
https://research.tue.nl/en/studentTheses/68556793-36d8-4b4b-8f73-411bd8a07eb5

Eindhoven University of Technology
Department of Electrical Engineering
Design Automation Section (ES)

Optimization of Buffer Placement
by Simulated Annealing

By R.X.T. Nijssen

Master Thesis

performed: February 1991 - December 1991
by order of Prof. Dr. lng. lA.G. Jess

supervised by Jr. M.R.C.M. Berkelaar and Jr. W.J.M. Philipsen

The Eindhoven University of Technology is not responsible for the contents of training and thesis reports

Abstract

The fanout problem arises in combinatorial logic circuits which have been highly optimized with a
focus on area and power reduction. This may lead to excessive overloads of gates in the circuit,
causing a considerable slow-down of the entire circuit, or even violation of timing constraints.

Buffer placement is a way to solve the fanout problem. By placing some buffers at the outputs of
some overloaded gates, the circuit may be brought within its specifications at the expense of some
area and power increase.

Finding a buffer placement optimal for the entire circuit is a NP-complete combinational optimization
problem. The landscape of its solution space with respect to an appropriate cost function is erratic,
and the topography and size of its solution space exclude deterministic optimization methods.

Simulated annealing is a memoryless optimization algorithm capable of escaping from local minima
in the landscape. As such, it is very suitable for buffer placement.

A program is developed to perform buffer placement by simulated annealing. It optimizes the
timing of a circuit by inserting inverters instead of buffers from a global perspective of the circuit
as opposed to optimizing many local fanout problem in the circuit. The current version requires
various enhancements to improve its convergence by eliminating a property inherent to the problem.
Nonetheless, it is expected that it can become a useful logic synthesis tool by integrating other
optimizations in it.

Contents

1 Introduction 1

2 The Fanout Problem 4
2.1 Overview .. 4
2.2 Previous Work . 5
2.3 Definitions . . . 6
2.4 Delay Modelling . 8
2.5 Optimization Goal 9
2.6 State Space Topology 10
2.7 Optimization Strategy 13

3 Simulated Annealing 15
3.1 Overview ... 15
3.2 Acceptance Probability . 16
3.3 Move Set 17
3.4 Move Selection 18
3.5 Length of Annealing Chains 18
3.6 The Metropolis Algorithm . 19

4 Annealing Fanout Tree Structures 21
4.1 Move Set 21
4.2 Counting Moves 24
4.3 Move Selection 25
4.4 Initialization 27

5 Implementation 29
5.1 The program 29
5.2 Execution 31
5.3 Results . 31
5.4 Future 34

6 Conclusions 36

ii

Chapter 1

Introduction

Research efforts at the Design Automation Section (ES) of the Eindhoven University of Technology

are concentrated on the automization of VLSI design by CAD, referred to as silicon compilation. A

silicon compiler consists of a set of software tools, each of which contributes a part to the translation

of the initial abstract behavioral description of a circuit into a comprehensive description suitable for

physically processing it on silicon as an integrated circuit.

Next paragraphs present a brief overview of the main three phases distinguished in the silicon

compilation path developed at ES, depicted in figure 1.1.

The first phase, the High Level Synthesis part, performs allocation and scheduling of modules and

registers, derived by EDGAR (Eindhoven Demand GrAph constructoR) from a data flow analysis of

the circuit specification. The latter is given in some human readable high level circuit description lan­

guage like VHDL, Hardware C etc. EASY (Eindhoven Architectural Synthesis sYstem) then performs

architectural synthesis. Its output are symbolic controller descriptions and module interconnection
lists.

The second phase comprises controller extraction. Controllers are obtained by deducing finite state

machines from the time schedules generated in the previous phase. State encoding is applied to

minimize the area occupied by the controller logic and the amount of information needed to represent

states. This step is carried out by the ES version of the program ESKISS (ES-Keep Internal States

Simple). A description at logical gate level is generated by EUCLID, amongst other steps containing

a technology mapper which translates a technology independent boolean description of the circuit

into an equivalent one using gates provided by a given technology.

Finally, in the third phase, both full custom and semi custom layouts can be generated by MENTOR1

and GAS (Gate Array System) respectively.

I MENTOR is Dot developed at ES

1

CHAPTER 1. INTRODUCTION

structure
synthesis

functional specification

demand graph

2

logic
synthesis

layout
synthesis

global network state machine

full custom implementation semi custom implementation

Figure 1.1: Overview of the silicon compilation path

The main goal of this ongoing research is the development and further improvement of techniques
to perform this compilation such, that within a reasonable amount of time and with modest use
of computer resources a result close to optimal is obtained. Optimality of a circuit description is
expressed in terms of its area, dissipation and timing statistics.

Until now, nearly all methods developed in this field directly or indirectly focus on mapping as much
functionality from the specification onto each hardware entity, thus causing them to be more heavily
loaded. Heavy loaded or maybe even overloaded entities may considerably deteriorate the timing
figures of the entire circuit, possibly such that it doesn't meet its timing constraints any more. This
is called the fanout problem. Its growing importance has only recently been recognized. One of its
solutions is based on placing amplifiers or buffers in the circuit as to distribute the load. This method
is known as buffer placement. It belongs to the logic synthesis phase, and can be regarded as a post
process solving timing deficiencies emerged in previous steps.

It appears that finding an optimal buffer placement is far from straightforward. Evaluating all

CHAPTER 1. IN1RODUCTION 3

possibilities is both impracticable and unfeasible because ofseveral properties inherent to the problem,
and considering just a limited number ofpossibilities will almost certainly not yield an optimal solution.
This clearly calls for a powerful heuristic that will find a near-optimal solution.

This graduation report shows how the heuristic simulated annealing algorithm is applied to the buffer
placementproblem. In chapter 2, various aspects ofthe fanout problem are dealt with. The next chapter

presents the main parts of the theory of the simulated annealing algorithm which were necessary for
its application to the fanout problem. Chapter 4 shows what was needed for its application. Although
the implementation is still in a very premature stage, the first result is presented in section 5.3, and
finally, chapter 6 ends with some conclusions.

Chapter 2

The Fanout Problem

2.1 Overview

The fanout problem is a technology dependent problem which notably occurs in combinational logic

circuits already optimized by the technology independent part ofa logic synthesis system. Particularly

ifa given circuit doesn't meet the timing constraints imposed by a human designer or a part ofa silicon

compiler, the fanout problem generally might be responsible.

It arises from the success achieved by technology mappers in increasing the efficiency of hardware

implementations in terms of area and power dissipation by reducing the number of gates needed for

the same functionality. Since the fanout problem is a technology dependent problem, the entities

referred to as gates are in fact transistor cell realizations of logic gates in some technology, e.g.

and-or-invert CMOS cells. By factoring and extracting common subexpressions from the description,

logic minimization techniques tend to increase the use of each gate. Consequently, the outputs of the

gates in the resulting circuit will have to be distributed over a larger number of inputs of consecutive

gates. Gates driving> 20 are common in the resulting circuits. Moreover, the frequency of heavily

loaded gates in a circuit increases as well.

At the same time, power dissipation, area and switching frequency considerations strongly suggest

application of small gates. These gates however have lower load drive capabilities.

In most modem technologies with small gates with accordingly small internal capacitances, the delay

through a logic gate is mainly determined by its load ([SIN90] and [KEU88]), generally thought of as

lumped capacitances [PAU89].

According to literature, large fanout values can be responsible for a large proportion of the delay

through a circuit, in some cases even for more than 50%, [TOU90].

4

CHAP1ER 2. THE FANOUT PROBLEM

Several alternatives! have been proposed to eliminate these disadvantages:

5

• Transistor sizing: increasing the size of the driving transistors of a gate increases its load drive

capability. In semi-custom and gate array technology however, there usually is little freedom

of choosing gates with sufficient drive capability for heavily loaded gates to be mapped onto.

• Replication ofgates with high fanouts [WAL90]: This approach is impracticable ifthe frequency

of such gates is high. Moreover, the testability of the circuit is impeded.

• Buffer placement: by adding buffers in the fanout tree the load of gates on the critical path can

be decreased.

Many interdependent fanout problems are likely to exist in large circuits.

2.2 Previous Work

The first comprehensive examination of the fanout problem dates from 1988, publicly appeared in

[BER89]. It provides a proof that even a simplified version of the fanout problem is NP-complete.

The proof shows that the Exact Cover by 3-Sets (X3C) problem [GAR79], which is known to be

NP-complete, and a simplified version of the fanout problem are equivalent. The method suggested

to apply fanout optimization to an entire circuit is to formulate it as an integer linear programming

problem, which is able to minimize area under a delay constraint. Furthermore, an algorithm called

two group algorithm is given that exploits the fact that two groups of gates can be distinguished in

a circuit: Critical gates, which determine the overall propagation delay of the circuit, and gates of

which the timing figures do not affect the overall figure, called non-critical gates. Its complexity is

much lower than the first one.

A similar partitioning is presented in [SIN90]. By inserting buffers before the fanouts in the non­

critical set, and recursively repeating this process until it no longer improves the overall delay of the

circuit, a solution is obtained with small computational effort, which is however clearly suboptimal

as the same speed-up might very well have been gained at a smaller area increase.

In [TOU90J, an algorithm is given that attempts to keep the leaves of the fanout trees that greatly

affect the overall delay at a smaller height of the fanout tree than leaves that don't. Consequently, an

almost uniform distribution of the timing figures at the leaves of the tree is achieved.

A different way to deal with the fanout problem, proposed in [KEU88], is based on gate selection by

means of tree covering: this technique consists in remapping each individual tree to take the actual

1Technology independent solutions will not be taken into account

CHAPTER 2. TIlE FANOUT PROBLEM 6

load at the root of the tree into account, which is known after the circuit has been mapped using tree

covering, after which only gates with sufficient drive capability are accepted as matches at the root of

each tree.

In ISCH9l] a greedy approach is proposed. Although it does yield some nice results, it still suffers

from not being capable of detecting local minima and escaping from it, nor does it explore the state

space for potentially better results. Accordingly, its execution times are small.

Finally, in [LIN91], a fast algorithm is presented to add buffers to fanout trees combined with transistor

sizing. Its proof however is doubtful, and it will therefore not be elaborated.

Most of these approaches focus on optimization of single fanout trees, hence lacking a global per­

spective. Consequently, they have a tendency to spend too much time solving optimally local fanout

problems which are not critical in a global sense. In addition, the assumption made in most approaches

that the leaves of a fanout tree can be partioned into two groups with respect to their overall effect on

timing does not hold for general cases. Surprisingly, most methods deal with buffers as if they were

atomic rather than consisting of two cascaded inverters, whereas this property can clearly be exploited

for further area minimization since initial fanout trees most often already contain an inverter, which

might be overloaded as well. Finally, some of the techniques mentioned rely on the availability of

timing upper bounds, trying to fit a given circuit within those bounds. Although most often timing

constraints are specified, such data is not generally available for each individual circuit.

Overcoming these shortfalls was the main goal for this graduation assignment. The aims were set to

• Perform an optimization with a more global view of the circuit

• Using inverters in the first place rather than buffers

• Offering an easily adaptable algorithm more generally applicable, depending on the data avail­

able

• Prepare for a more comprehensive optimization to be integrated, such as gate sizing

• Being able to obtain solutions with arbitrarily configurable quality as to set an execution time

tradeoff

2.3 Definitions

This section introduces a number of definitions and notations necessary to deal with the problem in a

more formal way.

CHAPTER 2. THE FANOUT PROBLEM 7

Every circuit that is functionally equivalent to an initial instance of C will be called a state or

configuration s. The set of all possible states is denoted with S, the state space.

A gate 9 is regarded as an atomic entity with any number of inputs and one single output. Let 9 be a

set of gates.

A fanout (g, h) of a gate 9 is a directed connection from the output of 9 to the input of some other

gate h. Let £ C 9 x 9 be a set of such interconnections.

A combinational logic circuit C is a set of interconnected gates. Its primary outputs are the outputs

of those gates that are available to the outside of C, and form a set PO. Its primary inputs PI are

represented as the outputs of pseudo-gates with no inputs. For convenience, PIC 9 is assumed.

The set of paths Pg-+h from 9 to h is a set of nodes defined as

(2.1)

IfC has reconvergent fanout, there may be more than one path.

The circuit contains a feedback if 3gE9 IPg -+g I :/: O.

Let C = (g, £) be a directed acyclic graph (DAG) representing a feedbackless combinational logic

circuit with reconvergent fanout.

The fanout set FOg of a node 9 E 9 contains all nodes to which the output of 9 is directly connected,

regardless how many times:
de!

FOg={h E gl(g,h) E £} (2.2)

Let the function degree d : £ --t N assign to each edge the number d(g, h) of connections from the

output of 9 to an input of h. Then, the fanout value

cf>(g)t!!! E d(g, h)
hEFOg

(2.3)

of a gate 9 Egis the total number of inputs connected with the output of g. As the value of d is

irrelevant for the main part of this thesis, the term fanout will be used as if V(g,h)E£d(g, h) = 1, or

IFO9 I = cf>(g), allowing it to be used for the number of different gates to which 9 has a connection.

Gates with exactly one input are called inverters, which form a set

The set G contains all other gates:

(2.4)

(2.5)

CHAPTER 2. THE FANOUT PROBLEM 9

(2.8)

The variable Cwireg is an estimate for the total wire capacitance at the output of a cell g. Its value

depends on the eventual layout of the circuit, and can therefore only roughly be estimated. Some

proposed approaches to the fanout problem [KEU88] even ignore routing and gate capacitances

completely, whereas others (e.g. [LIN91]) explicitly take it into account.

Because of fanout tree reconfigurations, Cwireg will be changed after each reconfiguration having an

effect on FOg. It almost linearly depends on IFOgl and 101 [BER90].

The speedfactor SFg is a measure for the load drive capability ofgate g. For simplicity, VgEg SFg = 1.0

will be assumed since its actual value does not affect the course ofthe optimization ofbuffer placement.

The fanin capacitance Gin per fanin is regarded as a constant that only depends on the technology

used.

The expected arrival time or schedule time Tg at the output of node 9 E 0 is defined as

(2.9)

The overall delay Tmax of Cis determined by the highest schedule time of the primary outputs of the

circuit:

de!
Tmax = (max 9 : 9 E PO : Tg)

A gate is called critical if a change in its delay has an effect on Tmax'

(2.10)

The critical path Ph--.j through C from primary input h to primary output j is the smallest subset of

ofor which

(2.11)

2.5 Optimization Goal

The fanout problem is a combinatorial optimization problem. Solving a combinatorial optimization

problem amounts to finding the 'best' or .optimal' solution among a finite or countably infinite number

of alternative solutions that are the elements of the solution space S. The quality of each solution

CHAPJER 2. THE FANOUT PROBLEM 11

The existence of a reversible mapping M : [0, IS I) S such that each equivalent fanout tree can be

addressed by a unique natural number from a closed and continuous interval would be very desirable

for reasons of efficient storage and comparision. A local topology property on M assigning to the

neighborhood set of state s the corresponding set of numbers m(s), m(s) = USES'tL M (s), or even an

ordering would be even more important. However, no such topology or mapping, which would have

facilitated solving the fanout problem considerably, is known from literature.

Instead, it appears to be hard to deduct even the number of rooted trees of which a fixed number of

nodes is labeled. These problems clearly belong to the field of applied discrete mathematics, cf. e.g.

[WIL85].

Initially, mapping fanout tree structures onto Schroder's generalized bracketing problem [COM74,

p. 56] seemed to offer a promising attempt to reduce the number of possible solutions, even though

clearly a large number of fanout trees cannot be written this way. The main idea is to describe a

fanout tree by inserting brackets in the list of its leaves which is ordered by decreasing size of their

slack, e.g. if output 03 is on the critical path through the tree, (0509)(07(°1°60408)02010)03 might be a

faster equivalent at the expense of three intermediate nodes. In addition, these bracketings can easily

be enumerated. However, closer inspection shows that the extra restriction imposed by mapping the

fanout problem onto this model excludes a large number of good solutions. Since it proved to be

extremely hard to show whether this drawback causes overall suboptimal results, this approach was

rejected, although it would have reduced the number of possible solutions greatly.

A useful solution to compute the number offanout trees is based on enumeration of those trees by total

height, due to [RI068] which shows the derivation of a suitable generating function. This reference

was obtained by manually counting the number of trees with 1,2, 3,4,5Ieaves, yielding the sequence

1,1,4,26,236, which occurs in [SL073]. The total height of a rooted tree is the sum of the heights of

its nodes. The height of a node is the number of intermediate nodes on the path to the root, including

the latter node.

The number of fanout trees at some gate 9 E G in the circuit depends on the number of leaves of g,

denoted as ng •

Now the number of a unipartite non planar labeled rooted directed graph, in which each node has at

least 2 outgoing edges and ng leaves is given by

(2.15)

Computational evaluation of this formula is impracticable as overflows are likely to occur, amongst

other reasons. In addition, it does not reveal any other information about the size of the state space

than that it's large. A more useful approximation is therefore derived in the remainder of this section.

CHAPTER 2. THE FANOUT PROBLEM

• memoryless - the only state known is the current state

• hill climbing - to avoid getting stuck in a local minimum

Simulated Annealing meets these requirements.

14

Chapter 3

Simulated Annealing

3.1 Overview

The Simulated Annealing algorithm is a stochastic combinatorial optimization method.

Its features are:

• Results do not depend on initial solution

• Memoryless - only one state has to be in storage

• General purpose

• For many problems, convergence is obtained in polynomial time

• Arbitrary precision of the solution can be configured

Furthermore, some authors report successes with executing it in parallel, e.g. [LAA87].

It originated from the analogy between condensed matter stochastic physics and combinatorial mini­

mization.

As for the physical part, the annealing process is known as a thermal process for obtaining low energy

states of a melted solid in a heat bath being cooled slowly by lowering the temperature of the heat bath

in a controlled way. The energy is expressed in terms of the average distance between the particles.

Provided that this cooling schedule is carried out sufficiently gradual, the lowest possible energy state

or ground state viz. its perfect crystalline structure will be obtained. Otherwise, it will be stuck in a

state with non minimal energy.

15

CHAPJER 3. SIMULA1ED ANNEALING

The move set must be reflexive:

3.4 Move Selection

18

(3.5)

The move selection probability function (3 needs to satisfy constraints that are briefly listed below

([OTI89]):

V'SES'Jl[(3(S,S')::f 0 1\ E (3(s,s') = 1]
sEs'Jl

It is obvious that (3(s, s') is a function of Is'l1l. Most often,

(3(s, s') = { Istl if s E s'J1
o if s E S\s'l1

(3.6)

(3.7)

(3.8)

(3.9)

which clearly satisfies (3.6), (3.7) and (3.8). In addition, for most problems discussed in literature (e.g.

[LAA87], [DEK88], [LAA88] or [OTI89]), the cardinality of the neighborhood set is a constant, in

which case {3 is a constant as well, V'sES'Jl (3(s, s') = {3, and the transition probability only depends on

the acceptance probability, 1"(s, s', t) = (3a.(d£, t).

More complex problems are characterized by a changing state space topology because of moves

performed. Then, 1s'J1 1 and consequently (3(s, s') will no longer be constants, and their recalculation

after each accepted move may require substantial efforts, depending on the complexity of the move

set. Hence, great care must be taken whether the move set allows rapid computation of Is'l1l.

3.5 Length of Annealing Chains

The simulated annealing algorithm can be viewed as a number of homogeneous Markov chains ­

between which t was decremented with I:!.t - of length k t . The transition probability between two

states of the chain is defined as 1"(s, s', t)tJ;!a.(ds,s'£' t)(3(s, s').

Chapter 4

Annealing Fanout Tree Structures

4.1 Move Set

The most important requirement a move set has to satisfy is its ability to generate all possible

configurations s E S, referred to as the space connectivity, cf. (3.3). On the other hand, it must be

avoided that from one configuration, too many other configurations are reachable, because this would

require longer chains before equilibrium is obtained, and it would be equivalent to randomly and

uniformly selecting states from S as candidates for the next state. Neighborhood sets S'lL are induced

by the move set. For convergence (max s : s E S'lL: dE) must be moderate. On the other hand, it

appears that if the variance CTs'p, = V(E(S)2) - (E(S))2 of scores of adjacent states is small, the score

landscape is probably too flat, requiring too many moves to achieve a significant change of the quality

of the states.

The move set consists of three elementary moves to reconfigure a fanout tree. The choice for this

move set was guided by the desirability to eliminate the bipartiteness of fanout trees regarded as a

set of interconnected inverters. With this move set, the actual phase of a node in the fanout tree is

abstracted since it provides a dual alternative for each node at which a move can be applied.

Figure 4.1 depicts a typical fanout tree. The dashed arrows represent the critical path that runs through

the base gate and the inverter.

A insert.buffer move inserts two cascaded inverters in one previously selected fanout edge, see figure

4.2 for an example of its application on the fanout tree of figure 4.1 The motivations for this move

is the observation that it introduces a number of points in the fanout tree equivalent with others, thus

introducing a relatively large number of possible moves. This is important in the initial part of the

process because, initially, there are no equivalent fanouts in a typical fanout tree. Unlike the other

two moves, this move will never decrease the number of inverters in the circuit. The fact that the area

21

CHAPTER 4. ANNEALING FANOUT TREE STRUCTURES

Figure 4.1: typical fanout tree structure

increase of it is high compared with the expected speed up makes it a true catalytic move.

Figure 4.2: insert_buffer move

22

Application of this move requires two selections with a tree: the output to which the buffer is to be
connected, and the edge in which the buffer will be inserted.

The next move attaches one inverter to an output in the fanout tree. An edge with correct phase is
removed from another output to the output of the new inverter. Figure 4.3 shows the resulting fanout
tree after this move was performed in the fanout tree of figure 4.1. If this removal causes the origin to
become fanoutless, this inverter will be removed. Clearly, another inverter could become fanoutless
because of this, which would have to be removed as well, etc.

The third move, the move..signal move, performs only small reconfigurations in the fanout tree by

CHAP1ER 4. ANNEALING FANOUT TREE STRUCTURES

Figure 4.3: inserUnverter move

23

moving an edge to an equivalent output. Its effect on the fanout tree of figure 4.3 is shown in figure

4.4. Again, one or more inverters may become obsolete. In contrast with the first move, it is expected

that this move yields configurations with less area.

Figure 4.4: move-signal move

Some restrictions apply to avoid fanout trees to become cyclic by connecting an edge to gate m to d
if m is a predecessor of d:

For insertjnverter moves,

(4.1)

and, likewise, for move...signal moves,

(4.2)

where d, f E Vg , and (I, m) E Eg •

CHAPTER 4. ANNEALING FANOUT IREE STRUCTURES 24

Note that these moves can only have an effect on the fanout tree in which they are carried out. The
global perspective is only implemented by the objective function. It is not clear how this locality
affects the topology of the solution space.

4.2 Counting Moves

The total number of moves m s that can be performed from a given state s determines 13, and must
therefore be known each time a move is to be selected.

The most important property that follows from the choice of the move set is its orthogonality: for
every adjacent configuration s' E SJl of state s, exactly one move exists that transforms s into s':

Consequently, ISJlI = m s •

'tis,s': S E S 1\ s' E S: 3!(s,s'):: (s,s') E Jl (4.3)

A move...signal move can swap one fanout edge of i E Vg with another node in N;. Connecting an
edge to any of its succeeding nodes is illegal to exclude a cycle. The number of illegal destination
nodes is INf I- 1. Identity moves, moves which don't change the fanout structure, are also illegal, so
the number of such moves at node i E Vg is found by:

(4.4)

N; is the set of non-inverted nodes with respect to node i in this fanout tree, and Nt is the set of
non-inverted nodes in the fanout tree below node i.

Likewise, the per node number of insertJnv moves that can be performed with the fanout edges of
node i E Vg is:

(4.5)

The number of insert.bufmoves that can be performed at node i E Vg is simply the cardinality of the
fanout set of i:

(4.6)

CHAPTER 4. ANNEALING FANOUT TREE STRUCTURES 28

The local accessibility ht is a measure for the uncertainty about a single movein equilibrium, estimated

by [OTT89, (9.9)] as a function of the move selection probability (3, and hence, if 3.9, of ISILI, the

cardinality of the set of selectable moves.

The initial values of the remaining aggregate functions, the average score (€) and the score variance
can be computed from the course of the objective function. Their initial values Eoo and Goo can

be estimated with any desired accuracy by generating r statistically independent states, cf. [OTT89,

8.1]. This accuracy does not depend on any property of the problem to be optimized, hence r can be

adapted to control a trade-off between the quality of the solution and the computing effort required.

Chapter 5

Implementation

5.1 The program

The optimization ofbuffer placement by simulated annealing was implemented in the C programming
language. The resulting program of more than 4000 lines of code roughly consists of following
modules:

• a lexical scanner to recognize the lexemes in the gate file and pass the corresponding tokens to

• a syntactical parser, which checks the syntax of the input and stores a full representation of the
circuit in memory in a suitable data structure

• file 10 is isolated in a seperate module

• the timing module contains tools to calculate all required timing parameters of the stored circuit
representation

• the score module implements the objective function

• the move module embodies the procedures which perform the reconfigurations in the circuit
representation

• the selection modules selects moves, controlled by

• the simulated annealing module in which the kernel of the probabilistic hill climbing is found

In addition, some toolboxes provide auxiliary functions.

The data structure used has to meet several requirements:

29

CHAPTER 5. IMPLEMENTATION 31

It shows that the datastructure mimics the circuit as it is regarded as a set of vertices and a set of

edges. Each vertex or gate has several parameters, a fanout list and a famn list of edge elements.

The leaves of the expression tree is formed by the same fanin list. This way, changes in the famn list

automatically update the expression corresponding with that gate.

5.2 Execution

The execution time of the algorithm strongly depends on three characteristics of the problem instance:

1. The average length of the paths from the primary inputs to the primary outputs

2. The average extent of reconvergence of the circuit

3. The average distance of fanout trees with a high number of leaves from the primary outputs

These parameters determine the cardinality of the transitive closure of gates of which the schedule

time has to be recalculated after a move. Although they are mutually independent, they reinforce their

effects on the execution time. So, worst case circuits have long paths, many alternative paths, and

their primary inputs are distributed to a high number of gates. Intuitively, a convenient measure for

these properties is likely to be LYEPI LhEPo(IPg--.hl). This was however not elaborated because

this measure is indirectly determined by the annealing algorithm in its initialization phase. To avoid

impracticable execution times of the algorithm, it might be used to set the inner loop multiplier value

C as to be able to configure a tradeoff between execution time of the algorithm and the optimality of

the result.

5.3 Results

Figure 5.2 shows a plot of the very first run of the program for the misex3c benchmark circuit, which

initially contains 316 gates. Its initial critical path has a total propagation delay of 132.2 ns, as

measured by log...crit, a program that uses the same delay model. Note that the objective function was

rather arbitrary chosen as the only purpose of this particular run was to visualize the course of the

optimization process.

The weight ratio assigned in the objective function between timing and area is 10:

c(s) = lOTmax +AI

This ratio will favor timing at the expense of the number of gates required.

CHAPTER 5. IMPLEMENTATION 32

3500 r-------r------r-----.....,...----.....,.-----,..------,
score ­

#ga tes ----.
Tmax .

3000

2500

2000

1500

1000

500

30002500200015001000500
01..-----.1..-----.1..-----.1..-----.1..-----......-------'

o

Figure 5.2: Optimization run for misex3c

At first glance, the results obtained for this circuit might seem disappointing, it must be emphasized,

though, that they may well match the combination of the properties of the problem instance and the

objective function, particularly its constants.

The plot contains 3 curves as a function of the number of iterations of the metropolis loop:

1. The number of gates in the circuit

2. The delay of the critical path

3. The score

The run was aborted after 1 hour and 15 minutes CPU time because proper convergence did not seem

to occur.

The course of the score curve in the plot has some remarkable properties: it behaves very erratic

	Voorblad

	Abstract

	Contents

