76E-08 *** NrPicks :SpatClust 2 0.046 4.21E-10 ***

R 2 0.59 0.65 0.76 0.79
Adjusted R 2 0.59 0.65 0.75 0.78
MAE 0.13 0.13 0.12 0.12
MSD 0.01 0.00 0.01 0.01
Signi�cance levels: * p < 0:05

** p < 0:01
*** p < 0:001

Figure 7.3: Time graph of observed versus predicted CCs
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7.3 Discussion

Looking at the regression results summarised in Table 7.2, it can be concluded that all models are
statistically correct. All but one estimates are signi�cant at level p < 0:001. Also, the R2 values|
roughly varying between 0.6 and 0.8|indicate that a sizable share of the variance in the predicted
variable can be explained by the predictor variables. The adjusted R2 values are scarcely lower
than their corresponding R2 values, indicating that no super
uous predictor variables are included;
in other words, the models are not over�tted. The MAE is very similar for all four models, with a
value of about 0.12 this corresponds to a percentage absolute error of about 24% (the average CC
was 0.50 in the last two weeks of February). The MSD is close to zero for all models, implying that
the models do not structurally under- or overpredict.

It is striking that the very simple model A, which includes only the number of active pickers
as predictor variable, can already explain 59% percent of the variance in the congestion coe�cient.
Naturally, it is not surprising that the number of pickers is a very important factor for congestion.
Model B, with its log-transformations, has a substantial higher coe�cient of determination and can
explain 65% of the variance in the congestion coe�cient. These results suggest that the logarithmic
relationship between the number of pickers and the congestion coe�cient is more appropriate than
a straightforward linear relationship.

The more extensive models C and D in their turn have signi�cantly higher coe�cients of deter-
mination with 0.76 and 0.79 respectively. This suggests that temporal clustering of pick tour starts
and spatial clustering of pick activity are indeed considerable factors for congestion, as concluded
in Chapter 6. Noteable is that model D, with its quadratic transformations, has a better �t and,
as such, suggests that an increase in these degrees of clustering has a stronger e�ect on the extent
of congestion when they are already higher.

Remarkable is that although the R2 is higher for the more complex models, their predictive
power is not. The decrease in MAE of 0.13 for models A and B to 0.12 for models C and D is
negligible. A possible explanation for the increase in in-sample �t but constant out-of-sample �t
are potential di�erences in the �rst two weeks of February and the last two weeks of February.
Changes of any kind might a�ect the (statistical) relationship between congestion and its causes;
so, should these have taken place at some point in February, the analysis would be disturbed. I
note that there haven’t been any such changes that I am aware of.

The regression results a�rm the �ndings that the number of pickers (cause I), spatial clustering
of pick activity (cause II), and temporal clustering of pick tour starts (cause III) are indeed con-
gestion causes as their estimates are statistically signi�cant and they explain much of the variance
in the congestion coe�cient. Furthermore, inspection of Figure 7.3 learns us that, the predictions
mostly follow the observations in the sense that their lines roughly show the same course. With
few exceptions, the predictions seem reliable as a rule.
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EIGHT

PREVENTION { INCREMENTAL CHANGES

While the foregoing chapters primarily were concerned with creation of insight in the problem of
congestion, it can be argued that prevention of congestion is the ultimate goal (at least, many
warehouse managers in practice will feel this way). So far, prevention has also enjoyed much of the
attention in academia. Operational strategies aimed at reducing congestion have been proposed
for storage (see e.g. Pan et al., 2012), routing (see e.g. Chen et al., 2013, 2014), and batching (see
e.g. Hong et al., 2012). Notable is that all this work has a strong theoretical nature.

In this chapter I propose three ’incremental changes’ to the current course of events within the
Colfridis warehouse. They are aimed at congestion reduction and follow directly from the diagnosis.
These relatively small adjustments should be fairly easy to implement. First, an alternative storage
policy is suggested to address congestion cause II (Section 8.1). Second, an aisle-skipping routing
policy is described to address congestion cause III (Section 8.2). Third, a way to reassign the PSNs
is explained, which can be used to de�ne more e�cient routing within aisles, thereby addressing
congestion cause (Section 8.3). Finally, the e�ectiveness of the new strategies is assessed by means
of scenario testing and the regression results from the previous chapter.

8.1 Storage reassignment

The second cause of congestion identi�ed in Chapter 6 is spatial clustering of pick locations. This
clustering leads to a skewed distribution of activity over the warehouse 
oor, and thereby to in-
creased levels of congestion. As described, the spatial clustering is a consequence of the manner
in which storage locations are assigned to items. The next section explains the method of storage
assignment currently applied in the Colfridis warehouse. Subsequently, two alternative storage
assignment policies are suggested that can reduce congestion.

8.1.1 Current storage assignment

Storage assignment in the Colfridis warehouse is done by family group. Weight considerations play
a role as to where a certain family is stored within the warehouse (recall Section 2.2.2). Because

52



CHAPTER 8. PREVENTION { INCREMENTAL CHANGES

some families of products are more popular than others, there is inherent clustering of pick activity
and corresponding congestion issues in the areas where the popular families are stored (recall
Section 6.2). Figure 8.1a shows the distribution of picks realised in the third week of February
2016 resulting from the current storage assignment policy; the numbers in this �gure display the
number of picks made in the di�erent bays. The unequal spread of activity can clearly be seen.

The choice for the family grouping storage strategy currently in use is fairly arbitrary as there
is no underlying reason for its use. One of the traditional arguments for family grouping is that
workers get familiar with the grouping in the warehouse, resulting in a reduction of search time.
Though, this reasoning does not hold in the Colfridis warehouse because the voice-picking system
guides workers to their pick locations. In addition, pick routes are simple and structured, causing
search time to play a very limited role. The undesirable e�ect of increased congestion in the areas
where popular families are stored makes for a strategy that has no pros, but a clear con.

8.1.2 Suggested storage assignment

I suggest two alternative storage policies that can be expected to reduce the extent of congestion
compared to the current situation. It is taken here that the weight restriction is to be satis�ed;
thus, heavy items need to be collected at the start of a pick tour while lighter items may be collected
later. Therefore, the new policies require that the set of items is partitioned into several weight
classes. Items in the heaviest weight class should be positioned in the beginning of the warehouse
(where the pick tours start), whereas the lighter weight classes should be positioned more towards
the end of the warehouse in a gradual manner so that the items in the lightest weight class are
stored in the end of the warehouse.

Random storage within weight class I already stated that it is well-known by academics for
a strategy such as ABC storage (or any other policy that clusters item based on popularity)
to increase the risk of congestion, because the areas that store the popular items will attract
many workers. Conversely, it is also widely known that random storage minimises congestion
(see e.g. Pan & Shih, 2008; Pan et al., 2012)1, but typically comes at the cost of increased
travel distance (see e.g. Il-Choe & Sharp, 1991). Random storage is widely used in many
warehouses because it is simple to use, often requires less space than other storage methods,
and results in a higher utilisation of all picking aisles (Petersen & Aase, 2004).

By serendipity, travel distance will not increase in the Colfridis warehouse as a result of
random storage, since pick tours typically span the entire warehouse anyway (recall Section
4.1.2). Therefore, random storage is a suitable strategy to reduce congestion without having
to give in on other e�ciency aspects of the pick operation. Naturally, in order to satisfy
the weight restriction, the storage of items should be random within their respective weight
classes; not random over the entire warehouse 
oor.

Dispersed storage within weight class From the perspective of congestion minimisation, dis-
persed storage is even more e�ective than random storage. When random storage is applied it
is still possible that popular items end up being positioned nearby each other due to arbitrary-
ness; a dispersed storage strategy aims at preventing this to happen by actively spreading out
popular items over the warehouse 
oor. To accomplish that, allocation of items to locations
need be based on their rate of sale. Fast-moving items should be surrounded by slow-moving

1The regression analysis in Chapter 7 also con�rmed the theory that congestion increases with the degree of
clustering of pick locations.
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items to balance the pick activity over the warehouse. Again, in order to satisfy the weight
restriction, the storage of items should be dispersed within their respective weight classes;
not dispersed over the entire warehouse 
oor.

Figures 8.1b and 8.1c illustrate the more even distribution of pick activity resulting from random
storage and dispersed storage respectively. In this case, three weight classes (A, B, and C) are
distinguished. I note that the numbers displayed in both �gures merely serve as example to clarify
the e�ect of the suggested storage policies; in practice, the amount of picks that will be realised at a
certain bay can never be completely controlled because of variation in the demand of items. It can
be seen that, compared to the current storage assignment, pick activity is much more distributed
over the warehouse with random storage, and even more so with dispersed storage.
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(a) Current storage assignment

(b) Random storage assignment

(c) Dispersed storage assignment within

Figure 8.1: Distribution of picks under di�erent storage strategies
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8.2 Aisle skipping

The third cause of congestion identi�ed in Chapter 6 is temporal clustering of pick tour starts, which
is problematic because all pickers start at the same place in the warehouse. A straightforward way
to deal with this issue would be to let part of the pickers start their pick tour elsewhere in the
warehouse, so as to spread them out over the 
oor and prevent worker accumulation. The skipping
of aisles in a pick tour is a way to accomplish this.

There are seven long aisles in the warehouse, which are given a letter name (Figure 8.2). In
principal, pick tours can ’indent’ in all aisles. Figure 8.3 illustrates a pick tour that indents in the
D-aisle, and skips aisle A, B, and C. Congestion can be reduced by letting part of the pick tours
indent in other aisles than the A-aisle, so that not all pickers have to start at the same place.

The strategy of ’aisle-skipping pick tours’ requires a di�erent algorithm for tour construction.
For a good comprehension, the next section �rst describes the way in which pick tours are currently
constructed. Thereafter, I introduce the concept of ’aisle-skippability’ of DPUs to describe by and
large a procedure to construct ’indenting pick tours’.

Figure 8.2: Letter names for the long aisles

Figure 8.3: Pick tour indenting in the D-aisle
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8.2.1 Current tour construction

A pick tour needs to be constructed when a worker logs in to start picking. A tour is formed by
batching 24 DPUs, i.e. by selecting and assigning 24 DPUs to the worker’s pick cart. The current
batching algorithm sequentially considers three DPU characteristics, namely

(i) ’pick priority’,

(ii) delivery date, and

(iii) delivery address.

The pick priority is a number indicating the ’degree of urgence’ of a DPU. DPUs with the lowest
pick priority number are assigned to pick tours �rst. The pick priority does not di�erentiate the
entire set of DPUs to be collected. Therefore, the delivery date is used for DPUs with the same pick
priority. DPUs with the earliest due date (EDD) are selected �rst. For the Colfridis warehouse,
this criterion is not very relevant in practice because all orders arriving on a particular day should
be delivered on the next day. By exception, it may happen that this one-day leadtime is not met,
which is when the EDD selection actually plays a role. If DPUs have the same pick priority and
the same delivery date, then the delivery address decides on the order of selection. The delivery
address determines with which truck a DPU is transported. Since these trucks arrive at di�erent
times, the logic used in the WMS is that DPUs with a delivery address that is picked up by the
�rst truck are also processed �rst.

Under the current batching algorithm, letting pickers start anywhere else could lead to problems
with the weight of items and ine�cient routing. As described earlier, pickers are �rst routed through
the A-aisle, so that the heavy items stored there enter the crates �rst. When pickers would start
somewhere else in the warehouse, they would visit this A-aisle later on in their tours, and heavier
items need to be placed on top lighter items. In addition, the picker would have to travel back from
the end of the warehouse (the F-aisle) to the start (the A-aisle), thereby forming ’messy’ routes.

8.2.2 Suggested tour construction

This section �rst introduces a new characteristic for the DPU batching process, regarding the fact
whether a DPU ’skips’ a particular aisle. Next, it is brie
y explained how DPUs should be batched
to form aisle-skipping pick tours. Appendix D elaborates more on feasibility of the aisle-skipping
strategy.

Aisle-skipping DPUs

A DPU is on average comprised of about 7 di�erent items. The majority of the DPUs do not
contain items in all 7 aisles; in other words, they can skip one or more of the aisles. Figure 8.4
shows for each aisle (excluding the C-aisle containing the uglies), the percentage of DPUs that can
skip this aisle. It can be seen that most aisles can be skipped by about 40% to 50% of the DPUs.
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Figure 8.4: Aisle skippability for all regular aisles

Figure 8.5 shows the percentages of DPUs that can skip one or more adjacent aisles. The
diagram should be interpreted as follows. The A-aisle can be skipped by about 40% of the DPU’s,
aisles A to B can be skipped by about 17% of the DPUs, aisles A to D can be skipped by about 8%
of the DPUs, and so on. Almost 4% of the DPUs can even skip all aisles from A to F, or, stated
di�erently, they contain only items located in the G-aisle.

Figure 8.5: Multi-aisle skippability expressed in %DPUs

Alternative batching algorithm

An alternative batching algorithm for the assignment of DPUs to a pick cart can be used to
overcome the earlier-described issues with item weight and route ine�ciency related to not starting
in the A-aisle. Pick tours that skip the A-aisle can be constructed by clustering DPUs that can
skip one or more of the �rst aisles. In fact, pick tours that skip both the A-aisle and the B-aisle
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can be constructed by clustering DPUs that can skip two or more of the �rst aisles. Similarly, it is
possible to have pick tours starting in every aisle of the warehouse, without them having to traverse
through the earlier aisles. In other words, pick tours can indent in all aisles.

8.3 PSN reassignment

The fourth cause of congestion identi�ed in Chapter 6 is against-direction travelling of workers. The
fact that workers often move in the wrong direction within an aisle is a direct result of how PSNs
are assigned to locations. In the next section I �rst describe the current way of assigning PSNs.
Thereafter, an alternative manner of PSN assignment is suggested that can be used to improve the
routing of pickers and reduce congestion.

8.3.1 Current PSN assignment

As laid out in Section 6.4.1, PSNs are currently assigned at bay level. This implies that locations
in distinct bays have di�erent PSNs, but all locations within a bay have the same PSN, which
ultimately leads to the against-direction travels. The current routing is not optimal; especially the
against-direction intra rack travels are ine�cient, because they result in illogical routing patterns
and reasonless travel distance (trajectories are visited twice, one time in each direction). Figure 8.7
shows the current PSNs for a certain long aisle and illustrates the corresponding routing pattern;
black arrows denote against-direction travels and red arrows denote in-direction travels.

8.3.2 Suggested PSN assignment

Because of the negative e�ects associated with PSN assignment at bay level, a more �ne-grained
PSN assignment is desirable. This can be achieved by basing the PSN of a location on its coor-
dinates, instead of the bay it is positioned in. Since each location has unique coordinates, each
location can be assigned a unique PSN so that PSNs are also di�erentiated within bays.

Improved routing

The suggested way of assigning PSNs to locations makes smarter routing strategies possible. I
propose three alternative routing strategies, two of which are based on z-picking and one that is
based on double-sided picking. In general, z-picking is e�cient when aisles are relatively wide whilst
double-sided picking is more eligible when aisles are relatively narrow.

Simple z-picking is like the current routing policy, but with the against-direction intra-rack trav-
els replaced by in-direction intra-rack travels. From the perspective of congestion, simple z-
picking is an improvement compared to the current routing because a part of the congestion-
causing against-direction travels are taken out. From the perspective of travel distance it
is also an improvement because double visiting of trajectories no longer takes place. Figure
8.8 shows how PSNs should be assigned to implement simple z-picking and illustrates the
resulting routing pattern; the *-symbol is used to indicate that locations within a bay have
di�erentiated PSNs that are increasing in the x-coordinate of the location.
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Smart z-picking is like simple z-picking, but stripped o� unnecessary side changes. The policy
corresponds to the original z-pick pick policy proposed by Goetschalckx & Ratli� (1988).
Smart z-picking is an improvement compared to simple z-picking from the perspective of
travel distance, as side changes are minimised; the e�ect thereof, however, is small in the
Colfridis warehouse because of it’s limited aisle width (3.6m). Figure 8.9 shows how PSNs
should be assigned to implement smart z-picking and illustrates the resulting routing pattern.

Double-sided picking strictly conforms to the direction of an aisle in the sense that there are no
against-direction travels. As suggested by its name, double-sided picking denotes the strategy
where an aisle is traversed only once and items are picked from both sides simultaneously.
From the perspective of congestion, this policy is expected to be the best option because
the congestion cause of against-direction travelling is resolved in its entirety. With respect
to travel distance, double-sided picking can be expected to have inferior performance to the
z-picking policies because of it’s inherent frequent side changes. By observation of the picking
process though it became clear that pickers tend to position their cart somewhat in the middle
of the aisle. As such, one could argue that a side change is not very radical, because it merely
involves a walk of the picker to the other side of the cart, whilst the cart need not be moved.
At the same time, it is noteworthy that the non-negligible size of the pick cart can force a
worker to a detour around the cart when he wants to change sides, as illustrated in Figure 8.6.
These detours are especially disadvantageous for the double-sided picking strategy, because
of the inherent frequent side changes. Figure 8.10 shows how PSNs should be assigned to
implement double-sided picking and illustrates the resulting routing pattern.

Figure 8.6: Forced detour around pick cart when changing aisle sides
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Figure 8.7: Current routing

Figure 8.8: Simple z-picking

Figure 8.9: Smart z-picking

Figure 8.10: Double-sided picking
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8.4 Estimation of effectiveness

In this section I provide an estimation of the extent of congestion reduction, would the suggested
alternative policies for storage, tour construction, and PSN assignment be implemented in the
Colfridis warehouse. Given the complexity of the warehousing operation with all its existing in-
terdependencies, it is in general not a trivial task to quantify the e�ect of congestion-reducing
measures. Both analytical (see e.g. Pan & Shih, 2008; Pan & Wu, 2012) and simulation (see e.g.
Chen et al., 2013, 2014) techniques have been employed in the literature to this end. However, the
models studied thus far by academics typically constitute (highly) simpli�ed representations of ac-
tual warehouses in practice; many assumptions are made in order to be able to grasp the operation
in terms of mathematical equations or a simulation. Since the aim here is to say something based
on real-life data about a real warehouse, the analytical and simulation methods are not reasonably
applicable. An alternative approach is therefore taken based on the regression results of Chapter
7.

8.4.1 Scenario testing

Three di�erent scenarios|a pessimistic, a neutral, and an optimistic one|are distinguished for the
e�ect of the alternative operating policies. These scenarios are expressed in terms of the predictor
variables used in the regression analysis. Subsequently, the values for the predictors are inserted
into the �tted regression equation for Model D2 to predict the congestion coe�cients in the three
scenarios and compared to the predicted congestion coe�cients for the current situation. An issue
arises here because, as mentioned and explained in Chapter 7, the regression analysis did not
include a predictor for congestion cause IV. It is therefore not possible to include the e�ect of PSN
reassignment because this a�ects cause IV. The exclusion of this e�ect results in the estimates for
the congestion reduction being a lower bound.

The e�ect of the storage reassignment can be well-quanti�ed by a reduction in the value of
SpatClust, as this variable expresses the level of dispersion of pick locations, which is exactly what
is being addressed by the storage reassignment. The e�ect of the alternative tour construction,
where the �rst aisle(s) can be skipped, can be quanti�ed in a less direct fashion by means of
the TempClust predictor variable denoting the degree of temporal clustering of pick tour starts.
Technically, this temporal clustering is not (directly) addressed by aisle-skipping tours. Though,
because the pickers (partly) no longer start at the same place, an identical e�ect on congestion
is realised as when pickers would not start at the same time. I note that, conceptually, it is not
entirely correct to use a measure of temporal clustering (of tour starts) to quantify spatial clustering
(of tour starts), however, practically, there are little objections.

8.4.2 Scenarios

All scenarios assume a certain percentage reduction in SpatClust and TempClust compared to
the current situation as a result of the storage reassignment3 and alternative tour construction.
Hence, the current situation serves as the base to calculate absolute values for the SpatClust

2Model D is used because it includes all predictor variables and has the best �t.
3It is assumed here that random storage is employed; dispersed storage is expected to result in even greater

congestion reductions.
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and TempClust predictors. The regression equation for Model D furthermore requires values for
NrPickers and NPicks; these variables quantify the ’level of activity’ within the warehouse and
are una�ected by the alternative policies; their values are the same for all scenarios. It is not
di�cult to see that the values for SpatClust and TempClust are, by de�nition, related to the
level of activity. Eight di�erent levels of activity (A, B, C,..., H) are distinguished to sketch a
complete image for the e�ect of the alternative policies. First NrPickers 2 f 2; 4; :::; 14; 14g was
set. Thereafter, NPicks was set as the multiple of NrPickers and the historic average number of
picks realised per picker per hour when when NrPickers pickers were active. Subsequently, for
the current situation, SpatClust and TempClust were set for each level of activity as the historic
averages for these variables realised when NrPickers pickers were active.

The scenarios are as follows. The corresponding absolute values for the predictor variables are
provided in Table 8.1.

Pessimistic The pessimistic scenario resembles the case where the suggested alternative policies
are not very e�ective; the reduction in SpatClust and TempClust is limited in this scenario.
A reduction of 10% was chosen for both predictor variables.4

SpatClust # 10% and TempClust # 10%

Neutral The neutral scenario resembles the case where the suggested alternative policies are not
very e�ective, yet also not very ine�ective. A reduction of 50% was chosen for SpatClust
and 20% for TempClust.

SpatClust # 50% and TempClust # 20%

Optimistic The optimistic scenario resembles the case where the suggested alternative policies
are very e�ective. A reduction of 90% was chosen for SpatClust and 30% for TempClust. As
the reduction of SpatClust is close to 100%, this scenario assumes that the random storage
policy leads to almost perfectly randomly distributed pick locations.

SpatClust # 90% and TempClust # 30%

8.4.3 Results

Table 8.2 shows the congestion reduction compared to the current situation realised in the pes-
simistic, neutral, and optimal scenario for the di�erent levels of activity. The overall congestion
reduction|the average of the reductions for di�erent levels of activity weighted with the occurrence
of these levels of activity|is also provided. The pessimistic scenario yields a small overall reduction
of 5% in the congestion coe�cient, the neutral scenario a signi�cant reduction of 18%, whilst the
optimistic scenario yields a sizable reduction of 24%. Noteworthy is that the e�ectiveness of the
alternative policies is highest for the lower levels of activity (A and B).

4A 100% reduction in SpatClust corresponds with the realisation of perfectly randomly distributed pick locations,
because then SpatClust = 0 (see Appendix B). However, as illustrated in Figure 8.1b, the proposed random storage
policy does not result in perfectly random pick locations.
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Table 8.1: Values for congestion predictors in di�erent scenarios

Level of activity
Current Pessimistic Neutral Optimistic
-0% -0% -10% -10% -50% -20% -90% -30%

NrPickers NrPicks SpatClust TempClust SpatClust TempClust SpatClust TempClust SpatClust TempClust
A 2 216.72 4.13 0.58 3.72 0.52 2.06 0.47 0.41 0.41
B 4 433.44 3.02 0.95 2.72 0.86 1.51 0.76 0.30 0.67
C 6 650.16 1.98 1.76 1.78 1.59 0.99 1.41 0.20 1.23
D 8 866.87 1.74 2.20 1.57 1.98 0.87 1.76 0.17 1.54
E 10 1083.59 1.72 2.69 1.55 2.43 0.86 2.16 0.17 1.89
F 12 1300.31 1.68 3.31 1.52 2.98 0.84 2.65 0.17 2.32
G 14 1517.03 1.70 3.56 1.53 3.21 0.85 2.85 0.17 2.49
H 16 1733.75 1.42 3.84 1.28 3.46 0.71 3.07 0.14 2.69

Table 8.2: Predicted congestion reduction for pessimistic, neutral, and optimistic scenarios

Level of activity Current Pessimistic Neutral Optimistic
Occurrence CC CC Reduction CC Reduction CC Reduction

A 22% 0.11 0.10 9% 0.07 36% 0.06 47%
B 12% 0.22 0.21 5% 0.17 20% 0.16 27%
C 16% 0.27 0.26 3% 0.24 12% 0.23 16%
D 19% 0.32 0.31 3% 0.29 11% 0.28 14%
E 11% 0.38 0.37 3% 0.34 11% 0.32 15%
F 10% 0.43 0.41 4% 0.38 12% 0.36 16%
G 7% 0.47 0.45 4% 0.41 13% 0.39 18%
H 3% 0.49 0.47 4% 0.44 11% 0.42 15%
Overall 5% 18% 24%



CHAPTER

NINE

PREVENTION { BUCKET BRIGADES

Bucket brigades are a way to organise order picking initially proposed by Bartholdi & Eisenstein
(1996). It is a ’pull’ system where orders are being passed from one picker to the other in a
progressive fashion. The strategy can be simply summarised as follows:

"A picker works forward until his successor takes over his work;
then he walks back to take over the work of his predecessor.
When the last picker in line (or: bucket brigade 1) finished the
work, it is being brought to the shipping area; when the work
of the first picker in line is being taken over, he starts a new
batch of orders."

The strategy is often applied in sequential pick-and-pass systems supported by a passive con-
veyor that holds partially completed orders and a powered conveyor that transports complete
orders to the distribution area (Figure 9.1). Traditional pick-and-pass systems use static zones;
they restrict pickers to operate in a �xed limited section, e.g. one or several bays. Static zones
are associated with several drawbacks. The most striking of them are the underutilisation of faster
pickers, who are forced into idle time when their predecessors fail to keep up providing work (’star-
vation’), and the piling up of work when successors are too slow (’congestion’2). These issues can
be addressed by using zones of various sizes, and assigning the faster pickers to the larger zones.
This results, however, in a non-trivial planning problem that repeatedly needs to be solved based
on actual data.

Conversely, bucket brigades use dynamic zones that arise spontaneously without the need for
any form of planning or control; zone boundaries are constantly and automatically adjusted to
realise an e�cient distribution of work over the pickers. The major advantage of bucket brigades
is that they are self-balancing when pickers are sequenced slowest-to-fastest along the line: pickers
spread out over the warehouse and are constantly occupied with work, hence there is no congestion
nor starvation. Also note that, in a sense, the last and fastest picker sets the pace; every time he
�nishes work triggers a pull of new work in the system.

1The strategy is named after the human chain or "bucket brigade" that is formed by �re�ghters when they pass
buckets of water to each other to extinguish a blaze.

2This is a di�erent type of congestion than ’worker congestion’, the central topic of this report.
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Figure 9.1: A sequential pick-and-pass system (taken from Bartholdi & Eisenstein (1996))

9.1 Bucket brigades and (the absence of) congestion

Bucket brigades are a great means to address congestion issues. By design, the workers in a bucket
brigade do not interfere with each other as each of them operates in his own (dynamic) zone.
Therefore, worker accumulation, as it currently takes place in the Col�ridis warehouse (where at
times up to seven workers 
ock together in the same con�ned area), simply cannot take place.

Whilst worker accumulation is greatly reduced (or even eliminated in its entirety), another
type of congestion is imposed by the classical form of bucket brigades. The original set-up of
bucket brigades as presented by Bartholdi & Eisenstein (1996) requires that pickers maintain their
sequence: no passing is allowed and so it can happen that a picker is blocked by his successor, in
which case it is required that the blocked picker simply waits for his successor to move out of the
way. This blocking-caused delay can be seen as congestion. Important to note, however, is that
slowest-to-fastest sequencing of pickers generally ensures that this blocking does not take place, as
pickers typically progress slower than their faster successors.

Ordering the pickers from slow to fast may not always be a trivial task (especially when the
workforce is variable), and, however well it may be done, the blocking-caused delay described
above will never be completely absent. When the operation allows it, the no-passing-rule can easily
be abandoned as it is not essential for a bucket brigade to function. Armbruster & Gel (2006)
and Armbruster et al. (2007) studied the case where the sequence of pickers need not strictly be
preserved, i.e. pickers are allowed to overtake each other. They showed that, when pickers are
allowed to pass, lines are self-organising in the sense that the sequence of pickers is automatically
and dynamically corrected to slowest-to-fastest. There are three major advantages, namely (i) the
sequence of pickers need not actively be controlled, (ii) the sequence naturally converges to its
optimal order, and (iii) there is no blocking-caused delay, resulting in a congestion-free system.
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9.2 Application at Colfridis

This section describes how the bucket brigade concept could be applied in the Colfridis warehouse
to tackle the matter of congestion.

As mentioned, bucket brigades are mostly implemented in conveyor-supported pick-and-pass
systems. The operation in the Colfridis warehouse employs pick carts to transport orders, not
conveyors. This is no problem, because the means of transportation is not essential to bucket
brigade picking. The general description of bucket brigade picking can easily be adapted to �t the
case of Colfridis:

"A picker works forward until his successor takes over his cart;
then he walks back to take over the cart of his predecessor.
When the last picker in line finished the cart, it is being
brought to the distribution area; when the cart of the first
picker in line is being taken over, he starts a new cart."

Figure 9.2 illustrates the functioning of a bucket brigade at Colfridis. The red lines indicate
cart handovers and correspond with the dynamic zone boundaries.

Figure 9.2: An 11-person bucket brigade in the Colfridis warehouse

9.2.1 Requirements

There are several conditions that need to be satis�ed for bucket brigades to be e�cient. It is
discussed here to which extent these requirements are (or can be) met in the Colfridis warehouse.

Quick handovers of work are necessary to keep pickers occupied with their core job: picking
items. The operation at the Colfridis warehouse uses fairly large pick carts, on which the pickers
stand to drive them; to this regard the term ’stepover’ might suit better than handover. Nonetheless,
there is no reason why these cart changes should take up much time. Only one additional action is
required by a picker that takes over a cart; his voice-picking device needs to be coupled to the new
cart, so that it guides the picker to the items that need to be collected for the new cart, instead
of the old. This could be done by means of a scan operation using the terminal that every worker
carries. The worker simply scans a code on the cart, by which the voice-picking device connects to
that cart.
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A su�ciently high ’pick density’, i.e. having enough picks per meter of aisle, is required to
limit the amount of cart changes. When workers need to make only few picks, they move forward
rapidly and carts are �nished often, resulting in many handovers. Consequently, workers spend
more time changing carts and less time picking, which is obviously detrimental to throughput. In
the Colfridis warehouse work is being batched; every pick cart holds 24 DPUs, each of which is
comprised of multiple items, resulting in 147.4 picks per cart on average (Table 4.2). Given that a
tour averages 827.3 meter, the pick density is about 0.18. It is di�cult to say whether this is high
enough, as the literature currently lacks any general guidelines to this regard (Hong et al. (2015)
do investigate the e�ect of pick density in a bucket brigade system, but their conclusions do not
provide clear cut-o� values). Important to state is that, if necessary, pick density can always be
increased by batching more orders.

A �xed route through the warehouse is desirable to have clear which worker is ahead and who is
behind. Pickers should have no problems in �nding the person whose cart they have to take over.
When a warehouse is being traversed through in many di�erent ways, unclarity and perhaps even
discussion could arise about which pickers should switch work. Evidently, time and e�ort would
better be spent on picking items than on �nding out how to proceed. As explained earlier (Section
4.1.2), routing in the Colfridis warehouse is highly structured and pickers almost always travel the
same circuit through the warehouse. So, workers should have no issues �nding their predecessors.

9.2.2 Operational benefits and drawbacks

The main advantage of bucket brigades is the absence of congestion of workers. Next to this grand
e�ect, picking by bucket brigade comes with some operational side e�ects, both desirable and
undesirable. A positive side e�ect is that workers learn quick, because they operate in a limited
region of the warehouse which they can get acquainted with in a short time. This is relevant for
the Colfridis warehouse, as they employ a rather variable workforce (146 di�erent workers operated
in the warehouse in February 2016) with substantial sta� turnover. Disadvantageous is the waste
of time inherent to cart changes, which takes two forms: (i) time is lost when a worker walks back
to take over the cart of his predecessor, and (ii) hand-o� losses may occur when a worker wants to
take over the cart of his predecessor, but has to wait for the predecessor to �nish his current pick
(Koo, 2009). These hand-o� losses should not be of great concern though, because picks take only
7 seconds on average at Colfridis.

9.2.3 Psychological benefits and drawbacks

Bucket brigades may also a�ect the workers’ psyche. This can happen in both positive and negative
ways. A bene�cial side e�ect of working in bucket brigades is that workers may experience a sense of
teamwork. Team spirit might cause workers to ’go the extra mile’ to contribute to the performance
of the bucket brigade. Also, the slower pickers may attempt to raise their game in order not to
be the weakest link in the chain. At the same time, the slower workers may feel uneasy working
in a bucket brigade, because their reduced e�ciency is highlighted|everyone knows that the �rst
workers in the line are the slowest ones. Furthermore it may be the case that pickers experience
working in a bucket brigade as more monotonous than working autonomously on ’their own cart’
that needs to be processed from start to �nish.
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9.3 A note on the impact of bucket brigades

The regression results of Chapter 7 were used as a means to quantify the e�ect of the incremental
changes proposed in Chapter 8. Since the implementation of bucket brigades in the Colfridis
warehouse constitutes a more radical change, the regression models no longer hold because they
represent a completely di�erent pick operation. Fortunately, Bartholdi & Eisenstein (2016) report
e�ects of multiple real-life cases where picking by bucket brigade has been implemented, allowing
for a general statement about the potential of bucket brigades in the Colfridis warehouse.

A 34% increase in pick rates was realised in the national distribution center of Revco Drug
Stores, Inc (a major chain retailer, supporting more than 2000 outlets at time of conversion to
bucket brigades) after changing from static zones to bucket brigades. Revco runs a conveyor-
supported pick operation with pick-to-light.

A 20% increase in pick rates, and a 90% reduction in its variance, were realised in Anderson
Merchandising (the second largest distributor of recorded music in the USA at time of conversion
to bucket brigades) after converting to bucket brigades. In addition, each picker set a career best.
Like Revco’s operation, picking was aided by conveyors; however, at Anderson, picking was done
in a less sophisticated manner using paper pick-sheets.

An 8% increase in throughput and a 35% reduction in pick errors were realised in a subsidiary
of Readers Digest after changing from static zones to bucket brigade picking. The operation uses
conveyors to transport totes and pick-to-light to instruct pickers.

A 25% increase in pick rates was realised in the �rst week of bucket brigade picking in the
distribution center of Wawa Convenience Stores, Inc (supporting about 500 convenience stores at
time of conversion to bucket brigades). Opposed to the aforementioned picking systems, Wawa has
workers traversing through narrow warehouse aisles to pick items, and no conveyors. The operation
involves the picking of full cases to a pallet jack.

A 25% increase in throughput was realised at the distribution center of Gap, Inc. (a clothing
chain with more than 3000 stores in the USA at time of conversion to bucket brigades) after
changing to bucket brigades. Workers use paper pick sheets to pick orders into a cardboard box.
They traverse through a series of short aisles and put the box on a powered takeaway conveyor
when the order is complete.

All reported cases experienced a signi�cant improvement in productivity after implementation of
bucket brigades. In addition, some of the cases encountered positive side e�ects such as a reduction
in productivity variance. Important to note is that most (4 of 5) of the described operations employ
conveyors. The Colfridis warehouse does not use conveyors, which makes it di�cult to draw a fair
comparison. The distribution center of Wawa is more similar because, as in the Colfridis warehouse,
people travel through warehouse aisles to pick items. Furthermore, the means of transportation
(pallet jacks) is comparable to the pick carts used by Colfridis workers. This case is therefore the
best gauge for the e�ect of bucket brigades at Colfridis. Given that Wawa enjoyed a serious increase
of 25% in pick rates, Colfridis may also be expected to bene�t from picking by bucket brigade.
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CHAPTER

TEN

CONCLUSION

This �nal chapter lists the main conclusions of this master thesis project. The foremost �ndings
and results are enumerated per sub-objective of this research (Section 10.1). Recommendations
are given for both Vanboxtel and Colfridis (Section 10.2); the advice for Vanboxtel is more general
and directed at enhancement of their WMS, while the advice for Colfridis is speci�cally aimed at
improvement of their warehouse, which was studied as case in this research. Finally I mention
interesting topics for future academic research (Section 10.3).

10.1 Research objectives

1. Visualisation: development of a tool that can dynamically visualise logged warehouse data and
show congestion.

AnyLogic was used to develop a visualisation tool. The tool creates a map animation by
combining static data (data on warehouses, racks, bays, nodes, and roads) and dynamic data
(the activity trail). In absence of continuous data, two assumptions needed to be made for the
visualisation of worker movements between two locations, namely that (i) workers move along the
shortest path, and (ii) workers move with constant speed. While the �rst assumption will generally
hold when the aisle structure is not too complex and workers act rational, the second assumption
is less likely to be satis�ed. Especially in the case of congestion it is not probable that workers
travel with a constant speed from one location to the other due to blocking e�ects.

In addition to plain animation of worker motion through the warehouse the tool has functionality
to provide additional insight. Amongst other things, the tool can visually aggregate the spatial
and temporal dimensions of congestion in a heatmap and a time graph respectively. This
enables the identi�cation of congestion bottlenecks at a glance.

2. Measurement: development of a measurement method to quantify congestion.

A data mining algorithm (the w-algorithm) was introduced to calculate #workers nearby w of
individual activities (logged records) in the activity trail. This measure re
ects the number of other
workers ’nearby’ (spatially and temporally within a certain range) at execution of an activity; stated
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di�erently, it quanti�es the degree to which an activity took place in an accumulated context. Since
worker accumulation is the essence of congestion, and because #workers nearby re
ects exactly that,
w serves well as base unit for congestion measurement.

The route utilisation ur and congestion coe�cient CC were de�ned in terms of w. The route
utilisation was introduced to quantify the degree of worker accumulation experienced on individual
travels in the activity trail (characterised by two subsequent records with di�erent locations). It was
shown that a negative relation exists between route utilisation and travel speed, which
can be explained forced waiting due to blockage. This �nding, together with the fact that
ur and w are heavily correlated with a correlation coe�cient of 0.92, allowed me to put aside the
strict de�nition of congestion, which requires both worker accumulation and associated performance
reduction, and start employing a simpler concept of congestion, namely that congestion is nothing
more than worker accumulation. In this light the congestion coe�cient was de�ned as an aggregate
measure of w. CC is calculated as the average value of w of a set of activities. Spatial and temporal
variability in congestion can easily be quanti�ed by choosing di�erent sets of activities to average
over (e.g. all activities executed in a certain aisle, on a certain day, in a certain warehouse area in
a certain hour, etc).

3. Diagnosis: identi�cation of the main causes of congestion.

Four causes of congestion in the Colfridis warehouse were identi�ed: the number of pickers (I),
spatial clustering of pick locations (II), temporal clustering of pick tour starts (III), and against-
direction travelling (IV). These causes are clearly related to the congestion coe�cient. Cause I and
II are fairly commonsensical and well-known, both in practice and in the literature. Cause III and
IV are more case-speci�c and result from particular WMS characteristics.

The temporal clustering of pick tour starts is problematic because when they start picking,
all workers are sent to the same place in the warehouse and guided alongside the same
route thereafter. The against-direction travelling originates from the assignment of pick sequence
numbers. In the Colfridis warehouse the PSNs are assigned at bay level, causing all locations
within a bay to have the same PSN; thereby, the intended routing through the warehouse is not
well-de�ned, giving rise to travels in the wrong direction.

4. Prediction: development of simple prediction models.

Four regression models were de�ned that can predict the congestion coe�cient for the Colfridis
warehouse in a certain hour. These models include predictor variables that were constructed to
quantify congestion causes I, II, and III. All predictors are highly signi�cant and the models show
a good �t (R-squared varying roughly between 0.6 and 0.8). Furthermore it can be seen that, when
plotted in a time graph, the predicted values ’follow’ the measured values, which contributes to the
value of the predictions.

It was found that cause I|the number of pickers working concurrently in the warehouse|
is the major determinant of congestion, because it can explain 59% of the variance in the
congestion coe�cient. An additional 20% of the variance can be addressed to cause II and III, so
that the most extensive model can explain 79% of the variance.

5. Prevention: �nding ways to reduce congestion.

Three ’incremental changes’ are proposed to address congestion issues in the Colfridis warehouse.
The �rst one regards the storage assignment, which should be randomised (or even dispersed)
to decrease the spatial clustering of pick locations, thus addressing cause II. An aisle-skipping
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strategy is described that ensures that not all pickers start at the same place in the warehouse,
thereby addressing cause III. The third of the incremental changes is PSN reassignment: each
location should be assigned a unique PSN (based on location coordinates instead of bay) so that
the intended routing can be well-de�ned, thereby eliminating unnecessary against-direction travels,
thus addressing cause IV.

In addition to these incremental changes, I also described how congestion can be reduced
through bucket brigades. Adaptation of bucket brigades would involve a more ’radical change’,
though it does not require any capital investment. Picking by bucket brigade is essentially a
pick-and-pass zoning strategy; hence, worker accumulation simply cannot take place because each
zone contains only one picker. The traditional drawbacks of zone picking (congestion, starvation,
determination of zone boundaries, assignment of workers to zones) are not of concern because
bucket brigades use dynamic zones, not static ones. By design, the order of pickers in the
line and the zone boundaries automatically �nd their own optimum. As such, the picking system
constantly balances itself, leading to a very e�cient and congestion-free operation.

10.2 Recommendations

10.2.1 For Vanboxtel

Investigate how congestion measurement can be integrated in WMS

� The start of a solution often starts with good comprehension of the problem. According to
a Dutch saying ’measuring is knowing’ (meten is weten), and, in line with this thought, the
measurement methods proposed in this report can provide useful insight in congestion issues.
By integrating congestion measurement into the WMS, the awareness and understanding of
congestion at all warehouse operations supported by the Vanboxtel WMS can be enhanced.

� The base unit of congestion measurement is #workers nearby w, which is calculated by the
easy-to-implement w-algorithm. The algorithm makes use of parameters whose values are
case-speci�c; therefore, the user should be able to easily set these to obtain useful results
for his particular warehouse. The congestion coe�cient CC follows from w straightforwardly
through aggregation; also here, the user should be able to easily set the warehouse area (spatial
aggregation) and time span (temporal aggregation) for which the congestion coe�cient is
calculated.

Investigate how congestion visualisation can be integrated in WMS

� With the congestion measurement procedure in place, the next focus regards presentation
of the results. Suitable visualisation techniques help grasping a problem. The visualisation
methods demonstrated in this report would be a valuable feature to incorporate in the WMS,
because they present information in way that is understood by both experts and laymen.

� A logical �rst step would be to add heatmaps and time graphs to show the spatial and
temporal variability of congestion. These static visualisations are fairly simple and quick to
implement. More complex, and arguably less valuable for higher-level managers (because
their time is typically scarce and they prefer to see things at a glance), is the integration
of dynamic visualisation techniques in the WMS. The dynamic visualisation tool created
during this project was built using closed-source software, though it could interface with the
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Vanboxtel WMS. Reconstruction of the tool in an open-source environment is well possible,
but would naturally require time and e�ort.

Perform research on congestion prevention as dynamic trade-o�

� While this research primarily focused on hindsight approaches for historical data, methods
to address congestion dynamically and real-time have not been investigated. Important to
this regard is to understand the relationsips between congestion causes and relevant Key
Performance Indicators (KPIs). These relationships will often be trade-o�s: a reduction
in congestion as result of some adjustment comes together with a lower score on another
KPI, and vice versa. For example, randomising storage assignment reduces congestion, but
typically also results in longer travel distances, and vice versa.

� For as far as possible, such trade-o�s must be formulated mathematically, so that smart logic
in the WMS could dynamically calculate how to reduce congestion, without giving in too
much on other measures of performance.

10.2.2 For Colfridis

Run a pilot project with bucket brigades

� Bucket brigades are essentially congestion-free systems, though they may not be practical in
all cases. No capital investments are necessary to try picking by bucket brigade in a short
pilot experiment, so the e�ectiveness of the strategy in the Colfridis warehouse can easily
be tested. If productivity goes up, then consider adapting bucket brigades for good; if not,
consider the following three recommendations.

Investigate if storage assignment can be randomised

� A random distribution of items over the warehouse 
oor contributes to an even distribution
of workers over the warehouse, thereby reducing congestion. The usual drawback of random
storage in comparison to a strategy that clusters popular items{longer travel distances{does
not apply in the Colfridis warehouse because workers already traverse through the entire
warehouse anyway. Thus the travel distance will remain roughly the same, while congestion
goes down.

� Under dispersed storage there is even less congestion than under random storage, though it
also is a more complex strategy. To enforce dispersed storage it is required to simultaneously
consider the popularity and size of an item, and make a smart decision for its location based
on these characteristics.

Investigate if aisle-skipping can be employed

� Many pickers start working at the same time at the start of a pick shift. This leads to much
congestion because all pickers start at the same place in the warehouse. Subsequently, these
workers form a moving cluster through the warehouse because they all follow the same route
until at some point, the accumulation resolves and the workers spread out. There are two
straightforward ways to tackle this problem.

� The �rst way is to simply let the pickers start at di�erent times, i.e. to spread them temporally.
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� The second way is to spread pickers spatially from the beginning. This can be done by letting
part of the workers skip one or more of the �rst aisles at the start of a pick shift. By doing
this the workers are immediately distributed over the warehouse 
oor, and congestion will be
much less.

Reassign the PSNs

� The intended routing through the warehouse is currently not well de�ned because PSNs are
assigned at bay level. By basing the PSN of a location not on the bay it is located in, but
instead on its coordinates, every location will have a unique PSN and the exact desired route
can be enforced.

� This alternative way of assigning PSNs can be used to properly implement z-picking or double-
sided picking routing strategies that involve less against-direction travelling and thereby re-
duce congestion.

10.3 Future academic research

This master thesis aimed to address the literature gap that is constituted by the fact that virtually
all current research on congestion is highly theoretical. The practical relevance of congestion
literature can be enhanced when academics would make better use of the vast amount of data that
is being logged by Warehouse Management Systems in warehouses all around the globe nowadays.
A start has been made in this project by means of a case study, but, naturally, much more data-
driven research is necessary to fully understand congestion in real-life warehouses.

An interesting topic for further investigation regards re�nement of the congestion measurement
method proposed in this report. In particular, the parameter setting of the w-algorithm could be
made more intelligent and less arbitrary. The question here is how proximate, both in the spatial
and temporal sense, workers must be to su�er congestion e�ects. The answer probably lies in
examination of data and linking worker accumulation to some measure of performance.

Related to the question of how proximate workers must be to experience mutual blockage is the
size of the vehicles (such as pick carts or pallet trucks) they use. It is obvious that large vehicles can
contribute to congestion, especially given the fact that warehouse aisles are typically con�ned to
limit space usage and travel distances. The current literature on warehouse operations in general,
and warehouse congestion in particular, is lacking because almost all research abstracts from the
presence of vehicles. It is thereby implicitly assumed that workers carry all the items they pick
in their hands|of course, this is not realistic. In order to better capture the reality of warehouse
operations, academics should explicitly consider the role of vehicles in their future research.

It is noteworthy that, while this research reports causes of congestion, these are warehouse-
speci�c and will likely di�er from case to case. Similar case studies at other warehouses would lead
to a more complete and general picture. A solid empirical diagnosis of warehouse congestion can
then be made by aggregating the results of such case studies.

In this project I have looked into the possibilities of prediction of congestion, and came to the
conclusion that it is possible to obtain well-�tting regression models. There is however much more
to discover in this area, for example real-time prediction: estimating the extent of congestion, say
for the next hour, based on the current set of orders, composition of the workforce, and operational
decisions. This is useful because immediate action can be taken when much congestion is expected.
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APPENDIX

A

W -ALGORITHM: PARAMETER SETTING

This appendix elaborates on parameter setting of the w-algorithm for the Colfridis warehouse.
First, the parameter setting that was used for the calculations in this research is described (Section
A.1). Second, an alternative parameter setting that takes the travel direction of workers into
account is discussed (Section A.2).

A.1 Used parameter setting

The parameters of the w-algorithm were set as follows:

� T̂ : 15 seconds;

� X̂: 10 meters;

� Ŷ : width of the aisle.

A temporal threshold value T̂ of 15 seconds was used. On average, when picking, workers
sojourn about 7 seconds on a location; T̂ was set greater than this ’location time’ to include all
workers that were nearby, because also workers that do not fall within these 7 seconds can be of
hinder.

The setting of X̂ and Ŷ requires some additional explanation as to how I approached the aisle
structure of the warehouse. The warehouse has seven long aisles in the x-orientation (recall Figure
2.2). Six of them have long racks on both sides (the long-rack section), whereas one aisle has a
long rack on one side and a series of perpendiculary positioned short racks on the other side (the
short-rack section). Thus, I consider the �rst long rack in the long-rack section and all short racks
in the short-rack section as being part of one aisle. The reason is that, as explained earlier, workers
do not take their pick cart into the short aisles, but instead leave them in the long aisle. All short
racks together can therefore be seen as one long rack.

An X̂ of 10 meters is used for all seven aisles. This value is chosen as the sum of the average
travel distance of a picker (about �ve meters in the long-rack section) and the length of a pick
cart (also about �ve meters). The length of the pick cart is incorporated because, even though
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another picker may be more than an average travel distance away, the sizable pick cart of this
picker typically drags behind and can still be of hinder. The Ŷ is set as the width of the aisle; the
width of the six aisles with long racks on both sides is 3 meters and the width of the deviating aisle
is 7.65 meters, which is greater because it incorporates the length of the short aisles. See Figure
A.1 for clari�cation.

Figure A.1: Area considered in w-algorithm under used parameter setting

A.2 Alternative parameter setting

Section 5.1.1 shortly described the in
uence of travel direction of a worker on the blocking he expe-
riences from worker accumulation. It was mentioned that travel direction of workers is particularly
relevant in a warehouse with unidirectional aisles where mutual overtaking of workers is not possible
or seldom. Although the aisles in the Colfridis warehouse are not strictly unidirectional, the aisles
are generally traversed through in the same direction as a result of the routing policy (see Section
2.2.2). Observation of the pick operation, both in real life and by means of the visualisation tool,
made clear that workers in the Colfridis warehouse do often overtake each other. Nonetheless, the
e�ect of travel direction in the Colfridis warehouse is assessed in this section.

The parameter setting laid out in the previous section disregards travel direction. To investigate
the e�ect of travel direction I calculated values for w with an alternative parameter setting that
does take travel direction of workers into account. Figure A.2 illustrates the asymmetric area that
was employed in this alternative parameter setting. The spatial threshold value X̂ is di�erentiated:
a value of 15m is used in front of the picker, whereas a value of only 5m is used behind the picker,
with respect to the general travel direction of the aisle the worker is in. Under this alternative
setting, accumulation in front of a worker contributes more to w than accumulation in the rear of
a worker.

81



APPENDIX A. W -ALGORITHM: PARAMETER SETTING

Figure A.2: Area considered in w-algorithm under alternative parameter setting

Figure A.3 shows the distribution of w over its occurring values for both the used and the
alternative parameter setting. One can see that their graphs almost perfectly coincide. This
implies that|at a macro level|the two di�erent parameter settings of the w-algorithm lead to
similar results. Also at the level of individual activities results are quite similar: 82.5% of the
activities have the same value for w under both parameter settings. The similarity of results can
be explained by the fact that both parameter settings use a range of 20m in the x-orientation;
apparently the exact positioning of this range around the worker does not matter much for the
values yielded by the algorithm. The conclusion that can be drawn from this �nding is that, while
conceptually there is a clear distinction between the used and the alternative parameter setting,
this does not lead to great di�erences in results.

Figure A.3: Distribution of picks over w for both the used and alternative parameter setting
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B

ON SPATCLUSTAND RIPLEY’S K FUNCTION

The K function of a stationary point process X is de�ned so that �K (r) equals the expected
number of additional random points within a distance r of a typical random point of X, where �
denotes the intensity and equals the expected number of points of X per unit area. Translated to
this case, the realised pick locations constitute the point process and the intensity resembles the
expected number of pick locations per square meter of warehouse 
oor.

The random Poisson point process is homogeneous, meaning that points are uniformly dis-
tributed over the area. For such a process, it holds that

KP ois (r) = �r2: (B.1)

Clustered point patterns have K greater than this function, whereas dispersed patterns have
smaller K (Ripley, 1977). In practice, it is often easier to work with the transformation

LP ois (r) =

r
KP ois (r)

�
= r: (B.2)

known as Besag’s L function (Besag, 1977). The larger the deviation

d (r) = L (r) � LP ois (r) = L (r) � r; (B.3)

the more clustered the point pattern of X. SpatClust is de�ned as the average deviation for
varying values of the distance r:

SpatClust =
1

jRj

X

r2 R

d (r) (B.4)

where R is a set of values for the distance r. By lack of an exact analytical expression of L for
arbitrary point patterns, it needs to be estimated. The estimator L̂ (r) was calculated in the R
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environment1 using the SpatStat package2. Figure B.1 should clarify what is described above; it
shows random (Poisson), clustered, and dispersed point patterns, the estimators of their L functions,
their deviations d, and the corresponding value of SpatClust.

1R Core Team (2014). R: A Language and Environment for Statistical Computing . R Foundation for Statistical
Computing, Vienna, Austria

2Baddeley, A., Rubak, E., & Turner, R. (2016). spatstat website. www.spatstat.org
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Figure B.1: Random, clustered, and dispersed point patterns with respective L functions, deviations d, and values for StatClust



APPENDIX

C

OLS ASSUMPTIONS

The regression analysis performed in Chapter 7 made use of OLS estimation. This appendix
addresses the assumptions underlying the estimation procedure. The assumptions are assessed for
model D, the most complete and best-�tting model.

Linearity of the relationship between the predicted and predictor variables
The added-variable plots shown in Figure C.1 indicate linear relationships between the predicted
and predictor variables: the straight lines seem to provide a good �t for the point clouds. There is
no reason to reject the assumption of linearity.

Figure C.1: Added-variable plots for predictor variables of model D
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Normality of the error term
The Q{Q plot shown in Figure C.2 indicates a good �t between the regression residuals and the
theoretical normal distribution. A light-tailed distribution can be identi�ed, but deviation from the
normal distribution will never me more than minor. There is no reason to reject the assumption of
normality of the error term. Furthermore, given the sample size Ntrain = 153 cases, the distribution
of the estimates will tend to normal anyhow by the Central Limit Theorem.

Figure C.2: Q{Q plot of normal theoretical quantiles versus sample quantiles

Homoskedasticity
The studentised Breusch-Pagan test (Koenker, 1981) yields a p-value of 0.7191, implying that
homoskedasticity|constant variance of the error term|is rejected. Validity of the p-values for the
regression estimates (as reported in Table 7.2) is unclear due to the heteroskedasticity. This issue
can be overcome by consideration of the heteroskedasticity-consistent, or "corrected", p-values.
Table C.1 provides the corrected p-values as well as the uncorrected. Main conclusion is that all
estimates are signi�cant at the highest level based on both corrected and uncorrected p-values.

Table C.1: Heteroskedasticity-consistent p-values

Model D
Estimate p-value Signi�cance corrected p-value Signi�cance

ln (CC)
Intercept 0.058 4.11E-05 *** 5.62E-05 ***

ln (NrPickers) 0.175 <2E-16 *** <2.2E-16 ***
TempClust2 0.048 1.16E-12 *** <2.2E-16 ***

NrPicks:SpatClust2 0.046 4.21E-10 *** 1.64E-10 ***

Independence between error term and predictor variables
If the assumption of independence between the error term and the predictors is true, than the
regression variables can be interpreted as causal e�ects. The assumption cannot be tested statisti-
cally, because residuals are by construction uncorrelated with the predictor variables. The crucial
question is whether there are omitted variables that in
uence the congestion coe�cient and are
correlated with the predictor variables. Three of the four congestion causes diagnosed in Chapter
6 are included in regression model D; only cause IV { against-direction travelling is left out. This
omitted variable is likely not correlated with the other predictor variables: there is no reason why
against-direction travelling would be related to the other causes.
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D

FEASIBILITY OF AISLE-SKIPPING PICK TOURS

Amount of aisle-skipping pick tours
The proposed alternative DPU selection procedure is only feasible when there are su�ciently many
pick tours that can skip one or more of the �rst aisles. Figure D.1 shows the average daily amount
of pick tours that can be constructed for indentation in di�erent aisles. More speci�c, it shows the
average daily amount of pick carts that can exclusively be �lled with DPUs that skip aisle(s) A, A
to B, A to D, etc. As indicated in the Figure, on an average day 22 pick tours can be constructed
that skip the A-aisle and indent in the B-aisle. This number results from taking the amount of
DPUs that can skip the A-aisle, but not the B-aisle, and dividing it by 24 (the number of DPUs on
a pick cart). Similarly, on an average day almost 10 pick tours can be constructed that skip both
the A-aisle and B-aisle (and C-aisle, which can always be skipped in regular pick tours), and indent
in the D-aisle. This number results from taking the amount of DPUs that can skip the A-aisle and
the B-aisle, but not the D-aisle, and dividing it by 24. It can be concluded that there are enough
aisle-skipping DPUs to form multiple indenting pick tours. Given that, on average, there are about
55 pick tours per day, the percentage share of tours that can skip on or several aisles is substantial.

Figure D.1: Multi-aisle skippability expressed in #pick tours per day
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Order of selection criteria
The proposed alternative DPU selection procedure clusters based on aisle-skippability. This con
ict
with the other three selection criteria (pick priority, delivery date, and delivery address) described
in Section 8.2.1. The order in which the selection criteria are assessed a�ects the feasibility of
indenting pick tours. As mentioned, there needs to be su�cient aisle-skipping DPUs. Therefore, it
is probably required that the aisle-skippability criteria is considered before the other three criteria.
The reason is that, when the other criteria would be assessed �rst, the set of DPUs that skip a
certain set of aisles is likely not large enough to �ll a pick cart.
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