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ABSTRACT.

More and more functionality can be integrated on one chip, because of technological

development. Currently, the number of gates per square millimetre is growing faster

than the number of gates a designer can implement. A solution to this is the use of

cores.

This thesis describes the development of a Peripheral Interface Controller (PIC) soft

core, a simple 8-bit rnicrocontroller. The PIC16C5x soft-core is developed and

simulated in Summit Visual VHDL.

The core is implemented on an Altera FLEX 10K FPGA. The program memory is

implemented in Embedded Array Blocks (EABs). An EAB is a specially designed block

to implement memory in.

Programs for the core can be written with the standard PIC tools. These tools generate a

HEX-file. A program is written that converts the HEX-file into a HEX-file that can be

loaded into the EABs.

Because every instruction, except program branches, execute in one clock cycle it is not

possible to implement the data memory in an EAB. Now, the data registers are

implemented in logic cells. In terms of hardware this is expensive, because each register

requires at least 8 logic cells. To implement the data memory in an EAB, the instruction

cycle has to be divided in more than one clock cycle or a FLEXlOKE FPGA has to be

used.

The implemented PIC-core runs at a maximum clock frequency of 13.5 MHz and

occupies 902 Logic Cells.
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1. INTRODUCTION.

More and more functionality can be integrated on one chip, because of technological

development. Currently, the number of gates per square millimetre is growing faster

than the number of gates a designer can implement. A solution to this is 'design for

reuse' and the use of cores. Cores, also called IF (intellectual property) or VC (virtual

component), are tested modules, which can be used for System-on-Chip (SoC) based

designs, for example microcontrollers and digital signal processors. There are two

different types of cores:

• Soft cores, these are cores described in a hardware description language, such as

VHDL or Verilog. These are technology independent, so timing aspects will only be

known after place and route.

• Hard cores, these are modules optimised for a certain technology.

A clear trend can be seen from board-level systems to System-on-Chip based designs.

TNO Institute of Industrial Technology, in co-operation with the Eindhoven University

of Technology is exploring these developments.

During the graduation project a Peripheral Interface Controller (PIC) soft-core is

developed. A Peripheral Interface Controller is a simple 8-bit microcontroller. The core

is implemented on a by TNO developed flexible hardware platform.

In this thesis modelling of the PIC-core in Summit Visual VHDL and the

implementation on an ALTERA FLEXlOK FPGA are discussed.
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2. THE PIC MICROCONTROLLER.

The Peripheral Interface Controller (PIC) 8-bit microcontroller family has a wide range

of different devices [3]. They differ in program word width, the amount of program

memory, the amount of RAM, the presence of an interrupt mechanism, and peripheral

modules, for example an FC bus interface. But all the different models are based on the

same architecture.

This chapter describes the basic functionality and architecture of the standard PIC

microcontroller.

2.1 The PIC 16C5x microcontroller family.

The PIC 16C5x [1],[3] microcontroller employs an RISC-like architecture with 33

single word, single cycle instructions. All instructions are single cycle except for a

program branch, which takes two cycles. An overview of the instruction set is found in

Appendix A.

Also, it has a special power saving feature, the Sleep-mode. In order to improve

reliability it has a watchdog timer.

The clock frequency ranges from DC up to a maximum of 20 MHz.

2.2 Architecture.

A block diagram of the PIC 16C5x series can be found in figure 2.1. In this figure can

be seen that the PIC contains a number of architectural features commonly found in

RISC microprocessors. Starting with, the use of a Harvard architecture in which

program and data are accessed on separate busses. This improves bandwidth over the

traditional von Neumann architecture where program and data are accessed on the same

bus. Separating program and data memory further allows instructions to be sized

differently than the 8-bit wide data word. For the PIC16C5x series the program words

are 12-bits wide. Which makes it possible to have all single word instructions. A 12-bit
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2.5 Indirect addressing.

Indirect addressing is done using the INDF register, location OOh in data memory (see

figure 2.3. The INDF register is not a physical register and is used in conjunction with

the file select register (FSR) to perform indirect addressing. Any instruction using the

INDF register actually accesses data pointed to by the FSR.

The five least significant bits of the FSR register are the pointer for data memory

addresses OOh to IFh. Bit four toggles between the upper and lower sixteen bytes in the

register file. When clear, this bit points to the lower sixteen bytes, when set, it points to

the upper sixteen bytes. When bit four is set, bit five and six of FSR are used to select

the bank.

2.6 Program counter.

The program counter selects the program memory address. After each instruction is

executed the contents of the program counter is incremented, unless an instruction, for

example OOTO, alters the contents of the program counter. After a device reset or

power up the program counter is loaded with the highest possible address, the so-called

reset-vector.

The program counter's width depends on the PIC 16C5x-type, and ranges from 9 to 11

bits. All types have an 8-bit wide Program Counter Latch (PCL) at location 02h in data

memory (see figure 2.3). The PCL register contains the 8 lower order bits of the

program counter.

For a OOTO instruction the nine least significant bits of the Program Counter are loaded

with the immediate value contained in the instruction word. The two most significant

bits of the Program Counter are loaded with bit 6 and bit 5 of the status register, the so

called page select bits, see figure 2.4.

When a CALL instruction or an instruction which modifies PCL is executed the

Program Counter's eight least significant bits are loaded with the value of PCL, the

ninth bit is loaded with '0' and the Program Counter's two most significant bits are

loaded with the page select bits from the status register. As a consequence of clearing

the ninth bit of the Program Counter, a CALL instruction and instructions that compute
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After a return from subroutine, the Program Counter is loaded with the contents of stack

levelland the contents of level 2 is loaded into stack level 1.

If there are more than two nested CALL instructions, a stack overflow will occur. In

that case, a correct return from subroutine is impossible.

2.8 Status register.

The status register contains the arithmetic status of the ALD, the RESET status and the

page select bits for program memories larger than 512 words. See figure 2.5.

As with any other register the status register can be the destination for any instruction.

Furthermore, the TO and PD bits are not writable. Therefore, the result of an

instruction with the status register as destination may be different than intended. For

example, CLRF status will clear all bits except for TO and PD and then set the Z bit

and leave status register as OOOuulOO (where u is unchanged).

z
2

Figure 2.5: Status register.

C: Carry/borrow bit.

1 =A carry out for the most significant bit of the result occurred.

o=No carry for the most significant bit of the result.

For borrow the polarity is reversed. For rotate instructions, this bit is loaded with

either the high or low order bit of the source register.

DC: Digit Carry/ borrow bit.

1 =A carry-out from the fourth low order bit of the result occurred.

0= No carry out from the fourth low order bit.

For borrow the polarity is reversed.

Z: Zero bit.

1 =The result of an arithmetic or logic operation is zero.
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o= The result of an arithmetic or logic operation is not zero.

PD: Power-down bit.

1 = After power-up or by a CLRWDT instruction.

0= By execution of the SLEEP instruction.

TO: Time-out bit.

1 = After power-up and by the CLRWDT or SLEEP instruction.

o= A watchdog timer time-out has occurred.

PAl :PAO: Program page pre-select bits.

00 = Page 0 (OOOh-IFFh)

01 = Page 1 (200h-3FFh)

10 = Page 2 (400h-5FFh)

11 = Page 3 (600h-7FFh)

PA2: This bit is not implemented.

2.9 I/O ports.

The I/O ports are in the same address space as the file-registers. They can be accessed

the same way as the other data registers, see figure 2.3.

All the types of the PIC16C5x family have a 4-bit wide port (port A) and an 8-bit wide

port (port B). Some types also have an additional 8-bit wide port (port C).

Every I/O port is assigned a TRIS-register (tristate register). The content of this register

determines, for every pin of the port, the data direction. A ' l' configures the

corresponding pin as an input pin. A '1' in the TRIS-register makes the corresponding

pin tristate, this means it is put in a high impedance mode. On the contrary a '0'

configures the corresponding pin as an output pin. The TRIS-registers are not in the

address space of the file-registers. The TRIS registers can not be read. After a RESET

all the I/O-pins are configured as input.

A value, which is written to a port, is stored in a latch. This value is kept until a new

value is written. On the contrary, an input-level isn't stored between two clock cycles,

but is directly coupled to the data-bus. Thus, the input level has to remain stable until

the accompanying instruction that reads the port is executed.
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2.10 TimerO module.

The TimerO (TMRO) module has the following features:

• 8-bit timer/counter

• readable and writable

• 8-bit software programmable prescaler

• internal or external clock select

• edge select for external clock

Timer mode is selected by clearing the TOCS bit, bit 5 of the OPTION register, see

section 2.12. In timer mode, the value of TimerO-register (Olh in datamemory) is

incremented every instruction cycle (without prescaler).

Counter mode is selected by setting TOCS bit. In this mode TMRO will increment either

on the rising or falling edge of pin TOCKI. The TO source edge select bit (bit 4 of the

OPTION register) determines the incrementing edge. Clearing this bit selects the rising

edge.

A prescaler can be used to adjust the rate at which the TimerO register is incremented,

see section 2.12.1.

2.11 Watchdog timer.

A watchdog timer is used to prevent a microcontroller from dead-lock. Because the

watchdog timer resets the device after a preset time, the device restarts in a known state.

The WDT has its own on chip oscillator. When enabled, the watchdog timer will

generate a reset every 18 ms. A longer timer interval can be realised by using the

prescaler as a postscaler for the WDT. If the prescaler is used for the watchdog timer the

time-out period can be prolonged to2.3 s.
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2.12 Option register.

The option register is a 6-bit wide write-only register, which contains various control

bits to configure TimerO and the watchdog timer prescaler, see figure 2.6. By executing

the OPTION instruction the value of the W register will be transferred to the option

register.

u·o u-o W·1 W-1 W-1 W·l W·l W-1

TOeS TOSE PSA PS2 PSl PSO
bit7 6 5 4 3 2 1 bitO

Figure 2.6: Option register.

PS2:PSa
PS2 PSI psa TimerO rate WDTrate

a a a 1 : 2 1 : 1

a a 1 1 : 4 1 : 2

a 1 a 1 : 8 1 : 4

a 1 1 1 : 16 1 : 8

1 a a 1 : 32 1 : 16

1 a 1 1 : 64 1 : 32

1 1 a 1 : 128 1: 64

1 1 1 1 : 256 1 : 128

PSA: Prescaler assignment bit

1 = prescaler assigned to the watchdog timer.

a=prescaler assigned to TimerO.

TaSE :TimerO source edge select bit

1 =Increment on high-to-Iow transition on TaCKI pin.

a=Increment on low-to-high transition on TaCKI pin.

TaCS:TimerO clock source bit

1 =Transition on TaCKI pin.

a=Internal instruction cycle clock.
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2.12.1 Prescaler.

An 8-bit counter is available as a prescaler for the TMRO module, or as a postscaler for

the watchdog timer. Only one prescaler is available. The prescaler is mutually exclusive

shared between the TMRO module and the watchdog timer. The prescaler assignment is

controlled in software by the control bit PSA, bit 3 of the OPTION register. Setting the

PSA bit will assign the prescaler to the watchdog timer (WDT) and will cause the

prescaler rate for TMRO to be 1: 1. Clearing the PSA bit will assign the prescaler to

TMRO. The prescaler rate is determined by the three lower order bits of the option

register, see figure 2.6.

When assigned to the TMRO module, all instructions that write to the TMRO module

will clear the prescaler. When assigned to the watchdog timer, a CLRWDT instruction

will clear the prescaler along with the watchdog timer.

The prescaler is neither readable nor writable.

2.13 Configuration word.

The configuration word can be programmed to select various device configurations.

One of the bits is used to enable the watchdog timer. Only this bit will be implemented

in the soft-core. More details on the configuration word are omitted, because the other

features will not be implemented.
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3. DESIGN OF THE PIC-CORE.

The design of the PIC core is done in Summit Visual HDL, a VHDL entry tool. A

design is made up of blocks containing state-diagrams, flowcharts, truth table or VHDL

code. Also, simulation is very easy with Visual HDL. In the next sections the design of

a PIC16C5x soft core is discussed.

3.1 The top-architecture.

In figure 3.1 the top level of the PIC-core design can be found.

rom_data (11 :0)

elk

TOolkjn

rom_adres (10:0)

porta (7:0)

portb (7:0)

porto (7:0)

Figure 3.1: Top-level of the PIC-core.

The figure shows the core with all its input and output signals. The core has a clock

input elk, which is the system clock for the core. All actions are synchronised on the

positive clock edge.

The output rom_adres is a II-bit wide address bus, which must be connected to an

asynchronous ROM. The ROM's data is read into the core via the 12-bit wide data bus,

rom_data.

MCLR_not is an active low reset signal that puts the core in its reset state when a '0' is

present on MCLR_not. Reset is synchronous with the positive clock-edge. In order to

reduce meta-stability the MCLR_not input signal has to be synchronised with the clock.
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TOclk_in is an input signal, equivalent with the TOCKI pin of the PIC16C5x-pin. It is

used as a clock input for TimerO.

WDT_elk is used as a clock input for the watchdog timer. It is a substitute for the on

chip oscillator present on the PIC16C5x. In the original PIC microcontroller (sec. 2.12)

a configuration word is present. One of the configuration word's bits is used to enable

or disable the watchdog timer. This configuration word is not present in the PIC-soft

core. To enable en disable the core's watchdog timer, the WDT_en signal is used.

The core has three 8-bit wide bi-directional I/O ports; porta, porth, and porte. The width

of porta differs from the width of Port A found on the PIC16C5x series, which is a 4-bit

wide I/O port. Because all I/O ports are functionally equivalent one port component is

designed. This component is used for all three I/O ports.

3.2 Datapath overview.

A simplified overview of the PIC-core's datapath is drawn in figure 3.2. The different

components in figure 3.2 are connected to a controller. Depending on the instruction

under execution the controller determines which operation the ALU has to carry out.

Also, the controller selects whether or not the working (W) register has to be written.

Furthermore, the controller selects the register to read from and eventually to write to.

In one clock cycle an instruction is decoded, the operands are read, the ALU performs

an operation, and the result is written to either W-reg or register file (1.5 address

machine). At the same time the next instruction is fetched from program memory.

\v
REG.

REGISTER FILE

Figure 3.2: Simplified datapath overview.
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The block diagram of the implemented PIC-core's datapath and controller is found in

figure 3.3.

3.3 Register file.

The register file contains the special function registers, the general purpose registers the

I/O ports with its TRIS registers, and the Option register. See figure 3.4.

The reg_ctrl block selects the register that is written with value of ALU-out. If a specific

register is written the controller makes I_we or tris_we high. The addr_mux block

determines the address of the register.

The addr_mux block is used to determine whether an indirect address must be used.

This is true if the address specified by I_sel is OOh. In that case, the five lower order bits

of the FSR-register are used.

The multiplexer regfile_mux selects the register used as output of the register file.

The special function registers and the data register are discussed in the next sections.

3.3.1 FSR register.

The File Select Register, location 04h in datamemory, is used for indirect addressing.

The value of the five lower order bits in this register is the address of the indirect

addressed register.

Two bits, bit 5 and bit 6, are used for bank selecting. At the moment these bits are not

implemented, because only 24 general-purpose registers are implemented (bank 0). For

more details see section 3.3.7 and section 4.3.

If needed, the bank select bits can be implemented by adding a bank_sel signal from

FSR to the block containing the general-purpose registers. This two bit wide signal is

used to select one of four banks.
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alu_stat_\M!
alu_statJn

clr \Adt

[pona_v.en,tris_3_Vt.eJ

(portb_\AAlIn.tri»_b_vwl

fsrJat(4:0)

.e1 (4:0)

,.,-+-t-----... TMRO_W!!i

pc (7:0)

regfile_out (7:0)

Figure 3.4: The register file.

3.3.2 TimerO register.

TimerO register is the register used by timerO. Its location in datamemory is Olh. When

the TimerO-pulse signal, generated in the WDT/TimerO block (see section 3.6.2) is 'I'

the value of this register is incremented by one. The incrementing is synchronised with

the positive edge of the system clock. If TimerO is used to count pulses on the eLK_in

pin, it takes three clock cycles before TimerO register is incremented after a pulse

occurred on this pin. More details are found in section 3.6.2.

It is also possible to write a preset value to this register.
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3.3.3 PCL register.

The PCL register contains the low order eight bits of the program counter (PC). Its

location in the datamemory is 02h. The program counter is physically implemented in

the controller-block. Writing to the PCL register is done in this block. More details of

the program counter are discussed in section 3.8.3.

3.3.4 Option register.

The option register is a non-addressable and write only register. When an OPTION

instruction is executed the six least significant bits of alu_out are written into the option

register. The value of this register is used to configure the prescaler and TimerO as

specified in section 2.12. More information on the prescaler and timerO can be found in

section 3.6.1. A reset sets all bits of the Option register to '1'.

3.3.5 The I/O ports.

All three I/O ports, porta_reg, porth_reg, and porte_reg consist of a data register,

data_reg, and a tristate register, tris_reg. See figure 3.5.

The tristate register is an eight-bit wide register and is used to configure the I/O port. A

'1' from a bit in this register puts the corresponding output driver in a hi-impedance

mode. This pin is now configured as input. A '0' in the tristate register puts the contents

of the data_reg on the selected pins. When a TRIS instruction is executed, and tris_en is

high the value on the data_in bus is written to the tristate register. After reset the value

of the tristate register is "11111111". This means that all the I/O pins are configured as

input pins.

When write_en is high, the value on the data_in bus is written to the data register.

When the I/O port is read, the porcin signal gets the pin-value of the pins configured as

input. For the pins configured as output, porcin gets the value of the data register.
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reset

data_I at (7:0)

.....- ......- .... iOJ)ln (7:0)

porUn(7:0)

Figure 3.5:I/O port block diagram.

3.3.6 Status register.

The status register is located at location 03h in the datamemory. The register can be

divided into three different parts. One part containing the state after an ALU operation

(bit 0,1,2), a second part containing the reset status (bit 3 and 4) and a part used to select

a page in program memory (bit 5 and 6). Bit 7 isn't implemented so far, but can be used

as another page select bit to enlarge program memory for example.

The three lower order bits of the status register are determined by the ALD. The

instruction currently under execution determines if it is allowed to alter one of these

bits. The instruction decoder (see section 3.8.2) enables writing to these bits. If it is

allowed to write the carry bit then staCc_we is '1', if it is allowed to write the digit

carry bit, staCDC_we is '1', and if it is allowed to write the zero bit then staCcwe is

'1' .

Bit 3 and bit 4 of the status register contain the reset status. The value of bit 3 and bit 4

are found in table 4.1. These bits are read-only. When a reset occurs, due to a master

reset or due to a watchdog timer time out, the three upper bits of the status register are

all cleared. The three lower order bits are left unchanged.
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Table 4.1: The reset status.

Bit 4 Bit 3 Condition

0 0 Watchdog timer reset during normal operation

0 1 Watchdog timer reset during SLEEP

1 0 Master reset during SLEEP

1 1 Clear watchdog timer (CLRWDT) instruction

Bit 5 and bit 6 of status register are used for selecting a page in program memory. These

two bits correspond to the upper two bits of the Program Counter.

Also, it is possible to write a value to the status register. In that case bit 3 and bit 4 are

left unchanged.

After a reset the three higher order bits are all cleared, the three lower order bits are

unaltered, and bit 3 and bit 4 contain the reset status (see above).

3.3.7 General purpose registers.

The general-purpose registers are used to store data. It is the RAM memory of the core.

At most 72 words are available as general-purpose registers, at least there are 24 words

available.

The core executes each instruction in one clock cycle. It is possible to read an operand

from memory, do an operation on it and write the result back into the same memory

location. Thus, in one clock cycle a register can be read and written. Constructing a

general-purpose register file that reads data asynchronously and writes data

synchronously solves this.

The register file contains at least 24 registers. In order to make it possible to use 72

general-purpose registers, bit 5 and bit 6 of the FSR register have to be used to

implement bank switching.

Only 24 registers are implemented, because they are implemented in logic cells. Each

register consumes 8 logic cells. So, in terms of hardware it is very expensive to

implement RAM in logic cells. Solutions to this are discussed in section 4.3.
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3.4 Arithmetic and logic unit.

As depicted in figure 3.6 the ALU consists of a ALU-core, which is the block that

actually executes the arithmetic and logical operations. In front of the ALU-core are two

multiplexers to select the two operands used by the ALU-core. The operands can be an

eight bit literal value, or the contents of the working register or one of the registers.

The biCdec block is a block that generates a bit-pattern. This pattern can also be

inverted and is used to set, clear and test a certain bit in a byte.

wout (7:0)

fout (7:0)

k (7:0)

b (2:0

bppol

• alu b sel (1 :0)1 • alu op (3:0) 1

alu DCo

3.4.1 ALU core

Figure 3.6: Arithmetic and logic unit.

The block diagram of the ALU-core is found in figure 3.7. The adder-plus_8bit block is

an adder that adds two bytes, without using a carry-in. This block generates a digit carry

when an overflow occurs from bit 3 to bit 4. It also generates a carry-out bit when an

overflow of the most significant bit of the result occurs. The adder is also used to

subtract. This is done using the 2's complement method. The second operand (adder_b)
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is complemented and carry-in (adder_cin) is made '1'. Then the operands are added.

Now, the carry bit and digit-carry bit are the borrow and digit borrow bits.

The logic block in figure 3.7 performs the logical operations, AND, OR, Exclusive OR,

and the complementation of alu_a . Also, it performs the shift operations rotate left and

right through carry. The rotate left through carry (ROL) instruction shifts the seven

lower order bits of alu_a one position to the left. The carry-in bit is shifted into bit 0 and

carry out gets the value of the most significant bit. The Rotate right through carry

instruction (ROR) works similar. Finally, the logic block performs a swap operation.

This operation swaps the four lower order bits with the four higher order bits of alu_a.

The tesCcout takes care of generating the camy bit for add, subtract and the shift

operations.

Alu_mux is a multiplexer. Depending on operation, it selects either adder_result or

logic_result as value for alu_out. If this selected value is zero, the tesCzero block

makes the value of the alu_Zo signal '1'. This value is used by the status register to

update the zero-bit.

Figure 3.7: The core of the ALD.
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3.6.1 Prescaler.

The prescaler is either used by the watchdog timer or by TimerO, this is determined by

PSA, PSA is bit 3 of the Option register. If PSA is '1' the input of prescaler2 is the

WDT_counter. Now, the prescaler functions as a postscaler to the watchdog timer. If

PSA is '0' the prescaler is assigned to TimerO.

The prescaler itself is an eight bit counter; the prescaler2 block in figure 3.8. It counts

low-high transitions of the PS_in signal. This counter is cleared after reset, or when the

prescaler is assigned to the watchdog timer and the watchdog timer is cleared by a

CLRWDT instruction, or when the prescaler is assigned to TimerO and a value is

written to the TimerO register.

Behind the prescaler counter is an 8-to-l multiplexer. Depending on the value of the

three lower order bits of the Option register the multiplexer selects one of the eight bits

of the output of prescaler2. For example, if the value of the three lower order bits of the

option register is "010", bit 2 of PS_byte_out is selected. Now, the rate of the prescaler

is 1:16 for the Watchdog timer and 1:32 for TimerO.

3.6.2 TimerO.

TimerO register is incremented if TMRO-pulse is '1' and a low-to-high transition of the

system clock occurs.

TMRO-pulse is generated in the TimerO/watchdog timer block. As source for the pulse

generator the system clock (clk_tri) or an external source on pin TOclk_in is used. When

an external source is used the pulse generator is triggered either on a high-to-Iow or

low-to-high transition of TOclk_in. The signal from the source may also pass the

prescaler.

Prescaler assignment, source select and edge select are determined by the three higher

order bits of the option register.

When an external source is used for TimerO, the input signal is synchronised with the

system clock by two flip-flops. Because the incrementing of TimerO register is

synchronised with the system clock, it takes three clock cycles before TimerO register is

incremented after a transition on TOCLK_in. See figure 3.9. In this figure TOCLK_in is

the source for TimerO. TimerO counts on the positive edge. The prescaler is assigned to

the watchdog timer.
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TO_PUlse!j___ 1'-------_
TimerO_reg rl.... +_1 -'XI.... +_1 _

Figure 3.11: Prescaler with rate 1:4 assigned to TimerO.

A difference to the specifications for TimerO operation in the PIC16C5x is, when a

value is written to TimerO register. According to the datasheets of the PIC16C5x the

incrementing of TimerO register is prohibited for two machine cycles when a value is

written to TimerO register. In other words, when a value is written to TimerO register the

pulse generator may not generated pulses for two cycles. This is not implemented in the

core because synchronisation is done by two flip-flops, so every incoming clock pulse

has a delay of two clock cycles.

3.6.3 Watchdog Timer (WDT).

On the PIC16C5x microcontroller the watchdog timer is implemented as an on chip

oscillator. It is not possible to model a stand-alone oscillator in logic. So, the

implementation of the watchdog-timer of the core needs an external clock input.

The watchdog timer is enabled when WDT_en is '1' .The watchdog timer is

implemented as a counter that counts the low-to-high transitions of the WDT_elk signal.

This is the WDT_counter block in figure 3.8. When a reset occurs or when a CLRWDT

instruction is executed the counter is cleared and restarts counting from zero.

According to the datasheets of the PIC16C5x family, the watchdog timer has a nominal

time-out period of 18 ms. To achieve the same time-out period for the watchdog timer

of the core, a value has to be adjusted. This value depends on the frequency of

WDT_elk. WDT is made '1' if the counter value equals this value. The WDT signal is

passed to the WDT_time_out signal, eventually via the prescaler. If WDT_time_out is

'1' the core is reset and the status register is adjusted.
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3.7 Clock and reset control.

This block is used to implement the sleep function. It is implemented as a state-machine

with two states, see figure 3.12. If a SLEEP-instruction is executed the processor goes

into SLEEP mode, this means the clock of the system is not active anymore. In this case

elock_tri signal gets value '0' instead of elk_in. The core stays in this state until a reset

occurs. This reset may be a master reset (MCLR_not) or a reset initiated by the

watchdog timer (WDT_time_out). If a reset occurs, this reset is passed to the other

blocks of the core by the reset signal.

Usually the core is in NORMAL mode, in this mode the value of elk_tri is equal to the

value of CLK_in. CLK_tri signal is used to provide all the other blocks with a clock

signal.

Implementing the sleep function this way, may cause problems in some implementation

technologies because the elk_tri signal is a gated clock. This problem has to be studied

more detailed.

- normal -
1Io._tri «= clio.:
f ((not MCLR_not) or WDT _time_out) = '1'

«= ' '. «=' '.

- sleep_mode-
110. _tri «= '0';

f ((not MCLR_not) or WDT _time_out) = '1'
«= ' '. «=' '.

Figure 3.12: Clock and reset control.
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3.8 The controller.

The controller block contains the program counter, the instruction decoder and the two

stage pipeline. It generates the address that selects an instruction in program memory

and it generates the signals that control all the blocks of the core's datapath. The block

scheme of the controller is depicted in figure 3.13.

';1

...."
ClkJll

alu_Qut (7:0)

,tiltus (1:0)

IMtruet Iat: f11:0

Figure 3.13: Controller block scheme.

3.8.1 Two-stage pipeline.

The core has a two-stage pipeline. At the same time an instruction in the instruction

register is decoded and executed, the next instruction is fetched from the program

memory. However when the instruction in execution causes the program to branch, the

instruction already fetched from program memory is not valid anymore. In that case the

skip_sel block in figure 3.13 makes the skip signal '1' . Now, instead of the fetched

instruction, a no operation (NOP) is latched into the instruction register (instruccreg).

So, when a program branch occurs the pipeline is flushed by executing a NOP

instruction.
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An example of the operation of the pipeline is found in figure 3.14: rom_data contains

the fetched instruction. The next clock cycle the fetched instruction is clocked into the

instruction latch. When the program counter is at location 3 a OOTO-instruction is

executed. The skip-signal is made '1', so the fetched instruction, MOVLW, is not valid

and a NaP-instruction is latched into the instruction register. This instruction is decoded

and executed. At the same time the instruction at location 8 in program memory is

fetched.

ClK

PC =x X X X )C1 X2 3 a 9

rom_data =xclrf Xgoto aXmovlwX incf X )C
instruct_reg =x Xclrf XgotoaX nop Xincf )C

skip ----------

Figure 3.14: Operation of the pipeline.

There are instructions that jump if the result of an ALU operation is zero. To realise

this, the alu_Zo signal is presented to the skip_sel block. Depending on the instruction

in execution and the ALU-result this block now can decide to make skip '1', and thus

skipping the next instruction.

3.8.2 Instruction decoder.

All instructions are 12-bit wide. The most significant bits of the instruction word

determine which instruction it is. This may be all bits, the three higher order bits, the 4

higher order bits or the 6 higher order bits. For each of these four categories a truth table

determines the value of each of the control signals. These control signals are generated

in the pic_decode3 block of figure 3.13. These control-signals enable the registers,
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select the operands for the ALU, and select an ALU operation and control the setting

and clearing of the right bits in the Status register.

Also, an instruction may contain a literal value, a data register address, the position of a

bit in a register, or an address to jump to. These values are derived from the value in the

instruct_reg block.

After reset the instrucCreg contains an NOP-operation.

3.8.3 Program Counter.

The program counter addresses a location in program memory. It can address at most 12

bit wide addresses. The eight lower order bits of this address are used for the program

counter register, address 02h in datamemory.

The pc_counter block contains the program counter register, called pc_ouCreg. It

contains the two level hardware stack and its controller. In this block is also the program

counter incrementer. For a detailed view see figure 3.15.

reset

instruet.Jat (11 :0)

pc (7:0)

rom_adres (10:0)

Figure 3.15: program counter block scheme.



-34-

A multiplexer,calledpc_mux,determinesthe new valuefor the programcounterstored

in pc_out_reg.Usually it will be thepreviousvalueof theprogramcounterincremented

by one.Incrementingis doneby anadderin thepCJJlus_lblock.

For a CALL-instruction the appropriatestacklevel is determinedby the lev_decblock.

Next, the alreadyincrementedvalue of the programis storedin the stackregister.The

value of the pc_out_regis accordingto the specificationsof figure 2.4. For the first

CALL the stacklevel is one and for the secondCALL the level is two. After a return

instruction(RETLW) the stacklevel is decreasedand the value of pc_out_reggets the

valueof the stackregister.

If a value is written to the PCL register,the result on alu_out is usedto composethe

newvalueof thepc_oucreg,accordingto thespecificationsin section2.6.

After a resetthe stacklevel is 1 andthe valueof the programcounterbecomesall zeros.

This valuecanbeadjustedeasily,by adjustinga constantvalueof theresetvectorin the

pc_muxblock of figure 3.15.Accordingto the specificationsthe programcounterhasto

point to the lastpositionin programmemoryafterreset.

3.9 Simulatingthecorein SummitVisual VHDL.

To simulate the core in Summit, a ROM is neededthat containsthe instructionsto

simulate.TheROM is connectedto the address-busandto the data-busof thecore.This

time, the instructionsarehardcodedin VHDL. When a programis changedthe VHDL

codehasto beadjusted.

All instructionsandfunctionsof the core are verified by simulationsin SummitVisual

VHDL.
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